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Collision processing

• Different types of collisions

• Collision of a simulated deformable structure with a kinematic 
structure (easier)

• Collision with a rigid moving object, the ground, etc.

• Collision object can even be deforming as long as its deformation is 
kinematic (i.e. scripted), not simulated

• Self collision within a deformable structure (harder)

• Also includes collision between 2+ deformable structures
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Abstract

We present an algorithm to efficiently and robustly process colli-
sions, contact and friction in cloth simulation. It works with any
technique for simulating the internal dynamics of the cloth, and
allows true modeling of cloth thickness. We also show how our
simulation data can be post-processed with a collision-aware sub-
division scheme to produce smooth and interference free data for
rendering.
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Computational Geometry and Object Modeling—Physically based
modeling;
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1 Introduction

Collisions are a major bottleneck in cloth simulation. Since all
points are on the surface, all points may potentially collide with
each other and the environment in any given time step. Moreover,
for believable animation the number of particles is generally in the
tens of thousands or more. Since cloth is very thin, even small inter-
penetrations can lead to cloth protruding from the wrong side. This
is visually disturbing and can be difficult to correct after the fact
either in the next time step or in post-processing. While rigid body
simulations often have relatively few collisions per object (apart
from resting contact), deformable bodies naturally give rise to large
numbers of collisions varying in strength from resting contact to
high speed impact. Two-dimensional manifolds like cloth are the
worst case. Naı̈ve methods for detecting and stopping every colli-
sion can quickly grind the simulation to a halt.
This paper presents a collision handling algorithm that works

with any method for simulating the internal dynamics (i.e. stretch-
ing, shearing, and bending) to efficiently yet robustly produce vi-
sually complex motion free from interference as in figure 1. The
key idea is to combine a fail-safe geometric collision method with a
fast (non-stiff) repulsion force method that models cloth thickness
as well as both static and kinetic friction. Ever since [Moore and
Wilhelms 1988] proposed that repulsion forces are useful for con-
tact whereas exact impulse-based treatment is useful for high veloc-

Figure 1: Initially, a curtain is draped over a ball on the ground.
The ball moves, flipping the curtain over on top of itself pro-
ducing stable folds and wrinkles using our static friction model.
Another ball enters the scene and pushes through the compli-
cated structure of folds before slipping underneath unraveling
the curtain.

ity impact, authors have toyed with using both. For example, [Sims
1994] switched between instantaneous impulses for high velocities
and penalty spring forces for low velocities to treat his evolving
articulated rigid body creatures. Although similar in spirit to our
approach, we always use both techniques in a fully hybridized and
efficient manner.
We view repulsion forces, e.g. during resting contact, as a way

to deal with this vast majority of collisions in a simple and efficient
manner allowing us to use a more expensive but completely robust
method to stop the few that remain. Since our repulsion forces han-
dle most of the self-interaction, it is desirable to make them compu-
tationally efficient to apply. Therefore we propose using a repulsion
spring model that is not stiff. In contrast, many authors use compu-
tationally expensive stiff repulsion springs, e.g. with force inversely
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Collision processing

• Typically partitioned into two tasks/phases

• Collision detection

• Detect if an interpenetration event occurred

• Localize such events, in space and time

• (If required) determine depth and direction of collision

• Collision response (or resolution)

• Attempt to resolve and fix all collisions, and/or

• Try to make collision less severe (but tolerate some), and/or

• Take steps to prevent collisions in the imminent future 
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The exact nature of collision detection depends on how we expect 
to use that information in the response stage!
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Collision response (general approaches)

• Penalty-based methods

• Detect proximity to collision 
objects and apply a repulsive 
“penalty” force when the 
distance to the collision 
target is small

• Increase strength of repulsion 
force as distance decreases 
(or as interpenetration starts 
to occur)

• Does not strictly enforce a 
collision-free state, but 
attempts to prevent it, and 
lessen the degree of collision
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Collision response (general approaches)

• Penalty-based methods

• Detect proximity to collision 
objects and apply a repulsive 
“penalty” force when the 
distance to the collision 
target is small

• Increase strength of repulsion 
force as distance decreases 
(or as interpenetration starts 
to occur)

• Does not strictly enforce a 
collision-free state, but 
attempts to prevent it, and 
lessen the degree of collision

Requirements for the detection stage:
• Detection of static proximity (not just collision)
• Estimation of proximity or collision distance

(such that forces can be accordingly scaled)
• Estimation of collision direction

(such that forces can be accordingly oriented)
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Collision response (general approaches)

