
CS838 Advanced Modeling and Simulation

Collision detection (for simulated objects)

• Axis-aligned bounding box (AABB) query structure

• Constructs a B-tree (or higher branching-order tree, 
depending on construction) with individual collision 
primitives at the leaves

• Bounding boxes are aggregated, as we go from the leaves 
to the root of the tree

• Prunes distant primitives when checking for collisions

• Ideally, every tree level has O(1) potentially colliding nodes

• Ideal cost of checking for collisions : O(logN) per query

• O(N*logN) to check collisions between N primitives

• Popular construction method : using k-d trees



CS838 Advanced Modeling and Simulation



CS838 Advanced Modeling and Simulation



CS838 Advanced Modeling and Simulation



CS838 Advanced Modeling and Simulation



CS838 Advanced Modeling and Simulation



CS838 Advanced Modeling and Simulation



CS838 Advanced Modeling and Simulation



CS838 Advanced Modeling and Simulation



CS838 Advanced Modeling and Simulation



CS838 Advanced Modeling and Simulation



CS838 Advanced Modeling and Simulation



CS838 Advanced Modeling and Simulation



CS838 Advanced Modeling and Simulation



CS838 Advanced Modeling and Simulation



CS838 Advanced Modeling and Simulation



CS838 Advanced Modeling and Simulation



CS838 Advanced Modeling and Simulation

Collision detection (for simulated objects)

• Axis-aligned bounding box (AABB) query structure

• When the simulated object moves, the AABB tree 
hierarchy needs to be updated

• Bounding boxes are updated in a bottom-up fashion

• When large motions occur the hierarchy efficiency may 
be compromised :

• Bounding boxes appear which span large areas, yet contain 
only very few primitives

• Violates the efficiency property that only O(1) collisions are 
found per level of hierarchy (there are many primitives that 
show up in almost every query)

• Remedy : Periodically (how often?) rebuild the query hierarchy



CS838 Advanced Modeling and Simulation

Collision detection (for simulated objects)

• Axis-aligned bounding box (AABB) query structure

• Complexity review (k = # of real collisions)

• Construct/rebuild hierarchy (using k-d trees) : O(NlogN)

• Update after object motion (without rebuild) : O(N)

• Ideal cost of a single query : O(logN + k)

• Intersect N primitives with hierarchy : O(N(logN + k))

• Intersect 2 hierarchies (or one with itself) : O(logN + k)

• Using simultaneous pairwise traversal of 2 trees

• Alternatives

• Quadtrees/Octrees

• Hashed grids, etc.



CS838 Advanced Modeling and Simulation

Collision detection (for simulated objects)



CS838 Advanced Modeling and Simulation

Collision detection (for simulated objects)

• Static detection vs. moving detection

• For static detection, wrap primitives in AABBs

• For moving detection, wrap swept volumes in AABBs

•

Blue : t = t∗

Red : t = t∗ + dt



CS838 Advanced Modeling and Simulation

Collision detection (for simulated objects)

• From AABB collisions to exact collision tests

• Static collision (e.g. segment-segment collision)

•

�p4

�p3

�p1

�p2

Line through �p1 = (x1, y1), �p2 = (x2, y2)

Given by : f(x, y) =

������

x y 1
x1 y1 1
x2 y2 1

������
= 0

p3p4 intersects the line through p1p2 iff f(x3, y3)f(x4, y4) < 0



CS838 Advanced Modeling and Simulation

Collision detection (for simulated objects)

• From AABB collisions to exact collision tests

• Static collision (e.g. segment-segment collision)

•

�p4

�p3

�p1

�p2

p3p4 intersects line through p1p2 iff






p3p4 intersects line passing through p1p2
AND
p1p2 intersects line passing through p3p4



CS838 Advanced Modeling and Simulation

Collision detection (for simulated objects)

• From AABB collisions to exact collision tests

• Dynamic collision (e.g. between cloth surfaces)

• With either triangle-point or edge-segment collision, at the 
time of contact the four involved vertices become coplanar

• Interpolate moving positions : 

