
Stencil computations in the context of solving 
sparse linear systems
(motivated by computational physics and graphics)

Introduction

Example : The 3D Poisson equation

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

-6 1 1 1

1 -6 1 1
. . .

1 -6 1
. . .

. . .
. . .

. . .
. . .

. . . 1

1
. . .

. . .
. . .

. . .

1
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . 1
. . .

. . .
. . .

. . . 1

1
. . .

. . .
. . .

. . .
. . .

. . . 1 -6 1
. . . 1 1 -6 1

1 1 1 -6

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

x = b

What about x & b?
How are they stored?

Introduction

Example : The 3D Poisson equation

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

-6 1 1 1

1 -6 1 1
. . .

1 -6 1
. . .

. . .
. . .

. . .
. . .

. . . 1

1
. . .

. . .
. . .

. . .

1
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . 1
. . .

. . .
. . .

. . . 1

1
. . .

. . .
. . .

. . .
. . .

. . . 1 -6 1
. . . 1 1 -6 1

1 1 1 -6

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

x = b

What about x & b?
How are they stored?

Introduction

Example : The 3D Poisson equation

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

-6 1 1 1

1 -6 1 1
. . .

1 -6 1
. . .

. . .
. . .

. . .
. . .

. . . 1

1
. . .

. . .
. . .

. . .

1
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . 1
. . .

. . .
. . .

. . . 1

1
. . .

. . .
. . .

. . .
. . .

. . . 1 -6 1
. . . 1 1 -6 1

1 1 1 -6

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

x = b

What about x & b?
How are they stored?

Introduction

Example : The 3D Poisson equation

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

-6 1 1 1

1 -6 1 1
. . .

1 -6 1
. . .

. . .
. . .

. . .
. . .

. . . 1

1
. . .

. . .
. . .

. . .

1
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . 1
. . .

. . .
. . .

. . . 1

1
. . .

. . .
. . .

. . .
. . .

. . . 1 -6 1
. . . 1 1 -6 1

1 1 1 -6

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

x = b

Computing b = L*x is equivalent to executing 
ComputeLaplacian(u,Lu)

Applications

Development Plan

Design
• Define your objectives
• Choose a parallel-friendly theoretical formulation
• Set performance expectations
• Choose a promising algorithm

Implement
• Implement a prototype
• Organize code into reusable kernels

Accelerate
• Reorder/combine/pipeline operations
• Reduce resource utilization (try harder ...)
• Parallelize component kernels

Development Plan

Design
• Define your objectives
• Choose a parallel-friendly theoretical formulation
• Set performance expectations
• Choose a promising algorithm

Implement
• Implement a prototype
• Organize code into reusable kernels

Accelerate
• Reorder/combine/pipeline operations
• Reduce resource utilization (try harder ...)
• Parallelize component kernels

Clarifying objectives

What kind of accuracy do we need?
• Solve Ax=b down to machine precision?
• Ensure that x is correct to k significant digits?
• Ensure that x (initial guess) is improved by k significant digits?

What is the real underlying problem we care about?
• The system Ax=b is rarely the ultimate objective
• Typically, it’s means to an end

• Solve the system to create a simulation
• Solve the system to generate a solution to a physical law

• We have some flexibility to make Ax=b “better” for parallel
algorithmic solution

Clarifying objectives

What kind of accuracy do we need?
• Solve Ax=b down to machine precision?
• Ensure that x is correct to k significant digits?
• Ensure that x (initial guess) is improved by k significant digits?

What is the real underlying problem we care about?
• The system Ax=b is rarely the ultimate objective
• Typically, it’s means to an end

• Solve the system to create a simulation
• Solve the system to generate a solution to a physical law

• We have some flexibility to make Ax=b “better” for parallel
algorithmic solution

Clarifying objectives

What kind of accuracy do we need?
• Solve Ax=b down to machine precision?
• Ensure that x is correct to k significant digits?
• Ensure that x (initial guess) is improved by k significant digits?

What is the real underlying problem we care about?
• The system Ax=b is rarely the ultimate objective
• Typically, it’s means to an end

• Solve the system to create a simulation
• Solve the system to generate a solution to a physical law

• We have some flexibility to make Ax=b “better” for parallel
algorithmic solution

�4uij + ui+1,j + ui�1,j + ui,j+1 + ui,j�1

h2
= fij

�x = b Ax = b

Clarifying objectives

Development Plan

Design
• Define your objectives
• Choose a parallel-friendly theoretical formulation
• Set performance expectations
• Choose a promising algorithm

Implement
• Implement a prototype
• Organize code into reusable kernels

Accelerate
• Reorder/combine/pipeline operations
• Reduce resource utilization (try harder ...)
• Parallelize component kernels

Performance bounds and “textbook efficiency”

Example : Solving the quadratic equation ax2 + bx+ c = 0

What is the minimum amount of time needed to solve this?

“We cannot solve this faster than the time
needed to read a,b,c and write x”

Data access cost bound 

“We cannot solve this faster than the time
needed evaluate the polynomial, for given

values of a,b,c and x”
(i.e. 2 ADDs, 2 MULTs plus data access)

Solution verification
bound  

ax2 + bx+ c =

(ax+ b)x+ cEquivalent operation
bound   “We cannot solve this faster than the time

it takes to compute a square root”

Performance bounds and “textbook efficiency”

What about linear systems of equations?

It is theoretically possible to compute the
solution to a linear system (with certain

properties) with a cost comparable to 10x the
cost of verifying that a given value x is an

actual solution

“Textbook Efficiency”  
(for elliptic systems)

Ax = b

It is theoretically possible to compute the
solution to a linear system (with certain

properties) with a cost comparable to 10x the
cost of computing the expression r=b-Ax

and verifying that r=0
(i.e. slightly over 10x of the cost
of a matrix-vector multiplication)

... or ...

Development Plan

Design
• Define your objectives
• Choose a parallel-friendly theoretical formulation
• Set performance expectations
• Choose a promising algorithm

Implement
• Implement a prototype
• Organize code into reusable kernels

Accelerate
• Reorder/combine/pipeline operations
• Reduce resource utilization (try harder ...)
• Parallelize component kernels

Sample 2D domain (512x512 resolution)

Exact solution

Conjugate Gradients (w/o preconditioning)

Conjugate Gradients (with a stock preconditioner)

Multigrid

Conjugate Gradients (with parallel multigrid preconditioner)

Exact solution

McAdams et al. / A parallel multigrid Poisson solver for fluids simulation on large grids

cussed in [TOS01]. We will show that this sensitivity to the
boundary treatment is removed when the V-Cycle is used as
a preconditioner.

Stagnation: Even when the V-Cycle iteration is stable, on
certain irregular domains the residual reduction rate quickly
degrades towards 1, as opposed to converging to a value
less than 0.5 as typically expected of functional multi-
grid schemes. This complication appears on irregular do-
mains where successive levels of the multigrid hierarchy
may exhibit significant topological differences, as coarse
modes may not be accurately represented. In these cases,
costly eigenanalysis or recombined iterants may prove use-
ful [TOS01]; however, the highly irregular and changing do-
mains common to fluid simulations make these methods im-
practical.

3.3. Multigrid-preconditioned conjugate gradient

The instability and slow convergence issues described in
the previous section can be efficiently ameliorated by using
the multigrid V-Cycle as a preconditioner for an appropri-
ate Krylov method. Our experiments indicated that the ele-
mentary multigrid scheme in section 3.2 can be an extremely
efficient preconditioner, achieving convergence rates compa-
rable or superior to the ideal performance of the V-Cycle on
regular domains, even if the smoothing effort vested in the
multigrid V-Cycle is significantly less than what is necessary
to make it a convergent solver on its own.

We will use the V-Cycle described in Section 3.2 as a pre-
conditioner for the conjugate gradient method. Algorithm
3 provides the pseudocode for our PCG solver. Our algo-
rithm is numerically equivalent to the traditional definition
of PCG, as stated for example in [GvL89], but certain vari-
ables are being reused for economy of storage, and opera-
tions have been rearranged to facilitate optimized execution,
as discussed in Section 4. Preconditioning operates by con-
structing a symmetric, positive definite matrix M which is
easier to invert than L, and such that M�1L is significantly
better conditioned than L.

In our case, we will use the multigrid V-Cycle as the pre-
conditionerM�1 as described in [Tat93]. In particular, if we
define u :=M�1b, then u is the result of one iteration of the
multigrid V-Cycle for the problem Lu = b with zero initial
guess, and zero boundary conditions. We can easily verify
that under these conditions, the action of the V-Cycle indeed
corresponds to a linear operator; the requirement that M be
symmetric and positive definite, however, is less trivial. We
refer to [Tat93] for a detailed analysis of the conditions for
symmetry and definiteness, and only present here a set of
sufficient conditions instead. The V-Cycle of Algorithm 1
will produce a symmetric and definite preconditioner if:

• The restriction/prolongation operators are the transpose of
one another (up to scaling). This is common practice, and
also the case for the V-Cycle we described.

• The smoother used in the upstroke of the V-Cycle (Algo-
rithm 1, line 11) performs the operations of the smoother
used for the downstroke (line 4) in reverse order. E.g.,
if Gauss-Seidel iteration is used, opposite traversal orders
should be used when descending or ascending the V-Cycle,
respectively. For Jacobi smoothers, no reversal is necessary
as the result is independent of the traversal order.

• The solve at the coarsest level (Algorithm 1, line 8) needs
to either be exact, or the inverse of L(L) should be approxi-
mated with a symmetric and definite matrix. If the smoother
is iterated to approximate the solution, a number of iterations
should be performed with a given traversal order, followed
by an equal number of iterations with the order reversed.

Algorithm 3 Multigrid-preconditioned conjugate gradient.
Red-colored steps in the algorithm are applicable when
the Poisson problem has a nullspace (i.e., all Neumann
boundary conditions), and should be omitted when Dirichlet
boundaries are present.
(†) u⇤M�1b is implemented by calling V-Cycle(u,b)

1: procedure MGPCG(r,x)
2: r⇤ r�Lx, µ⇤ r̄, ⇤⇤⌃r�µ⌃⇥
3: if (⇤ < ⇤max) then return
4: r⇤ r�µ, p⇤M�1r(†), ⌅⇤ pT r
5: for k = 0 to kmax do
6: z⇤ Lp, ⇧⇤ pT z
7: �⇤ ⌅/⇧
8: r⇤ r��z, µ⇤ r̄, ⇤⇤⌃r�µ⌃⇥
9: if (⇤ < ⇤max or k = kmax) then

10: x⇤ x+�p
11: return
12: end if
13: r⇤ r�µ, z⇤M�1r(†), ⌅new ⇤ zT r
14: ⇥⇤ ⌅new/⌅
15: ⌅⇤ ⌅new

16: x⇤ x+�p, p⇤ z+⇥p
17: end for
18: end procedure

Finally, Poisson problems with all-Neumann boundary
conditions (e.g., simulations of smoke flow past objects) are
known to possess a nullspace, as the solution is only known
up to a constant. The algorithm of Algorithm 3 is modified in
this case to project out this nullspace, and the modifications
are highlighted in red in the pseudocode. No modification to
the V-Cycle preconditioner is needed.

4. Implementation and Optimizations

Minimizing boundary cost: The cost of performing 30-40
smoothing sweeps on the boundary to stabilize the V-Cycle
as a solver cannot be neglected, even though the interior
smoothing effort would asymptotically dominate. In prac-
tice, this amount of boundary smoothing would be the most
costly operation of the V-Cycle for a 2563 grid or smaller,

c� The Eurographics Association 2010.

Test case: Preconditioned Conjugate Gradients

Performance
• Converges in O(Nd) with  

stock preconditioners
• Converges in O(N) with  

multigrid preconditioners
Prerequisites

• Requires a symmetric  
system matrix

• Matrix needs to be 
positive definite

• (Other variants exist, too)
Benefits

• Low storage overhead
• Simple component kernels

Lx = f

Development Plan

Design
• Define your objectives
• Choose a parallel-friendly theoretical formulation
• Set performance expectations
• Choose a promising algorithm

Implement
• Implement a prototype
• Organize code into reusable kernels

Accelerate
• Reorder/combine/pipeline operations
• Reduce resource utilization (try harder ...)
• Parallelize component kernels

McAdams et al. / A parallel multigrid Poisson solver for fluids simulation on large grids

cussed in [TOS01]. We will show that this sensitivity to the
boundary treatment is removed when the V-Cycle is used as
a preconditioner.

Stagnation: Even when the V-Cycle iteration is stable, on
certain irregular domains the residual reduction rate quickly
degrades towards 1, as opposed to converging to a value
less than 0.5 as typically expected of functional multi-
grid schemes. This complication appears on irregular do-
mains where successive levels of the multigrid hierarchy
may exhibit significant topological differences, as coarse
modes may not be accurately represented. In these cases,
costly eigenanalysis or recombined iterants may prove use-
ful [TOS01]; however, the highly irregular and changing do-
mains common to fluid simulations make these methods im-
practical.

3.3. Multigrid-preconditioned conjugate gradient

The instability and slow convergence issues described in
the previous section can be efficiently ameliorated by using
the multigrid V-Cycle as a preconditioner for an appropri-
ate Krylov method. Our experiments indicated that the ele-
mentary multigrid scheme in section 3.2 can be an extremely
efficient preconditioner, achieving convergence rates compa-
rable or superior to the ideal performance of the V-Cycle on
regular domains, even if the smoothing effort vested in the
multigrid V-Cycle is significantly less than what is necessary
to make it a convergent solver on its own.

