Discrete representations of geometric objects:
Features, data structures and adequacy for dynamic simulation.

Next 2 lectures:

Next 2 lectures:

- Describe a number of discrete representations used to encode geometric objects for modeling and simulation purposes
- Meshes
- Implicit surfaces
- Point clouds

Next 2 lectures:

- Describe a number of discrete representations used to encode geometric objects for modeling and simulation purposes
- Meshes
- Implicit surfaces
- Point clouds
- Discuss the features of these representations that are specific to simulation, as opposed to general geometry processing and rendering
- Objects need to support dynamic deformation
- Volumetric objects need internal structure
- Discrete geometry needs to be simulation-quality (well-conditioned)

Next 2 lectures:

Next 2 lectures:

- Explain the features that make one representation better than another for certain tasks (e.g. meshes vs. implicit surfaces)
- Static vs. dynamic topology (connectivity)
- "Shape memory" and deformation drift
- Regular, structured storage
- Efficiency of geometric queries

Next 2 lectures:

- Explain the features that make one representation better than another for certain tasks (e.g. meshes vs. implicit surfaces)
- Static vs. dynamic topology (connectivity)
- "Shape memory" and deformation drift
- Regular, structured storage
- Efficiency of geometric queries
- Outline conversion methods between different geometric representations, e.g.
- Tetrahedral meshing
- Marching cubes, marching tetrahedra
- MLS surface reconstruction, etc.

Next 2 lectures:

- Explain the features that make one representation better than another for certain tasks (e.g. meshes vs. implicit surfaces)
- Static vs. dynamic topology (connectivity)
- "Shape memory" and deformation drift
- Regular, structured storage
- Efficiency of geometric queries
- Outline conversion methods between different geometric representations, e.g.
- Tetrahedral meshing
- Marching cubes, marching tetrahedra
- MLS surface reconstruction, etc.

Next topic : Introduction to PhysBAM data structures and scene layout

Meshes

Meshes

Tetrahedral meshes (volumetric)

Meshes

Tetrahedral meshes (volumetric)

Hexahedral meshes (volumetric)

Meshes

Meshes

Triangular surface meshes (not volumetric)

Meshes

Triangular surface meshes (not volumetric)

Meshes

CS838 Advanced Modeling and Simulation - 6 Sep 2011

