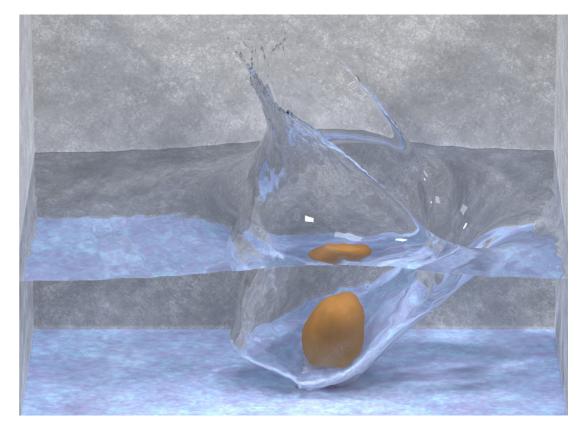
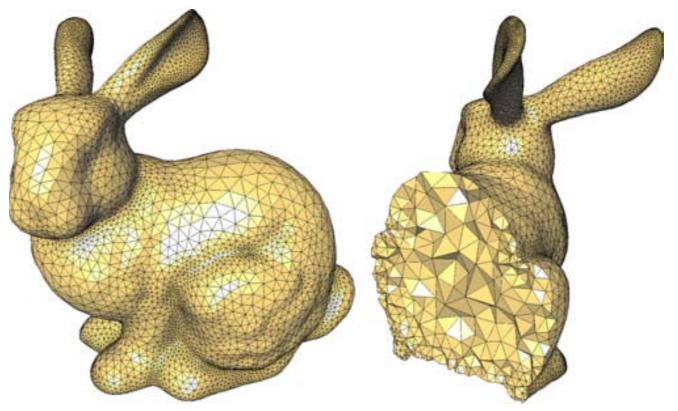
Discrete representations of geometric objects:

Features, data structures and adequacy for dynamic simulation.

Part I: Solid geometry





Upcoming topics

- Describe a number of discrete representations used to encode geometric objects for modeling and simulation purposes
 - Meshes
 - Implicit surfaces
 - Point clouds
- Discuss the features of these representations that are specific to simulation, as opposed to general geometry processing and rendering
 - Objects need to support dynamic deformation
 - Volumetric objects need internal structure
 - Discrete geometry needs to be simulation-quality (well-conditioned)

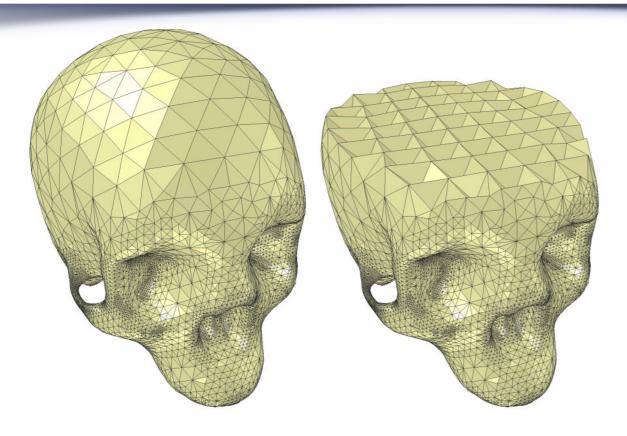
Upcoming topics

- Explain the features that make one representation better than another for certain tasks (e.g. meshes vs. implicit surfaces)
 - Static vs. dynamic topology (connectivity)
 - "Shape memory" and deformation drift
 - Regular, structured storage
 - Efficiency of geometric queries

Upcoming topics

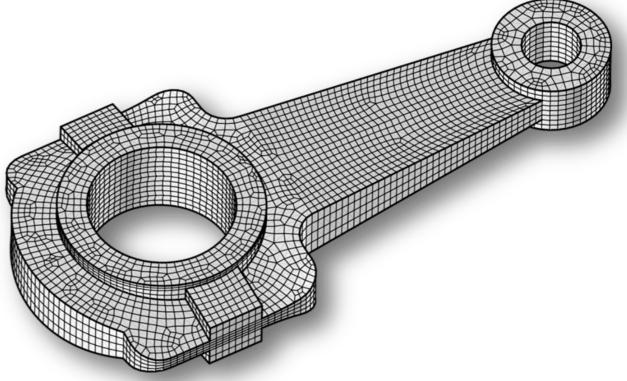
- Outline conversion methods between different geometric representations, e.g.
 - Tetrahedral meshing
 - Marching cubes, marching tetrahedra
 - MLS surface reconstruction, etc.