We will use the V-Cycle described in Section 3.2 as a pre-
conditioner for the conjugate gradient method. Algorithm
3 provides the pseudocode for our PCG solver. Our algo-
rithm is numerically equivalent to the traditional definition
of PCG, as stated for example in [GvL89], but certain vari-
ables are being reused for economy of storage, and opera-
tions have been rearranged to facilitate optimized execution,
as discussed in Section 4. Preconditioning operates by con-
structing a symmetric, positive definite matrix M which is
easier to invert than L, and such that M�1L is significantly
better conditioned than L.

In our case, we will use the multigrid V-Cycle as the pre-
conditionerM�1 as described in [Tat93]. In particular, if we
define u :=M�1b, then u is the result of one iteration of the
multigrid V-Cycle for the problem Lu = b with zero initial
guess, and zero boundary conditions. We can easily verify
that under these conditions, the action of the V-Cycle indeed
corresponds to a linear operator; the requirement that M be
symmetric and positive definite, however, is less trivial. We
refer to [Tat93] for a detailed analysis of the conditions for
symmetry and definiteness, and only present here a set of
sufficient conditions instead. The V-Cycle of Algorithm 1
will produce a symmetric and definite preconditioner if:

• The restriction/prolongation operators are the transpose of
one another (up to scaling). This is common practice, and
also the case for the V-Cycle we described.

• The smoother used in the upstroke of the V-Cycle (Algo-
rithm 1, line 11) performs the operations of the smoother
used for the downstroke (line 4) in reverse order. E.g.,
if Gauss-Seidel iteration is used, opposite traversal orders
should be used when descending or ascending the V-Cycle,
respectively. For Jacobi smoothers, no reversal is necessary
as the result is independent of the traversal order.

• The solve at the coarsest level (Algorithm 1, line 8) needs
to either be exact, or the inverse of L(L) should be approxi-
mated with a symmetric and definite matrix. If the smoother
is iterated to approximate the solution, a number of iterations
should be performed with a given traversal order, followed
by an equal number of iterations with the order reversed.

Algorithm 3 Multigrid-preconditioned conjugate gradient.
Red-colored steps in the algorithm are applicable when
the Poisson problem has a nullspace (i.e., all Neumann
boundary conditions), and should be omitted when Dirichlet
boundaries are present.
(†) u⇤M�1b is implemented by calling V-Cycle(u,b)

1: procedure MGPCG(r,x)
2: r⇤ r�Lx, µ⇤ r̄, ⇤⇤⌃r�µ⌃⇥
3: if (⇤ < ⇤max) then return
4: r⇤ r�µ, p⇤M�1r(†), ⌅⇤ pT r
5: for k = 0 to kmax do
6: z⇤ Lp, ⇧⇤ pT z
7: �⇤ ⌅/⇧
8: r⇤ r��z, µ⇤ r̄, ⇤⇤⌃r�µ⌃⇥
9: if (⇤ < ⇤max or k = kmax) then

10: x⇤ x+�p
11: return
12: end if
13: r⇤ r�µ, z⇤M�1r(†), ⌅new ⇤ zT r
14: ⇥⇤ ⌅new/⌅
15: ⌅⇤ ⌅new

16: x⇤ x+�p, p⇤ z+⇥p
17: end for
18: end procedure

Finally, Poisson problems with all-Neumann boundary
conditions (e.g., simulations of smoke flow past objects) are
known to possess a nullspace, as the solution is only known
up to a constant. The algorithm of Algorithm 3 is modified in
this case to project out this nullspace, and the modifications
are highlighted in red in the pseudocode. No modification to
the V-Cycle preconditioner is needed.

4. Implementation and Optimizations

Minimizing boundary cost: The cost of performing 30-40
smoothing sweeps on the boundary to stabilize the V-Cycle
as a solver cannot be neglected, even though the interior
smoothing effort would asymptotically dominate. In prac-
tice, this amount of boundary smoothing would be the most
costly operation of the V-Cycle for a 2563 grid or smaller,

c� The Eurographics Association 2010.

Kernels
• Multiply()
• Saxpy()
• Subtract()
• Copy()
• Inner_Product()
• Norm()

Lx = fTest case: Preconditioned Conjugate Gradients

McAdams et al. / A parallel multigrid Poisson solver for fluids simulation on large grids

cussed in [TOS01]. We will show that this sensitivity to the
boundary treatment is removed when the V-Cycle is used as
a preconditioner.

Stagnation: Even when the V-Cycle iteration is stable, on
certain irregular domains the residual reduction rate quickly
degrades towards 1, as opposed to converging to a value
less than 0.5 as typically expected of functional multi-
grid schemes. This complication appears on irregular do-
mains where successive levels of the multigrid hierarchy
may exhibit significant topological differences, as coarse
modes may not be accurately represented. In these cases,
costly eigenanalysis or recombined iterants may prove use-
ful [TOS01]; however, the highly irregular and changing do-
mains common to fluid simulations make these methods im-
practical.

3.3. Multigrid-preconditioned conjugate gradient

The instability and slow convergence issues described in
the previous section can be efficiently ameliorated by using
the multigrid V-Cycle as a preconditioner for an appropri-
ate Krylov method. Our experiments indicated that the ele-
mentary multigrid scheme in section 3.2 can be an extremely
efficient preconditioner, achieving convergence rates compa-
rable or superior to the ideal performance of the V-Cycle on
regular domains, even if the smoothing effort vested in the
multigrid V-Cycle is significantly less than what is necessary
to make it a convergent solver on its own.

We will use the V-Cycle described in Section 3.2 as a pre-
conditioner for the conjugate gradient method. Algorithm
3 provides the pseudocode for our PCG solver. Our algo-
rithm is numerically equivalent to the traditional definition
of PCG, as stated for example in [GvL89], but certain vari-
ables are being reused for economy of storage, and opera-
tions have been rearranged to facilitate optimized execution,
as discussed in Section 4. Preconditioning operates by con-
structing a symmetric, positive definite matrix M which is
easier to invert than L, and such that M�1L is significantly
better conditioned than L.

In our case, we will use the multigrid V-Cycle as the pre-
conditionerM�1 as described in [Tat93]. In particular, if we
define u :=M�1b, then u is the result of one iteration of the
multigrid V-Cycle for the problem Lu = b with zero initial
guess, and zero boundary conditions. We can easily verify
that under these conditions, the action of the V-Cycle indeed
corresponds to a linear operator; the requirement that M be
symmetric and positive definite, however, is less trivial. We
refer to [Tat93] for a detailed analysis of the conditions for
symmetry and definiteness, and only present here a set of
sufficient conditions instead. The V-Cycle of Algorithm 1
will produce a symmetric and definite preconditioner if:

• The restriction/prolongation operators are the transpose of
one another (up to scaling). This is common practice, and
also the case for the V-Cycle we described.

• The smoother used in the upstroke of the V-Cycle (Algo-
rithm 1, line 11) performs the operations of the smoother
used for the downstroke (line 4) in reverse order. E.g.,
if Gauss-Seidel iteration is used, opposite traversal orders
should be used when descending or ascending the V-Cycle,
respectively. For Jacobi smoothers, no reversal is necessary
as the result is independent of the traversal order.

• The solve at the coarsest level (Algorithm 1, line 8) needs
to either be exact, or the inverse of L(L) should be approxi-
mated with a symmetric and definite matrix. If the smoother
is iterated to approximate the solution, a number of iterations
should be performed with a given traversal order, followed
by an equal number of iterations with the order reversed.

Algorithm 3 Multigrid-preconditioned conjugate gradient.
Red-colored steps in the algorithm are applicable when
the Poisson problem has a nullspace (i.e., all Neumann
boundary conditions), and should be omitted when Dirichlet
boundaries are present.
(†) u⇤M�1b is implemented by calling V-Cycle(u,b)

1: procedure MGPCG(r,x)
2: r⇤ r�Lx, µ⇤ r̄, ⇤⇤⌃r�µ⌃⇥
3: if (⇤ < ⇤max) then return
4: r⇤ r�µ, p⇤M�1r(†), ⌅⇤ pT r
5: for k = 0 to kmax do
6: z⇤ Lp, ⇧⇤ pT z
7: �⇤ ⌅/⇧
8: r⇤ r��z, µ⇤ r̄, ⇤⇤⌃r�µ⌃⇥
9: if (⇤ < ⇤max or k = kmax) then

10: x⇤ x+�p
11: return
12: end if
13: r⇤ r�µ, z⇤M�1r(†), ⌅new ⇤ zT r
14: ⇥⇤ ⌅new/⌅
15: ⌅⇤ ⌅new

16: x⇤ x+�p, p⇤ z+⇥p
17: end for
18: end procedure

Finally, Poisson problems with all-Neumann boundary
conditions (e.g., simulations of smoke flow past objects) are
known to possess a nullspace, as the solution is only known
up to a constant. The algorithm of Algorithm 3 is modified in
this case to project out this nullspace, and the modifications
are highlighted in red in the pseudocode. No modification to
the V-Cycle preconditioner is needed.

4. Implementation and Optimizations

Minimizing boundary cost: The cost of performing 30-40
smoothing sweeps on the boundary to stabilize the V-Cycle
as a solver cannot be neglected, even though the interior
smoothing effort would asymptotically dominate. In prac-
tice, this amount of boundary smoothing would be the most
costly operation of the V-Cycle for a 2563 grid or smaller,

c� The Eurographics Association 2010.

Kernels
• Multiply()
• Saxpy()
• Subtract()
• Copy()
• Inner_Product()
• Norm()

Lx = fTest case: Preconditioned Conjugate Gradients

Implemented as 
ComputeLaplacian(p, z)

McAdams et al. / A parallel multigrid Poisson solver for fluids simulation on large grids

cussed in [TOS01]. We will show that this sensitivity to the
boundary treatment is removed when the V-Cycle is used as
a preconditioner.

Stagnation: Even when the V-Cycle iteration is stable, on
certain irregular domains the residual reduction rate quickly
degrades towards 1, as opposed to converging to a value
less than 0.5 as typically expected of functional multi-
grid schemes. This complication appears on irregular do-
mains where successive levels of the multigrid hierarchy
may exhibit significant topological differences, as coarse
modes may not be accurately represented. In these cases,
costly eigenanalysis or recombined iterants may prove use-
ful [TOS01]; however, the highly irregular and changing do-
mains common to fluid simulations make these methods im-
practical.

3.3. Multigrid-preconditioned conjugate gradient

The instability and slow convergence issues described in
the previous section can be efficiently ameliorated by using
the multigrid V-Cycle as a preconditioner for an appropri-
ate Krylov method. Our experiments indicated that the ele-
mentary multigrid scheme in section 3.2 can be an extremely
efficient preconditioner, achieving convergence rates compa-
rable or superior to the ideal performance of the V-Cycle on
regular domains, even if the smoothing effort vested in the
multigrid V-Cycle is significantly less than what is necessary
to make it a convergent solver on its own.

We will use the V-Cycle described in Section 3.2 as a pre-
conditioner for the conjugate gradient method. Algorithm
3 provides the pseudocode for our PCG solver. Our algo-
rithm is numerically equivalent to the traditional definition
of PCG, as stated for example in [GvL89], but certain vari-
ables are being reused for economy of storage, and opera-
tions have been rearranged to facilitate optimized execution,
as discussed in Section 4. Preconditioning operates by con-
structing a symmetric, positive definite matrix M which is
easier to invert than L, and such that M�1L is significantly
better conditioned than L.

In our case, we will use the multigrid V-Cycle as the pre-
conditionerM�1 as described in [Tat93]. In particular, if we
define u :=M�1b, then u is the result of one iteration of the
multigrid V-Cycle for the problem Lu = b with zero initial
guess, and zero boundary conditions. We can easily verify
that under these conditions, the action of the V-Cycle indeed
corresponds to a linear operator; the requirement that M be
symmetric and positive definite, however, is less trivial. We
refer to [Tat93] for a detailed analysis of the conditions for
symmetry and definiteness, and only present here a set of
sufficient conditions instead. The V-Cycle of Algorithm 1
will produce a symmetric and definite preconditioner if:

• The restriction/prolongation operators are the transpose of
one another (up to scaling). This is common practice, and
also the case for the V-Cycle we described.

• The smoother used in the upstroke of the V-Cycle (Algo-
rithm 1, line 11) performs the operations of the smoother
used for the downstroke (line 4) in reverse order. E.g.,
if Gauss-Seidel iteration is used, opposite traversal orders
should be used when descending or ascending the V-Cycle,
respectively. For Jacobi smoothers, no reversal is necessary
as the result is independent of the traversal order.

• The solve at the coarsest level (Algorithm 1, line 8) needs
to either be exact, or the inverse of L(L) should be approxi-
mated with a symmetric and definite matrix. If the smoother
is iterated to approximate the solution, a number of iterations
should be performed with a given traversal order, followed
by an equal number of iterations with the order reversed.

Algorithm 3 Multigrid-preconditioned conjugate gradient.
Red-colored steps in the algorithm are applicable when
the Poisson problem has a nullspace (i.e., all Neumann
boundary conditions), and should be omitted when Dirichlet
boundaries are present.
(†) u⇤M�1b is implemented by calling V-Cycle(u,b)

1: procedure MGPCG(r,x)
2: r⇤ r�Lx, µ⇤ r̄, ⇤⇤⌃r�µ⌃⇥
3: if (⇤ < ⇤max) then return
4: r⇤ r�µ, p⇤M�1r(†), ⌅⇤ pT r
5: for k = 0 to kmax do
6: z⇤ Lp, ⇧⇤ pT z
7: �⇤ ⌅/⇧
8: r⇤ r��z, µ⇤ r̄, ⇤⇤⌃r�µ⌃⇥
9: if (⇤ < ⇤max or k = kmax) then

10: x⇤ x+�p
11: return
12: end if
13: r⇤ r�µ, z⇤M�1r(†), ⌅new ⇤ zT r
14: ⇥⇤ ⌅new/⌅
15: ⌅⇤ ⌅new

16: x⇤ x+�p, p⇤ z+⇥p
17: end for
18: end procedure

Finally, Poisson problems with all-Neumann boundary
conditions (e.g., simulations of smoke flow past objects) are
known to possess a nullspace, as the solution is only known
up to a constant. The algorithm of Algorithm 3 is modified in
this case to project out this nullspace, and the modifications
are highlighted in red in the pseudocode. No modification to
the V-Cycle preconditioner is needed.

