Review: Methods for solving \(y'(t) = f(t, y) \)

* **Forward Euler:** \(y_{n+1} = y_n + dt \cdot f(t_n, y_n) \)

 \(\rightarrow \) Explicit, conditionally stable, 1st order accurate

* **Backward Euler:** \(y_{n+1} = y_n + dt \cdot f(t_{n+1}, y_{n+1}) \)

 \(\rightarrow \) Implicit, unconditionally stable, 1st order accurate

* **Trapezoidal Rule:** \(y_{n+1} = y_n + \frac{dt}{2} \left\{ f(t_n, y_n) + f(t_{n+1}, y_{n+1}) \right\} \)

 \(\rightarrow \) Implicit, unconditionally stable, 2nd order accurate

IV. (The last property) **OSCILLATORY BEHAVIOR**

(For B.E. & T.R. only)

Implicit methods allow us (in theory) to take arbitrarily large steps \(dt \gg 1 \). But, what happens if we do?

Check on model equation \(y' = -\lambda y \)

B.E.

\[
 y_{n+1} = y_n + \lambda dt \cdot y_{n+1} \Rightarrow y_{n+1} = \frac{1}{1 - \lambda dt} y_n \quad \text{as} \quad dt \to \infty
\]

T.R.

\[
 y_{n+1} = \frac{1 + \lambda dt/2}{1 - \lambda dt/2} y_n \quad \text{as} \quad dt \to \infty
\]

Thus, when using large timesteps, B.E. tends to quickly settle on the steady-state solution, while trapezoidal rule may oscillate for a prolonged period before settling.
Systems of ODE's

We often have systems of differential equations, with more than one unknown function, e.g.

\[
\begin{align*}
\frac{d}{dt} y_1(t) &= f_1(t, y_1(t), y_2(t), ..., y_n(t)) \\
\frac{d}{dt} y_2(t) &= f_2(t, y_1(t), y_2(t), ..., y_n(t)) \\
&\vdots \\
\frac{d}{dt} y_n(t) &= f_n(t, y_1(t), y_2(t), ..., y_n(t)).
\end{align*}
\]

A special case arises when each function \(f_i \) is linear in the unknown functions \(y_j(t) \), i.e. \(f_i = c_{i1} y_1(t) + c_{i2} y_2(t) + ... + c_{in} y_n(t) \), e.g.

\[
\begin{align*}
\frac{d}{dt} y_1(t) &= a_{11} y_1(t) + a_{12} y_2(t) + a_{13} y_3(t) \\
\frac{d}{dt} y_2(t) &= a_{21} y_1(t) + a_{22} y_2(t) + a_{23} y_3(t) \\
\frac{d}{dt} y_3(t) &= a_{31} y_1(t) + a_{32} y_2(t) + a_{33} y_3(t)
\end{align*}
\]

\[
\frac{d}{dt} \begin{pmatrix} y_1(t) \\ y_2(t) \\ y_3(t) \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} y_1(t) \\ y_2(t) \\ y_3(t) \end{pmatrix} = A \begin{pmatrix} y_1(t) \\ y_2(t) \\ y_3(t) \end{pmatrix}.
\]

In each case, we can extend the concept of an integration method to a system of ODEs (linear or nonlinear) in the "obvious" fashion.
\[y_1' = f_1(t, y_1, y_2) \]
\[y_2' = f_2(t, y_1, y_2) \]

→ Using forward Euler
\[y_1^{n+1} = y_1^n + dt f_1(t^n, y_1^n, y_2^n) \]
\[y_2^{n+1} = y_2^n + dt f_2(t^n, y_1^n, y_2^n) \]

\[y_1' = y_1^n + dt f_1(t^n, y_1^n, y_2^n) \]
\[y_2' = y_2^n + dt f_2(t^n, y_1^n, y_2^n) \]

\[y_1^{n+1} = y_1^n + dt f_1(t^n, y_1^n, y_2^n) \]
\[y_2^{n+1} = y_2^n + dt f_2(t^n, y_1^n, y_2^n) \]

\[y_1^{n+1} = y_1^n + dt f_1(t^n, y_1^n, y_2^n) \]
\[y_2^{n+1} = y_2^n + dt f_2(t^n, y_1^n, y_2^n) \]

\[\frac{dy}{dt} = A \hat{y} \quad \text{(or } \frac{dy}{dt} = Ay \text{ for brevity)} \]

\[y \in \mathbb{R}^n, A \in \mathbb{R}^{n \times n} \]

Forward Euler:
\[y^{n+1} = y^n + dt \cdot Ay^n \Rightarrow y^{n+1} = (I + dtA) y^n \]

Backward Euler:
\[y^{n+1} = y^n + dt \cdot Ay^{n+1} \Rightarrow (I - dtA) y^{n+1} = y^n \]

(or \(y^{n+1} = (I - dtA)^{-1} y^n \)) = Need to solve a linear system.

