
• Point clouds :  why do we use them?

• Many scanning devices produce them

• Simplest graphics primitive to argue about

• Can render directly (do we?)

• Can manipulate directly (if desired)

• What are other geometry representations?
• Splines?

• Meshes?

• Implicit surfaces?

Highlights
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• Describe a number of discrete representations used to encode 
geometric objects for modeling and simulation purposes
• Meshes

• Implicit surfaces

• Point clouds

• Explain the features that make one representation better than 
another for certain tasks (e.g. meshes vs. implicit surfaces)
• Static vs. dynamic topology (connectivity)

• “Shape memory” and deformation drift

• Regular, structured storage

• Efficiency of geometric queries

Highlights



Geometry representations

sweeps we end up only optimizing roughly 10% of the
nodes, and in the final sweeps we optimize 30%-50%
of the nodes.

While more efficient gradient methods may be used
for the nodal optimization, we found a simple pattern
search (see e.g. [68]) to be attractive for its robust-
ness, simplicity of implementation, and flexibility in
easily accommodating any quality metric. For inte-
rior nodes we used seven well spread-out directions in
the pattern search. We implemented the normal direc-
tion constraint on boundary nodes simply by choosing
five equally spaced pattern directions orthogonal to
the average mesh normal at the node. The initial step
size of the pattern search was .05 times the minimum
distance to the opposite triangle in any tetrahedron
incident on the node (to avoid wasting time on steps
that crush elements). After four “strikes” (searches at
a given step size that yielded no improvement in qual-
ity, causing the step size to be halved) we move to the
next node. For interior nodes we use as a quality met-
ric the minimum of a

L + 1
4 cos(θM) over the incident

tetrahedra, where a is the minimum altitude length,
L is the maximum edge length, and θM is the maxi-
mum angle between face normals. For surface nodes
we add to this a measure of the quality of the incident
boundary triangles, the minimum of at

Lt
+ 1

ψM
where at

is the minimum triangle altitude, Lt is the maximum
triangle edge, and ψM is the maximum triangle angle.
We found that including the extra terms beyond the
tetrahedron aspect ratios helped guide the optimiza-
tion out of local minima and actually resulted in better
aspect ratios.

9. RESULTS

We demonstrate several examples of tetrahedral
meshes that were generated with our algorithm. The
results for all three compression techniques are compa-
rable, with the FEM simulations taking slightly longer

Figure 5: Tetrahedral mesh (left) and cutaway
view (right) of a cranium (80K elements).

Figure 6: Tetrahedral mesh (left) and cutaway
view (right) of a model Buddha (800K ele-
ments).

(ranging from a few minutes to a few hours on the
largest meshes) than the mass spring methods, but
producing a slightly higher quality mesh. For exam-
ple, the maximum aspect ratio of a tetrahedron in the
cranium generated with finite elements is 6.5, whereas
the same mesh has a maximum aspect ratio of 6.6
when the final compression is done using a mass spring
model. Mass spring networks have a long tradition in
mesh generation, but a finite element approach offers
greater flexibility and robustness that we anticipate
will allow better three-dimensional mesh generation in
the future. Currently the fastest method is the opti-
mization based compression, roughly faster by a factor
of ten.

We track a number of quality measures including the
maximum aspect ratio (defined as the tetrahedron’s
maximum edge length divided by its minimum alti-
tude), minimum dihedral angle, and maximum dihe-
dral angle during the compression phase. The max-
imum aspect ratios of our candidate mesh start at
about 3.5 regardless of the degree of adaptivity, em-
phasizing the desirability of our combined red green
adaptive BCC approach. This number comes from the
green tetrahedra (the red tetrahedra have aspect ra-
tios of

√
2). In the more complicated models, the worst

aspect ratio in the mesh tends to increase to around
6–8 for the physics based compression methods and to
around 5–6 for the optimization based compression.

For the cranium model, the physics based compression
methods gave a maximum aspect ratio of 6.5 and aver-

Tetrahedral meshes 
(volumetric)

Hexahedral meshes 
(volumetric)



Geometry representations

Triangular surface meshes 
(not volumetric)



Explicit meshes

Example: 
A quadrilateral mesh

(-3, 3)

(-3,-3) (3,-3)

(3, 3)

(-1,-1)

(-1, 1) (1, 1)

(1,-1)



Explicit meshes

Vertex ID Position
P1 (1, 1)
P2 (1, -1)
P3 (-1, -1)
P4 (-1, 1)
P5 (3, 3)
P6 (3, -3)
P7 (-3, -3)
P8 (-3, 3)

Vertex data structure

P1

P2P3

P4

P5

P6P7

P8



Explicit meshes

Mesh data structure

P1

P2P3

P4

P5

P6P7

P8

Q1 Q2

Q3

Q4

Q5

Element
(Quad) ID

Vertices

Q1 (P1, P2, P3, P4)

Q2 (P1, P5, P6, P2)

Q3 (P2, P6, P7, P3)

Q4 (P3, P7, P8, P4)

Q5 (P4, P8, P5, P1)



Implicit surfaces - levelsets

• Motivation

✓ Accelerated geometric queries for problems such as:

➡ Is a point (x*,y*) inside the object?

➡ Is a point (x*,y*) within a distance of d* from the object 
surface?

➡ What is the point on the surface which is closest to the 
query point (x*,y*)?



Implicit surfaces - levelsets

• Motivation

✓ Easy modeling of motions that involve topological change, e.g. 
shapes splitting or merging

✓ Such operations are difficult to encode with meshes, since they 
don’t “split” or “merge” unless we force them to

✓  



Implicit surfaces - levelsets

• Familiar representations address some of these 
demands:

✓ e.g. Analytic equations

➡ For an ellipsis:

➡ Easy inside/outside tests

x

2

a

2
+

y

2

b

2
= 1

x

2
⇤

a

2
+

y

2
⇤
b

2
< 1 , (x⇤, y⇤) is inside



Implicit surfaces - levelsets

• Familiar representations address some of these demands:

✓ Describe a closed region via its boundary; split and 
reconnect when necessary

➡ This may be tractable in isolated cases, but very cumbersome 
and impractical for more complicated cases, and with 3-
dimensional surfaces  
 



Implicit surfaces - levelsets

•Represent a curve in 2D (or, a surface in 3D) as the 
zero isocontour of a (continuous) function, i.e. 
 
 
e.g. 
 
 
 
 
 

C = {(x.y) 2 R2 : �(x, y) = 0}

circle x

2 + y

2 = R

2 ⌘ {(x, y) : �(x, y) = 0}

where �(x, y) = x

2 + y

2 �R

2

z = 0



Implicit surfaces - levelsets

• This representation may seem redundant (we store 
information everywhere, just to capture a curve), but it 
conveys important benefits:
➡  Containment queries 

 

➡Composability 
 
 

➡We model both shape & topology change by simply  
varying the level set function  

Is (x⇤, y⇤) inside C? , �(x⇤, y⇤) < 0

�1(x, y) encodes ⌦1

�2(x, y) encodes ⌦2

�
) max(�1,�2) encodes ⌦1 \ ⌦2

max(�1,�2) encodes ⌦1 [ ⌦2



Implicit surfaces - levelsets



Contouring - marching cubes


