## 2D/3D Elasticity - The deformation map



## 2D/3D Elasticity - The deformation map




## 2D/3D Elasticity - The deformation map



Undeformed configuration (material coordinates)


Deformed configuration (spatial coordinates)

## 2D/3D Elasticity - The deformation map



## 2D/3D Elasticity - The deformation map

$$
\begin{gathered}
\phi(X) \text { is a map from } R^{3} \text { to } R^{3} \\
\vec{x}=\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right)=\phi(\vec{X})=\left(\begin{array}{c}
x(X, Y, Z) \\
y(X, Y, Z) \\
z(X, Y, Z)
\end{array}\right)
\end{gathered}
$$

## 2D/3D Elasticity - The deformation map

$$
\vec{\phi}=\left(\begin{array}{c}
x(X) \text { is a map from } R^{3} \text { to } R^{3} \\
y \\
z
\end{array}\right)=\phi(\vec{X})=\left(\begin{array}{c}
x(X, Y, Z) \\
y(X, Y, Z) \\
z(X, Y, Z)
\end{array}\right), ~ ل
$$

Deformation gradient: the Jacobian of $\phi(X)$

$$
\mathbf{F}:=\frac{\partial}{\partial \vec{X}} \phi(\vec{X})=\left(\begin{array}{lll}
\partial x / \partial X & \partial x / \partial Y & \partial x / \partial Z \\
\partial y / \partial X & \partial y / \partial Y & \partial y / \partial Z \\
\partial z / \partial X & \partial z / \partial Y & \partial z / \partial Z
\end{array}\right)
$$

## 2D/3D Elasticity - The deformation map

$$
\vec{\phi}=\left(\begin{array}{c}
x(X) \text { is a map from } R^{3} \text { to } R^{3} \\
y \\
z
\end{array}\right)=\phi(\vec{X})=\left(\begin{array}{c}
x(X, Y, Z) \\
y(X, Y, Z) \\
z(X, Y, Z)
\end{array}\right), ~ ل
$$

Deformation gradient: the Jacobian of $\phi(X)$

$$
\mathbf{F}:=\frac{\partial}{\partial \vec{X}} \phi(\vec{X})=\left(\begin{array}{lll}
\partial x / \partial X & \partial x / \partial Y & \partial x / \partial Z \\
\partial y / \partial X & \partial y / \partial Y & \partial y / \partial Z \\
\partial z / \partial X & \partial z / \partial Y & \partial z / \partial Z
\end{array}\right)
$$

## 2D/3D Elasticity - The deformation map

$$
\begin{gathered}
\phi(X) \text { is a map from } R^{3} \text { to } R^{3} \\
\vec{x}=\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right)=\phi(\vec{X})=\left(\begin{array}{c}
x(X, Y, Z) \\
y(X, Y, Z) \\
z(X, Y, Z)
\end{array}\right)
\end{gathered}
$$

Deformation gradient: the Jacobian of $\phi(X)$

$$
\mathbf{F}:=\frac{\partial}{\partial \vec{X}} \phi(\vec{X})=\left(\begin{array}{lll}
\partial x / \partial X & \partial x / \partial Y & \partial x / \partial Z \\
\partial y / \partial X & \partial y / \partial Y & \partial y / \partial Z \\
\partial z / \partial X & \partial z / \partial Y & \partial z / \partial Z
\end{array}\right)
$$

Spring analogue:

$E=l_{0} \frac{k}{2}\left(\frac{l}{l_{0}}-1\right)^{2}$

## 2D/3D Elasticity - The deformation map

$$
\begin{gathered}
\phi(X) \text { is a map from } R^{3} \text { to } R^{3} \\
\vec{x}=\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right)=\phi(\vec{X})=\left(\begin{array}{c}
x(X, Y, Z) \\
y(X, Y, Z) \\
z(X, Y, Z)
\end{array}\right)
\end{gathered}
$$

Deformation gradient: the Jacobian of $\phi(X)$

$$
\text { F }:=\frac{\partial}{\partial \vec{X}} \phi(\vec{X})=\left(\begin{array}{lll}
\partial x / \partial X & \partial x / \partial Y & \partial x / \partial Z \\
\partial y / \partial X & \partial y / \partial Y & \partial y / \partial Z \\
\partial z / \partial X & \partial z / \partial Y & \partial z / \partial Z
\end{array}\right)
$$