Trapezoidal Rule:
\[y^{n+1} = y^n + \frac{dt}{2} \left[Ay^n + Ay^{n+1} \right] \]

\[\Rightarrow (I - \frac{dt}{2} A) y^{n+1} = (I + \frac{dt}{2} A) y^n \]

\[\text{Linear system to solve} \]
The properties of an integration rule mostly carry over from the scalar case to the case of ODE systems, i.e.

- If we use B.E. or T.R to solve a system of ODEs, the resulting method will be unconditionally stable.

- The order of accuracy in a system mirrors the order of accuracy observed on \(y' = \lambda y \).

Some questions remain more complicated, e.g.:

- An ODE \(y' = \lambda y \) had **stable solutions** when \(\lambda < 0 \) (i.e. the solutions exhibited exponential decay).

 What happens with systems?

Answer: This can be answered easily for the case of **linear systems**, i.e. \(y' = Ay \).

Remember: \(\lambda \) is an **eigenvalue** of \(A \), iff \(\text{det}(A - \lambda I) = 0 \).

Eigenvalues can be complex numbers, and found by solving the polynomial equation of degree \(n \) : \(\text{det}(A - \lambda I) = 0 \).

Theorem: If \(\text{Re}(\lambda) < 0 \) for all eigenvalues of \(A \), the solutions are **stable** (i.e. decay to zero).
An integration method for \(y' = Ay \) was ultimately written as \(y_{n+1} = k \cdot y_n \), and \(|k| < 1 \) was the condition for stability. What happens with systems?

Answer: An integration scheme for \(\tilde{y}' = A \tilde{y} \) is also ultimately written as \(\tilde{y}^{n+1} = k \tilde{y}^n \)

(i.e. for F.E. \(K = I + \delta t A \), for B.E. \(K = (I - \delta t A)^{-1} \)).

The stability condition translates to \(\| \lambda \| < 1 \) Complex magnitude for any eigenvalue \(\lambda_i \) of \(K \).

Position / Velocity Systems

We previously saw that a mass-spring system is governed by the 2nd order ODE

\[
f(t, x, v) = ma \quad \text{or} \quad f(t, x(t), x'(t)) = m \cdot x''(t)
\]

We then converted this equation to the 1st order system

\[
\begin{pmatrix}
x(t) \\
v(t)
\end{pmatrix}' =
\begin{pmatrix}
v(t) \\
\frac{1}{m} f(t, x(t), v(t))
\end{pmatrix} = F_1(t, x, v)
\]

\[
\begin{pmatrix}
x(t) \\
v(t)
\end{pmatrix} =
\begin{pmatrix}
v(t) \\
\frac{1}{m} f(t, x(t), v(t))
\end{pmatrix} = F_2(t, x, v)
\]
By directly mapping the previous methods to this system, we get, e.g.

Forward Euler

\[x^{n+1} = x^n + dt \cdot v^n \]

\[v^{n+1} = v^n + \frac{dt}{m} f(t, x^n, v^n) \]

Easy implementation — we already demonstrated it.

Backward Euler

\[x^{n+1} = x^n + dt \cdot v^{n+1} \]

\[v^{n+1} = v^n + \frac{dt}{m} f(t, x^n, v^{n+1}) \]

Somewhat unclear how to solve!

We will soon examine how the implicit system can be solved in practice; in the meantime, we examine yet another method which becomes an option for ODE systems:

→ We can design new integration methods by mixing/matching elements from different methods, for the distinct equations of the system.

e.g. \[x^{n+1} = x^n + \frac{dt}{2} \left\{ v^n + v^{n+1} \right\} \]

Trapezoidal-like

\[v^{n+1} = v^n + \frac{dt}{m} f(x^n, v^{n+1}) \]

F.E.-like for \(x \)

B.E.-like for \(v \)

These methods combine features of their "component" methods. For example, this method manages to be 2nd order overall, while the \(dt \) restriction depends only on \(k \) (Young's modulus) and not on the...
Additionally, this "hybrid" method will make it easier for us to describe a practical method for computing the values x^{n+1} & v^{n+1}.

