

Undeformed configuration (*material* coordinates)

Deformed configuration (**spatial** coordinates)

Undeformed configuration (*material* coordinates)

Deformed configuration (**spatial** coordinates)

$$\phi(X)$$
 is a map from \mathbb{R}^3 to \mathbb{R}^3

$$\vec{\mathbf{x}} = \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{pmatrix} = \phi(\vec{\mathbf{X}}) = \begin{pmatrix} \mathbf{x}(\mathbf{X}, \mathbf{Y}, \mathbf{Z}) \\ \mathbf{y}(\mathbf{X}, \mathbf{Y}, \mathbf{Z}) \\ \mathbf{z}(\mathbf{X}, \mathbf{Y}, \mathbf{Z}) \end{pmatrix}$$

Deformation gradient: the Jacobian of $\phi(X)$

$$\mathbf{F} := \frac{\partial}{\partial \vec{X}} \phi(\vec{X}) = \begin{pmatrix} \partial x/\partial X & \partial x/\partial Y & \partial x/\partial Y \\ \partial y/\partial X & \partial y/\partial Y & \partial y/\partial Y & \partial y/\partial Y \\ \partial z/\partial X & \partial z/\partial Y & \partial$$

Z) Z) Z)

Z676 Ζ6\

$$\phi(X)$$
 is a map from \mathbb{R}^3 to \mathbb{R}^3

$$\vec{\mathbf{x}} = \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{pmatrix} = \phi(\vec{\mathbf{X}}) = \begin{pmatrix} \mathbf{x}(\mathbf{X}, \mathbf{Y}, \mathbf{Z}) \\ \mathbf{y}(\mathbf{X}, \mathbf{Y}, \mathbf{Z}) \\ \mathbf{z}(\mathbf{X}, \mathbf{Y}, \mathbf{Z}) \end{pmatrix}$$

Deformation gradient: the Jacobian of $\phi(X)$

$$\mathbf{F} := \frac{\partial}{\partial \vec{X}} \phi(\vec{X}) = \begin{pmatrix} \partial x/\partial X & \partial x/\partial Y & \partial x/\partial Y \\ \partial y/\partial X & \partial y/\partial Y & \partial y/\partial Y & \partial y/\partial Y \\ \partial z/\partial X & \partial z/\partial Y & \partial$$

Z) Z) Z)

Z676 Ζ6\

$$\phi(X)$$
 is a map from \mathbb{R}^3 to \mathbb{R}^3

$$\vec{\mathbf{x}} = \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{pmatrix} = \phi(\vec{\mathbf{X}}) = \begin{pmatrix} \mathbf{x}(\mathbf{X}, \mathbf{Y}, \mathbf{Z}) \\ \mathbf{y}(\mathbf{X}, \mathbf{Y}, \mathbf{Z}) \\ \mathbf{z}(\mathbf{X}, \mathbf{Y}, \mathbf{Z}) \end{pmatrix}$$

Deformation gradient: the Jacobian of $\phi(X)$

$$\mathbf{F} := \frac{\partial}{\partial \vec{X}} \phi(\vec{X}) = \begin{pmatrix} \partial x/\partial X & \partial x/\partial Y & \partial x/\partial Y \\ \partial y/\partial X & \partial y/\partial Y & \partial y/\partial Y & \partial y/\partial Y \\ \partial z/\partial X & \partial z/\partial Y & \partial$$

$$\phi(X)$$
 is a map from \mathbb{R}^3 to \mathbb{R}^3

$$\vec{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \phi(\vec{X}) = \begin{pmatrix} x(X, Y, Z) \\ y(X, Y, Z) \\ z(X, Y, Z) \end{pmatrix}$$

Deformation gradient: the Jacobian of $\phi(X)$

$$\mathbf{F} := \frac{\partial}{\partial \vec{X}} \phi(\vec{X}) = \begin{pmatrix} \partial x/\partial X & \partial x/\partial Y & \partial x/\partial Y \\ \partial y/\partial X & \partial y/\partial Y & \partial y/\partial Y & \partial y/\partial Y \\ \partial z/\partial X & \partial z/\partial Y & \partial$$

Simple translation

$\vec{\mathbf{x}} = \boldsymbol{\Phi}(\vec{\mathbf{X}}) = \boldsymbol{\gamma}\vec{\mathbf{X}}$ $\mathbf{F} = \boldsymbol{\gamma}\mathbf{I}$

How do we quantify shape change? $\mathbf{F} - \mathbf{I}$??