• Primitives collide when 4 moving points are coplanar (cubic eqn)

•

pi(t) = pi(t∗) + pi(t∗ + dt)
t− t∗
dt



CS838 Advanced Modeling and Simulation

Collision response (general approaches)

• Penalty-based methods

• Detect proximity to collision 
objects and apply a repulsive 
“penalty” force when the 
distance to the collision 
target is small

• Increase strength of repulsion 
force as distance decreases 
(or as interpenetration starts 
to occur)

• Does not strictly enforce a 
collision-free state, but 
attempts to prevent it, and 
lessen the degree of collision



CS838 Advanced Modeling and Simulation

Collision response (general approaches)

• Penalty-based methods

• Detect proximity to collision 
objects and apply a repulsive 
“penalty” force when the 
distance to the collision 
target is small

• Increase strength of repulsion 
force as distance decreases 
(or as interpenetration starts 
to occur)

• Does not strictly enforce a 
collision-free state, but 
attempts to prevent it, and 
lessen the degree of collision



CS838 Advanced Modeling and Simulation

Collision response (general approaches)

• Penalty-based methods

• Detect proximity to collision 
objects and apply a repulsive 
“penalty” force when the 
distance to the collision 
target is small

• Increase strength of repulsion 
force as distance decreases 
(or as interpenetration starts 
to occur)

• Does not strictly enforce a 
collision-free state, but 
attempts to prevent it, and 
lessen the degree of collision



CS838 Advanced Modeling and Simulation

Collision response (general approaches)

• Penalty-based methods

• Detect proximity to collision 
objects and apply a repulsive 
“penalty” force when the 
distance to the collision 
target is small

• Increase strength of repulsion 
force as distance decreases 
(or as interpenetration starts 
to occur)

• Does not strictly enforce a 
collision-free state, but 
attempts to prevent it, and 
lessen the degree of collision



CS838 Advanced Modeling and Simulation

Collision response (general approaches)

• Penalty-based methods

• Detect proximity to collision 
objects and apply a repulsive 
“penalty” force when the 
distance to the collision 
target is small

• Increase strength of repulsion 
force as distance decreases 
(or as interpenetration starts 
to occur)

• Does not strictly enforce a 
collision-free state, but 
attempts to prevent it, and 
lessen the degree of collision



CS838 Advanced Modeling and Simulation

Collision response (general approaches)

• Penalty-based methods

• Detect proximity to collision 
objects and apply a repulsive 
“penalty” force when the 
distance to the collision 
target is small

• Increase strength of repulsion 
force as distance decreases 
(or as interpenetration starts 
to occur)

• Does not strictly enforce a 
collision-free state, but 
attempts to prevent it, and 
lessen the degree of collision

�f = −k · (d−D)�n

�f = −k · (φ(�x)−D)∇φ(�x)

�f = k(eD−d − 1)�n



CS838 Advanced Modeling and Simulation

Collision response (general approaches)

• Impulse-based methods

• Usually attempt to guarantee 
that no collision is produced 
or left untreated, at any time

• Starting from a collision-free 
state at time t*, the system is 
advanced to time t*+dt

• Collisions that occurred in 
the interval [t*,t*+dt] are 
localized (in space and time)

• An impulse is applied to 
instantaneously correct the 
object trajectory and prevent 
(or fix) any collision events



CS838 Advanced Modeling and Simulation

Collision response (general approaches)

• Impulse-based methods

• Usually attempt to guarantee 
that no collision is produced 
or left untreated, at any time

• Starting from a collision-free 
state at time t*, the system is 
advanced to time t*+dt

• Collisions that occurred in 
the interval [t*,t*+dt] are 
localized (in space and time)

• An impulse is applied to 
instantaneously correct the 
object trajectory and prevent 
(or fix) any collision events



CS838 Advanced Modeling and Simulation

Collision response (general approaches)

• Impulse-based methods

• Use time integration scheme 
to generate candidate values 
for position & velocity at the 
end of the time step : 

• Apply an instantaneous 
correction to fix collision :

• Check that collision was in fact 
resolved (in conflicting fixes 
were used), otherwise retry

