
Case study #0 (part II)
Laplacian Stencil Application 

(Today : on 2D grid)



Kernel header (Laplacian.h)

#pragma once

#define XDIM 2048
#define YDIM 2048

void ComputeLaplacian(const float (&u)[XDIM][YDIM], float (&Lu)[XDIM][YDIM]);

LaplacianStencil_0_3

Size reduced 16K -> 2K

Execution: 
Running test iteration  1 [Elapsed time : 25.4213ms]
Running test iteration  2 [Elapsed time : 10.8833ms]
Running test iteration  3 [Elapsed time : 0.807804ms]
Running test iteration  4 [Elapsed time : 0.325908ms]
Running test iteration  5 [Elapsed time : 0.307869ms]
Running test iteration  6 [Elapsed time : 0.29541ms]
Running test iteration  7 [Elapsed time : 0.298488ms]
Running test iteration  8 [Elapsed time : 0.298959ms]
Running test iteration  9 [Elapsed time : 0.298472ms]
Running test iteration 10 [Elapsed time : 0.299072ms]



Kernel Body (Laplacian.cpp)

#include "Laplacian.h"

void ComputeLaplacian(const float (&u)[XDIM][YDIM], float (&Lu)[XDIM][YDIM])
{

#pragma omp parallel for
   for (int j = 1; j < YDIM-1; j++)
   for (int i = 1; i < XDIM-1; i++)
        Lu[i][j] =
            -4 * u[i][j]
            + u[i+1][j]
            + u[i-1][j]
            + u[i][j+1]
            + u[i][j-1];
            
}

LaplacianStencil_0_4

Size reduced 16K -> 4K 
Loop Order Swapped

Execution: 
Running test iteration  1 [Elapsed time : 88.9032ms]
Running test iteration  2 [Elapsed time : 50.2971ms]
Running test iteration  3 [Elapsed time : 50.5499ms]
Running test iteration  4 [Elapsed time : 50.2705ms]
Running test iteration  5 [Elapsed time : 51.0571ms]
Running test iteration  6 [Elapsed time : 51.5478ms]
Running test iteration  7 [Elapsed time : 51.4321ms]
Running test iteration  8 [Elapsed time : 50.3991ms]
Running test iteration  9 [Elapsed time : 50.4688ms]
Running test iteration 10 [Elapsed time : 52.8201ms]



Kernel Body (Laplacian.cpp)

#include "Laplacian.h"

void ComputeLaplacian(const float (&u)[XDIM][YDIM], float (&Lu)[XDIM][YDIM])
{

#pragma omp parallel for
   for (int j = 1; j < YDIM-1; j++)
   for (int i = 1; i < XDIM-1; i++)
        Lu[i][j] =
            -4 * u[i][j]
            + u[i+1][j]
            + u[i-1][j]
            + u[i][j+1]
            + u[i][j-1];
            
}

LaplacianStencil_0_5

Size reduced 16K -> 2K 
Loop Order Swapped

Execution: 
Running test iteration  1 [Elapsed time : 53.1412ms]
Running test iteration  2 [Elapsed time : 2.73531ms]
Running test iteration  3 [Elapsed time : 2.6788ms]
Running test iteration  4 [Elapsed time : 2.66177ms]
Running test iteration  5 [Elapsed time : 2.66733ms]
Running test iteration  6 [Elapsed time : 2.6668ms]
Running test iteration  7 [Elapsed time : 2.63204ms]
Running test iteration  8 [Elapsed time : 2.67448ms]
Running test iteration  9 [Elapsed time : 2.6665ms]
Running test iteration 10 [Elapsed time : 2.66042ms]



Kernel Body (Laplacian.cpp)

#include "Laplacian.h"

void ComputeLaplacian(const float (&u)[XDIM][YDIM], float (&Lu)[XDIM][YDIM])
{

#pragma omp parallel for
   for (int j = 1; j < YDIM-1; j++)
   for (int i = 1; i < XDIM-1; i++)
        Lu[i][j] =
            -4 * u[i][j]
            + u[i+1][j]
            + u[i-1][j]
            + u[i][j+1]
            + u[i][j-1];
            