Spring analogue:


$$
E=l_{0} \frac{k}{2}\left(\frac{l}{l_{0}}-1\right)^{2}
$$

## 2D/3D Elasticity - Deformation examples

Simple translation



$$
\begin{gathered}
\vec{x}=\phi(\vec{X})=\vec{X}+\vec{t} \\
\mathbf{F}=\mathbf{I}
\end{gathered}
$$

## 2D/3D Elasticity - Deformation examples

## Uniform Scaling




$$
\begin{gathered}
\vec{x}=\phi(\vec{X})=\gamma \vec{X} \\
\mathbf{F}=\gamma \mathbf{I}
\end{gathered}
$$

## 2D/3D Elasticity - Deformation examples

Anisotropic scaling



$$
\begin{gathered}
\overrightarrow{\mathrm{x}}=\phi\binom{X}{\mathrm{Y}}=\binom{0.7 X}{2 Y} \\
\mathbf{F}=\left(\begin{array}{cc}
0.7 & 0 \\
0 & 2
\end{array}\right)
\end{gathered}
$$

## 2D/3D Elasticity - Deformation examples

Rotation only


$\vec{x}=\phi\binom{X}{Y}=\mathbf{R}_{45^{\circ}}\binom{X}{Y}$
$\mathbf{F}=\mathbf{R}_{45^{\circ}}$

## 2D/3D Elasticity - Strain measures

How do we quantify shape change?

## 2D/3D Elasticity - Strain measures

How do we quantify shape change?


## 2D/3D Elasticity - Strain measures

How do we quantify shape change?



## 2D/3D Elasticity - Strain measures

How do we quantify shape change? F-I ??



## 2D/3D Elasticity - Strain measures

How do we quantify shape change?

$$
\mathbf{F}-\mathbf{I} ? ?
$$





## 2D/3D Elasticity - Strain measures

How do we quantify shape change?





## 2D/3D Elasticity - Strain measures

## 2D/3D Elasticity - Strain measures

Strain measure: A tensor (matrix) which encodes the severity of shape change

## 2D/3D Elasticity - Strain measures

Strain measure: A tensor (matrix) which encodes the severity of shape change

$$
\mathbf{E}=\frac{1}{2}\left(\mathbf{F}^{\top} \mathbf{F}-\mathbf{I}\right) \quad \text { Green strain }
$$

## 2D/3D Elasticity - Strain measures

Strain measure: A tensor (matrix) which encodes the severity of shape change

$$
\mathbf{E}=\frac{1}{2}\left(\mathbf{F}^{\top} \mathbf{F}-\mathbf{I}\right) \quad \text { Green strain }
$$

$\epsilon=\frac{1}{2}\left(\mathbf{F}+\mathbf{F}^{\boldsymbol{\top}}\right)-\mathbf{I} \begin{aligned} & \begin{array}{l}\text { Infinitesimal strain } \\ (\text { small strain tensor })\end{array}\end{aligned}$

## 2D/3D Elasticity - Strain measures

Strain measure: A tensor (matrix) which encodes the severity of shape change

$$
\mathbf{E}=\frac{1}{2}\left(\mathbf{F}^{\top} \mathbf{F}-\mathbf{I}\right) \quad \text { Green strain }
$$

Spring analogue:

$\epsilon=\frac{1}{2}\left(\mathbf{F}+\mathbf{F}^{\boldsymbol{T}}\right)-\mathbf{I} \begin{gathered}\begin{array}{c}\text { Infinitesimal strain } \\ \text { (small strain tensor) }\end{array}\end{gathered}$

$$
E=l_{0} \frac{k}{2}\left(\frac{l}{l_{0}}-1\right)^{2}
$$

## 2D/3D Elasticity - Strain measures

Strain measure: A tensor (matrix) which encodes the severity of shape change

$$
\mathbf{E}=\frac{1}{2}\left(\mathbf{F}^{\top} \mathbf{F}-\mathbf{I}\right) \quad \text { Green strain }
$$

Spring analogue:


$$
\left.E=l_{0} \frac{k}{2} \frac{l}{l_{0}}-1\right)^{2}
$$

## 2D/3D Elasticity - Force, traction and stress

## 2D/3D Elasticity - Force, traction and stress

Force density ( $f$ ) :
Measures the internal elastic force per unit (undeformed) volume

## 2D/3D Elasticity - Force, traction and stress

Force density ( $f$ ) :
Measures the internal elastic force per unit (undeformed) volume

Traction ( $\tau$ ):
Measures the force per unit area on a material cross-section