4. Implementation and Optimizations

Minimizing boundary cost: The cost of performing 30-40
smoothing sweeps on the boundary to stabilize the V-Cycle
as a solver cannot be neglected, even though the interior
smoothing effort would asymptotically dominate. In prac-
tice, this amount of boundary smoothing would be the most
costly operation of the V-Cycle for a 2563 grid or smaller,

c� The Eurographics Association 2010.

Kernels
• Multiply()
• Saxpy()
• Subtract()
• Copy()
• Inner_Product()
• Norm()

Lx = fTest case: Preconditioned Conjugate Gradients

Pointwise Ops (PointwiseOps.h)

#pragma once

#include "Parameters.h"

// Copy array x into y
void Copy(const float (&x)[XDIM][YDIM][ZDIM], float (&y)[XDIM][YDIM][ZDIM]);

// Scale array x by given number, add y, and write result into z
void Saxpy(const float (&x)[XDIM][YDIM][ZDIM], const float (&y)[XDIM][YDIM][ZDIM],
 float (&z)[XDIM][YDIM][ZDIM], const float scale);

LaplaceSolver/LaplaceSolver_0_0

Pointwise Ops (PointwiseOps.cpp)

#include "PointwiseOps.h"

void Copy(const float (&x)[XDIM][YDIM][ZDIM], float (&y)[XDIM][YDIM][ZDIM])
{
#pragma omp parallel for
 for (int i = 1; i < XDIM-1; i++)
 for (int j = 1; j < YDIM-1; j++)
 for (int k = 1; k < ZDIM-1; k++)
 y[i][j][k] = x[i][j][k];
}

void Saxpy(const float (&x)[XDIM][YDIM][ZDIM], const float (&y)[XDIM][YDIM][ZDIM],
 float (&z)[XDIM][YDIM][ZDIM],
 const float scale)
{
 // Should we use OpenMP parallel for here?
 for (int i = 1; i < XDIM-1; i++)
 for (int j = 1; j < YDIM-1; j++)
 for (int k = 1; k < ZDIM-1; k++)
 z[i][j][k] = x[i][j][k] * scale + y[i][j][k];
}

LaplaceSolver/LaplaceSolver_0_0

McAdams et al. / A parallel multigrid Poisson solver for fluids simulation on large grids

cussed in [TOS01]. We will show that this sensitivity to the
boundary treatment is removed when the V-Cycle is used as
a preconditioner.

Stagnation: Even when the V-Cycle iteration is stable, on
certain irregular domains the residual reduction rate quickly
degrades towards 1, as opposed to converging to a value
less than 0.5 as typically expected of functional multi-
grid schemes. This complication appears on irregular do-
mains where successive levels of the multigrid hierarchy
may exhibit significant topological differences, as coarse
modes may not be accurately represented. In these cases,
costly eigenanalysis or recombined iterants may prove use-
ful [TOS01]; however, the highly irregular and changing do-
mains common to fluid simulations make these methods im-
practical.

3.3. Multigrid-preconditioned conjugate gradient

The instability and slow convergence issues described in
the previous section can be efficiently ameliorated by using
the multigrid V-Cycle as a preconditioner for an appropri-
ate Krylov method. Our experiments indicated that the ele-
mentary multigrid scheme in section 3.2 can be an extremely
efficient preconditioner, achieving convergence rates compa-
rable or superior to the ideal performance of the V-Cycle on
regular domains, even if the smoothing effort vested in the
multigrid V-Cycle is significantly less than what is necessary
to make it a convergent solver on its own.

We will use the V-Cycle described in Section 3.2 as a pre-
conditioner for the conjugate gradient method. Algorithm
3 provides the pseudocode for our PCG solver. Our algo-
rithm is numerically equivalent to the traditional definition
of PCG, as stated for example in [GvL89], but certain vari-
ables are being reused for economy of storage, and opera-
tions have been rearranged to facilitate optimized execution,
as discussed in Section 4. Preconditioning operates by con-
structing a symmetric, positive definite matrix M which is
easier to invert than L, and such that M�1L is significantly
better conditioned than L.

In our case, we will use the multigrid V-Cycle as the pre-
conditionerM�1 as described in [Tat93]. In particular, if we
define u :=M�1b, then u is the result of one iteration of the
multigrid V-Cycle for the problem Lu = b with zero initial
guess, and zero boundary conditions. We can easily verify
that under these conditions, the action of the V-Cycle indeed
corresponds to a linear operator; the requirement that M be
symmetric and positive definite, however, is less trivial. We
refer to [Tat93] for a detailed analysis of the conditions for
symmetry and definiteness, and only present here a set of
sufficient conditions instead. The V-Cycle of Algorithm 1
will produce a symmetric and definite preconditioner if:

• The restriction/prolongation operators are the transpose of
one another (up to scaling). This is common practice, and
also the case for the V-Cycle we described.

• The smoother used in the upstroke of the V-Cycle (Algo-
rithm 1, line 11) performs the operations of the smoother
used for the downstroke (line 4) in reverse order. E.g.,
if Gauss-Seidel iteration is used, opposite traversal orders
should be used when descending or ascending the V-Cycle,
respectively. For Jacobi smoothers, no reversal is necessary
as the result is independent of the traversal order.

• The solve at the coarsest level (Algorithm 1, line 8) needs
to either be exact, or the inverse of L(L) should be approxi-
mated with a symmetric and definite matrix. If the smoother
is iterated to approximate the solution, a number of iterations
should be performed with a given traversal order, followed
by an equal number of iterations with the order reversed.

Algorithm 3 Multigrid-preconditioned conjugate gradient.
Red-colored steps in the algorithm are applicable when
the Poisson problem has a nullspace (i.e., all Neumann
boundary conditions), and should be omitted when Dirichlet
boundaries are present.
(†) u⇤M�1b is implemented by calling V-Cycle(u,b)

1: procedure MGPCG(r,x)
2: r⇤ r�Lx, µ⇤ r̄, ⇤⇤⌃r�µ⌃⇥
3: if (⇤ < ⇤max) then return
4: r⇤ r�µ, p⇤M�1r(†), ⌅⇤ pT r
5: for k = 0 to kmax do
6: z⇤ Lp, ⇧⇤ pT z
7: �⇤ ⌅/⇧
8: r⇤ r��z, µ⇤ r̄, ⇤⇤⌃r�µ⌃⇥
9: if (⇤ < ⇤max or k = kmax) then

10: x⇤ x+�p
11: return
12: end if
13: r⇤ r�µ, z⇤M�1r(†), ⌅new ⇤ zT r
14: ⇥⇤ ⌅new/⌅
15: ⌅⇤ ⌅new

16: x⇤ x+�p, p⇤ z+⇥p
17: end for
18: end procedure

Finally, Poisson problems with all-Neumann boundary
conditions (e.g., simulations of smoke flow past objects) are
known to possess a nullspace, as the solution is only known
up to a constant. The algorithm of Algorithm 3 is modified in
this case to project out this nullspace, and the modifications
are highlighted in red in the pseudocode. No modification to
the V-Cycle preconditioner is needed.

4. Implementation and Optimizations

Minimizing boundary cost: The cost of performing 30-40
smoothing sweeps on the boundary to stabilize the V-Cycle
as a solver cannot be neglected, even though the interior
smoothing effort would asymptotically dominate. In prac-
tice, this amount of boundary smoothing would be the most
costly operation of the V-Cycle for a 2563 grid or smaller,

c� The Eurographics Association 2010.

Kernels
• Multiply()
• Saxpy()
• Subtract()
• Copy()
• Inner_Product()
• Norm()

Lx = fTest case: Preconditioned Conjugate Gradients

Implemented as 
Saxpy(p, x, x, alpha)

McAdams et al. / A parallel multigrid Poisson solver for fluids simulation on large grids

cussed in [TOS01]. We will show that this sensitivity to the
boundary treatment is removed when the V-Cycle is used as
a preconditioner.

Stagnation: Even when the V-Cycle iteration is stable, on
certain irregular domains the residual reduction rate quickly
degrades towards 1, as opposed to converging to a value
less than 0.5 as typically expected of functional multi-
grid schemes. This complication appears on irregular do-
mains where successive levels of the multigrid hierarchy
may exhibit significant topological differences, as coarse
modes may not be accurately represented. In these cases,
costly eigenanalysis or recombined iterants may prove use-
ful [TOS01]; however, the highly irregular and changing do-
mains common to fluid simulations make these methods im-
practical.

3.3. Multigrid-preconditioned conjugate gradient

The instability and slow convergence issues described in
the previous section can be efficiently ameliorated by using
the multigrid V-Cycle as a preconditioner for an appropri-
ate Krylov method. Our experiments indicated that the ele-
mentary multigrid scheme in section 3.2 can be an extremely
efficient preconditioner, achieving convergence rates compa-
rable or superior to the ideal performance of the V-Cycle on
regular domains, even if the smoothing effort vested in the
multigrid V-Cycle is significantly less than what is necessary
to make it a convergent solver on its own.

We will use the V-Cycle described in Section 3.2 as a pre-
conditioner for the conjugate gradient method. Algorithm
3 provides the pseudocode for our PCG solver. Our algo-
rithm is numerically equivalent to the traditional definition
of PCG, as stated for example in [GvL89], but certain vari-
ables are being reused for economy of storage, and opera-
tions have been rearranged to facilitate optimized execution,
as discussed in Section 4. Preconditioning operates by con-
structing a symmetric, positive definite matrix M which is
easier to invert than L, and such that M�1L is significantly
better conditioned than L.

In our case, we will use the multigrid V-Cycle as the pre-
conditionerM�1 as described in [Tat93]. In particular, if we
define u :=M�1b, then u is the result of one iteration of the
multigrid V-Cycle for the problem Lu = b with zero initial
guess, and zero boundary conditions. We can easily verify
that under these conditions, the action of the V-Cycle indeed
corresponds to a linear operator; the requirement that M be
symmetric and positive definite, however, is less trivial. We
refer to [Tat93] for a detailed analysis of the conditions for
symmetry and definiteness, and only present here a set of
sufficient conditions instead. The V-Cycle of Algorithm 1
will produce a symmetric and definite preconditioner if:

• The restriction/prolongation operators are the transpose of
one another (up to scaling). This is common practice, and
also the case for the V-Cycle we described.

• The smoother used in the upstroke of the V-Cycle (Algo-
rithm 1, line 11) performs the operations of the smoother
used for the downstroke (line 4) in reverse order. E.g.,
if Gauss-Seidel iteration is used, opposite traversal orders
should be used when descending or ascending the V-Cycle,
respectively. For Jacobi smoothers, no reversal is necessary
as the result is independent of the traversal order.

• The solve at the coarsest level (Algorithm 1, line 8) needs
to either be exact, or the inverse of L(L) should be approxi-
mated with a symmetric and definite matrix. If the smoother
is iterated to approximate the solution, a number of iterations
should be performed with a given traversal order, followed
by an equal number of iterations with the order reversed.

Algorithm 3 Multigrid-preconditioned conjugate gradient.
Red-colored steps in the algorithm are applicable when
the Poisson problem has a nullspace (i.e., all Neumann
boundary conditions), and should be omitted when Dirichlet
boundaries are present.
(†) u⇤M�1b is implemented by calling V-Cycle(u,b)

1: procedure MGPCG(r,x)
2: r⇤ r�Lx, µ⇤ r̄, ⇤⇤⌃r�µ⌃⇥
3: if (⇤ < ⇤max) then return
4: r⇤ r�µ, p⇤M�1r(†), ⌅⇤ pT r
5: for k = 0 to kmax do
6: z⇤ Lp, ⇧⇤ pT z
7: �⇤ ⌅/⇧
8: r⇤ r��z, µ⇤ r̄, ⇤⇤⌃r�µ⌃⇥
9: if (⇤ < ⇤max or k = kmax) then

10: x⇤ x+�p
11: return
12: end if
13: r⇤ r�µ, z⇤M�1r(†), ⌅new ⇤ zT r
14: ⇥⇤ ⌅new/⌅
15: ⌅⇤ ⌅new

16: x⇤ x+�p, p⇤ z+⇥p
17: end for
18: end procedure

Finally, Poisson problems with all-Neumann boundary
conditions (e.g., simulations of smoke flow past objects) are
known to possess a nullspace, as the solution is only known
up to a constant. The algorithm of Algorithm 3 is modified in
this case to project out this nullspace, and the modifications
are highlighted in red in the pseudocode. No modification to
the V-Cycle preconditioner is needed.

4. Implementation and Optimizations

Minimizing boundary cost: The cost of performing 30-40
smoothing sweeps on the boundary to stabilize the V-Cycle
as a solver cannot be neglected, even though the interior
smoothing effort would asymptotically dominate. In prac-
tice, this amount of boundary smoothing would be the most
costly operation of the V-Cycle for a 2563 grid or smaller,

c� The Eurographics Association 2010.

