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2D/3D Elasticity - The deformation map

¢(X) is a map from R° to R’ i Spring analogue:
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2D/3D Elasticity - The deformation map

d(X)Iis a map from RS to R3 i Saring ana\ogue'
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2D/3D Elasticity - Deformation examples

Anisotropic scalingi
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Rotation onlys

F — R450
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2D/3D Elasticity - Strain measures

How do we quantify shape change? M‘?
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Strain measure: A tensor (matrix) which } Spring analogue;
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Strain measure: A tensor (matrix) which } Spring analogue;
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2D/3D Elasticity - Force, traction and stress W

Force density (/) :

Measures the internal elastic force per unit (undeformed) volume
Traction (7) :

Measures the force per unit area on a materiﬁl cross-section
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2D/3D Elasticity - Force, traction and stress

Traction (7) :
Measures the force per unit area on a material cross-section

(Piola) Stress tensor (P ) :
A matrix that describes force response along Sliﬁerent orientations
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2D/3D Elasticity - Strain energy
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| Linear elasticity
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| Linear elasticity
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2D/3D Elasticity - Material models

| Linear elasticity l Corotated linear elasticity

e:%(F+FT)—I E=S—1 [F=RS]
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X Not rotationally invariant X Inaccurate volume preservation
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I St. Venant-Kirchhoff material I Neohookean elasticity
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Additional information on lecture notes

v Extended discussion of rotational invariance, isotropy
and the common Isotropic Invariants

v PDE form of elasticity equations
v Stress formulas for general isotropic materials

Vv Benefits and drawbacks of individual material models