## 2D/3D Elasticity - Force, traction and stress

Force density ( $f$ ) :
Measures the internal elastic force per unit (undeformed) volume

## Traction ( $\tau$ ):

Measures the force per unit area on a material cross-section


## 2D/3D Elasticity - Force, traction and stress

Force density ( $f$ ) :
Measures the internal elastic force per unit (undeformed) volume

## Traction ( $\tau$ ):

Measures the force per unit area on a material cross-section


## 2D/3D Elasticity - Force, traction and stress

Force density ( $f$ ) :
Measures the internal elastic force per unit (undeformed) volume
What is the difference of force and traction?
Tractio
Mé

## on

## 2D/3D Elasticity - Force, traction and stress

Force density ( $f$ ) :
Measures the internal elastic force per unit (undeformed) volume
What is the difference of force and traction?
Tractio
Mé

## on



## 2D/3D Elasticity - Force, traction and stress

Force density ( $f$ ) :
Measures the internal elastic force per unit (undeformed) volume
What is the difference of force and traction?
Tractio
Mé


## 2D/3D Elasticity - Force, traction and stress

Force density ( $f$ ) :
Measures the internal elastic force per unit (undeformed) volume
What is the difference of force and traction?
Tractio
Mé


## 2D/3D Elasticity - Force, traction and stress

Force density ( $f$ ) :
Measures the internal elastic force per unit (undeformed) volume
What is the difference of force and traction?

## Tractio <br> Mé



## 2D/3D Elasticity - Force, traction and stress

Force density ( $f$ ) :
Measures the internal elastic force per unit (undeformed) volume

## Traction ( $\tau$ ):

Measures the force per unit area on a material cross-section


## 2D/3D Elasticity - Force, traction and stress

Force density ( $f$ ) :
Measures the internal elastic force per unit (undeformed) volume

## Traction ( $\tau$ ):

Measures the force per unit area on a material cross-section


## 2D/3D Elasticity - Force, traction and stress

Force density ( $f$ ) :
Measures the internal elastic force per unit (undeformed) volume

## Traction ( $\tau$ ):

Measures the force per unit area on a material cross-section


$$
\vec{\tau}=\mathbf{P} \vec{n}
$$

## 2D/3D Elasticity - Force, traction and stress

## Traction ( $\tau$ ) :

Measures the force per unit area on a material cross-section


$$
\vec{\tau}=\mathbf{P} \vec{n}
$$

(Piola) Stress tensor (P):
A matrix that describes force response along different orientations

2D/3D Elasticity - Strain energy

## 2D/3D Elasticity - Strain energy

Deformation Energy ( $E$ ) [also known as strain energy] :
Potential energy stored in elastic body, as a result of deformation.

## 2D/3D Elasticity - Strain energy

Deformation Energy ( $E$ ) [also known as strain energy] :
Potential energy stored in elastic body, as a result of deformation.

## Energy density ( $\Psi$ ):

Ratio of strain energy per unit (undeformed) volume.

## 2D/3D Elasticity - Strain energy

Deformation Energy ( $E$ ) [also known as strain energy] :
Potential energy stored in elastic body, as a result of deformation.

## Energy density ( $\Psi$ ):

Ratio of strain energy per unit (undeformed) volume.

$$
\mathrm{E}[\phi]:=\int \Psi[\phi] \mathrm{d} \overrightarrow{\mathrm{X}} \quad \text { Total potential energy }
$$

## 2D/3D Elasticity - Strain energy

Deformation Energy ( $E$ ) [also known as strain energy] :
Potential energy stored in elastic body, as a result of deformation.

## Energy density ( $\Psi$ ):

Ratio of strain energy per unit (undeformed) volume.

$$
\begin{array}{cc}
\mathrm{E}[\phi]:=\int \Psi[\phi] \mathrm{d} \vec{X} & \text { Total potential energy } \\
\Psi[\phi]:=\Psi(\mathbf{F}) & \text { (for typical materials) }
\end{array}
$$

## 2D/3D Elasticity - Strain energy

Deformation Energy ( $E$ ) [also known as strain energy] :
Potential energy stored in elastic body, as a result of deformation.

## Energy density ( $\Psi$ ):

Ratio of strain energy per unit (undeformed) volume.

## Total potential energy

$$
\Psi[\phi]:=\Psi(\mathbf{F}) \quad \text { (for typical materials) }
$$

## 2D/3D Elasticity - Strain energy

Deformation Energy ( $E$ ) [also known as strain energy] :
Potential energy stored in elastic body, as a result of deformation.