Kernels
• Multiply()
• Saxpy()
• Subtract()
• Copy()
• Inner_Product()
• Norm()

Lx = fTest case: Preconditioned Conjugate Gradients

Implemented as 
Saxpy(p, z, p, beta)

McAdams et al. / A parallel multigrid Poisson solver for fluids simulation on large grids

cussed in [TOS01]. We will show that this sensitivity to the
boundary treatment is removed when the V-Cycle is used as
a preconditioner.

Stagnation: Even when the V-Cycle iteration is stable, on
certain irregular domains the residual reduction rate quickly
degrades towards 1, as opposed to converging to a value
less than 0.5 as typically expected of functional multi-
grid schemes. This complication appears on irregular do-
mains where successive levels of the multigrid hierarchy
may exhibit significant topological differences, as coarse
modes may not be accurately represented. In these cases,
costly eigenanalysis or recombined iterants may prove use-
ful [TOS01]; however, the highly irregular and changing do-
mains common to fluid simulations make these methods im-
practical.

3.3. Multigrid-preconditioned conjugate gradient

The instability and slow convergence issues described in
the previous section can be efficiently ameliorated by using
the multigrid V-Cycle as a preconditioner for an appropri-
ate Krylov method. Our experiments indicated that the ele-
mentary multigrid scheme in section 3.2 can be an extremely
efficient preconditioner, achieving convergence rates compa-
rable or superior to the ideal performance of the V-Cycle on
regular domains, even if the smoothing effort vested in the
multigrid V-Cycle is significantly less than what is necessary
to make it a convergent solver on its own.

We will use the V-Cycle described in Section 3.2 as a pre-
conditioner for the conjugate gradient method. Algorithm
3 provides the pseudocode for our PCG solver. Our algo-
rithm is numerically equivalent to the traditional definition
of PCG, as stated for example in [GvL89], but certain vari-
ables are being reused for economy of storage, and opera-
tions have been rearranged to facilitate optimized execution,
as discussed in Section 4. Preconditioning operates by con-
structing a symmetric, positive definite matrix M which is
easier to invert than L, and such that M�1L is significantly
better conditioned than L.

In our case, we will use the multigrid V-Cycle as the pre-
conditionerM�1 as described in [Tat93]. In particular, if we
define u :=M�1b, then u is the result of one iteration of the
multigrid V-Cycle for the problem Lu = b with zero initial
guess, and zero boundary conditions. We can easily verify
that under these conditions, the action of the V-Cycle indeed
corresponds to a linear operator; the requirement that M be
symmetric and positive definite, however, is less trivial. We
refer to [Tat93] for a detailed analysis of the conditions for
symmetry and definiteness, and only present here a set of
sufficient conditions instead. The V-Cycle of Algorithm 1
will produce a symmetric and definite preconditioner if:

• The restriction/prolongation operators are the transpose of
one another (up to scaling). This is common practice, and
also the case for the V-Cycle we described.

• The smoother used in the upstroke of the V-Cycle (Algo-
rithm 1, line 11) performs the operations of the smoother
used for the downstroke (line 4) in reverse order. E.g.,
if Gauss-Seidel iteration is used, opposite traversal orders
should be used when descending or ascending the V-Cycle,
respectively. For Jacobi smoothers, no reversal is necessary
as the result is independent of the traversal order.

• The solve at the coarsest level (Algorithm 1, line 8) needs
to either be exact, or the inverse of L(L) should be approxi-
mated with a symmetric and definite matrix. If the smoother
is iterated to approximate the solution, a number of iterations
should be performed with a given traversal order, followed
by an equal number of iterations with the order reversed.

Algorithm 3 Multigrid-preconditioned conjugate gradient.
Red-colored steps in the algorithm are applicable when
the Poisson problem has a nullspace (i.e., all Neumann
boundary conditions), and should be omitted when Dirichlet
boundaries are present.
(†) u⇤M�1b is implemented by calling V-Cycle(u,b)

1: procedure MGPCG(r,x)
2: r⇤ r�Lx, µ⇤ r̄, ⇤⇤⌃r�µ⌃⇥
3: if (⇤ < ⇤max) then return
4: r⇤ r�µ, p⇤M�1r(†), ⌅⇤ pT r
5: for k = 0 to kmax do
6: z⇤ Lp, ⇧⇤ pT z
7: �⇤ ⌅/⇧
8: r⇤ r��z, µ⇤ r̄, ⇤⇤⌃r�µ⌃⇥
9: if (⇤ < ⇤max or k = kmax) then

10: x⇤ x+�p
11: return
12: end if
13: r⇤ r�µ, z⇤M�1r(†), ⌅new ⇤ zT r
14: ⇥⇤ ⌅new/⌅
15: ⌅⇤ ⌅new

16: x⇤ x+�p, p⇤ z+⇥p
17: end for
18: end procedure

Finally, Poisson problems with all-Neumann boundary
conditions (e.g., simulations of smoke flow past objects) are
known to possess a nullspace, as the solution is only known
up to a constant. The algorithm of Algorithm 3 is modified in
this case to project out this nullspace, and the modifications
are highlighted in red in the pseudocode. No modification to
the V-Cycle preconditioner is needed.

4. Implementation and Optimizations

Minimizing boundary cost: The cost of performing 30-40
smoothing sweeps on the boundary to stabilize the V-Cycle
as a solver cannot be neglected, even though the interior
smoothing effort would asymptotically dominate. In prac-
tice, this amount of boundary smoothing would be the most
costly operation of the V-Cycle for a 2563 grid or smaller,

c� The Eurographics Association 2010.

Kernels
• Multiply()
• Saxpy()
• Subtract()
• Copy()
• Inner_Product()
• Norm()

Lx = fTest case: Preconditioned Conjugate Gradients

Implemented as 
Saxpy(z, r, r, -alpha)

McAdams et al. / A parallel multigrid Poisson solver for fluids simulation on large grids

cussed in [TOS01]. We will show that this sensitivity to the
boundary treatment is removed when the V-Cycle is used as
a preconditioner.

Stagnation: Even when the V-Cycle iteration is stable, on
certain irregular domains the residual reduction rate quickly
degrades towards 1, as opposed to converging to a value
less than 0.5 as typically expected of functional multi-
grid schemes. This complication appears on irregular do-
mains where successive levels of the multigrid hierarchy
may exhibit significant topological differences, as coarse
modes may not be accurately represented. In these cases,
costly eigenanalysis or recombined iterants may prove use-
ful [TOS01]; however, the highly irregular and changing do-
mains common to fluid simulations make these methods im-
practical.

3.3. Multigrid-preconditioned conjugate gradient

The instability and slow convergence issues described in
the previous section can be efficiently ameliorated by using
the multigrid V-Cycle as a preconditioner for an appropri-
ate Krylov method. Our experiments indicated that the ele-
mentary multigrid scheme in section 3.2 can be an extremely
efficient preconditioner, achieving convergence rates compa-
rable or superior to the ideal performance of the V-Cycle on
regular domains, even if the smoothing effort vested in the
multigrid V-Cycle is significantly less than what is necessary
to make it a convergent solver on its own.

We will use the V-Cycle described in Section 3.2 as a pre-
conditioner for the conjugate gradient method. Algorithm
3 provides the pseudocode for our PCG solver. Our algo-
rithm is numerically equivalent to the traditional definition
of PCG, as stated for example in [GvL89], but certain vari-
ables are being reused for economy of storage, and opera-
tions have been rearranged to facilitate optimized execution,
as discussed in Section 4. Preconditioning operates by con-
structing a symmetric, positive definite matrix M which is
easier to invert than L, and such that M�1L is significantly
better conditioned than L.

In our case, we will use the multigrid V-Cycle as the pre-
conditionerM�1 as described in [Tat93]. In particular, if we
define u :=M�1b, then u is the result of one iteration of the
multigrid V-Cycle for the problem Lu = b with zero initial
guess, and zero boundary conditions. We can easily verify
that under these conditions, the action of the V-Cycle indeed
corresponds to a linear operator; the requirement that M be
symmetric and positive definite, however, is less trivial. We
refer to [Tat93] for a detailed analysis of the conditions for
symmetry and definiteness, and only present here a set of
sufficient conditions instead. The V-Cycle of Algorithm 1
will produce a symmetric and definite preconditioner if:

• The restriction/prolongation operators are the transpose of
one another (up to scaling). This is common practice, and
also the case for the V-Cycle we described.

• The smoother used in the upstroke of the V-Cycle (Algo-
rithm 1, line 11) performs the operations of the smoother
used for the downstroke (line 4) in reverse order. E.g.,
if Gauss-Seidel iteration is used, opposite traversal orders
should be used when descending or ascending the V-Cycle,
respectively. For Jacobi smoothers, no reversal is necessary
as the result is independent of the traversal order.

• The solve at the coarsest level (Algorithm 1, line 8) needs
to either be exact, or the inverse of L(L) should be approxi-
mated with a symmetric and definite matrix. If the smoother
is iterated to approximate the solution, a number of iterations
should be performed with a given traversal order, followed
by an equal number of iterations with the order reversed.

Algorithm 3 Multigrid-preconditioned conjugate gradient.
Red-colored steps in the algorithm are applicable when
the Poisson problem has a nullspace (i.e., all Neumann
boundary conditions), and should be omitted when Dirichlet
boundaries are present.
(†) u⇤M�1b is implemented by calling V-Cycle(u,b)

1: procedure MGPCG(r,x)
2: r⇤ r�Lx, µ⇤ r̄, ⇤⇤⌃r�µ⌃⇥
3: if (⇤ < ⇤max) then return
4: r⇤ r�µ, p⇤M�1r(†), ⌅⇤ pT r
5: for k = 0 to kmax do
6: z⇤ Lp, ⇧⇤ pT z
7: �⇤ ⌅/⇧
8: r⇤ r��z, µ⇤ r̄, ⇤⇤⌃r�µ⌃⇥
9: if (⇤ < ⇤max or k = kmax) then

10: x⇤ x+�p
11: return
12: end if
13: r⇤ r�µ, z⇤M�1r(†), ⌅new ⇤ zT r
14: ⇥⇤ ⌅new/⌅
15: ⌅⇤ ⌅new

16: x⇤ x+�p, p⇤ z+⇥p
17: end for
18: end procedure

Finally, Poisson problems with all-Neumann boundary
conditions (e.g., simulations of smoke flow past objects) are
known to possess a nullspace, as the solution is only known
up to a constant. The algorithm of Algorithm 3 is modified in
this case to project out this nullspace, and the modifications
are highlighted in red in the pseudocode. No modification to
the V-Cycle preconditioner is needed.

4. Implementation and Optimizations

Minimizing boundary cost: The cost of performing 30-40
smoothing sweeps on the boundary to stabilize the V-Cycle
as a solver cannot be neglected, even though the interior
smoothing effort would asymptotically dominate. In prac-
tice, this amount of boundary smoothing would be the most
costly operation of the V-Cycle for a 2563 grid or smaller,

c� The Eurographics Association 2010.

Kernels
• Multiply()
• Saxpy()
• Subtract()
• Copy()
• Inner_Product()
• Norm()

Lx = fTest case: Preconditioned Conjugate Gradients

McAdams et al. / A parallel multigrid Poisson solver for fluids simulation on large grids

cussed in [TOS01]. We will show that this sensitivity to the
boundary treatment is removed when the V-Cycle is used as
a preconditioner.

Stagnation: Even when the V-Cycle iteration is stable, on
certain irregular domains the residual reduction rate quickly
degrades towards 1, as opposed to converging to a value
less than 0.5 as typically expected of functional multi-
grid schemes. This complication appears on irregular do-
mains where successive levels of the multigrid hierarchy
may exhibit significant topological differences, as coarse
modes may not be accurately represented. In these cases,
costly eigenanalysis or recombined iterants may prove use-
ful [TOS01]; however, the highly irregular and changing do-
mains common to fluid simulations make these methods im-
practical.

3.3. Multigrid-preconditioned conjugate gradient

The instability and slow convergence issues described in
the previous section can be efficiently ameliorated by using
the multigrid V-Cycle as a preconditioner for an appropri-
ate Krylov method. Our experiments indicated that the ele-
mentary multigrid scheme in section 3.2 can be an extremely
efficient preconditioner, achieving convergence rates compa-
rable or superior to the ideal performance of the V-Cycle on
regular domains, even if the smoothing effort vested in the
multigrid V-Cycle is significantly less than what is necessary
to make it a convergent solver on its own.

We will use the V-Cycle described in Section 3.2 as a pre-
conditioner for the conjugate gradient method. Algorithm
3 provides the pseudocode for our PCG solver. Our algo-
rithm is numerically equivalent to the traditional definition
of PCG, as stated for example in [GvL89], but certain vari-
ables are being reused for economy of storage, and opera-
tions have been rearranged to facilitate optimized execution,
as discussed in Section 4. Preconditioning operates by con-
structing a symmetric, positive definite matrix M which is
easier to invert than L, and such that M�1L is significantly
better conditioned than L.

In our case, we will use the multigrid V-Cycle as the pre-
conditionerM�1 as described in [Tat93]. In particular, if we
define u :=M�1b, then u is the result of one iteration of the
multigrid V-Cycle for the problem Lu = b with zero initial
guess, and zero boundary conditions. We can easily verify
that under these conditions, the action of the V-Cycle indeed
corresponds to a linear operator; the requirement that M be
symmetric and positive definite, however, is less trivial. We
refer to [Tat93] for a detailed analysis of the conditions for
symmetry and definiteness, and only present here a set of
sufficient conditions instead. The V-Cycle of Algorithm 1
will produce a symmetric and definite preconditioner if:

• The restriction/prolongation operators are the transpose of
one another (up to scaling). This is common practice, and
also the case for the V-Cycle we described.