How do we quantify shape change? $\mathbf{F} - \mathbf{I}$??

Strain measure: A tensor (matrix) which encodes the severity of shape change

Strain measure: A tensor (matrix) which encodes the severity of shape change

Strain measure: A tensor (matrix) which encodes the severity of shape change

Force density (f) : Measures the internal elastic *force per unit (undeformed) volume*

Force density (f) : Measures the internal elastic force per unit (undeformed) volume

Force density (f) : Measures the internal elastic force per unit (undeformed) volume

Force density (f) : Measures the internal elastic force per unit (undeformed) volume

Measures the internal elastic force per unit (undeformed) volume

What is the difference of force and traction?

on

on

Measures the internal elastic force per unit (undeformed) volume

What is the difference of force and traction?

on

Force density (f) : Measures the internal elastic force per unit (undeformed) volume

Force density (f) : Measures the internal elastic force per unit (undeformed) volume

Force density (f) : Measures the internal elastic force per unit (undeformed) volume

Traction (τ) : Measures the *force per unit area* on a material **cross-section**

$\vec{\tau} = \mathbf{P}\vec{n}$

Traction (τ) : Measures the *force per unit area* on a material **cross-section**

(Piola) Stress tensor (P) : A matrix that describes force

$\vec{\tau} = \mathbf{P}\vec{n}$

A matrix that describes force response along different orientations

Deformation Energy (E) [also known as strain energy]: Potential energy stored in elastic body, as a result of deformation.

Deformation Energy (E) [also known as strain energy]:

Energy density (Ψ) : Ratio of strain energy per unit (undeformed) volume.

Potential energy stored in elastic body, as a result of deformation.

Deformation Energy (E) [also known as strain energy]:

Energy density (Ψ) : Ratio of strain energy per unit (undeformed) volume.

$$\mathbf{E}[\boldsymbol{\Phi}] := \int \Psi[\boldsymbol{\Phi}] \, d\vec{X}$$

Potential energy stored in elastic body, as a result of deformation.

Total potential energy

Deformation Energy (E) [also known as strain energy]:

Energy density (Ψ) : Ratio of strain energy per unit (undeformed) volume.

$$E[\phi] := \int \Psi[\phi] d\vec{X} \qquad \text{Total}$$
$$\Psi[\phi] := \Psi(\mathbf{F}) \qquad \text{(for the set of the se$$

Potential energy stored in elastic body, as a result of deformation.

potential energy

typical materials)

Deformation Energy (E) [also known as strain energy]: Potential energy stored in elastic body, as a result of deformation.

Energy density (Ψ) : Ratio of strain energy per unit (undeformed) volume.

Ψ $\mathbf{A} \left[\mathbf{\Psi} \right] \bullet^{----} \mathbf{A} \left[\mathbf{A} \right]$

Total potential energy

(for typical materials)

Deformation Energy (E) [also known as strain energy]:

Energy density (Ψ) : Ratio of strain energy per unit (undeformed) volume.

$$E[\phi] := \int \Psi[\mathbf{F}] d\vec{X} \qquad \text{Total}$$
$$\Psi[\phi] := \Psi(\mathbf{F}) \qquad \text{(for the set of the$$

Potential energy stored in elastic body, as a result of deformation.

potential energy

typical materials)