## Energy density ( $\Psi$ ):

Ratio of strain energy per unit (undeformed) volume.

$$
\begin{array}{cc}
\mathrm{E}[\phi]:=\int \Psi[\mathbf{F}] \mathrm{d} \vec{X} & \text { Total potential energy } \\
\Psi[\phi]:=\Psi(\mathbf{F}) & \text { (for typical materials) }
\end{array}
$$

## 2D/3D Elasticity - Strain energy

Deformation Energy ( $E$ ) [also known as Potential energy stored in elastic body,

Energy density ( $\Psi$ ) :
Ratio of strain energy per unit (undefor

$$
\begin{array}{cc}
\mathrm{E}[\phi]:=\int \Psi[\mathbf{F}] \mathrm{d} \overrightarrow{\mathrm{X}} & \text { Total potentic } \\
\Psi[\phi]:=\Psi(\mathbf{F}) & \text { (for typical m }
\end{array}
$$

## Spring analogue:



## 2D/3D Elasticity - Strain energy

Deformation Energy ( $E$ ) [also known as Potential energy stored in elastic body,

Energy density ( $\Psi$ ) :
Ratio of strain energy per unit (undefor

$$
\begin{array}{cc}
\mathrm{E}[\phi]:=\int \Psi[\mathbf{F}] \mathrm{d} \overrightarrow{\mathrm{X}} & \text { Total potentic } \\
\Psi[\phi]:=\Psi(\mathbf{F}) & \text { (for typical } m
\end{array}
$$

2D/3D Elasticity - Strain energy

## 2D/3D Elasticity - Strain energy

## Stress-energy relation

$$
\mathbf{P}:=\frac{\partial \Psi(\mathbf{F})}{\partial \mathbf{F}}
$$

## 2D/3D Elasticity - Strain energy

Stress-energy relation

$$
\mathbf{P}:=\frac{\partial \Psi(\mathbf{F})}{\partial \mathbf{F}}
$$

Linear elasticity

$$
\epsilon=\frac{1}{2}\left(\mathbf{F}+\mathbf{F}^{\top}\right)-\mathbf{I}
$$

$$
\Psi=\mu\|\epsilon\|_{F}^{2}+\frac{\lambda}{2} \operatorname{tr}^{2}(\epsilon)
$$

$$
\mathbf{P}=2 \mu \epsilon+\lambda \operatorname{tr}(\epsilon) \mathbf{I}
$$

## 2D/3D Elasticity - Strain energy

## Linear elasticity

Stress-energy relation

$$
\mathbf{P}:=\frac{\partial \Psi(\mathbf{F})}{\partial \mathbf{F}}
$$

$$
\begin{gathered}
\epsilon=\frac{1}{2}\left(\mathbf{F}+\mathbf{F}^{\top}\right)-\mathbf{I} \\
\Psi=\mu\|\epsilon\|_{F}^{2}+\frac{\lambda}{2} \operatorname{tr}^{2}(\epsilon) \\
\mathbf{P}=2 \mu \epsilon+\lambda \operatorname{tr}(\epsilon) \mathbf{I}
\end{gathered}
$$

$\checkmark$ Linear force-position relation $\checkmark$ Computationally inexpensive $X$ Bad for large deformations $X$ Not rotationally invariant


## 2D/3D Elasticity - Strain energy

## Linear elasticity

Stress-energy relation

$$
\mathbf{P}:=\frac{\partial \Psi(\mathbf{F})}{\partial \mathbf{F}}
$$

$$
\begin{gathered}
\epsilon=\frac{1}{2}\left(\mathbf{F}+\mathbf{F}^{\top}\right)-\mathbf{I} \\
\Psi=\mu\|\epsilon\|_{F}^{2}+\frac{\lambda}{2} \operatorname{tr}^{2}(\epsilon) \\
\mathbf{P}=2 \mu \epsilon+\lambda \operatorname{tr}(\epsilon) \mathbf{I}
\end{gathered}
$$

$\checkmark$ Linear force-position relation $\checkmark$ Computationally inexpensive $X$ Bad for large deformations $X$ Not rotationally invariant