We start by revisiting the damping force incurred by a spring:

$$
\begin{align*}
\mathbf{f}_1 &= -b \mathbf{nn}^T (\mathbf{v}_1 - \mathbf{v}_2) \\
\mathbf{f}_2 &= -\mathbf{f}_1 \\
&= -b \mathbf{nn}^T (\mathbf{v}_1 - \mathbf{v}_2) \\
&= b \mathbf{nn}^T (\mathbf{v}_1 - \mathbf{v}_2) \\
&= b \mathbf{nn}^T \mathbf{v}_1 - b \mathbf{nn}^T \mathbf{v}_2
\end{align*}
$$

Let us manipulate this definition a bit:

$$
\begin{align*}
\mathbf{f}_1 &= -b \mathbf{nn}^T \mathbf{v}_1 + b \mathbf{nn}^T \mathbf{v}_2 \\
\mathbf{f}_2 &= b \mathbf{nn}^T \mathbf{v}_1 - b \mathbf{nn}^T \mathbf{v}_2
\end{align*}
$$

We observe that we can write this in matrix form:

$$
\begin{pmatrix}
\mathbf{f}_1 \\
\mathbf{f}_2 \\
\mathbf{v}_1 \\
\mathbf{v}_2
\end{pmatrix}
=
\begin{pmatrix}
b \mathbf{nn}^T & b \mathbf{nn}^T \\
b \mathbf{nn}^T & -b \mathbf{nn}^T
\end{pmatrix}
\begin{pmatrix}
\mathbf{v}_1 \\
\mathbf{v}_2
\end{pmatrix}
$$
More generally, if this spring was connecting particles \(i \) & \(j \), the resulting damping force could be computed as:

\[
\begin{bmatrix}
f_1^d \\
f_2^d \\
\vdots \\
f_{i-1}^d \\
f_i^d \\
\vdots \\
f_{j-1}^d \\
f_j^d \\
f_{j+1}^d \\
f_{n+1}^d \\
\end{bmatrix}
=
\begin{bmatrix}
& \ddots & \ddots & \ddots \\
& & \ddots & \ddots & \ddots \\
& & & \ddots & \ddots & \ddots \\
& & & & \ddots & \ddots \\
& & & & & \ddots \\
\end{bmatrix}

\begin{bmatrix}
G_{ij} \\
\vdots \\
G_{ji} \\
\vdots \\
G_{kn} \\
\end{bmatrix}

\]

where \(n_{ij} = (x_i - x_j) / \| x_i - x_j \| \)

By adding all the matrices from all springs we get:

\[
G = \sum_{(ij) \text{ is a spring}} G_{ij}
\]

and finally \(\mathbf{F}^d = G \cdot \mathbf{V} \) for all damping forces, collectively.

To be precise: \(G \) is not a constant; it depends on the positions \(\mathbf{X} \), via the normals \(n_{ij} \). Overall we can write:

\[
f^d(x, \mathbf{V}) = G(X) \cdot \mathbf{V}
\]
Adding the damping forces to the elastic forces \(f^{el} \) we get:

\[
f(x,v) = f(x) + f^{el}(x,v)
\]

\[
= f^{el}(x) + G(x) \cdot v
\]

Thus, the second equation of our "hybrid" integration rule becomes:

\[
u^{n+1} = u^n + \frac{dt}{m} \int f(x^n, v^{n+1})
\]

\[
= u^n + \frac{dt}{m} \left\{ f^{el}(x^n) + G(x^n) v^{n+1} \right\}
\]

\[
\Rightarrow \left(I - \frac{dt}{m} G(x^n) \right) v^{n+1} = u^n + \frac{dt}{m} f^{el}(x^n)
\]

After solving this linear system for \(v^{n+1} \), we substitute into

\[
x^{n+1} = x^n + \frac{dt}{2} \left\{ v_n + v_{n+1} \right\}
\]

Implementation demonstration = next class!