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Uniform Scaling
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(Piola) Stress tensor ( P ) : 
     A matrix that describes force response along different orientations

Traction ( τ ) : 
     Measures the force per unit area on a material cross-section
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• A new data organization scheme for storing state variables and90

intermediate solver data, facilitating aggressive SIMD accel-91

erations and lock-free, load balanced multithreading.92

The technical portion of our paper is structured as follows: In sec-93

tion 2 we detail how the discrete form of the governing equations94

is obtained and explain our treatment of incompressibility. In sec-95

tion 3 we replace complex integrals in the discrete equations with96

simpler numerical expressions, better suited for computer imple-97

mentation; this section introduces our sub-voxel accurate treatment98

of boundaries. In section 4 we solve the nonlinear discrete equa-99

tions using a high-order defect correction procedure and a symmet-100

ric indefinite Krylov solver for the linearized system. Section 5101

lists several crucial implementation considerations, including our102

SIMD- and thread-optimized data organization scheme. We note103

that we shall defer the discussion of relevant existing research until104

later in our technical exposition, where such contributions can be105

more appropriately contrasted with our proposed approach.106

2 Elasticity and discretization107

We start by reviewing the physical principles that govern the mo-108

tion of an elastic deformable body. Let φ : Ω→R3
be the defor-109

mation function which maps a material point �X =(X,Y, Z) to its110

deformed location �x=(x, y, z)=φ( �X), and F( �X)=∂φ( �X)/∂ �X111

denote the deformation gradient. In order to simulate the deforma-112

tion of a body with a specific material composition, we need a quan-113

titative description of how this material reacts to a given deforma-114

tion. For hyperelastic materials this is derived from a strain energy115

density function Ψ(F) which can be integrated over the entire body116

to measure the total energy E[φ] =
�
Ω
Ψ(F)d �X . In these expres-117

sions φ( �X) is an arbitrary deformation field; however, for numer-118

ical simulation we only encode the deformation map via discrete119

values �xi = φ( �Xi) sampled at prescribed locations { �Xi}i=1...N .120

Using those, we reconstruct discretized versions of the deformation121

field, the deformation gradient and the elastic energy, as follows:122

φ( �X;x) =
�

i �xiNi( �X) (1)

F( �X;x) = ∂φ( �X;x)/∂ �X (2)

E(x) =
�
Ω
Ψ(F( �X;x))d �X (3)

In the definitions above, x = (�x1,..., �xN ) is a vector containing123

all nodal degrees of freedom and conveys the state of our discrete124

model. The symbol Ni( �X) denotes the interpolation basis func-125

tions associated with each node �Xi. In our approach those will be126

trilinear interpolating basis functions, associated with the vertices127

of a cubic lattice as detailed in section 4. As noted above, the spe-128

cific formula for Ψ(F) is a defining property of the material being129

modeled. Note that both the deformation gradient F( �X;x) as well130

as the energy density Ψ(F( �X;x)) are spatially varying functions131

(of the material location �X). This should be contrasted with tetra-132

hedral discretizations where such quantities are constant on each133

element, as a consequence of the linear basis functions used in that134

setting. In any case, once a discrete energy E(x) has been defined,135

the discrete nodal forces are readily computed as �fi=−∂E/∂�xi.136

The remainder of this section addresses certain adjustments to the137

discrete energy definition (3) including modifications to performed138

approximations and a reformulation of the discrete state variables.139

Our objective is to support a spectrum of materials from compress-140

ible to highly-incompressible, accommodate true nonlinear volume141

preservation constraints and avoid locking or poor numerical con-142

ditioning problems that often stem from incompressible materials.143

Figure 2: Simulation of corotated (top) and neohookean (bottom)

materials at high Poisson’s ratio (ν = .498). The corotated model

loses more than 50% of the original volume due to its inaccurate in-

compressibility term. The neohookean model stays within .1% of its

original volume, with less than 1% volume variation per element.

2.1 Quasi-incompressibility144

We model response to volume change using the formulation re-145

ferred to as quasi-incompressibility. In this approach, instead of en-146

forcing incompressibility as a hard constraint we append a penalty-147

like volume preservation term to the definition of the deformation148

energy, with a tunable stiffness that allows a range of compressible149

to highly incompressible behaviors. The energy density function150

has the general form Ψ(F) =Ψ0(F)+κM2(F)/2, where M(F)151

measures the deviation from a volume-preserving configuration and152

κ is the stiffness of the incompressibility constraint which is related153

(or identified) with material properties such as the bulk modulus154

or the second Lamé coefficient (λ). For example, linear elasticity155

defines M(F) = tr(F−I) which seeks to make the displacement156

field divergence free. Corotated elasticity uses M(F) = tr(Σ−I)157

(where F = UΣVT
is the SVD of F) essentially enforcing that158

the average of principal stretch ratios is equal to one. Both mea-159

sures provide an adequate approximation of volume change in the160

small strain regime, but become very inaccurate under large de-161

formation. Thus, more advanced models consider the true volume162

change ratio J = det(F) = det(Σ) and define M(F) = log(J)163

or M(F) = J−1, properly enforcing that the product of principal164

stretch ratios remains close to one. Although we recommend the165

use of the latter model types, we seek to accommodate any defini-166

tion of M(F) as even the less accurate formulations may be quite167

acceptable in appropriate deformation scenarios.168

For discretization we superimpose a Cartesian lattice on the refer-169

ence model shape Ω, naturally defining a partitioning Ω=∪Ωk of170

the elastic domain into sub-domains Ωk=Ω∩Ck within each lattice171

cell Ck. No restriction on the shape of Ω is imposed. Thus, each172

sub-domain Ωk is either an entire cell of our cubic lattice (for cells173

fully interior to the deforming model) or a fractional cell when Ck174

overlaps with the model boundary. The discrete energy can also be175

split into a sum of local terms E(x)=
�

k Ek(x), integrated over176

the respective Ωk. We define the energy of each cell as follows:177

Ek :=
�
Ωk

Ψ0(F)d �X + 1
2κWkM

2
(Ωk) (4)

178

where Wk :=
�
Ωk

d �X and M(Ωk) := 1
Wk

�
Ωk

M(F)d �X (5)

2



E = 1
2 (F

TF− I)

Ψ = µ�E�F + λ
2 tr

2(E)

P = F [2µE+ λtr(E)I]

I1 = �F�2F, J = detF

Ψ = µ
2 (I1 − 3) − µ log(J) + λ

2 log2(J)

P = µ(F− F−T ) + λ log(J)F−T

2

2D/3D Elasticity - Material models

St. Venant-Kirchhoff material

✓	
  Rota.onally	
  invariant
✓	
  No	
  polar	
  decomposi.on	
  needed
✗	
  Weak	
  resistance	
  to	
  compression
✗	
  Inaccurate	
  volume	
  preserva.on

Neohookean elasticity

✓	
  Accurate	
  volume	
  preserva.on
✓	
  Discourages	
  collapse/inversion
✗	
  Undefined	
  when	
  inverted
✗	
  Numerically	
  s.ff	
  w/compression



Additional information on lecture notes

✓Extended discussion of rotational invariance, isotropy 
and the common isotropic invariants

✓PDE form of elasticity equations

✓Stress formulas for general isotropic materials

✓Benefits and drawbacks of individual material models