## 2D/3D Elasticity - Material models

Linear elasticity

$$
\epsilon=\frac{1}{2}\left(\mathbf{F}+\mathbf{F}^{\mathrm{T}}\right)-\mathbf{I}
$$

$$
\Psi=\mu\|\epsilon\|_{F}^{2}+\frac{\lambda}{2} \operatorname{tr}^{2}(\epsilon)
$$

$$
\mathbf{P}=2 \mu \epsilon+\lambda \operatorname{tr}(\epsilon) \mathbf{I}
$$

$\checkmark$ Linear force-position relation
$\checkmark$ Computationally inexpensive
$X$ Bad for large deformations
$X$ Not rotationally invariant

Corotated linear elasticity

$$
\mathbf{E}=\mathbf{S}-\mathbf{I} \quad[\mathbf{F}=\mathbf{R S}]
$$

$$
\Psi=\mu\left\|\mathbf{E}_{\mathbf{r}}\right\|_{\mathrm{F}}^{2}+\frac{\lambda}{2} \operatorname{tr}^{2}\left(\mathbf{E}_{\mathbf{r}}\right)
$$

$$
\mathbf{P}=\mathbf{R}\left[2 \mu \mathbf{E}_{\mathbf{r}}+\lambda \operatorname{tr}\left(\mathbf{E}_{\mathbf{r}}\right) \mathbf{I}\right]
$$

$\checkmark$ Rotationally invariant
$\checkmark$ Survives collapse \& inversion
$X$ Polar decomposition overhead
X Inaccurate volume preservation

## 2D/3D Elasticity - Material models

Corotated linear elasticity

$$
\mathbf{E}=\mathbf{S}-\mathbf{I} \quad[\mathbf{F}=\mathbf{R S}]
$$

$$
\Psi=\mu\left\|\mathbf{E}_{\mathbf{r}}\right\|_{\mathrm{F}}^{2}+\frac{\lambda}{2} \operatorname{tr}^{2}\left(\mathbf{E}_{\mathbf{r}}\right)
$$

$$
\mathbf{P}=\mathbf{R}\left[2 \mu \mathbf{E}_{\mathbf{r}}+\lambda \operatorname{tr}\left(\mathbf{E}_{\mathbf{r}}\right) \mathbf{I}\right]
$$

$\checkmark$ Rotationally invariant
$\checkmark$ Survives collapse \& inversion $X$ Polar decomposition overhead $X$ Inaccurate volume preservation

$$
\begin{gathered}
\mathbf{E}=\frac{1}{2}\left(\mathbf{F}^{\top} \mathbf{F}-\mathbf{I}\right) \\
\Psi=\mu\|\mathbf{E}\|_{\mathrm{F}}^{2}+\frac{\lambda}{2} \operatorname{tr}^{2}(\mathbf{E}) \\
\mathbf{P}=\mathbf{F}[2 \mu \mathbf{E}+\lambda \operatorname{tr}(\mathbf{E}) \mathbf{I}]
\end{gathered}
$$

$\checkmark$ Rotationally invariant
$\checkmark$ No polar decomposition needed $X$ Weak resistance to compression $X$ Inaccurate volume preservation

## 2D/3D Elaçticitv _ Matorial models



## 2D/3D Elasticity - Material models

Corotated linear elasticity

$$
\mathbf{E}=\mathbf{S}-\mathbf{I} \quad[\mathbf{F}=\mathbf{R S}]
$$

$$
\Psi=\mu\left\|\mathbf{E}_{\mathbf{r}}\right\|_{\mathrm{F}}^{2}+\frac{\lambda}{2} \operatorname{tr}^{2}\left(\mathbf{E}_{\mathbf{r}}\right)
$$

$$
\mathbf{P}=\mathbf{R}\left[2 \mu \mathbf{E}_{\mathbf{r}}+\lambda \operatorname{tr}\left(\mathbf{E}_{\mathbf{r}}\right) \mathbf{I}\right]
$$

$\checkmark$ Rotationally invariant
$\checkmark$ Survives collapse \& inversion $X$ Polar decomposition overhead $X$ Inaccurate volume preservation

$$
\begin{gathered}
\mathbf{E}=\frac{1}{2}\left(\mathbf{F}^{\top} \mathbf{F}-\mathbf{I}\right) \\
\Psi=\mu\|\mathbf{E}\|_{\mathrm{F}}^{2}+\frac{\lambda}{2} \operatorname{tr}^{2}(\mathbf{E}) \\
\mathbf{P}=\mathbf{F}[2 \mu \mathbf{E}+\lambda \operatorname{tr}(\mathbf{E}) \mathbf{I}]
\end{gathered}
$$