Deformation Energy (E) [also known as Potential energy stored in elastic body,

Energy density (Ψ) : Ratio of strain energy per unit (undefor

$$E[\phi] := \int \Psi[\mathbf{F}] d\vec{X} \qquad \text{Total}$$
$$\Psi[\phi] := \Psi(\mathbf{F}) \qquad \text{(for the set of the$$

Deformation Energy (E) [also known as Potential energy stored in elastic body,

Energy density (Ψ) : Ratio of strain energy per unit (undefor

$$E[\phi] := \int \Psi[\mathbf{F}] d\vec{X} \qquad \text{Total}$$
$$\Psi[\phi] := \Psi(\mathbf{F}) \qquad \text{(for the set of the$$

Stress-energy relation

$\mathbf{P} := \frac{\partial \Psi(\mathbf{F})}{\partial \mathbf{F}}$

Stress-energy relation

$\mathbf{P} := \frac{\partial \Psi(\mathbf{F})}{\partial \mathbf{F}}$

Linear elasticity

$\mathbf{\epsilon} = \frac{1}{2} (\mathbf{F} + \mathbf{F}^{\mathsf{T}}) - \mathbf{I}$ $\Psi = \mu \|\boldsymbol{\epsilon}\|_{\mathsf{F}}^2 + \frac{\lambda}{2} \mathrm{tr}^2(\boldsymbol{\epsilon})$ $\mathbf{P} = 2\mu\boldsymbol{\epsilon} + \lambda \mathrm{tr}(\boldsymbol{\epsilon})\mathbf{I}$

Stress-energy relation

$\mathbf{P} := \frac{\partial \Psi(\mathbf{F})}{\partial \mathbf{F}}$

Linear elasticity

 $\mathbf{\epsilon} = \frac{1}{2} (\mathbf{F} + \mathbf{F}^{\mathsf{T}}) - \mathbf{I}$ $\Psi = \mu \|\boldsymbol{\epsilon}\|_{\mathrm{F}}^2 + \frac{\lambda}{2} \mathrm{tr}^2(\boldsymbol{\epsilon})$

$\mathbf{P} = 2\mu\boldsymbol{\epsilon} + \lambda \mathrm{tr}(\boldsymbol{\epsilon})\mathbf{I}$

✓ Linear force-position relation Computationally inexpensive **X** Bad for large deformations **X** Not rotationally invariant

[Source: Müller et al, "Stable real-time deformations", 2002]

- $= \frac{1}{2} (\mathbf{F} + \mathbf{F}^{\mathsf{T}}) \mathbf{I}$ $= \mu \|\boldsymbol{\epsilon}\|_{\mathsf{F}}^{2} + \frac{\lambda}{2} \operatorname{tr}^{2}(\boldsymbol{\epsilon})$
- $\mathbf{P} = 2\mu\mathbf{\epsilon} + \lambda \mathrm{tr}(\mathbf{\epsilon})\mathbf{I}$

ear force-position relation
nputationally inexpensive
I for large deformations
rotationally invariant

Stress-energy relation

$\mathbf{P} := \frac{\partial \Psi(\mathbf{F})}{\partial \mathbf{F}}$

Linear elasticity

 $\mathbf{\epsilon} = \frac{1}{2} (\mathbf{F} + \mathbf{F}^{\mathsf{T}}) - \mathbf{I}$ $\Psi = \mu \|\boldsymbol{\epsilon}\|_{\mathrm{F}}^2 + \frac{\lambda}{2} \mathrm{tr}^2(\boldsymbol{\epsilon})$

$\mathbf{P} = 2\mu\boldsymbol{\epsilon} + \lambda \mathrm{tr}(\boldsymbol{\epsilon})\mathbf{I}$

✓ Linear force-position relation Computationally inexpensive **X** Bad for large deformations **X** Not rotationally invariant