Next topic: Introduction to PhysBAM data structures and scene layout

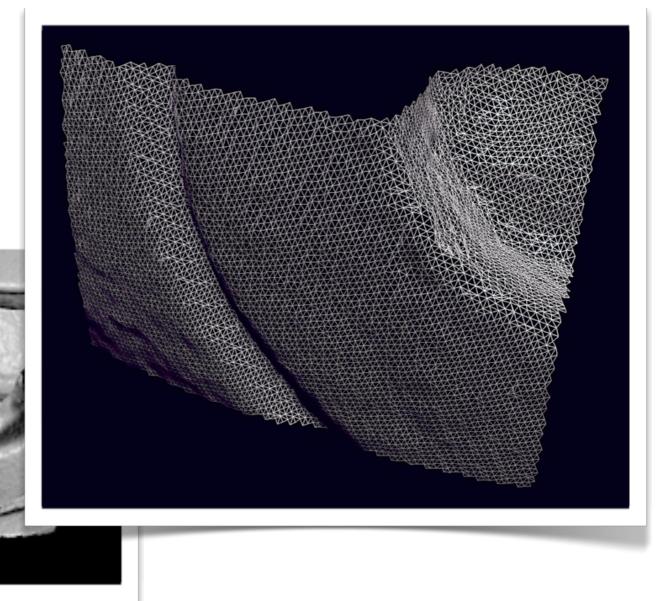


Tetrahedral meshes (volumetric)

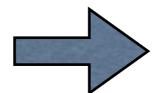
Hexahedral meshes (volumetric)



Triangular surface meshes (not volumetric)



"Meshed" geometry (or just "geometry")

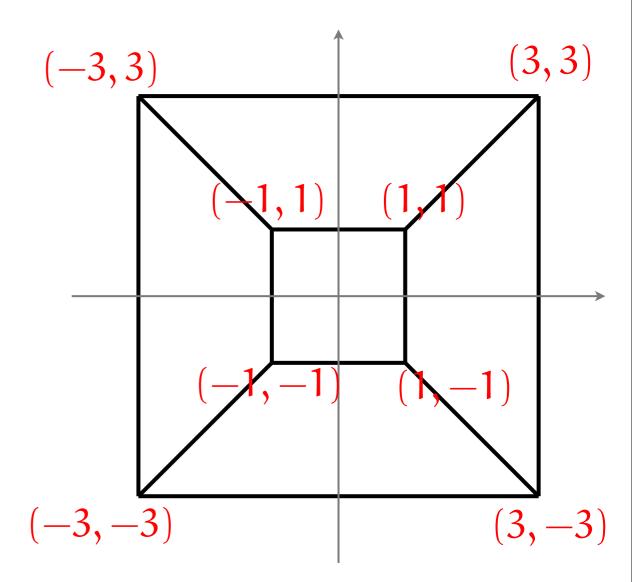


Particles

+

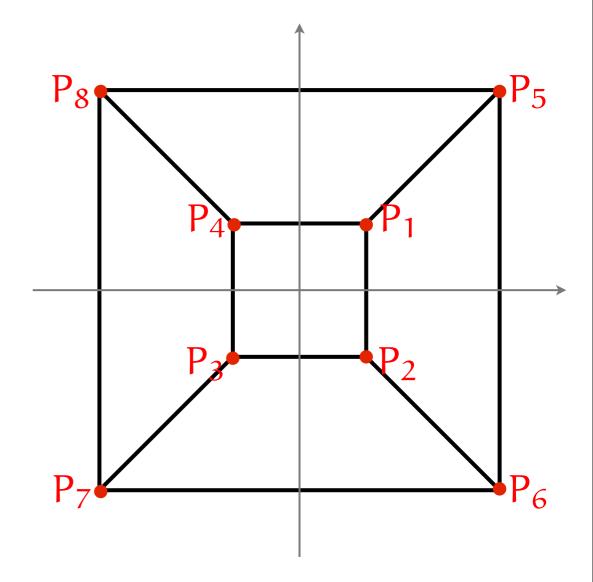
Mesh (topology/connectivity)