• The smoother used in the upstroke of the V-Cycle (Algo-
rithm 1, line 11) performs the operations of the smoother
used for the downstroke (line 4) in reverse order. E.g.,
if Gauss-Seidel iteration is used, opposite traversal orders
should be used when descending or ascending the V-Cycle,
respectively. For Jacobi smoothers, no reversal is necessary
as the result is independent of the traversal order.

• The solve at the coarsest level (Algorithm 1, line 8) needs
to either be exact, or the inverse of L(L) should be approxi-
mated with a symmetric and definite matrix. If the smoother
is iterated to approximate the solution, a number of iterations
should be performed with a given traversal order, followed
by an equal number of iterations with the order reversed.

Algorithm 3 Multigrid-preconditioned conjugate gradient.
Red-colored steps in the algorithm are applicable when
the Poisson problem has a nullspace (i.e., all Neumann
boundary conditions), and should be omitted when Dirichlet
boundaries are present.
(†) u⇤M�1b is implemented by calling V-Cycle(u,b)

1: procedure MGPCG(r,x)
2: r⇤ r�Lx, µ⇤ r̄, ⇤⇤⌃r�µ⌃⇥
3: if (⇤ < ⇤max) then return
4: r⇤ r�µ, p⇤M�1r(†), ⌅⇤ pT r
5: for k = 0 to kmax do
6: z⇤ Lp, ⇧⇤ pT z
7: �⇤ ⌅/⇧
8: r⇤ r��z, µ⇤ r̄, ⇤⇤⌃r�µ⌃⇥
9: if (⇤ < ⇤max or k = kmax) then

10: x⇤ x+�p
11: return
12: end if
13: r⇤ r�µ, z⇤M�1r(†), ⌅new ⇤ zT r
14: ⇥⇤ ⌅new/⌅
15: ⌅⇤ ⌅new

16: x⇤ x+�p, p⇤ z+⇥p
17: end for
18: end procedure

Finally, Poisson problems with all-Neumann boundary
conditions (e.g., simulations of smoke flow past objects) are
known to possess a nullspace, as the solution is only known
up to a constant. The algorithm of Algorithm 3 is modified in
this case to project out this nullspace, and the modifications
are highlighted in red in the pseudocode. No modification to
the V-Cycle preconditioner is needed.

4. Implementation and Optimizations

Minimizing boundary cost: The cost of performing 30-40
smoothing sweeps on the boundary to stabilize the V-Cycle
as a solver cannot be neglected, even though the interior
smoothing effort would asymptotically dominate. In prac-
tice, this amount of boundary smoothing would be the most
costly operation of the V-Cycle for a 2563 grid or smaller,

c� The Eurographics Association 2010.

Kernels
• Multiply()
• Saxpy()
• Subtract()
• Copy()
• Inner_Product()
• Norm()

Lx = fTest case: Preconditioned Conjugate Gradients

McAdams et al. / A parallel multigrid Poisson solver for fluids simulation on large grids

cussed in [TOS01]. We will show that this sensitivity to the
boundary treatment is removed when the V-Cycle is used as
a preconditioner.

Stagnation: Even when the V-Cycle iteration is stable, on
certain irregular domains the residual reduction rate quickly
degrades towards 1, as opposed to converging to a value
less than 0.5 as typically expected of functional multi-
grid schemes. This complication appears on irregular do-
mains where successive levels of the multigrid hierarchy
may exhibit significant topological differences, as coarse
modes may not be accurately represented. In these cases,
costly eigenanalysis or recombined iterants may prove use-
ful [TOS01]; however, the highly irregular and changing do-
mains common to fluid simulations make these methods im-
practical.

3.3. Multigrid-preconditioned conjugate gradient

The instability and slow convergence issues described in
the previous section can be efficiently ameliorated by using
the multigrid V-Cycle as a preconditioner for an appropri-
ate Krylov method. Our experiments indicated that the ele-
mentary multigrid scheme in section 3.2 can be an extremely
efficient preconditioner, achieving convergence rates compa-
rable or superior to the ideal performance of the V-Cycle on
regular domains, even if the smoothing effort vested in the
multigrid V-Cycle is significantly less than what is necessary
to make it a convergent solver on its own.

We will use the V-Cycle described in Section 3.2 as a pre-
conditioner for the conjugate gradient method. Algorithm
3 provides the pseudocode for our PCG solver. Our algo-
rithm is numerically equivalent to the traditional definition
of PCG, as stated for example in [GvL89], but certain vari-
ables are being reused for economy of storage, and opera-
tions have been rearranged to facilitate optimized execution,
as discussed in Section 4. Preconditioning operates by con-
structing a symmetric, positive definite matrix M which is
easier to invert than L, and such that M�1L is significantly
better conditioned than L.

In our case, we will use the multigrid V-Cycle as the pre-
conditionerM�1 as described in [Tat93]. In particular, if we
define u :=M�1b, then u is the result of one iteration of the
multigrid V-Cycle for the problem Lu = b with zero initial
guess, and zero boundary conditions. We can easily verify
that under these conditions, the action of the V-Cycle indeed
corresponds to a linear operator; the requirement that M be
symmetric and positive definite, however, is less trivial. We
refer to [Tat93] for a detailed analysis of the conditions for
symmetry and definiteness, and only present here a set of
sufficient conditions instead. The V-Cycle of Algorithm 1
will produce a symmetric and definite preconditioner if:

• The restriction/prolongation operators are the transpose of
one another (up to scaling). This is common practice, and
also the case for the V-Cycle we described.

• The smoother used in the upstroke of the V-Cycle (Algo-
rithm 1, line 11) performs the operations of the smoother
used for the downstroke (line 4) in reverse order. E.g.,
if Gauss-Seidel iteration is used, opposite traversal orders
should be used when descending or ascending the V-Cycle,
respectively. For Jacobi smoothers, no reversal is necessary
as the result is independent of the traversal order.

• The solve at the coarsest level (Algorithm 1, line 8) needs
to either be exact, or the inverse of L(L) should be approxi-
mated with a symmetric and definite matrix. If the smoother
is iterated to approximate the solution, a number of iterations
should be performed with a given traversal order, followed
by an equal number of iterations with the order reversed.

Algorithm 3 Multigrid-preconditioned conjugate gradient.
Red-colored steps in the algorithm are applicable when
the Poisson problem has a nullspace (i.e., all Neumann
boundary conditions), and should be omitted when Dirichlet
boundaries are present.
(†) u⇤M�1b is implemented by calling V-Cycle(u,b)

1: procedure MGPCG(r,x)
2: r⇤ r�Lx, µ⇤ r̄, ⇤⇤⌃r�µ⌃⇥
3: if (⇤ < ⇤max) then return
4: r⇤ r�µ, p⇤M�1r(†), ⌅⇤ pT r
5: for k = 0 to kmax do
6: z⇤ Lp, ⇧⇤ pT z
7: �⇤ ⌅/⇧
8: r⇤ r��z, µ⇤ r̄, ⇤⇤⌃r�µ⌃⇥
9: if (⇤ < ⇤max or k = kmax) then

10: x⇤ x+�p
11: return
12: end if
13: r⇤ r�µ, z⇤M�1r(†), ⌅new ⇤ zT r
14: ⇥⇤ ⌅new/⌅
15: ⌅⇤ ⌅new

16: x⇤ x+�p, p⇤ z+⇥p
17: end for
18: end procedure

Finally, Poisson problems with all-Neumann boundary
conditions (e.g., simulations of smoke flow past objects) are
known to possess a nullspace, as the solution is only known
up to a constant. The algorithm of Algorithm 3 is modified in
this case to project out this nullspace, and the modifications
are highlighted in red in the pseudocode. No modification to
the V-Cycle preconditioner is needed.

4. Implementation and Optimizations

Minimizing boundary cost: The cost of performing 30-40
smoothing sweeps on the boundary to stabilize the V-Cycle
as a solver cannot be neglected, even though the interior
smoothing effort would asymptotically dominate. In prac-
tice, this amount of boundary smoothing would be the most
costly operation of the V-Cycle for a 2563 grid or smaller,

c� The Eurographics Association 2010.

Kernels
• Multiply()
• Saxpy()
• Subtract()
• Copy()
• Inner_Product()
• Norm()

Lx = fTest case: Preconditioned Conjugate Gradients

Reduction Ops (Reductions.h)

#pragma once

#include "Parameters.h"

// Compute the maximum absolute value among the array elements
float Norm(const float (&x)[XDIM][YDIM][ZDIM]);

// Compute the "dot product" between the two arrays
float InnerProduct(const float (&x)[XDIM][YDIM][ZDIM], const float (&y)[XDIM][YDIM][ZDIM]);

LaplaceSolver/LaplaceSolver_0_0

Pointwise Ops (PointwiseOps.cpp)
#include "Reductions.h"

#include <algorithm>

float Norm(const float (&x)[XDIM][YDIM][ZDIM])
{
 float result = 0.;

#pragma omp parallel for reduction(max:result)
 for (int i = 1; i < XDIM-1; i++)
 for (int j = 1; j < YDIM-1; j++)
 for (int k = 1; k < ZDIM-1; k++)
 result = std::max(result, std::abs(x[i][j][k]));

 return result;
}

float InnerProduct(const float (&x)[XDIM][YDIM][ZDIM], const float (&y)[XDIM][YDIM][ZDIM])
{
 double result = 0.;

#pragma omp parallel for reduction(+:result)
 for (int i = 1; i < XDIM-1; i++)
 for (int j = 1; j < YDIM-1; j++)
 for (int k = 1; k < ZDIM-1; k++)
 result += (double) x[i][j][k] * (double) y[i][j][k];

 return (float) result;
}

LaplaceSolver/LaplaceSolver_0_0

Pointwise Ops (PointwiseOps.cpp)
#include "Reductions.h"

#include <algorithm>

float Norm(const float (&x)[XDIM][YDIM][ZDIM])
{
 float result = 0.;

#pragma omp parallel for reduction(max:result)
 for (int i = 1; i < XDIM-1; i++)
 for (int j = 1; j < YDIM-1; j++)
 for (int k = 1; k < ZDIM-1; k++)
 result = std::max(result, std::abs(x[i][j][k]));

 return result;
}

float InnerProduct(const float (&x)[XDIM][YDIM][ZDIM], const float (&y)[XDIM][YDIM][ZDIM])
{
 double result = 0.;

#pragma omp parallel for reduction(+:result)
 for (int i = 1; i < XDIM-1; i++)
 for (int j = 1; j < YDIM-1; j++)
 for (int k = 1; k < ZDIM-1; k++)
 result += (double) x[i][j][k] * (double) y[i][j][k];

 return (float) result;
}

LaplaceSolver/LaplaceSolver_0_0

McAdams et al. / A parallel multigrid Poisson solver for fluids simulation on large grids

cussed in [TOS01]. We will show that this sensitivity to the
boundary treatment is removed when the V-Cycle is used as
a preconditioner.

Stagnation: Even when the V-Cycle iteration is stable, on
certain irregular domains the residual reduction rate quickly
degrades towards 1, as opposed to converging to a value
less than 0.5 as typically expected of functional multi-
grid schemes. This complication appears on irregular do-
mains where successive levels of the multigrid hierarchy
may exhibit significant topological differences, as coarse
modes may not be accurately represented. In these cases,
costly eigenanalysis or recombined iterants may prove use-
ful [TOS01]; however, the highly irregular and changing do-
mains common to fluid simulations make these methods im-
practical.

3.3. Multigrid-preconditioned conjugate gradient

The instability and slow convergence issues described in
the previous section can be efficiently ameliorated by using
the multigrid V-Cycle as a preconditioner for an appropri-
ate Krylov method. Our experiments indicated that the ele-
mentary multigrid scheme in section 3.2 can be an extremely
efficient preconditioner, achieving convergence rates compa-
rable or superior to the ideal performance of the V-Cycle on
regular domains, even if the smoothing effort vested in the
multigrid V-Cycle is significantly less than what is necessary
to make it a convergent solver on its own.

We will use the V-Cycle described in Section 3.2 as a pre-
conditioner for the conjugate gradient method. Algorithm
3 provides the pseudocode for our PCG solver. Our algo-
rithm is numerically equivalent to the traditional definition
of PCG, as stated for example in [GvL89], but certain vari-
ables are being reused for economy of storage, and opera-
tions have been rearranged to facilitate optimized execution,
as discussed in Section 4. Preconditioning operates by con-
structing a symmetric, positive definite matrix M which is
easier to invert than L, and such that M�1L is significantly
better conditioned than L.

In our case, we will use the multigrid V-Cycle as the pre-
conditionerM�1 as described in [Tat93]. In particular, if we
define u :=M�1b, then u is the result of one iteration of the
multigrid V-Cycle for the problem Lu = b with zero initial
guess, and zero boundary conditions. We can easily verify
that under these conditions, the action of the V-Cycle indeed
corresponds to a linear operator; the requirement that M be
symmetric and positive definite, however, is less trivial. We
refer to [Tat93] for a detailed analysis of the conditions for
symmetry and definiteness, and only present here a set of
sufficient conditions instead. The V-Cycle of Algorithm 1
will produce a symmetric and definite preconditioner if:

• The restriction/prolongation operators are the transpose of
one another (up to scaling). This is common practice, and
also the case for the V-Cycle we described.

• The smoother used in the upstroke of the V-Cycle (Algo-
rithm 1, line 11) performs the operations of the smoother
used for the downstroke (line 4) in reverse order. E.g.,
if Gauss-Seidel iteration is used, opposite traversal orders
should be used when descending or ascending the V-Cycle,
respectively. For Jacobi smoothers, no reversal is necessary
as the result is independent of the traversal order.