}

LaplacianStencil_0_6

Original Size 
Loop Order Swapped

Execution: 
Running test iteration  1 [Elapsed time : 2034.53ms]
Running test iteration  2 [Elapsed time : 1814.3ms]
Running test iteration  3 [Elapsed time : 1873.85ms]
Running test iteration  4 [Elapsed time : 1779.44ms]
Running test iteration  5 [Elapsed time : 1731.12ms]
Running test iteration  6 [Elapsed time : 1809.28ms]
Running test iteration  7 [Elapsed time : 1825.35ms]
Running test iteration  8 [Elapsed time : 1725.44ms]
Running test iteration  9 [Elapsed time : 1806.62ms]
Running test iteration 10 [Elapsed time : 1882.4ms]



Benchmark launcher (main.cpp)

#include "Timer.h"
#include "Laplacian.h"

#include <iomanip>

int main(int argc, char *argv[])
{
    float **u = new float *[XDIM];
    float **Lu = new float *[XDIM];
    for (int i = 0; i < XDIM; i++){
        u[i] = new float [YDIM];
        Lu[i] = new float [YDIM];
    }

    Timer timer;

    for(int test = 1; test <= 10; test++)
    {
        std::cout << "Running test iteration " << std::setw(2) << test << " ";
        timer.Start();
        ComputeLaplacian(u, Lu);
        timer.Stop("Elapsed time : ");
    }
    
    return 0;
}

LaplacianStencil_0_7

Arrays (u,Lu) allocated as 
“arrays of pointers to allocated arrays”



Kernel header (Laplacian.h)

#pragma once

#define XDIM 2048
#define YDIM 2048

void ComputeLaplacian(const float **u, float **Lu);

LaplacianStencil_0_7

Arguments passed as double pointers 
(Laplacian.cpp is largely unchanged)

Execution: 
Running test iteration  1 [Elapsed time : 20.1705ms]
Running test iteration  2 [Elapsed time : 1.51735ms]
Running test iteration  3 [Elapsed time : 1.51338ms]
Running test iteration  4 [Elapsed time : 0.668702ms]
Running test iteration  5 [Elapsed time : 0.621804ms]
Running test iteration  6 [Elapsed time : 0.62804ms]
Running test iteration  7 [Elapsed time : 0.623426ms]
Running test iteration  8 [Elapsed time : 0.623373ms]
Running test iteration  9 [Elapsed time : 0.624101ms]
Running test iteration 10 [Elapsed time : 0.61673ms]



Kernel header (Laplacian.h)

#pragma once

#define XDIM 16384
#define YDIM 256

void ComputeLaplacian(const float (&u)[XDIM][YDIM], float (&Lu)[XDIM][YDIM]);

LaplacianStencil_0_8

Rectangular size, 16K x 256 
(same overall size as 2K x 2K)

Execution: 
Running test iteration  1 [Elapsed time : 19.4975ms]
Running test iteration  2 [Elapsed time : 0.695738ms]
Running test iteration  3 [Elapsed time : 0.692519ms]
Running test iteration  4 [Elapsed time : 0.692588ms]
Running test iteration  5 [Elapsed time : 0.693134ms]
Running test iteration  6 [Elapsed time : 0.752835ms]
Running test iteration  7 [Elapsed time : 0.348585ms]
Running test iteration  8 [Elapsed time : 0.299074ms]
Running test iteration  9 [Elapsed time : 0.32255ms]
Running test iteration 10 [Elapsed time : 0.299462ms]



Benchmark launcher (main.cpp)
#include "Timer.h"
#include "Laplacian.h"
#include <iomanip>
#include <random>

int main(int argc, char *argv[])
{
    float **u = new float *[XDIM];
    float **Lu = new float *[XDIM];

    // Randomize allocation of minor array dimension
    std::vector<int> reorderMap;
    std::vector<int> tempMap;
    for (int i = 0; i < XDIM; i++) tempMap.push_back(i);
    std::random_device r; std::default_random_engine e(r());
    while (!tempMap.empty()) {
        std::uniform_int_distribution<int> uniform_dist(0, tempMap.size()-1);
        int j = uniform_dist(e);            
        reorderMap.push_back(tempMap[j]); tempMap[j] = tempMap.back(); tempMap.pop_back(); }        

    for (int i = 0; i < XDIM; i++){
        u[reorderMap[i]] = new float [YDIM];
        Lu[reorderMap[i]] = new float [YDIM]; }