Linear elasticity

 $\mathbf{\epsilon} = \frac{1}{2} (\mathbf{F} + \mathbf{F}^{\mathsf{T}}) - \mathbf{I}$ $\Psi = \mu \|\boldsymbol{\epsilon}\|_{\mathrm{F}}^2 + \frac{\lambda}{2} \mathrm{tr}^2(\boldsymbol{\epsilon})$ $\mathbf{P} = 2\mu\boldsymbol{\epsilon} + \lambda \mathrm{tr}(\boldsymbol{\epsilon})\mathbf{I}$

✓ Linear force-position relation ✓ Computationally inexpensive **X** Bad for large deformations X Not rotationally invariant

Corotated linear elasticity

$\mathbf{E} = \mathbf{S} - \mathbf{I} \quad [\mathbf{F} = \mathbf{RS}]$ $\Psi = \mu \|\mathbf{E}_{\mathbf{r}}\|_{\mathbf{F}}^2 + \frac{\lambda}{2} \mathrm{tr}^2(\mathbf{E}_{\mathbf{r}})$

$\mathbf{P} = \mathbf{R} \left[2\mu \mathbf{E}_{\mathbf{r}} + \lambda tr(\mathbf{E}_{\mathbf{r}}) \mathbf{I} \right]$

✓ Rotationally invariant ✓ Survives collapse & inversion **X** Polar decomposition overhead **X** Inaccurate volume preservation

Corotated linear elasticity

 $\mathbf{E} = \mathbf{S} - \mathbf{I} \quad [\mathbf{F} = \mathbf{RS}]$ $\Psi = \mu \|\mathbf{E}_{\mathbf{r}}\|_{\mathbf{F}}^2 + \frac{\lambda}{2} \mathrm{tr}^2(\mathbf{E}_{\mathbf{r}})$

$\mathbf{P} = \mathbf{R} \left[2\mu \mathbf{E}_{\mathbf{r}} + \lambda tr(\mathbf{E}_{\mathbf{r}}) \mathbf{I} \right]$

✓ Rotationally invariant ✓ Survives collapse & inversion **X** Polar decomposition overhead **X** Inaccurate volume preservation

St. Venant-Kirchhoff material

$\mathbf{E} = \frac{1}{2} (\mathbf{F}^{\mathsf{T}} \mathbf{F} - \mathbf{I})$ $\Psi = \mu \|\mathbf{E}\|_{\mathrm{F}}^2 + \frac{\lambda}{2} \mathrm{tr}^2(\mathbf{E})$

$\mathbf{P} = \mathbf{F} \left[2\mu \mathbf{E} + \lambda tr(\mathbf{E}) \mathbf{I} \right]$

✓ Rotationally invariant

✓No polar decomposition needed

X Weak resistance to compression

X Inaccurate volume preservation

Corotated

 $\mathbf{E} = \mathbf{S}$ - $\Psi = \mu \| \mathbf{E}$

 $\mathbf{P} = \mathbf{R} [2\mu]$

✓ Rotationally ✓ Survives co X Polar decor X Inaccurate

[Source: Müller et al, "Stable real-time deformations", 2002]

St. Venant-Kirchhoff material

$\mathbf{E} = \frac{1}{2} (\mathbf{F}^{\mathsf{T}} \mathbf{F} - \mathbf{I})$ $\Psi = \mu \|\mathbf{E}\|_{\mathrm{F}}^2 + \frac{\lambda}{2} \mathrm{tr}^2(\mathbf{E})$

$\mathbf{P} = \mathbf{F} \left[2\mu \mathbf{E} + \lambda tr(\mathbf{E}) \mathbf{I} \right]$

VRotationally invariant

VNo polar decomposition needed

X Weak resistance to compression

X Inaccurate volume preservation

Corotated linear elasticity

 $\mathbf{E} = \mathbf{S} - \mathbf{I} \quad [\mathbf{F} = \mathbf{RS}]$ $\Psi = \mu \|\mathbf{E}_{\mathbf{r}}\|_{\mathbf{F}}^2 + \frac{\lambda}{2} \mathrm{tr}^2(\mathbf{E}_{\mathbf{r}})$