Example:
A quadrilateral mesh

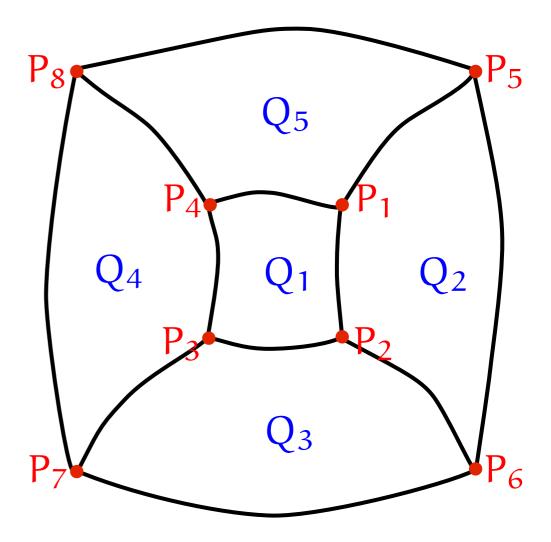


Particle data structure

Particle ID	Position
Pı	(1, 1)
P_2	(1,-1)
P ₃	(-1, -1)
P ₄	(-1, 1)
P ₅	(3, 3)
P ₆	(3, -3)
P ₇	(-3, -3)
P ₈	(-3, 3)

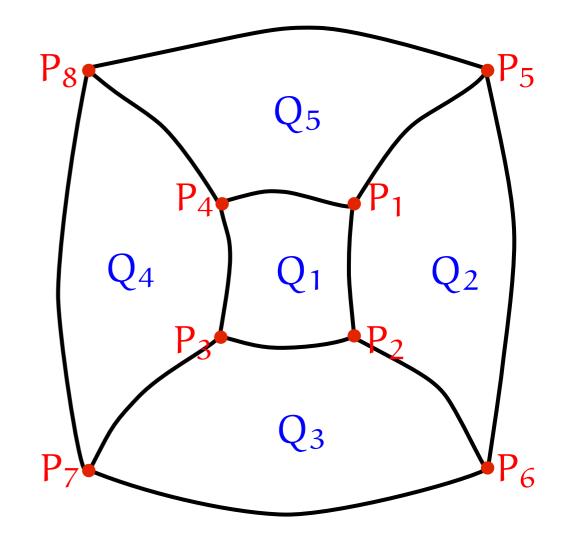


Mesh data structure

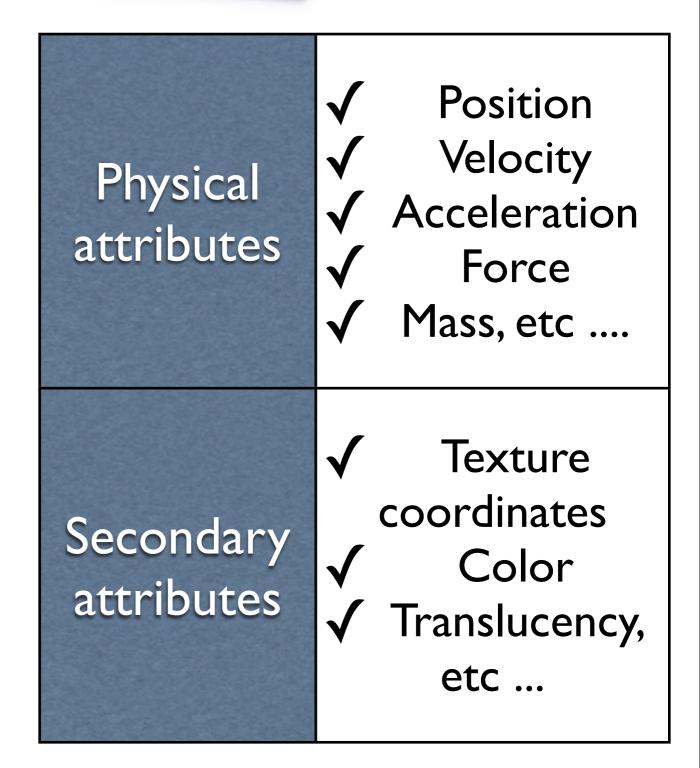


Mesh data structure

Element (Quad) ID	Vertices
Qı	(P_1, P_2, P_3, P_4)
Q ₂	(P_1, P_5, P_6, P_2)
Q ₃	(P_2, P_6, P_7, P_3)
Q ₄	(P ₃ , P ₇ , P ₈ , P ₄)
Q ₅	(P_4, P_8, P_5, P_1)



Why "particles"? (and not "points", "vertices", ...)