    Timer timer;
    for(int test = 1; test <= 10; test++)
    {
        std::cout << "Running test iteration " << std::setw(2) << test << " ";
        timer.Start();
        ComputeLaplacian(u, Lu);
        timer.Stop("Elapsed time : ");
    }  
    return 0;
}

LaplacianStencil_0_9

Arrays (u,Lu) allocated as 
“arrays of pointers to allocated arrays” 

(and allocation randomized)



Kernel header (Laplacian.h)

#pragma once

#define XDIM 16384
#define YDIM 256

void ComputeLaplacian(const float **u, float **Lu);

LaplacianStencil_0_9

Arguments passed as double pointers 
(Laplacian.cpp is largely unchanged) 

(with randomized allocation)

Execution: 
Running test iteration  1 [Elapsed time : 10.0235ms]
Running test iteration  2 [Elapsed time : 0.750141ms]
Running test iteration  3 [Elapsed time : 0.725621ms]
Running test iteration  4 [Elapsed time : 0.830286ms]
Running test iteration  5 [Elapsed time : 0.801024ms]
Running test iteration  6 [Elapsed time : 0.78661ms]
Running test iteration  7 [Elapsed time : 0.714213ms]
Running test iteration  8 [Elapsed time : 0.71165ms]
Running test iteration  9 [Elapsed time : 0.713606ms]
Running test iteration 10 [Elapsed time : 0.771579ms]



Practical use of SIMD in code
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    YMM0

Intel SIMD Registers (AVX-512)

XMM0

    ZMM1
    YMM1 XMM1

    ZMM31
    YMM31 XMM31

…
❑XMM0 – XMM15  

o 128-bit registers 
o SSE 

❑YMM0 – YMM15 
o 256-bit registers 
o AVX, AVX2 

❑ZMM0 – ZMM31 
o 512-bit registers 
o AVX-512



SSE/AVX Data Types
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32 8-bit 
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in one 
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255 0



Sandy Bridge Microarchitecture

e.g., “Port 5 pressure” when code uses too much shuffle 
operations
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As a basis for the usage model discussed in this section, consider a simple loop 
shown in Example 4-7.

Note that the loop runs for only four iterations. This allows a simple replacement of 
the code with Streaming SIMD Extensions.

For the optimal use of the Streaming SIMD Extensions that need data alignment on 
the 16-byte boundary, all examples in this chapter assume that the arrays passed to 
the routine, A, B, C, are aligned to 16-byte boundaries by a calling routine. For the 
methods to ensure this alignment, please refer to the application notes for the 
Pentium 4 processor.

The sections that follow provide details on the coding methodologies: inlined 
assembly, intrinsics, C++ vector classes, and automatic vectorization.

4.3.1.1  Assembly

Key loops can be coded directly in assembly language using an assembler or by using 
inlined assembly (C-asm) in C/C++ code. The Intel compiler or assembler recognize 
the new instructions and registers, then directly generate the corresponding code. 
This model offers the opportunity for attaining greatest performance, but this perfor-
mance is not portable across the different processor architectures. 

Example 4-13.  Simple Four-Iteration Loop

void add(float *a, float *b, float *c)

{

int i;

for (i = 0; i < 4; i++) {

    c[i] = a[i] + b[i];

  }

}
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Example 4-8 shows the Streaming SIMD Extensions inlined assembly encoding.

4.3.1.2  Intrinsics

Intrinsics provide the access to the ISA functionality using C/C++ style coding 
instead of assembly language. Intel has defined three sets of intrinsic functions that 
are implemented in the Intel C++ Compiler to support the MMX technology, 
Streaming SIMD Extensions and Streaming SIMD Extensions 2. Four new C data 
types, representing 64-bit and 128-bit objects are used as the operands of these 
intrinsic functions. __M64 is used for MMX integer SIMD, __M128 is used for single-
precision floating-point SIMD, __M128I is used for Streaming SIMD Extensions 2 
integer SIMD, and __M128D is used for double precision floating-point SIMD. These 
types enable the programmer to choose the implementation of an algorithm directly, 
while allowing the compiler to perform register allocation and instruction scheduling 
where possible. The intrinsics are portable among all Intel architecture-based 
processors supported by a compiler. 

