Collision detection (for simulated objects)

- Axis-aligned bounding box (AABB) query structure
 - Constructs a B-tree (or higher branching-order tree, depending on construction) with individual collision primitives at the leaves
 - Bounding boxes are aggregated, as we go from the leaves to the root of the tree
 - Prunes distant primitives when checking for collisions
 - Ideally, every tree level has $O(1)$ potentially colliding nodes
 - Ideal cost of checking for collisions: $O(\log N)$ per query
 - $O(N \cdot \log N)$ to check collisions between N primitives
- Popular construction method: using k-d trees
Collision detection (for simulated objects)

• Axis-aligned bounding box (AABB) query structure

• When the simulated object moves, the AABB tree hierarchy needs to be updated
 • Bounding boxes are updated in a bottom-up fashion

• When large motions occur the hierarchy efficiency may be compromised:
 • Bounding boxes appear which span large areas, yet contain only very few primitives
 • Violates the efficiency property that only $O(1)$ collisions are found per level of hierarchy (there are many primitives that show up in almost every query)
 • Remedy: Periodically (how often?) rebuild the query hierarchy
Collision detection (for simulated objects)

• Axis-aligned bounding box (AABB) query structure

• Complexity review \((k = \# \text{ of real collisions})\)
 • Construct/rebuild hierarchy (using k-d trees) : \(O(N \log N)\)
 • Update after object motion (without rebuild) : \(O(N)\)
 • Ideal cost of a single query : \(O(\log N + k)\)
 • Intersect \(N\) primitives with hierarchy : \(O(N(\log N + k))\)
 • Intersect 2 hierarchies (or one with itself) : \(O(\log N + k)\)
 • Using simultaneous pairwise traversal of 2 trees

• Alternatives
 • Quadtrees/Octrees
 • Hashed grids, etc.
Collision detection (for simulated objects)
Collision detection (for simulated objects)

- Static detection vs. moving detection
 - For static detection, wrap primitives in AABBs
 - For moving detection, wrap swept volumes in AABBs

Blue: \(t = t_\ast \)

Red: \(t = t_\ast + dt \)
Collision detection (for simulated objects)

- From AABB collisions to exact collision tests
- Static collision (e.g. segment-segment collision)

Line through $\vec{p}_1 = (x_1, y_1)$, $\vec{p}_2 = (x_2, y_2)$

Given by: $f(x, y) = \begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{vmatrix} = 0$

p_3p_4 intersects the line through p_1p_2 iff $f(x_3, y_3)f(x_4, y_4) < 0$
Collision detection (for simulated objects)

• From AABB collisions to exact collision tests

• Static collision (e.g. segment-segment collision)

\[\overrightarrow{p_3} \text{ intersects line through } \overrightarrow{p_1p_2} \text{ iff } \]

\[\left\{ \begin{array}{l}
\overrightarrow{p_3p_4} \text{ intersects line passing through } \overrightarrow{p_1p_2} \\
\text{AND} \\
\overrightarrow{p_1p_2} \text{ intersects line passing through } \overrightarrow{p_3p_4}
\end{array} \right. \]
Collision detection (for simulated objects)

- From AABB collisions to exact collision tests
- Dynamic collision (e.g. between cloth surfaces)
- With either triangle-point or edge-segment collision, at the time of contact the four involved vertices become coplanar
- Interpolate moving positions: \[p_i(t) = p_i(t_*) + p_i(t_* + dt) \frac{t - t_*}{dt} \]
- Primitives collide when 4 moving points are coplanar (cubic eqn)
Collision response (general approaches)

- Penalty-based methods
 - Detect proximity to collision objects and apply a repulsive “penalty” force when the distance to the collision target is small
 - Increase strength of repulsion force as distance decreases (or as interpenetration starts to occur)
Collision response (general approaches)

- Penalty-based methods
 - Detect proximity to collision objects and apply a repulsive “penalty” force when the distance to the collision target is small
 - Increase strength of repulsion force as distance decreases (or as interpenetration starts to occur)
Collision response (general approaches)