Particles: Implementation #1

```
struct Particle{
   float position[3];
   float velocity[3];
   float mass;
};
struct Particle particle array[N];
```

Particles: Implementation #2

```
struct Particles{
  float positions[N][3];
  float velocities[N][3];
  float masses[N];
} particle_array;
```

Particles: Implementation #1

```
float position[3];
float velocity[3];
float mass;
};

struct Particle particle array[N];
```

Implementation #1 - BENEFITS

Particles are self-contained

struct Particle{

- Easy to construct subsets of particles
- Can extend to accommodate particles with different attributes, on the same array

Particles: Implementation #2

```
struct Particles{
  float positions[N][3];
  float velocities[N][3];
  float masses[N];
} particle_array;
```

Particles: Implementation #1

Particles: Implementation #2

```
struct Particle{
  float position[3];
  float velocity[3];
  float mass;
};
```

```
struct Particles{
  float positions[N][3];
  float velocities[N][3];
  float masses[N];
} particle_array;
```

Implementation #2 - BENEFITS

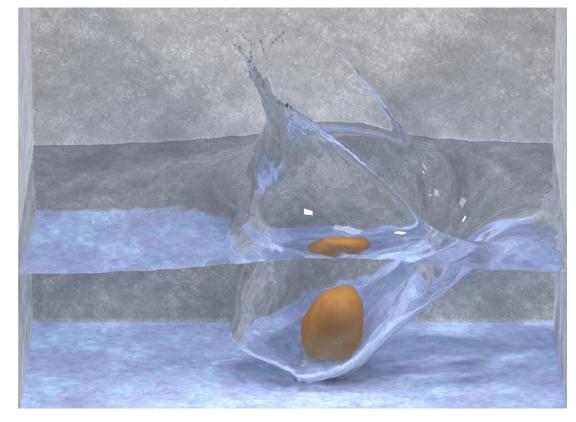
- Simulation algorithms typically stream different properties during different passes - separation improves bandwidth
- Easy to construct subsets of attributes (e.g. for visualization)

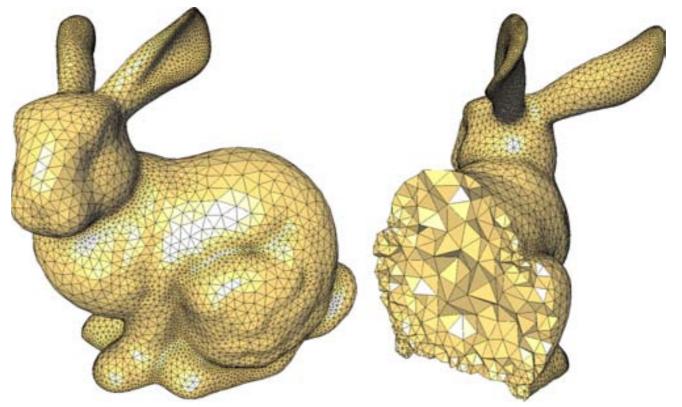
- Meshed objects are composed of 2 parts:
 - An array of particles (with "attributes" such as position, velocity, mass, etc)
 - A mesh data structure, encoded as an array of segments, triangles, tetrahedra, etc (whose vertices are the predefined particles)
- Topological queries & Derivative structures
 - √ Can be precomputed, do not need to store explicitly
- Geometrical queries (collisions, inside/outside tests)
 - √ Cannot be precomputed, since they depend on the particle attribute values
 - √ Potentially expensive to determine

Discrete representations of geometric objects:

Features, data structures and adequacy for dynamic simulation.