The use of intrinsics allows you to obtain performance close to the levels achievable 
with assembly. The cost of writing and maintaining programs with intrinsics is consid-
erably less. For a detailed description of the intrinsics and their use, refer to the 
Intel C++ Compiler documentation.

Example 4-14.  Streaming SIMD Extensions Using Inlined Assembly Encoding

void add(float *a, float *b, float *c)
{
  __asm {
    mov     eax, a
    mov     edx, b
    mov     ecx, c
    movaps  xmm0, XMMWORD PTR [eax]
    addps   xmm0, XMMWORD PTR [edx]
    movaps  XMMWORD PTR [ecx], xmm0
  }
}



4-15

CODING FOR SIMD ARCHITECTURES

Example 4-8 shows the Streaming SIMD Extensions inlined assembly encoding.

4.3.1.2  Intrinsics

Intrinsics provide the access to the ISA functionality using C/C++ style coding 
instead of assembly language. Intel has defined three sets of intrinsic functions that 
are implemented in the Intel C++ Compiler to support the MMX technology, 
Streaming SIMD Extensions and Streaming SIMD Extensions 2. Four new C data 
types, representing 64-bit and 128-bit objects are used as the operands of these 
intrinsic functions. __M64 is used for MMX integer SIMD, __M128 is used for single-
precision floating-point SIMD, __M128I is used for Streaming SIMD Extensions 2 
integer SIMD, and __M128D is used for double precision floating-point SIMD. These 
types enable the programmer to choose the implementation of an algorithm directly, 
while allowing the compiler to perform register allocation and instruction scheduling 
where possible. The intrinsics are portable among all Intel architecture-based 
processors supported by a compiler. 

The use of intrinsics allows you to obtain performance close to the levels achievable 
with assembly. The cost of writing and maintaining programs with intrinsics is consid-
erably less. For a detailed description of the intrinsics and their use, refer to the 
Intel C++ Compiler documentation.

Example 4-14.  Streaming SIMD Extensions Using Inlined Assembly Encoding

void add(float *a, float *b, float *c)
{
  __asm {
    mov     eax, a
    mov     edx, b
    mov     ecx, c
    movaps  xmm0, XMMWORD PTR [eax]
    addps   xmm0, XMMWORD PTR [edx]
    movaps  XMMWORD PTR [ecx], xmm0
  }
}

✓ Anything that can be done, 
can be coded up as inline 
assembly 
✓ Maximum potential for 
performance accelerations 
✓ Direct control over the code 
being generated
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Example 4-8 shows the Streaming SIMD Extensions inlined assembly encoding.

4.3.1.2  Intrinsics

Intrinsics provide the access to the ISA functionality using C/C++ style coding 
instead of assembly language. Intel has defined three sets of intrinsic functions that 
are implemented in the Intel C++ Compiler to support the MMX technology, 
Streaming SIMD Extensions and Streaming SIMD Extensions 2. Four new C data 
types, representing 64-bit and 128-bit objects are used as the operands of these 
intrinsic functions. __M64 is used for MMX integer SIMD, __M128 is used for single-
precision floating-point SIMD, __M128I is used for Streaming SIMD Extensions 2 
integer SIMD, and __M128D is used for double precision floating-point SIMD. These 
types enable the programmer to choose the implementation of an algorithm directly, 
while allowing the compiler to perform register allocation and instruction scheduling 
where possible. The intrinsics are portable among all Intel architecture-based 
processors supported by a compiler. 

The use of intrinsics allows you to obtain performance close to the levels achievable 
with assembly. The cost of writing and maintaining programs with intrinsics is consid-
erably less. For a detailed description of the intrinsics and their use, refer to the 
Intel C++ Compiler documentation.

Example 4-14.  Streaming SIMD Extensions Using Inlined Assembly Encoding

void add(float *a, float *b, float *c)
{
  __asm {
    mov     eax, a
    mov     edx, b
    mov     ecx, c
    movaps  xmm0, XMMWORD PTR [eax]
    addps   xmm0, XMMWORD PTR [edx]
    movaps  XMMWORD PTR [ecx], xmm0
  }
}

✓ Anything that can be done, 
can be coded up as inline 
assembly 
✓ Maximum potential for 
performance accelerations 
✓ Direct control over the code 
being generated

✗ Impractical for all but the 
smallest of kernels 
✗ Not portable 
✗ User needs to perform 
register allocation (and save old 
registers) 
✗ User needs to (expertly) 
schedule instructions to hide 
latencies



Intrinsics

• A framework for generating assembly-level code without many 
of the drawbacks of inline assembly
• Compiler (not programmer) takes care of register allocation
• Compiler is able to schedule instructions to hide latencies

• Data types
• Scalar :  float, double, unsigned int ... 
• Vector :  __mm128, __m128d, __m256, __m256i ... 