• The solve at the coarsest level (Algorithm 1, line 8) needs
to either be exact, or the inverse of L(L) should be approxi-
mated with a symmetric and definite matrix. If the smoother
is iterated to approximate the solution, a number of iterations
should be performed with a given traversal order, followed
by an equal number of iterations with the order reversed.

Algorithm 3 Multigrid-preconditioned conjugate gradient.
Red-colored steps in the algorithm are applicable when
the Poisson problem has a nullspace (i.e., all Neumann
boundary conditions), and should be omitted when Dirichlet
boundaries are present.
(†) u⇤M�1b is implemented by calling V-Cycle(u,b)

1: procedure MGPCG(r,x)
2: r⇤ r�Lx, µ⇤ r̄, ⇤⇤⌃r�µ⌃⇥
3: if (⇤ < ⇤max) then return
4: r⇤ r�µ, p⇤M�1r(†), ⌅⇤ pT r
5: for k = 0 to kmax do
6: z⇤ Lp, ⇧⇤ pT z
7: �⇤ ⌅/⇧
8: r⇤ r��z, µ⇤ r̄, ⇤⇤⌃r�µ⌃⇥
9: if (⇤ < ⇤max or k = kmax) then

10: x⇤ x+�p
11: return
12: end if
13: r⇤ r�µ, z⇤M�1r(†), ⌅new ⇤ zT r
14: ⇥⇤ ⌅new/⌅
15: ⌅⇤ ⌅new

16: x⇤ x+�p, p⇤ z+⇥p
17: end for
18: end procedure

Finally, Poisson problems with all-Neumann boundary
conditions (e.g., simulations of smoke flow past objects) are
known to possess a nullspace, as the solution is only known
up to a constant. The algorithm of Algorithm 3 is modified in
this case to project out this nullspace, and the modifications
are highlighted in red in the pseudocode. No modification to
the V-Cycle preconditioner is needed.

4. Implementation and Optimizations

Minimizing boundary cost: The cost of performing 30-40
smoothing sweeps on the boundary to stabilize the V-Cycle
as a solver cannot be neglected, even though the interior
smoothing effort would asymptotically dominate. In prac-
tice, this amount of boundary smoothing would be the most
costly operation of the V-Cycle for a 2563 grid or smaller,

c� The Eurographics Association 2010.

Kernels
• Multiply()
• Saxpy()
• Subtract()
• Copy()
• Inner_Product()
• Norm()

Lx = fTest case: Preconditioned Conjugate Gradients

Implemented as 
rho = InnerProduct(p, r)

McAdams et al. / A parallel multigrid Poisson solver for fluids simulation on large grids

cussed in [TOS01]. We will show that this sensitivity to the
boundary treatment is removed when the V-Cycle is used as
a preconditioner.

Stagnation: Even when the V-Cycle iteration is stable, on
certain irregular domains the residual reduction rate quickly
degrades towards 1, as opposed to converging to a value
less than 0.5 as typically expected of functional multi-
grid schemes. This complication appears on irregular do-
mains where successive levels of the multigrid hierarchy
may exhibit significant topological differences, as coarse
modes may not be accurately represented. In these cases,
costly eigenanalysis or recombined iterants may prove use-
ful [TOS01]; however, the highly irregular and changing do-
mains common to fluid simulations make these methods im-
practical.

3.3. Multigrid-preconditioned conjugate gradient

The instability and slow convergence issues described in
the previous section can be efficiently ameliorated by using
the multigrid V-Cycle as a preconditioner for an appropri-
ate Krylov method. Our experiments indicated that the ele-
mentary multigrid scheme in section 3.2 can be an extremely
efficient preconditioner, achieving convergence rates compa-
rable or superior to the ideal performance of the V-Cycle on
regular domains, even if the smoothing effort vested in the
multigrid V-Cycle is significantly less than what is necessary
to make it a convergent solver on its own.

We will use the V-Cycle described in Section 3.2 as a pre-
conditioner for the conjugate gradient method. Algorithm
3 provides the pseudocode for our PCG solver. Our algo-
rithm is numerically equivalent to the traditional definition
of PCG, as stated for example in [GvL89], but certain vari-
ables are being reused for economy of storage, and opera-
tions have been rearranged to facilitate optimized execution,
as discussed in Section 4. Preconditioning operates by con-
structing a symmetric, positive definite matrix M which is
easier to invert than L, and such that M�1L is significantly
better conditioned than L.

In our case, we will use the multigrid V-Cycle as the pre-
conditionerM�1 as described in [Tat93]. In particular, if we
define u :=M�1b, then u is the result of one iteration of the
multigrid V-Cycle for the problem Lu = b with zero initial
guess, and zero boundary conditions. We can easily verify
that under these conditions, the action of the V-Cycle indeed
corresponds to a linear operator; the requirement that M be
symmetric and positive definite, however, is less trivial. We
refer to [Tat93] for a detailed analysis of the conditions for
symmetry and definiteness, and only present here a set of
sufficient conditions instead. The V-Cycle of Algorithm 1
will produce a symmetric and definite preconditioner if:

• The restriction/prolongation operators are the transpose of
one another (up to scaling). This is common practice, and
also the case for the V-Cycle we described.

• The smoother used in the upstroke of the V-Cycle (Algo-
rithm 1, line 11) performs the operations of the smoother
used for the downstroke (line 4) in reverse order. E.g.,
if Gauss-Seidel iteration is used, opposite traversal orders
should be used when descending or ascending the V-Cycle,
respectively. For Jacobi smoothers, no reversal is necessary
as the result is independent of the traversal order.

• The solve at the coarsest level (Algorithm 1, line 8) needs
to either be exact, or the inverse of L(L) should be approxi-
mated with a symmetric and definite matrix. If the smoother
is iterated to approximate the solution, a number of iterations
should be performed with a given traversal order, followed
by an equal number of iterations with the order reversed.

Algorithm 3 Multigrid-preconditioned conjugate gradient.
Red-colored steps in the algorithm are applicable when
the Poisson problem has a nullspace (i.e., all Neumann
boundary conditions), and should be omitted when Dirichlet
boundaries are present.
(†) u⇤M�1b is implemented by calling V-Cycle(u,b)

1: procedure MGPCG(r,x)
2: r⇤ r�Lx, µ⇤ r̄, ⇤⇤⌃r�µ⌃⇥
3: if (⇤ < ⇤max) then return
4: r⇤ r�µ, p⇤M�1r(†), ⌅⇤ pT r
5: for k = 0 to kmax do
6: z⇤ Lp, ⇧⇤ pT z
7: �⇤ ⌅/⇧
8: r⇤ r��z, µ⇤ r̄, ⇤⇤⌃r�µ⌃⇥
9: if (⇤ < ⇤max or k = kmax) then

10: x⇤ x+�p
11: return
12: end if
13: r⇤ r�µ, z⇤M�1r(†), ⌅new ⇤ zT r
14: ⇥⇤ ⌅new/⌅
15: ⌅⇤ ⌅new

16: x⇤ x+�p, p⇤ z+⇥p
17: end for
18: end procedure

Finally, Poisson problems with all-Neumann boundary
conditions (e.g., simulations of smoke flow past objects) are
known to possess a nullspace, as the solution is only known
up to a constant. The algorithm of Algorithm 3 is modified in
this case to project out this nullspace, and the modifications
are highlighted in red in the pseudocode. No modification to
the V-Cycle preconditioner is needed.

4. Implementation and Optimizations

Minimizing boundary cost: The cost of performing 30-40
smoothing sweeps on the boundary to stabilize the V-Cycle
as a solver cannot be neglected, even though the interior
smoothing effort would asymptotically dominate. In prac-
tice, this amount of boundary smoothing would be the most
costly operation of the V-Cycle for a 2563 grid or smaller,

c� The Eurographics Association 2010.

Kernels
• Multiply()
• Saxpy()
• Subtract()
• Copy()
• Inner_Product()
• Norm()

Lx = fTest case: Preconditioned Conjugate Gradients

Development Plan

Design
• Define your objectives
• Choose a parallel-friendly theoretical formulation
• Set performance expectations
• Choose a promising algorithm

Implement
• Implement a prototype
• Organize code into reusable kernels

Accelerate
• Reorder/combine/pipeline operations
• Reduce resource utilization (try harder ...)
• Parallelize component kernels

McAdams et al. / A parallel multigrid Poisson solver for fluids simulation on large grids

cussed in [TOS01]. We will show that this sensitivity to the
boundary treatment is removed when the V-Cycle is used as
a preconditioner.

Stagnation: Even when the V-Cycle iteration is stable, on
certain irregular domains the residual reduction rate quickly
degrades towards 1, as opposed to converging to a value
less than 0.5 as typically expected of functional multi-
grid schemes. This complication appears on irregular do-
mains where successive levels of the multigrid hierarchy
may exhibit significant topological differences, as coarse
modes may not be accurately represented. In these cases,
costly eigenanalysis or recombined iterants may prove use-
ful [TOS01]; however, the highly irregular and changing do-
mains common to fluid simulations make these methods im-
practical.

3.3. Multigrid-preconditioned conjugate gradient

The instability and slow convergence issues described in
the previous section can be efficiently ameliorated by using
the multigrid V-Cycle as a preconditioner for an appropri-
ate Krylov method. Our experiments indicated that the ele-
mentary multigrid scheme in section 3.2 can be an extremely
efficient preconditioner, achieving convergence rates compa-
rable or superior to the ideal performance of the V-Cycle on
regular domains, even if the smoothing effort vested in the
multigrid V-Cycle is significantly less than what is necessary
to make it a convergent solver on its own.

We will use the V-Cycle described in Section 3.2 as a pre-
conditioner for the conjugate gradient method. Algorithm
3 provides the pseudocode for our PCG solver. Our algo-
rithm is numerically equivalent to the traditional definition
of PCG, as stated for example in [GvL89], but certain vari-
ables are being reused for economy of storage, and opera-
tions have been rearranged to facilitate optimized execution,
as discussed in Section 4. Preconditioning operates by con-
structing a symmetric, positive definite matrix M which is
easier to invert than L, and such that M�1L is significantly
better conditioned than L.

In our case, we will use the multigrid V-Cycle as the pre-
conditionerM�1 as described in [Tat93]. In particular, if we
define u :=M�1b, then u is the result of one iteration of the
multigrid V-Cycle for the problem Lu = b with zero initial
guess, and zero boundary conditions. We can easily verify
that under these conditions, the action of the V-Cycle indeed
corresponds to a linear operator; the requirement that M be
symmetric and positive definite, however, is less trivial. We
refer to [Tat93] for a detailed analysis of the conditions for
symmetry and definiteness, and only present here a set of
sufficient conditions instead. The V-Cycle of Algorithm 1
will produce a symmetric and definite preconditioner if:

• The restriction/prolongation operators are the transpose of
one another (up to scaling). This is common practice, and
also the case for the V-Cycle we described.

• The smoother used in the upstroke of the V-Cycle (Algo-
rithm 1, line 11) performs the operations of the smoother
used for the downstroke (line 4) in reverse order. E.g.,
if Gauss-Seidel iteration is used, opposite traversal orders
should be used when descending or ascending the V-Cycle,
respectively. For Jacobi smoothers, no reversal is necessary
as the result is independent of the traversal order.

• The solve at the coarsest level (Algorithm 1, line 8) needs
to either be exact, or the inverse of L(L) should be approxi-
mated with a symmetric and definite matrix. If the smoother
is iterated to approximate the solution, a number of iterations
should be performed with a given traversal order, followed
by an equal number of iterations with the order reversed.

Algorithm 3 Multigrid-preconditioned conjugate gradient.
Red-colored steps in the algorithm are applicable when
the Poisson problem has a nullspace (i.e., all Neumann
boundary conditions), and should be omitted when Dirichlet
boundaries are present.
(†) u⇤M�1b is implemented by calling V-Cycle(u,b)

1: procedure MGPCG(r,x)
2: r⇤ r�Lx, µ⇤ r̄, ⇤⇤⌃r�µ⌃⇥
3: if (⇤ < ⇤max) then return
4: r⇤ r�µ, p⇤M�1r(†), ⌅⇤ pT r
5: for k = 0 to kmax do
6: z⇤ Lp, ⇧⇤ pT z
7: �⇤ ⌅/⇧
8: r⇤ r��z, µ⇤ r̄, ⇤⇤⌃r�µ⌃⇥
9: if (⇤ < ⇤max or k = kmax) then

10: x⇤ x+�p
11: return
12: end if
13: r⇤ r�µ, z⇤M�1r(†), ⌅new ⇤ zT r
14: ⇥⇤ ⌅new/⌅
15: ⌅⇤ ⌅new

16: x⇤ x+�p, p⇤ z+⇥p
17: end for
18: end procedure

Finally, Poisson problems with all-Neumann boundary
conditions (e.g., simulations of smoke flow past objects) are
known to possess a nullspace, as the solution is only known
up to a constant. The algorithm of Algorithm 3 is modified in
this case to project out this nullspace, and the modifications
are highlighted in red in the pseudocode. No modification to
the V-Cycle preconditioner is needed.

4. Implementation and Optimizations

Minimizing boundary cost: The cost of performing 30-40
smoothing sweeps on the boundary to stabilize the V-Cycle
as a solver cannot be neglected, even though the interior
smoothing effort would asymptotically dominate. In prac-
tice, this amount of boundary smoothing would be the most
costly operation of the V-Cycle for a 2563 grid or smaller,

c� The Eurographics Association 2010.