$\checkmark$ Rotationally invariant
$\checkmark$ No polar decomposition needed $X$ Weak resistance to compression $X$ Inaccurate volume preservation

## 2D/3D Elasticity - Material models

## St. Venant-Kirchhoff material

$$
\begin{gathered}
\mathbf{E}=\frac{1}{2}\left(\mathbf{F}^{\top} \mathbf{F}-\mathbf{I}\right) \\
\Psi=\mu\|\mathbf{E}\|_{F}^{2}+\frac{\lambda}{2} \operatorname{tr}^{2}(\mathbf{E}) \\
\mathbf{P}=\mathbf{F}[2 \mu \mathbf{E}+\lambda \operatorname{tr}(\mathbf{E}) \mathbf{I}]
\end{gathered}
$$

$$
\Psi=\mu\|\mathbf{E}\|_{F}^{2}+\frac{\lambda}{2} \operatorname{tr}^{2}(\mathbf{E}) \quad \Psi=\frac{\mu}{2}\left(\mathrm{I}_{1}-3\right)-\mu \log (\mathrm{J})+\frac{\lambda}{2} \log ^{2}(\mathrm{~J})
$$

$\checkmark$ Rotationally invariant
$\checkmark$ No polar decomposition needed
$X$ Weak resistance to compression
$X$ Inaccurate volume preservation

Neohookean elasticity

$$
\begin{gathered}
\mathrm{I}_{1}=\|\mathbf{F}\|_{\mathrm{F}}^{2}, \quad \mathrm{~J}=\operatorname{det} \mathbf{F} \\
=\frac{\mu}{2}\left(\mathrm{I}_{1}-3\right)-\mu \log (\mathrm{J})+\frac{\lambda}{2} \log ^{2}( \\
\mathbf{P}=\mu\left(\mathbf{F}-\mathbf{F}^{-\mathrm{T}}\right)+\lambda \log (\mathrm{J}) \mathbf{F}^{-\mathrm{T}}
\end{gathered}
$$

$\checkmark$ Accurate volume preservation
$\checkmark$ Discourages collapse/inversion
$X$ Undefined when inverted
$X$ Numerically stiff w/compression

## 2D/3D Elasticity - Material models



## 2D/3D Elasticity - Material models

## St. Venant-Kirchhoff material

$$
\begin{gathered}
\mathbf{E}=\frac{1}{2}\left(\mathbf{F}^{\top} \mathbf{F}-\mathbf{I}\right) \\
\Psi=\mu\|\mathbf{E}\|_{F}^{2}+\frac{\lambda}{2} \operatorname{tr}^{2}(\mathbf{E}) \\
\mathbf{P}=\mathbf{F}[2 \mu \mathbf{E}+\lambda \operatorname{tr}(\mathbf{E}) \mathbf{I}]
\end{gathered}
$$

$$
\Psi=\mu\|\mathbf{E}\|_{F}^{2}+\frac{\lambda}{2} \operatorname{tr}^{2}(\mathbf{E}) \quad \Psi=\frac{\mu}{2}\left(\mathrm{I}_{1}-3\right)-\mu \log (\mathrm{J})+\frac{\lambda}{2} \log ^{2}(\mathrm{~J})
$$

$\checkmark$ Rotationally invariant
$\checkmark$ No polar decomposition needed
$X$ Weak resistance to compression
$X$ Inaccurate volume preservation

Neohookean elasticity

$$
\begin{gathered}
\mathrm{I}_{1}=\|\mathbf{F}\|_{\mathrm{F}}^{2}, \quad \mathrm{~J}=\operatorname{det} \mathbf{F} \\
=\frac{\mu}{2}\left(\mathrm{I}_{1}-3\right)-\mu \log (\mathrm{J})+\frac{\lambda}{2} \log ^{2}( \\
\mathbf{P}=\mu\left(\mathbf{F}-\mathbf{F}^{-\mathrm{T}}\right)+\lambda \log (\mathrm{J}) \mathbf{F}^{-\mathrm{T}}
\end{gathered}
$$

$\checkmark$ Accurate volume preservation
$\checkmark$ Discourages collapse/inversion
$X$ Undefined when inverted
$X$ Numerically stiff w/compression

## Additional information on lecture notes

$\sqrt{ }$ Extended discussion of rotational invariance, isotropy and the common isotropic invariants
$\sqrt{ }$ PDE form of elasticity equations
$\checkmark$ Stress formulas for general isotropic materials
$\sqrt{ }$ Benefits and drawbacks of individual material models