• Penalty-based methods
 • Detect proximity to collision objects and apply a repulsive "penalty" force when the distance to the collision target is small
 • Increase strength of repulsion force as distance decreases (or as interpenetration starts to occur)
Collision response (general approaches)

- Penalty-based methods
 - Detect proximity to collision objects and apply a repulsive "penalty" force when the distance to the collision target is small
 - Increase strength of repulsion force as distance decreases (or as interpenetration starts to occur)
Collision response (general approaches)

- Penalty-based methods
 - Detect proximity to collision objects and apply a repulsive “penalty” force when the distance to the collision target is small
 - Increase strength of repulsion force as distance decreases (or as interpenetration starts to occur)
Collision response (general approaches)

- **Penalty-based methods**
 - Detect proximity to collision objects and apply a repulsive “penalty” force when the distance to the collision target is small
 - Increase strength of repulsion force as distance decreases (or as interpenetration starts to occur)

 \[
 \vec{f} = -k \cdot (d - D) \vec{n} \\
 \vec{f} = -k \cdot (\phi(\vec{x}) - D) \nabla \phi(\vec{x}) \\
 \vec{f} = k(e^{D-d} - 1) \vec{n}
 \]
Collision response (general approaches)

- Impulse-based methods
 - Usually attempt to guarantee that *no collision* is produced or left untreated, at any time
 - Starting from a collision-free state at time t^*, the system is advanced to time $t^* + dt$
 - Collisions that occurred in the interval $[t^*, t^* + dt]$ are localized (in space and time)
 - An *impulse* is applied to instantaneously correct the object trajectory and prevent (or fix) any collision events
Collision response (general approaches)

- Impulse-based methods
 - Usually attempt to guarantee that *no collision* is produced or left untreated, at any time
 - Starting from a collision-free state at time t^*, the system is advanced to time $t^* + dt$
 - Collisions that occurred in the interval $[t^*, t^* + dt]$ are localized (in space and time)
 - An *impulse* is applied to instantaneously correct the object trajectory and prevent (or fix) any collision events
Collision response (general approaches)

- Impulse-based methods
 - Use time integration scheme to generate *candidate* values for position & velocity at the end of the time step: \(x^{n+1}_*, v^{n+1}_* \)

- Apply an instantaneous correction to fix collision:
 \[
 (x^{n+1}_*, v^{n+1}_*) \Rightarrow (x^{n+1}, v^{n+1})
 \]

- Check that collision was in fact resolved (in conflicting fixes were used), otherwise retry

- If attempt at resolving collision was unsuccessful, repeat the time step with a smaller \(dt \)
Collision response (general approaches)

- Impulse-based methods
 - May incorporate additional effects (e.g. repulsions, friction) and elaborate time integration (e.g. [Bridson et al 2002])

- Select a collision time step size Δt and set $t^{n+1} = t^n + \Delta t$
- Advance to candidate positions \bar{x}^{n+1} and velocities \bar{v}^{n+1} at time t^{n+1} with the cloth internal dynamics
- Compute the average velocity $\bar{v}^{n+1/2} = (\bar{x}^{n+1} - x^n) / \Delta t$
- Check x^n for proximity (section 6), then apply repulsion impulses (section 7.2) and friction (section 7.3) to the average velocity to get $\bar{v}^{n+1/2}$
- Check linear trajectories from x^n with $\bar{v}^{n+1/2}$ for collisions (section 6), resolving them with a final midstep velocity $v^{n+1/2}$ (sections 7.4 and 7.5)
- Compute the final positions $x^{n+1} = x^n + \Delta t v^{n+1/2}$
- If there were no repulsions or collisions, set $v^{n+1} = \bar{v}^{n+1}$
- Otherwise, advance the midstep velocity $v^{n+1/2}$ to v^{n+1} (section 7.6)
Collision response (general approaches)

- Impulse-based methods
 - May incorporate additional effects (e.g. repulsions, friction) and elaborate time integration (e.g. [Bridson et al 2002])
 - For collisions with kinematic objects, impulses are defined such that the simulated is snapped to the surface of the colliding body
 - In the case of cloth collisions impulses are defined to mimic inelastic momentum exchange
 - Preventive repulsions modeled either as forces or impulses