$\mathbf{P} = \mathbf{R} \left[2\mu \mathbf{E}_{\mathbf{r}} + \lambda tr(\mathbf{E}_{\mathbf{r}}) \mathbf{I} \right]$

✓ Rotationally invariant ✓ Survives collapse & inversion **X** Polar decomposition overhead **X** Inaccurate volume preservation

St. Venant-Kirchhoff material

$\mathbf{E} = \frac{1}{2} (\mathbf{F}^{\mathsf{T}} \mathbf{F} - \mathbf{I})$ $\Psi = \mu \|\mathbf{E}\|_{\mathrm{F}}^2 + \frac{\lambda}{2} \mathrm{tr}^2(\mathbf{E})$

$\mathbf{P} = \mathbf{F} \left[2\mu \mathbf{E} + \lambda tr(\mathbf{E}) \mathbf{I} \right]$

✓ Rotationally invariant

✓No polar decomposition needed

X Weak resistance to compression

X Inaccurate volume preservation

St. Venant-Kirchhoff material

$\mathbf{E} = \frac{1}{2} (\mathbf{F}^{\mathsf{T}} \mathbf{F} - \mathbf{I})$ $\Psi = \mu \|\mathbf{E}\|_{\mathrm{F}}^2 + \frac{\lambda}{2} \mathrm{tr}^2(\mathbf{E})$ $\mathbf{P} = \mathbf{F} \left[2\mu \mathbf{E} + \lambda tr(\mathbf{E}) \mathbf{I} \right]$

✓ Rotationally invariant ✓ No polar decomposition needed **X** Weak resistance to compression **X** Inaccurate volume preservation

Neohookean elasticity

- $I_1 = ||\mathbf{F}||_F^2, \quad J = \det \mathbf{F}$
- $\Psi = \frac{\mu}{2}(I_1 3) \mu \log(J) + \frac{\lambda}{2} \log^2(J)$
 - $\mathbf{P} = \mu(\mathbf{F} \mathbf{F}^{-\mathsf{T}}) + \lambda \log(\mathbf{J})\mathbf{F}^{-\mathsf{T}}$

Accurate volume preservation ✓ Discourages collapse/inversion **X** Undefined when inverted X Numerically stiff w/compression

Nacha kean elasticity

 $(-T) + \lambda \log(J) \mathbf{F}^{-T}$

ume preservation collapse/inversion hen inverted

St. Venant-Kirchhoff material

$\mathbf{E} = \frac{1}{2} (\mathbf{F}^{\mathsf{T}} \mathbf{F} - \mathbf{I})$ $\Psi = \mu \|\mathbf{E}\|_{\mathrm{F}}^2 + \frac{\lambda}{2} \mathrm{tr}^2(\mathbf{E})$ $\mathbf{P} = \mathbf{F} \left[2\mu \mathbf{E} + \lambda tr(\mathbf{E}) \mathbf{I} \right]$

✓ Rotationally invariant ✓ No polar decomposition needed **X** Weak resistance to compression **X** Inaccurate volume preservation

Neohookean elasticity

- $I_1 = ||\mathbf{F}||_F^2, \quad J = \det \mathbf{F}$
- $\Psi = \frac{\mu}{2}(I_1 3) \mu \log(J) + \frac{\lambda}{2} \log^2(J)$
 - $\mathbf{P} = \mu(\mathbf{F} \mathbf{F}^{-\mathsf{T}}) + \lambda \log(\mathbf{J})\mathbf{F}^{-\mathsf{T}}$

Accurate volume preservation ✓ Discourages collapse/inversion **X** Undefined when inverted X Numerically stiff w/compression

Additional information on lecture notes

and the common isotropic invariants VPDE form of elasticity equations Stress formulas for general isotropic materials

- Extended discussion of rotational invariance, isotropy
- Benefits and drawbacks of individual material models