Test case: Preconditioned Conjugate Gradients

McAdams et al. / A parallel multigrid Poisson solver for fluids simulation on large grids

cussed in [TOS01]. We will show that this sensitivity to the
boundary treatment is removed when the V-Cycle is used as
a preconditioner.

Stagnation: Even when the V-Cycle iteration is stable, on
certain irregular domains the residual reduction rate quickly
degrades towards 1, as opposed to converging to a value
less than 0.5 as typically expected of functional multi-
grid schemes. This complication appears on irregular do-
mains where successive levels of the multigrid hierarchy
may exhibit significant topological differences, as coarse
modes may not be accurately represented. In these cases,
costly eigenanalysis or recombined iterants may prove use-
ful [TOS01]; however, the highly irregular and changing do-
mains common to fluid simulations make these methods im-
practical.

3.3. Multigrid-preconditioned conjugate gradient

The instability and slow convergence issues described in
the previous section can be efficiently ameliorated by using
the multigrid V-Cycle as a preconditioner for an appropri-
ate Krylov method. Our experiments indicated that the ele-
mentary multigrid scheme in section 3.2 can be an extremely
efficient preconditioner, achieving convergence rates compa-
rable or superior to the ideal performance of the V-Cycle on
regular domains, even if the smoothing effort vested in the
multigrid V-Cycle is significantly less than what is necessary
to make it a convergent solver on its own.

We will use the V-Cycle described in Section 3.2 as a pre-
conditioner for the conjugate gradient method. Algorithm
3 provides the pseudocode for our PCG solver. Our algo-
rithm is numerically equivalent to the traditional definition
of PCG, as stated for example in [GvL89], but certain vari-
ables are being reused for economy of storage, and opera-
tions have been rearranged to facilitate optimized execution,
as discussed in Section 4. Preconditioning operates by con-
structing a symmetric, positive definite matrix M which is
easier to invert than L, and such that M�1L is significantly
better conditioned than L.

In our case, we will use the multigrid V-Cycle as the pre-
conditionerM�1 as described in [Tat93]. In particular, if we
define u :=M�1b, then u is the result of one iteration of the
multigrid V-Cycle for the problem Lu = b with zero initial
guess, and zero boundary conditions. We can easily verify
that under these conditions, the action of the V-Cycle indeed
corresponds to a linear operator; the requirement that M be
symmetric and positive definite, however, is less trivial. We
refer to [Tat93] for a detailed analysis of the conditions for
symmetry and definiteness, and only present here a set of
sufficient conditions instead. The V-Cycle of Algorithm 1
will produce a symmetric and definite preconditioner if:

• The restriction/prolongation operators are the transpose of
one another (up to scaling). This is common practice, and
also the case for the V-Cycle we described.

• The smoother used in the upstroke of the V-Cycle (Algo-
rithm 1, line 11) performs the operations of the smoother
used for the downstroke (line 4) in reverse order. E.g.,
if Gauss-Seidel iteration is used, opposite traversal orders
should be used when descending or ascending the V-Cycle,
respectively. For Jacobi smoothers, no reversal is necessary
as the result is independent of the traversal order.

• The solve at the coarsest level (Algorithm 1, line 8) needs
to either be exact, or the inverse of L(L) should be approxi-
mated with a symmetric and definite matrix. If the smoother
is iterated to approximate the solution, a number of iterations
should be performed with a given traversal order, followed
by an equal number of iterations with the order reversed.

Algorithm 3 Multigrid-preconditioned conjugate gradient.
Red-colored steps in the algorithm are applicable when
the Poisson problem has a nullspace (i.e., all Neumann
boundary conditions), and should be omitted when Dirichlet
boundaries are present.
(†) u⇤M�1b is implemented by calling V-Cycle(u,b)

1: procedure MGPCG(r,x)
2: r⇤ r�Lx, µ⇤ r̄, ⇤⇤⌃r�µ⌃⇥
3: if (⇤ < ⇤max) then return
4: r⇤ r�µ, p⇤M�1r(†), ⌅⇤ pT r
5: for k = 0 to kmax do
6: z⇤ Lp, ⇧⇤ pT z
7: �⇤ ⌅/⇧
8: r⇤ r��z, µ⇤ r̄, ⇤⇤⌃r�µ⌃⇥
9: if (⇤ < ⇤max or k = kmax) then

10: x⇤ x+�p
11: return
12: end if
13: r⇤ r�µ, z⇤M�1r(†), ⌅new ⇤ zT r
14: ⇥⇤ ⌅new/⌅
15: ⌅⇤ ⌅new

16: x⇤ x+�p, p⇤ z+⇥p
17: end for
18: end procedure

Finally, Poisson problems with all-Neumann boundary
conditions (e.g., simulations of smoke flow past objects) are
known to possess a nullspace, as the solution is only known
up to a constant. The algorithm of Algorithm 3 is modified in
this case to project out this nullspace, and the modifications
are highlighted in red in the pseudocode. No modification to
the V-Cycle preconditioner is needed.

4. Implementation and Optimizations

Minimizing boundary cost: The cost of performing 30-40
smoothing sweeps on the boundary to stabilize the V-Cycle
as a solver cannot be neglected, even though the interior
smoothing effort would asymptotically dominate. In prac-
tice, this amount of boundary smoothing would be the most
costly operation of the V-Cycle for a 2563 grid or smaller,

c� The Eurographics Association 2010.

Test case: Preconditioned Conjugate Gradients

McAdams et al. / A parallel multigrid Poisson solver for fluids simulation on large grids

cussed in [TOS01]. We will show that this sensitivity to the
boundary treatment is removed when the V-Cycle is used as
a preconditioner.

Stagnation: Even when the V-Cycle iteration is stable, on
certain irregular domains the residual reduction rate quickly
degrades towards 1, as opposed to converging to a value
less than 0.5 as typically expected of functional multi-
grid schemes. This complication appears on irregular do-
mains where successive levels of the multigrid hierarchy
may exhibit significant topological differences, as coarse
modes may not be accurately represented. In these cases,
costly eigenanalysis or recombined iterants may prove use-
ful [TOS01]; however, the highly irregular and changing do-
mains common to fluid simulations make these methods im-
practical.

3.3. Multigrid-preconditioned conjugate gradient

The instability and slow convergence issues described in
the previous section can be efficiently ameliorated by using
the multigrid V-Cycle as a preconditioner for an appropri-
ate Krylov method. Our experiments indicated that the ele-
mentary multigrid scheme in section 3.2 can be an extremely
efficient preconditioner, achieving convergence rates compa-
rable or superior to the ideal performance of the V-Cycle on
regular domains, even if the smoothing effort vested in the
multigrid V-Cycle is significantly less than what is necessary
to make it a convergent solver on its own.

We will use the V-Cycle described in Section 3.2 as a pre-
conditioner for the conjugate gradient method. Algorithm
3 provides the pseudocode for our PCG solver. Our algo-
rithm is numerically equivalent to the traditional definition
of PCG, as stated for example in [GvL89], but certain vari-
ables are being reused for economy of storage, and opera-
tions have been rearranged to facilitate optimized execution,
as discussed in Section 4. Preconditioning operates by con-
structing a symmetric, positive definite matrix M which is
easier to invert than L, and such that M�1L is significantly
better conditioned than L.

In our case, we will use the multigrid V-Cycle as the pre-
conditionerM�1 as described in [Tat93]. In particular, if we
define u :=M�1b, then u is the result of one iteration of the
multigrid V-Cycle for the problem Lu = b with zero initial
guess, and zero boundary conditions. We can easily verify
that under these conditions, the action of the V-Cycle indeed
corresponds to a linear operator; the requirement that M be
symmetric and positive definite, however, is less trivial. We
refer to [Tat93] for a detailed analysis of the conditions for
symmetry and definiteness, and only present here a set of
sufficient conditions instead. The V-Cycle of Algorithm 1
will produce a symmetric and definite preconditioner if:

• The restriction/prolongation operators are the transpose of
one another (up to scaling). This is common practice, and
also the case for the V-Cycle we described.

• The smoother used in the upstroke of the V-Cycle (Algo-
rithm 1, line 11) performs the operations of the smoother
used for the downstroke (line 4) in reverse order. E.g.,
if Gauss-Seidel iteration is used, opposite traversal orders
should be used when descending or ascending the V-Cycle,
respectively. For Jacobi smoothers, no reversal is necessary
as the result is independent of the traversal order.

• The solve at the coarsest level (Algorithm 1, line 8) needs
to either be exact, or the inverse of L(L) should be approxi-
mated with a symmetric and definite matrix. If the smoother
is iterated to approximate the solution, a number of iterations
should be performed with a given traversal order, followed
by an equal number of iterations with the order reversed.

Algorithm 3 Multigrid-preconditioned conjugate gradient.
Red-colored steps in the algorithm are applicable when
the Poisson problem has a nullspace (i.e., all Neumann
boundary conditions), and should be omitted when Dirichlet
boundaries are present.
(†) u⇤M�1b is implemented by calling V-Cycle(u,b)

1: procedure MGPCG(r,x)
2: r⇤ r�Lx, µ⇤ r̄, ⇤⇤⌃r�µ⌃⇥
3: if (⇤ < ⇤max) then return
4: r⇤ r�µ, p⇤M�1r(†), ⌅⇤ pT r
5: for k = 0 to kmax do
6: z⇤ Lp, ⇧⇤ pT z
7: �⇤ ⌅/⇧
8: r⇤ r��z, µ⇤ r̄, ⇤⇤⌃r�µ⌃⇥
9: if (⇤ < ⇤max or k = kmax) then

10: x⇤ x+�p
11: return
12: end if
13: r⇤ r�µ, z⇤M�1r(†), ⌅new ⇤ zT r
14: ⇥⇤ ⌅new/⌅
15: ⌅⇤ ⌅new

16: x⇤ x+�p, p⇤ z+⇥p
17: end for
18: end procedure

Finally, Poisson problems with all-Neumann boundary
conditions (e.g., simulations of smoke flow past objects) are
known to possess a nullspace, as the solution is only known
up to a constant. The algorithm of Algorithm 3 is modified in
this case to project out this nullspace, and the modifications
are highlighted in red in the pseudocode. No modification to
the V-Cycle preconditioner is needed.

4. Implementation and Optimizations

Minimizing boundary cost: The cost of performing 30-40
smoothing sweeps on the boundary to stabilize the V-Cycle
as a solver cannot be neglected, even though the interior
smoothing effort would asymptotically dominate. In prac-
tice, this amount of boundary smoothing would be the most
costly operation of the V-Cycle for a 2563 grid or smaller,

c� The Eurographics Association 2010.

Test case: Preconditioned Conjugate Gradients

McAdams et al. / A parallel multigrid Poisson solver for fluids simulation on large grids

cussed in [TOS01]. We will show that this sensitivity to the
boundary treatment is removed when the V-Cycle is used as
a preconditioner.

Stagnation: Even when the V-Cycle iteration is stable, on
certain irregular domains the residual reduction rate quickly
degrades towards 1, as opposed to converging to a value
less than 0.5 as typically expected of functional multi-
grid schemes. This complication appears on irregular do-
mains where successive levels of the multigrid hierarchy
may exhibit significant topological differences, as coarse
modes may not be accurately represented. In these cases,
costly eigenanalysis or recombined iterants may prove use-
ful [TOS01]; however, the highly irregular and changing do-
mains common to fluid simulations make these methods im-
practical.

3.3. Multigrid-preconditioned conjugate gradient

The instability and slow convergence issues described in
the previous section can be efficiently ameliorated by using
the multigrid V-Cycle as a preconditioner for an appropri-
ate Krylov method. Our experiments indicated that the ele-
mentary multigrid scheme in section 3.2 can be an extremely
efficient preconditioner, achieving convergence rates compa-
rable or superior to the ideal performance of the V-Cycle on
regular domains, even if the smoothing effort vested in the
multigrid V-Cycle is significantly less than what is necessary
to make it a convergent solver on its own.

We will use the V-Cycle described in Section 3.2 as a pre-
conditioner for the conjugate gradient method. Algorithm
3 provides the pseudocode for our PCG solver. Our algo-
rithm is numerically equivalent to the traditional definition
of PCG, as stated for example in [GvL89], but certain vari-
ables are being reused for economy of storage, and opera-
tions have been rearranged to facilitate optimized execution,
as discussed in Section 4. Preconditioning operates by con-
structing a symmetric, positive definite matrix M which is
easier to invert than L, and such that M�1L is significantly
better conditioned than L.

In our case, we will use the multigrid V-Cycle as the pre-
conditionerM�1 as described in [Tat93]. In particular, if we
define u :=M�1b, then u is the result of one iteration of the
multigrid V-Cycle for the problem Lu = b with zero initial
guess, and zero boundary conditions. We can easily verify
that under these conditions, the action of the V-Cycle indeed
corresponds to a linear operator; the requirement that M be
symmetric and positive definite, however, is less trivial. We
refer to [Tat93] for a detailed analysis of the conditions for
symmetry and definiteness, and only present here a set of
sufficient conditions instead. The V-Cycle of Algorithm 1
will produce a symmetric and definite preconditioner if:

• The restriction/prolongation operators are the transpose of
one another (up to scaling). This is common practice, and
also the case for the V-Cycle we described.

• The smoother used in the upstroke of the V-Cycle (Algo-
rithm 1, line 11) performs the operations of the smoother
used for the downstroke (line 4) in reverse order. E.g.,
if Gauss-Seidel iteration is used, opposite traversal orders
should be used when descending or ascending the V-Cycle,
respectively. For Jacobi smoothers, no reversal is necessary
as the result is independent of the traversal order.