• If attempt at resolving collision 
was unsuccessful, repeat the 
time step with a smaller dt

xn+1
∗ , vn+1

∗

(xn+1
∗ , vn+1

∗ ) ⇒ (xn+1, vn+1)



CS838 Advanced Modeling and Simulation

Collision response (general approaches)

• Impulse-based methods

• May incorporate additional 
effects (e.g. repulsions, friction) 
and elaborate time integration
(e.g. [Bridson et al 2002])

• Apply an instantaneous 
correction to fix collision :

• Check that collision was in fact 
resolved (in conflicting fixes 
were used), otherwise retry

• If attempt at resolving collision 
was unsuccessful, repeat the 
time step with a smaller dt

4 Limiting the Strain and Strain Rate

Sometimes triangles are undesirably stretched or compressed by
large percentages. A rule of thumb in computational mechanics
is that a triangle edge should not change length by more than 10%
in a single time step, see e.g. [Caramana et al. 1998]. This can be
enforced by either adaptively decreasing the time step or nonphysi-
cally decreasing the strain rate. This rule of thumb is generally used
to obtain better accuracy, as opposed to stability, and thus it is used
in conjunction with implicit time stepping algorithms as well, see
e.g. [Baraff and Witkin 1998].
[Provot 1995] addressed this issue in a novel way processing the

cloth after each time step with an iterative algorithm that repairs ex-
cessively deformed triangles. This algorithm focused on the overall
strain as opposed to the strain rate (although [Provot 1995] mistak-
enly referred to this as the deformation rate). [Provot 1995] looped
through the mesh changing the positions of the nodes on edges that
had deformed by over 10%. Since adjusting the position of one
node affects the length of all the edges containing it, an iterative
process was used. Good results were obtained even though the al-
gorithm does not converge in certain situations, e.g. when all the
boundaries of the cloth mesh have constrained (fixed) positions that
force an expansion beyond 10%. [Provot 1995] illustrated that this
iterative method was significantly more efficient than arbitrarily in-
creasing the spring stiffness when one is dissatisfied with the degree
of mesh deformation in a numerical simulation.
Although this method seems to work well, it involves moving

nodes and can therefore induce self-intersection in the mesh. Thus,
to fit this method into the framework of our collision processing
algorithm, we adjust velocities instead of positions. At each time
step, we calculate the candidate new spring lengths using the cur-
rent velocities. Then we apply momentum-conserving corrective
impulses to the velocities to ensure that all springs are deformed
by a maximum of 10% from their rest length at the end of the time
step (ignoring bending springs). These impulses influence the fu-
ture strains of surrounding springs, and thus an iterative procedure
is needed to guarantee that no spring deforms to over 10% of its rest
length during the time step. This is essentially equivalent to using
biphasic springs with a much stiffer spring constant beyond 10%
deformation, and the iterative procedure is similar to using implicit
time stepping when the stiffer spring constant is activated. This
mimics the physical behavior of cloth (and skin!), which offers lit-
tle resistance to small deformations but becomes stiff after a critical
deformation is reached.
We apply this deformation limiting procedure using a Jacobi iter-

ative approach (parallel rather than sequential), and although con-
vergence is not guaranteed, generally only one or two iterations
per time step are required for visually pleasing results. Although
a Gauss-Seidel iterative approach (sequential rather than parallel)
generally converges faster, it can introduce a noticeable bias accord-
ing to which parts of the cloth are updated first (although this can be
mitigated to some degree by using random orderings). Moreover,
Jacobi style iteration is easier to parallelize for high performance.
In addition to the strain, we also limit the strain rate according to

the rule of thumb mentioned above. Although, this is usually done
by adaptively reducing the time step, these smaller time steps can
lead to a loss of efficiency. To avoid slowing the simulation, we
continually monitor the strain rate and use momentum-conserving
impulses to reduce it so that springs do not change their current
length by more than 10% during a time step. This trade-off of ac-
curacy for efficiency does not seem to induce any unwanted visual
artifacts and is similar to the traditional damping of an implicit time
discretization of the equations. We use a Gauss-Seidel iterative ap-
proach in order to accelerate convergence. Only a few iterations are
needed as the fastest deforming edges are rapidly damped to reason-
able deformation rates. Convergence is not required since we can