• Intrinsic functions
• Instruction wrappers :  _mm_add_pd, _mm256_mult_pd, 

_mm_xor_ps, _mm_sub_ss ... 

• Macros : _mm_set1_ps, _mm256_setzero_ps ... 
• Math Wrappers :  _mm_log_ps, _mm256_pow_pd ...
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Example 4-9 shows the loop from Example 4-7 using intrinsics.

The intrinsics map one-to-one with actual Streaming SIMD Extensions assembly 

code. The XMMINTRIN.H header file in which the prototypes for the intrinsics are 

defined is part of the Intel C++ Compiler included with the VTune Performance 

Enhancement Environment CD.

Intrinsics are also defined for the MMX technology ISA. These are based on the 

__m64 data type to represent the contents of an mm register. You can specify values 

in bytes, short integers, 32-bit values, or as a 64-bit object. 

The intrinsic data types, however, are not a basic ANSI C data type, and therefore 

you must observe the following usage restrictions:

! Use intrinsic data types only on the left-hand side of an assignment as a return 

value or as a parameter. You cannot use it with other arithmetic expressions (for 

example, V+W, V>>W).

! Use intrinsic data type objects in aggregates, such as unions to access the byte 

elements and structures; the address of an __M64 object may be also used.

! Use intrinsic data type data only with the MMX technology intrinsics described in 

this guide.

For complete details of the hardware instructions, see the Intel Architecture MMX 
Technology Programmer6s Reference Manual. For a description of data types, see the 

Intel® 64 and IA-32 Architectures Software Developer6s Manual.

4.3.1.3  Classes

A set of C++ classes has been defined and available in Intel C++ Compiler to provide 

both a higher-level abstraction and more flexibility for programming with MMX tech-

nology, Streaming SIMD Extensions and Streaming SIMD Extensions 2. These 

classes provide an easy-to-use and flexible interface to the intrinsic functions, 

allowing developers to write more natural C++ code without worrying about which 

intrinsic or assembly language instruction to use for a given operation. Since the 

intrinsic functions underlie the implementation of these C++ classes, the perfor-

Example 4-15.  Simple Four-Iteration Loop Coded with Intrinsics

#include <xmmintrin.h>

void add(float *a, float *b, float *c)

{

__m128 t0, t1;

 t0 = _mm_load_ps(a);

 t1 = _mm_load_ps(b);

 t0 = _mm_add_ps(t0, t1);

 _mm_store_ps(c, t0);

}



4-16

CODING FOR SIMD ARCHITECTURES

Example 4-9 shows the loop from Example 4-7 using intrinsics.

The intrinsics map one-to-one with actual Streaming SIMD Extensions assembly 

code. The XMMINTRIN.H header file in which the prototypes for the intrinsics are 

defined is part of the Intel C++ Compiler included with the VTune Performance 

Enhancement Environment CD.

Intrinsics are also defined for the MMX technology ISA. These are based on the 

__m64 data type to represent the contents of an mm register. You can specify values 

in bytes, short integers, 32-bit values, or as a 64-bit object. 

The intrinsic data types, however, are not a basic ANSI C data type, and therefore 

you must observe the following usage restrictions:

! Use intrinsic data types only on the left-hand side of an assignment as a return 

value or as a parameter. You cannot use it with other arithmetic expressions (for 

example, V+W, V>>W).

! Use intrinsic data type objects in aggregates, such as unions to access the byte 

elements and structures; the address of an __M64 object may be also used.

! Use intrinsic data type data only with the MMX technology intrinsics described in 

this guide.

For complete details of the hardware instructions, see the Intel Architecture MMX 
Technology Programmer6s Reference Manual. For a description of data types, see the 

Intel® 64 and IA-32 Architectures Software Developer6s Manual.

