
CS838 Topics in Computing:
Advanced Modeling and Simulation

Fall 2011

Programming ssignment #1

Due Wednesday 26 Oct 2011, 1:00pm

For this assignment, you are asked to generate a computer simulation of a
simple cloth model (a waving banner, suspended from a moving horizontal rod).

A video illustration of the general look you should try to recreate is shown
in the following movie:

http://pages.cs.wisc.edu/∼cs838-2/media/cloth.avi
You are free to deviate from the simple waving motion demonstrated in

this movie, as long as you script a motion scenario that creates an interesting
animation. You are also free to adjust material parameters (stiffness, damping),
simulation settings (frame rate, etc) and cloth model resolution, although you
should demonstrate that your system is able to handle cloth resolutions of at
least 20 × 20 (the movie shown is at a resolution of 20 × 40).

1. Implement the described cloth simulation using either a Forward Euler in-
tegration scheme (see our Sep 28th lecture), or a semi-implicit scheme (e.g.
as described in our Oct 3rd lecture). Code samples have been posted on
the CS838 website along with lecture notes for both of these dates. If you
choose to use the driver/layout scheme as discussed in class, you should be
able to implement this part by almost exclusively limiting your changes to
the files SIMULATION LAYOUT.h/cpp, without changing the driver at all.
If you choose to structure your simulation software in a different fashion,
feel free to do so.

The cloth model should be a triangulated surface. You are free to generate
the cloth geometry of your choosing (it does not even have to be a rectan-
gle). However, if you choose to model a simple rectangular banner, it is rec-
ommended that you tessellate it using what is called a herringbone mesh:
The rectangle is subdivided into small squares/rectangles in a Cartesian
lattice, and every square/rectangle is triangulated by drawing a diago-
nal in alternating directions, in order to limit mesh anisotropy. You can
find helpful code for generating a herringbone mesh in the TRIANGLE MESH

class. You can use the example below as a guideline:

cloth surface=TRIANGULATED SURFACE<T>::Create(particles);

cloth surface->mesh.Initialize Herring Bone Mesh(10,20);

particles.array collection->Add Elements(200);

particles.array collection->Add Elements(n);

for(int p=0,j=1;j<=20;j++) for(int i=1;i<=10;i++)

particles.X(++p)=TV((T)(1-i)*0.1,(T)(1-j)*0.1,0);

1



You should generate a network of masses and springs, aligned with the
edges of the triangulated surface described above (you will need to generate
the mesh of line segments corresponding to springs, by initializing the
appropriate “derivative” mesh of the triangulation). You do not need to
employ altitude springs or other elaborate spring connectivity.

2. Implement a fully implicit, Backward Euler time integration scheme for
the cloth simulation you set up in the previous step. If you have fol-
lowed the driver/layout methodology, the files SIMULATION LAYOUT.h/cpp

should not need to be changed at all (with the exception of Maximum Dt()

which can be much more aggressive, when using Backward Euler, and
other simulation settings that you may need to adjust).

You may also consider, for ease of development and debugging, to imple-
ment the Backward Euler solver on top of the simulation of the single
strand, that was used for the lectures (and accompanying code) of 9/28
and 10/3. If done right, you should then be able to directly combine your
modifications to the driver (for the purposes of supporting Backward Eu-
ler) with the layout changes of part 1, to have a functional Backward Euler
cloth simulator.

For the needs of this assignment, you may have to change the interface of the
driver/layout classes. For example, when setting boundary conditions for the
linear system of equations that determines the position chance δX = Xn+1−Xn,
you may want to add a different, more convenient function to the layout class.
Make all such design choices according to your best judgement.

Deliverable: Source code and (optionally) a compressed archive of the
simulation output directories. Include a short report (1 page should suffice)
describing the high-level changes you had to implement, and the maximum
dt that you have been able to take using Backward Euler, or the alternative
technique tested in part 1. You can email the code to the instructor directly. If
output files exceed 2-3MB, it is best that you send a download link for them.

2