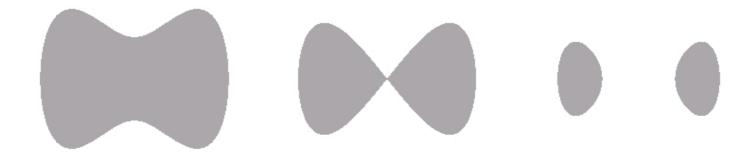
Part II: Levelsets & implicit surfaces



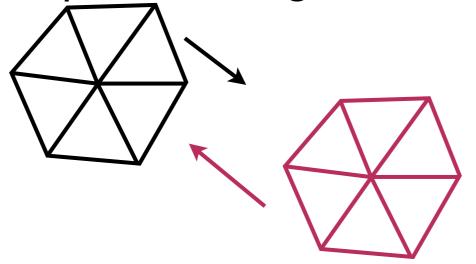


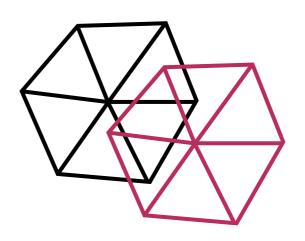
- Motivation
 - √ Accelerated geometric queries for problems such as:
 - \rightarrow Is a point (x*,y*) inside the object?
 - ⇒ Is a point (x^*,y^*) within a distance of d^* from the object surface?
 - \rightarrow What is the point on the surface which is *closest* to the query point (x^*,y^*) ?

- Motivation
 - √ Easy modeling of motions that involve topological change, e.g. shapes splitting or merging

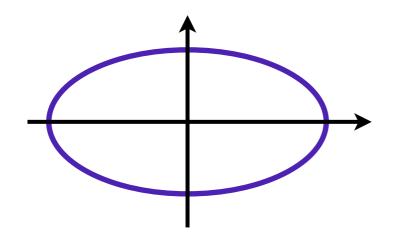


✓ Such operations are difficult to encode with meshes, since they don't "split" or "merge" unless we force them to





- Familiar representations address some of these demands:
 - √ e.g. Analytic equations
 - For an ellipsis:

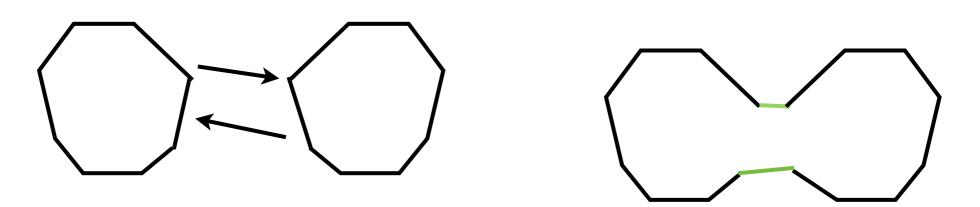


$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

→ Easy inside/outside tests

$$\frac{x_*^2}{a^2} + \frac{y_*^2}{b^2} < 1 \Leftrightarrow (x_*, y_*) \text{ is inside}$$

- Familiar representations address some of these demands:
 - √ Describe a closed region via its boundary; split and reconnect when necessary



→ This may be tractable in isolated cases, but very cumbersome and impractical for more complicated cases, and with 3dimensional surfaces

The level-set concept

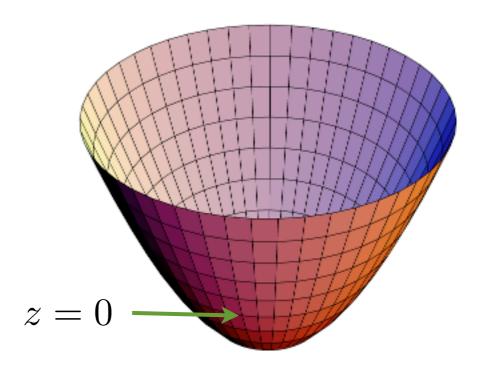
 Represent a curve in 2D (or, a surface in 3D) as the zero isocontour of a (continuous) function, i.e.

$$C = \{(x.y) \in \mathbf{R}^2 : \phi(x,y) = 0\}$$

e.g.

circle
$$x^2 + y^2 = R^2 \equiv \{(x, y) : \phi(x, y) = 0\}$$

 $where \ \phi(x, y) = x^2 + y^2 - R^2$



The level-set concept

- This representation may seem redundant (we store information everywhere, just to capture a curve), but it conveys important benefits:
 - Containment queries

Is
$$(x_*, y_*)$$
 inside $C? \Leftrightarrow \phi(x_*, y_*) < 0$

→ Composability

$$\begin{array}{c} \phi_1(x,y) \text{ encodes } \Omega_1 \\ \phi_2(x,y) \text{ encodes } \Omega_2 \end{array} \right\} \Rightarrow \begin{array}{c} \max(\phi_1,\phi_2) \text{ encodes } \Omega_1 \cap \Omega_2 \\ \max(\phi_1,\phi_2) \text{ encodes } \Omega_1 \cup \Omega_2 \end{array}$$

→ We model both shape & topology change by simply varying the level set function