4.3.1.3  Classes

A set of C++ classes has been defined and available in Intel C++ Compiler to provide 

both a higher-level abstraction and more flexibility for programming with MMX tech-

nology, Streaming SIMD Extensions and Streaming SIMD Extensions 2. These 

classes provide an easy-to-use and flexible interface to the intrinsic functions, 

allowing developers to write more natural C++ code without worrying about which 

intrinsic or assembly language instruction to use for a given operation. Since the 

intrinsic functions underlie the implementation of these C++ classes, the perfor-

Example 4-15.  Simple Four-Iteration Loop Coded with Intrinsics

#include <xmmintrin.h>

void add(float *a, float *b, float *c)

{

__m128 t0, t1;

 t0 = _mm_load_ps(a);

 t1 = _mm_load_ps(b);

 t0 = _mm_add_ps(t0, t1);

 _mm_store_ps(c, t0);

}
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Example 4-8 shows the Streaming SIMD Extensions inlined assembly encoding.

4.3.1.2  Intrinsics

Intrinsics provide the access to the ISA functionality using C/C++ style coding 
instead of assembly language. Intel has defined three sets of intrinsic functions that 
are implemented in the Intel C++ Compiler to support the MMX technology, 
Streaming SIMD Extensions and Streaming SIMD Extensions 2. Four new C data 
types, representing 64-bit and 128-bit objects are used as the operands of these 
intrinsic functions. __M64 is used for MMX integer SIMD, __M128 is used for single-
precision floating-point SIMD, __M128I is used for Streaming SIMD Extensions 2 
integer SIMD, and __M128D is used for double precision floating-point SIMD. These 
types enable the programmer to choose the implementation of an algorithm directly, 
while allowing the compiler to perform register allocation and instruction scheduling 
where possible. The intrinsics are portable among all Intel architecture-based 
processors supported by a compiler. 

The use of intrinsics allows you to obtain performance close to the levels achievable 
with assembly. The cost of writing and maintaining programs with intrinsics is consid-
erably less. For a detailed description of the intrinsics and their use, refer to the 
Intel C++ Compiler documentation.

Example 4-14.  Streaming SIMD Extensions Using Inlined Assembly Encoding

void add(float *a, float *b, float *c)
{
  __asm {
    mov     eax, a
    mov     edx, b
    mov     ecx, c
    movaps  xmm0, XMMWORD PTR [eax]
    addps   xmm0, XMMWORD PTR [edx]
    movaps  XMMWORD PTR [ecx], xmm0
  }
}
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Example 4-9 shows the loop from Example 4-7 using intrinsics.

The intrinsics map one-to-one with actual Streaming SIMD Extensions assembly 

code. The XMMINTRIN.H header file in which the prototypes for the intrinsics are 

defined is part of the Intel C++ Compiler included with the VTune Performance 

Enhancement Environment CD.

Intrinsics are also defined for the MMX technology ISA. These are based on the 

__m64 data type to represent the contents of an mm register. You can specify values 

in bytes, short integers, 32-bit values, or as a 64-bit object. 

The intrinsic data types, however, are not a basic ANSI C data type, and therefore 

you must observe the following usage restrictions:

! Use intrinsic data types only on the left-hand side of an assignment as a return 

value or as a parameter. You cannot use it with other arithmetic expressions (for 

example, V+W, V>>W).

! Use intrinsic data type objects in aggregates, such as unions to access the byte 

elements and structures; the address of an __M64 object may be also used.

! Use intrinsic data type data only with the MMX technology intrinsics described in 

this guide.

For complete details of the hardware instructions, see the Intel Architecture MMX 
Technology Programmer6s Reference Manual. For a description of data types, see the 

Intel® 64 and IA-32 Architectures Software Developer6s Manual.

4.3.1.3  Classes

A set of C++ classes has been defined and available in Intel C++ Compiler to provide 

both a higher-level abstraction and more flexibility for programming with MMX tech-

nology, Streaming SIMD Extensions and Streaming SIMD Extensions 2. These 

classes provide an easy-to-use and flexible interface to the intrinsic functions, 

allowing developers to write more natural C++ code without worrying about which 

intrinsic or assembly language instruction to use for a given operation. Since the 

intrinsic functions underlie the implementation of these C++ classes, the perfor-

Example 4-15.  Simple Four-Iteration Loop Coded with Intrinsics

#include <xmmintrin.h>

void add(float *a, float *b, float *c)

{

__m128 t0, t1;

 t0 = _mm_load_ps(a);

 t1 = _mm_load_ps(b);

 t0 = _mm_add_ps(t0, t1);

 _mm_store_ps(c, t0);

}
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Example 4-9 shows the loop from Example 4-7 using intrinsics.