• Impulse-based methods

• Usually attempt to guarantee 
that no collision is produced 
or left untreated, at any time

• Starting from a collision-free 
state at time t*, the system is 
advanced to time t*+dt

• Collisions that occurred in 
the interval [t*,t*+dt] are 
localized (in space and time)

• An impulse is applied to 
instantaneously correct the 
object trajectory and prevent 
(or fix) any collision events
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Collision response (general approaches)

• Impulse-based methods

• Can be structured to provide 
guarantees of non-
interpenetration (makes 
other parts of the simulation 
simpler and easier)

• Capable of enforcing tight 
contact, instead of modeling a 
large, artificial “thickness” for 
the collision object

• Not guaranteed to succeed, 
especially with conflicting 
nonphysical constraints

• Relatively slow and expensive
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interpenetration (makes 
other parts of the simulation 
simpler and easier)

• Capable of enforcing tight 
contact, instead of modeling a 
large, artificial “thickness” for 
the collision object

• Not guaranteed to succeed, 
especially with conflicting 
nonphysical constraints

• Relatively slow and expensive

Requirements for the detection stage:
• Detection of moving collisions (not just static)
• Estimation of the exact time/location of every 

impact event
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Collision response (general approaches)

• Continuous time collisions

• Most “physically justified” 
technique : handle one 
collision event at a time, in 
the order they occur

• Can be structured to pursue 
full avoidance of collisions, 
while not requiring collision 
objects to be thickened

• Response can be formulated 
in terms of simple and 
intuitive penalty forces

• Disadvantage : May lead to 
very small time steps
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Collision detection (for kinematic objects)

• Simplest case: Collision object is rigid

• We can pre-process the object into a levelset

• Query : Is a point x* colliding with the object?

➡ Yes, if and only if

• Query : Is a point x* within a distance D of the object?

➡ Yes, if and only if

• Query : What is the direction of the collision 
(i.e. what is the “shortest way out”?)

➡ Given by the vector

• Query : What point on the surface of the object is closest to x*?

➡ Given as
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Represent a curve in 2D (or, a surface in 3D) as the 
zero isocontour of a (continuous) function, i.e.

e.g.

C = {(x.y) ∈ R2 : φ(x, y) = 0}

circle x2 + y2 = R2 ≡ {(x, y) : φ(x, y) = 0}

where φ(x, y) = x2 + y2 −R2

z = 0
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φ(x, y) < 0, if (x, y) is inside C
φ(x, y) > 0, if (x, y) is outside C

φ(x, y) = 0, if (x, y) is on C


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 and |φ(x, y)| = distance of (x, y) from C
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Collision detection (for kinematic objects)

• Simplest case: Collision object is rigid

• We can pre-process the object into a levelset

• Query : Is a point x* colliding with the object?

➡ Yes, if and only if

• Query : Is a point x* within a distance D of the object?

➡ Yes, if and only if

• Query : What is the direction of the collision 
(i.e. what is the “shortest way out”?)

➡ Given by the vector

• Query : What point on the surface of the object is closest to x*?

➡ Given as

φ(x∗) < 0

φ(x∗) < D

∇φ(x∗)

xsurface = x∗ − φ(x∗)∇φ(x∗)
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Collision detection (for simulated objects)

• Cannot (easily and efficiently) convert into levelsets to 
facilitate O(1) collision queries

• Sometimes we seek collisions between open surfaces, which do 
not have an “interior”  to describe as a levelset

• If simulation contains N primitives (particles, segments, 
triangles, etc) there is a potential for O(N^2) “candidate” 
intersection pairs

• Brute force check would require O(N^2) cost

• Every simulation step ideally requires O(N) effort
(e.g. with Forward Euler, or BE with fixed CG iterations)

• Ideally the detection cost should not exceed O(N) by much

• Popular approach :  Using axis-aligned bounding box (AABB) 
queries to accelerate collision detection
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Collision detection (for simulated objects)

• Popular approach :  Using axis-aligned bounding box 
(AABB) queries to accelerate collision detection

• Prunes away most of the “faraway” collisions

• Cost to check one primitive, against a box B-tree 
hierarchy with k leaves : O(logk) in the best case

• Cost will increase if the box hierarchy is not optimally 
constructed (i.e. if we chose to merge faraway boxes)

• Quality of hierarchy will degrade as object moves : May 
choose to re-build the hierarchy from scratch every few 
time steps

• KD-Tree or Quad-/Oct-trees can be used to generate box 
hierarchies