still adaptively reduce the time step, and after only a few iterations
only a moderate reduction of the time step is necessary. [Volino
et al. 1995] proposed a philosophically similar technique that mon-
itors local mechanical energy variations and artificially distributes
kinetic energy through momentum transfers in regions where insta-
bility might occur. Similarly, [Baraff and Witkin 1998] used their
implicit time integration scheme to automatically damp the local
energy generated by their treatment of collisions.

5 Time Discretization

We cleanly separate the time evolution of the internal cloth dynam-
ics (and the environment around the cloth) from the collision pro-
cessing algorithm. This allows us to easily integrate our collision,
contact and friction processing algorithms with a pre-existing cloth
dynamics engine. Starting at time t = 0 with cloth positions x0 and
velocities v0, the algorithm is as follows. For n= 0,1,2, . . .

• Select a collision time step size !t and set tn+1 = tn+!t
• Advance to candidate positions x̄n+1 and velocities v̄n+1 at
time tn+1 with the cloth internal dynamics

• Compute the average velocity v̄n+1/2 = (x̄n+1−xn)/!t
• Check xn for proximity (section 6), then apply repulsion im-
pulses (section 7.2) and friction (section 7.3) to the average
velocity to get ṽn+1/2

• Check linear trajectories from xn with ṽn+1/2 for collisions
(section 6), resolving them with a final midstep velocity
vn+1/2 (sections 7.4 and 7.5)

• Compute the final positions xn+1 = xn+!tvn+1/2
• If there were no repulsions or collisions, set vn+1 = v̄n+1
• Otherwise, advance the midstep velocity vn+1/2 to vn+1 (sec-
tion 7.6)

When repulsions or collisions appear, our method for deter-
mining the final velocities is essentially central time differencing
[Hughes 1987]. In fact, we use central time differencing for our in-
ternal cloth dynamics as well, though we stress that any reasonable
algorithm could be used for that purpose, e.g. one large implicit
time step as in [Baraff and Witkin 1998] or many small explicit
Runge-Kutta steps.
The algorithm is stable for any collision time step !t, thus !t can

be chosen adaptively in a straightforward manner. For example, we
choose a minimum !t as the time step of the cloth dynamics evolu-
tion and a maximum !t on the order of one frame, and start with the
maximum. We halve the time step when an actual collision occurs,
i.e. the repulsion forces aren’t adequate, and try the time step over
again only doing the full collision processing at the minimum !t.
Whenever we get three successful time steps in a row we double
!t again. Adaptive time stepping was also addressed in [Baraff and
Witkin 1998].

6 Proximity and Collision Detection

To accelerate the detection of proximities for repulsions and of in-
tersections for collisions, we use an axis-aligned bounding box hier-
archy. It is built bottom-up once at the beginning of the simulation
using the topology of the cloth mesh. In one sweep we greedily
pair off adjacent triangles to get parent nodes, then in a sweep in
the opposite direction pair off these to get the next level up, and so
on alternating sweep directions until we are left with one root node.
At each time step we calculate the extents of the axis-aligned

boxes for the repulsion calculation (section 7.2) by taking a box
around each triangle enlarged by the thickness of the cloth (e.g.
10−3m or 1mm), and then taking the union of the extents in each
axis direction as we move up the hierarchy. We also recalculate the
hierarchy for each iteration of the collision algorithm (section 7.4)



CS838 Advanced Modeling and Simulation

Collision response (general approaches)

• Impulse-based methods

• May incorporate additional 
effects (e.g. repulsions, friction) 
and elaborate time integration
(e.g. [Bridson et al 2002])

• For collisions with kinematic 
objects, impulses are defined 
such that the simulated is 
snapped to the surface of the 
colliding body

• In the case of cloth collisions 
impulses are defined to mimic 
inelastic momentum exchange

• Preventive repulsions modeled 
either as forces or impulses