The intrinsics map one-to-one with actual Streaming SIMD Extensions assembly 

code. The XMMINTRIN.H header file in which the prototypes for the intrinsics are 

defined is part of the Intel C++ Compiler included with the VTune Performance 

Enhancement Environment CD.

Intrinsics are also defined for the MMX technology ISA. These are based on the 

__m64 data type to represent the contents of an mm register. You can specify values 

in bytes, short integers, 32-bit values, or as a 64-bit object. 

The intrinsic data types, however, are not a basic ANSI C data type, and therefore 

you must observe the following usage restrictions:

! Use intrinsic data types only on the left-hand side of an assignment as a return 

value or as a parameter. You cannot use it with other arithmetic expressions (for 

example, V+W, V>>W).

! Use intrinsic data type objects in aggregates, such as unions to access the byte 

elements and structures; the address of an __M64 object may be also used.

! Use intrinsic data type data only with the MMX technology intrinsics described in 

this guide.

For complete details of the hardware instructions, see the Intel Architecture MMX 
Technology Programmer6s Reference Manual. For a description of data types, see the 

Intel® 64 and IA-32 Architectures Software Developer6s Manual.

4.3.1.3  Classes

A set of C++ classes has been defined and available in Intel C++ Compiler to provide 

both a higher-level abstraction and more flexibility for programming with MMX tech-

nology, Streaming SIMD Extensions and Streaming SIMD Extensions 2. These 

classes provide an easy-to-use and flexible interface to the intrinsic functions, 

allowing developers to write more natural C++ code without worrying about which 

intrinsic or assembly language instruction to use for a given operation. Since the 

intrinsic functions underlie the implementation of these C++ classes, the perfor-

Example 4-15.  Simple Four-Iteration Loop Coded with Intrinsics

#include <xmmintrin.h>

void add(float *a, float *b, float *c)

{

__m128 t0, t1;

 t0 = _mm_load_ps(a);

 t1 = _mm_load_ps(b);

 t0 = _mm_add_ps(t0, t1);

 _mm_store_ps(c, t0);

}

✓ Almost as flexible as inline 
assembly 
✓ Somewhat portable 
✓ Compiler takes care of 
register allocation (and spill, if 
needed) 
✓ Compiler will shuffle & 
schedule instructions to best 
hide latencies 
✓ Relatively easy migration 
from 
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✓ Almost as flexible as inline 
assembly 
✓ Somewhat portable 
✓ Compiler takes care of 
register allocation (and spill, if 
needed) 
✓ Compiler will shuffle & 
schedule instructions to best 
hide latencies 
✓ Relatively easy migration 
from 

✗ Coding large kernels is still 
challenging and bug-prone 
✗ Un-natural notation (vs. C++ 
expressions and operators) 
✗ SSE code is similar to AVX 
code, but different enough so 
that 2 distinct versions must be 
written 
✗ Vector code looks very 
different than scalar code
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Example 4-11 shows the code for automatic vectorization for the simple four-itera-

tion loop (from Example 4-7).

Compile this code using the -QAX and -QRESTRICT switches of the Intel C++ 

Compiler, version 4.0 or later.

The RESTRICT qualifier in the argument list is necessary to let the compiler know that 

there are no other aliases to the memory to which the pointers point. In other words, 

the pointer for which it is used, provides the only means of accessing the memory in 

question in the scope in which the pointers live. Without the restrict qualifier, the 

compiler will still vectorize this loop using runtime data dependence testing, where 

the generated code dynamically selects between sequential or vector execution of 

the loop, based on overlap of the parameters (See documentation for the Intel C++ 

Compiler). The restrict keyword avoids the associated overhead altogether.

See Intel C++ Compiler documentation for details. 

4.4 STACK AND DATA ALIGNMENT
To get the most performance out of code written for SIMD technologies data should 

be formatted in memory according to the guidelines described in this section. 

Assembly code with an unaligned accesses is a lot slower than an aligned access.