• The solve at the coarsest level (Algorithm 1, line 8) needs
to either be exact, or the inverse of L(L) should be approxi-
mated with a symmetric and definite matrix. If the smoother
is iterated to approximate the solution, a number of iterations
should be performed with a given traversal order, followed
by an equal number of iterations with the order reversed.

Algorithm 3 Multigrid-preconditioned conjugate gradient.
Red-colored steps in the algorithm are applicable when
the Poisson problem has a nullspace (i.e., all Neumann
boundary conditions), and should be omitted when Dirichlet
boundaries are present.
(†) u⇤M�1b is implemented by calling V-Cycle(u,b)

1: procedure MGPCG(r,x)
2: r⇤ r�Lx, µ⇤ r̄, ⇤⇤⌃r�µ⌃⇥
3: if (⇤ < ⇤max) then return
4: r⇤ r�µ, p⇤M�1r(†), ⌅⇤ pT r
5: for k = 0 to kmax do
6: z⇤ Lp, ⇧⇤ pT z
7: �⇤ ⌅/⇧
8: r⇤ r��z, µ⇤ r̄, ⇤⇤⌃r�µ⌃⇥
9: if (⇤ < ⇤max or k = kmax) then

10: x⇤ x+�p
11: return
12: end if
13: r⇤ r�µ, z⇤M�1r(†), ⌅new ⇤ zT r
14: ⇥⇤ ⌅new/⌅
15: ⌅⇤ ⌅new

16: x⇤ x+�p, p⇤ z+⇥p
17: end for
18: end procedure

Finally, Poisson problems with all-Neumann boundary
conditions (e.g., simulations of smoke flow past objects) are
known to possess a nullspace, as the solution is only known
up to a constant. The algorithm of Algorithm 3 is modified in
this case to project out this nullspace, and the modifications
are highlighted in red in the pseudocode. No modification to
the V-Cycle preconditioner is needed.

4. Implementation and Optimizations

Minimizing boundary cost: The cost of performing 30-40
smoothing sweeps on the boundary to stabilize the V-Cycle
as a solver cannot be neglected, even though the interior
smoothing effort would asymptotically dominate. In prac-
tice, this amount of boundary smoothing would be the most
costly operation of the V-Cycle for a 2563 grid or smaller,

c� The Eurographics Association 2010.

Test case: Preconditioned Conjugate Gradients

McAdams et al. / A parallel multigrid Poisson solver for fluids simulation on large grids

cussed in [TOS01]. We will show that this sensitivity to the
boundary treatment is removed when the V-Cycle is used as
a preconditioner.

Stagnation: Even when the V-Cycle iteration is stable, on
certain irregular domains the residual reduction rate quickly
degrades towards 1, as opposed to converging to a value
less than 0.5 as typically expected of functional multi-
grid schemes. This complication appears on irregular do-
mains where successive levels of the multigrid hierarchy
may exhibit significant topological differences, as coarse
modes may not be accurately represented. In these cases,
costly eigenanalysis or recombined iterants may prove use-
ful [TOS01]; however, the highly irregular and changing do-
mains common to fluid simulations make these methods im-
practical.

3.3. Multigrid-preconditioned conjugate gradient

The instability and slow convergence issues described in
the previous section can be efficiently ameliorated by using
the multigrid V-Cycle as a preconditioner for an appropri-
ate Krylov method. Our experiments indicated that the ele-
mentary multigrid scheme in section 3.2 can be an extremely
efficient preconditioner, achieving convergence rates compa-
rable or superior to the ideal performance of the V-Cycle on
regular domains, even if the smoothing effort vested in the
multigrid V-Cycle is significantly less than what is necessary
to make it a convergent solver on its own.

We will use the V-Cycle described in Section 3.2 as a pre-
conditioner for the conjugate gradient method. Algorithm
3 provides the pseudocode for our PCG solver. Our algo-
rithm is numerically equivalent to the traditional definition
of PCG, as stated for example in [GvL89], but certain vari-
ables are being reused for economy of storage, and opera-
tions have been rearranged to facilitate optimized execution,
as discussed in Section 4. Preconditioning operates by con-
structing a symmetric, positive definite matrix M which is
easier to invert than L, and such that M�1L is significantly
better conditioned than L.

In our case, we will use the multigrid V-Cycle as the pre-
conditionerM�1 as described in [Tat93]. In particular, if we
define u :=M�1b, then u is the result of one iteration of the
multigrid V-Cycle for the problem Lu = b with zero initial
guess, and zero boundary conditions. We can easily verify
that under these conditions, the action of the V-Cycle indeed
corresponds to a linear operator; the requirement that M be
symmetric and positive definite, however, is less trivial. We
refer to [Tat93] for a detailed analysis of the conditions for
symmetry and definiteness, and only present here a set of
sufficient conditions instead. The V-Cycle of Algorithm 1
will produce a symmetric and definite preconditioner if:

• The restriction/prolongation operators are the transpose of
one another (up to scaling). This is common practice, and
also the case for the V-Cycle we described.

• The smoother used in the upstroke of the V-Cycle (Algo-
rithm 1, line 11) performs the operations of the smoother
used for the downstroke (line 4) in reverse order. E.g.,
if Gauss-Seidel iteration is used, opposite traversal orders
should be used when descending or ascending the V-Cycle,
respectively. For Jacobi smoothers, no reversal is necessary
as the result is independent of the traversal order.

• The solve at the coarsest level (Algorithm 1, line 8) needs
to either be exact, or the inverse of L(L) should be approxi-
mated with a symmetric and definite matrix. If the smoother
is iterated to approximate the solution, a number of iterations
should be performed with a given traversal order, followed
by an equal number of iterations with the order reversed.

Algorithm 3 Multigrid-preconditioned conjugate gradient.
Red-colored steps in the algorithm are applicable when
the Poisson problem has a nullspace (i.e., all Neumann
boundary conditions), and should be omitted when Dirichlet
boundaries are present.
(†) u⇤M�1b is implemented by calling V-Cycle(u,b)

1: procedure MGPCG(r,x)
2: r⇤ r�Lx, µ⇤ r̄, ⇤⇤⌃r�µ⌃⇥
3: if (⇤ < ⇤max) then return
4: r⇤ r�µ, p⇤M�1r(†), ⌅⇤ pT r
5: for k = 0 to kmax do
6: z⇤ Lp, ⇧⇤ pT z
7: �⇤ ⌅/⇧
8: r⇤ r��z, µ⇤ r̄, ⇤⇤⌃r�µ⌃⇥
9: if (⇤ < ⇤max or k = kmax) then

10: x⇤ x+�p
11: return
12: end if
13: r⇤ r�µ, z⇤M�1r(†), ⌅new ⇤ zT r
14: ⇥⇤ ⌅new/⌅
15: ⌅⇤ ⌅new

16: x⇤ x+�p, p⇤ z+⇥p
17: end for
18: end procedure

Finally, Poisson problems with all-Neumann boundary
conditions (e.g., simulations of smoke flow past objects) are
known to possess a nullspace, as the solution is only known
up to a constant. The algorithm of Algorithm 3 is modified in
this case to project out this nullspace, and the modifications
are highlighted in red in the pseudocode. No modification to
the V-Cycle preconditioner is needed.

4. Implementation and Optimizations

Minimizing boundary cost: The cost of performing 30-40
smoothing sweeps on the boundary to stabilize the V-Cycle
as a solver cannot be neglected, even though the interior
smoothing effort would asymptotically dominate. In prac-
tice, this amount of boundary smoothing would be the most
costly operation of the V-Cycle for a 2563 grid or smaller,

c� The Eurographics Association 2010.

Test case: Preconditioned Conjugate Gradients

McAdams et al. / A parallel multigrid Poisson solver for fluids simulation on large grids

cussed in [TOS01]. We will show that this sensitivity to the
boundary treatment is removed when the V-Cycle is used as
a preconditioner.

Stagnation: Even when the V-Cycle iteration is stable, on
certain irregular domains the residual reduction rate quickly
degrades towards 1, as opposed to converging to a value
less than 0.5 as typically expected of functional multi-
grid schemes. This complication appears on irregular do-
mains where successive levels of the multigrid hierarchy
may exhibit significant topological differences, as coarse
modes may not be accurately represented. In these cases,
costly eigenanalysis or recombined iterants may prove use-
ful [TOS01]; however, the highly irregular and changing do-
mains common to fluid simulations make these methods im-
practical.

3.3. Multigrid-preconditioned conjugate gradient

The instability and slow convergence issues described in
the previous section can be efficiently ameliorated by using
the multigrid V-Cycle as a preconditioner for an appropri-
ate Krylov method. Our experiments indicated that the ele-
mentary multigrid scheme in section 3.2 can be an extremely
efficient preconditioner, achieving convergence rates compa-
rable or superior to the ideal performance of the V-Cycle on
regular domains, even if the smoothing effort vested in the
multigrid V-Cycle is significantly less than what is necessary
to make it a convergent solver on its own.

We will use the V-Cycle described in Section 3.2 as a pre-
conditioner for the conjugate gradient method. Algorithm
3 provides the pseudocode for our PCG solver. Our algo-
rithm is numerically equivalent to the traditional definition
of PCG, as stated for example in [GvL89], but certain vari-
ables are being reused for economy of storage, and opera-
tions have been rearranged to facilitate optimized execution,
as discussed in Section 4. Preconditioning operates by con-
structing a symmetric, positive definite matrix M which is
easier to invert than L, and such that M�1L is significantly
better conditioned than L.

In our case, we will use the multigrid V-Cycle as the pre-
conditionerM�1 as described in [Tat93]. In particular, if we
define u :=M�1b, then u is the result of one iteration of the
multigrid V-Cycle for the problem Lu = b with zero initial
guess, and zero boundary conditions. We can easily verify
that under these conditions, the action of the V-Cycle indeed
corresponds to a linear operator; the requirement that M be
symmetric and positive definite, however, is less trivial. We
refer to [Tat93] for a detailed analysis of the conditions for
symmetry and definiteness, and only present here a set of
sufficient conditions instead. The V-Cycle of Algorithm 1
will produce a symmetric and definite preconditioner if:

• The restriction/prolongation operators are the transpose of
one another (up to scaling). This is common practice, and
also the case for the V-Cycle we described.

• The smoother used in the upstroke of the V-Cycle (Algo-
rithm 1, line 11) performs the operations of the smoother
used for the downstroke (line 4) in reverse order. E.g.,
if Gauss-Seidel iteration is used, opposite traversal orders
should be used when descending or ascending the V-Cycle,
respectively. For Jacobi smoothers, no reversal is necessary
as the result is independent of the traversal order.

• The solve at the coarsest level (Algorithm 1, line 8) needs
to either be exact, or the inverse of L(L) should be approxi-
mated with a symmetric and definite matrix. If the smoother
is iterated to approximate the solution, a number of iterations
should be performed with a given traversal order, followed
by an equal number of iterations with the order reversed.

Algorithm 3 Multigrid-preconditioned conjugate gradient.
Red-colored steps in the algorithm are applicable when
the Poisson problem has a nullspace (i.e., all Neumann
boundary conditions), and should be omitted when Dirichlet
boundaries are present.
(†) u⇤M�1b is implemented by calling V-Cycle(u,b)

1: procedure MGPCG(r,x)
2: r⇤ r�Lx, µ⇤ r̄, ⇤⇤⌃r�µ⌃⇥
3: if (⇤ < ⇤max) then return
4: r⇤ r�µ, p⇤M�1r(†), ⌅⇤ pT r
5: for k = 0 to kmax do
6: z⇤ Lp, ⇧⇤ pT z
7: �⇤ ⌅/⇧
8: r⇤ r��z, µ⇤ r̄, ⇤⇤⌃r�µ⌃⇥
9: if (⇤ < ⇤max or k = kmax) then

10: x⇤ x+�p
11: return
12: end if
13: r⇤ r�µ, z⇤M�1r(†), ⌅new ⇤ zT r
14: ⇥⇤ ⌅new/⌅
15: ⌅⇤ ⌅new

16: x⇤ x+�p, p⇤ z+⇥p
17: end for
18: end procedure

Finally, Poisson problems with all-Neumann boundary
conditions (e.g., simulations of smoke flow past objects) are
known to possess a nullspace, as the solution is only known
up to a constant. The algorithm of Algorithm 3 is modified in
this case to project out this nullspace, and the modifications
are highlighted in red in the pseudocode. No modification to
the V-Cycle preconditioner is needed.

4. Implementation and Optimizations

Minimizing boundary cost: The cost of performing 30-40
smoothing sweeps on the boundary to stabilize the V-Cycle
as a solver cannot be neglected, even though the interior
smoothing effort would asymptotically dominate. In prac-
tice, this amount of boundary smoothing would be the most
costly operation of the V-Cycle for a 2563 grid or smaller,

c� The Eurographics Association 2010.

Test case: Preconditioned Conjugate Gradients

Development Plan

Design
• Define your objectives
• Choose a parallel-friendly theoretical formulation
• Set performance expectations
• Choose a promising algorithm

Implement
• Implement a prototype
• Organize code into reusable kernels

Accelerate
• Reorder/combine/pipeline operations
• Reduce resource utilization (try harder ...)
• Parallelize component kernels

Coming attractions

• We will see implementations of the various “kernels” that
showed up in pseudo-code

• We will address challenges to parallel performance for each of
them

• We will investigate the impact of “merging” kernels, when
possible (your next homework)

• You will be given a “framework” that assembles those kernels
into a solver (without having to worry too much about the
theory) [next lecture]

Stencil computations in the context of solving 
sparse linear systems
(motivated by computational physics and graphics)