4.4.1 Alignment and Contiguity of Data Access Patterns
The 64-bit packed data types defined by MMX technology, and the 128-bit packed 

data types for Streaming SIMD Extensions and Streaming SIMD Extensions 2 create 

more potential for misaligned data accesses. The data access patterns of many algo-

rithms are inherently misaligned when using MMX technology and Streaming SIMD 

Extensions. Several techniques for improving data access, such as padding, orga-

nizing data elements into arrays, etc. are described below. SSE3 provides a special-

Example 4-17.  Automatic Vectorization for a Simple Loop 

void add (float *restrict a, 
float *restrict b, 
float *restrict c)

{

int i;

for (i = 0; i < 4; i++) {

c[i] = a[i] + b[i];

}

}
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✓Minimal effort required 
(assuming it works ...) 
✓Development of SIMD code is 
no different than scalar code 
✓Ability to use complex C++ 
expressions 
✓Larger kernels are easier to 
tackle
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Example 4-17.  Automatic Vectorization for a Simple Loop 
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float *restrict c)

{

int i;

for (i = 0; i < 4; i++) {

c[i] = a[i] + b[i];
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✓Minimal effort required 
(assuming it works ...) 
✓Development of SIMD code is 
no different than scalar code 
✓Ability to use complex C++ 
expressions 
✓Larger kernels are easier to 
tackle

✗ In practice it can be very 
challenging to achieve efficiency 
comparable to assembly/intrinsics 
✗ Compilers are very conservative 
when vectorizing, for the risk of 
jeopardizing scalar equivalence 
✗ The no-aliasing restriction might 
run contrary to the spirit of 
certain kernels
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mance of applications using this methodology can approach that of one using the 
intrinsics. Further details on the use of these classes can be found in the Intel C++ 
Class Libraries for SIMD Operations User7s Guide, order number 693500.

Example 4-10 shows the C++ code using a vector class library. The example 
assumes the arrays passed to the routine are already aligned to 16-byte boundaries.

Here, fvec.h is the class definition file and F32vec4 is the class representing an array 
of four floats. The I+J and I=J operators are overloaded so that the actual Streaming 
SIMD Extensions implementation in the previous example is abstracted out, or 
hidden, from the developer. Note how much more this resembles the original code, 
allowing for simpler and faster programming.

Again, the example is assuming the arrays, passed to the routine, are already 
aligned to 16-byte boundary.

4.3.1.4  Automatic Vectorization
The Intel C++ Compiler provides an optimization mechanism by which loops, such as 
in Example 4-7 can be automatically vectorized, or converted into Streaming SIMD 
Extensions code. The compiler uses similar techniques to those used by a 
programmer to identify whether a loop is suitable for conversion to SIMD. This 
involves determining whether the following might prevent vectorization:
! The layout of the loop and the data structures used 
! Dependencies amongst the data accesses in each iteration and across iterations

Once the compiler has made such a determination, it can generate vectorized code 
for the loop, allowing the application to use the SIMD instructions.

The caveat to this is that only certain types of loops can be automatically vectorized, 
and in most cases user interaction with the compiler is needed to fully enable this. 

Example 4-16.  C++ Code Using the Vector Classes

#include <fvec.h>

void add(float *a, float *b, float *c)

{

F32vec4 *av=(F32vec4 *) a;

F32vec4 *bv=(F32vec4 *) b;

F32vec4 *cv=(F32vec4 *) c;

*cv=*av + *bv;

}
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F32vec4 *bv=(F32vec4 *) b;

F32vec4 *cv=(F32vec4 *) c;

*cv=*av + *bv;

}

✓Fewer visual differences 
between vector and scalar code  
✓Ability to use complex C++ 
expressions (assuming wrapper 
types have been overloaded) 
✓Easy transition to different 
vector widths
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F32vec4 *av=(F32vec4 *) a;
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✓Fewer visual differences 
between vector and scalar code  
✓Ability to use complex C++ 
expressions (assuming wrapper 
types have been overloaded) 
✓Easy transition to different 
vector widths

✗ Heavy dependence on the 
compiler for eliminating 
temporaries (but it typically does 
a really good job at it) 
✗ Limited to the semantics of the 
built-in vector wrapper classes  
(but we are free to extend those) 
✗ Risk of more bloated executable 
code than by using intrinsics


