Highlights

- Point clouds : why do we use them?
- Many scanning devices produce them
- Simplest graphics primitive to argue about
- Can render directly (do we?)
- Can manipulate directly (if desired)
- What are other geometry representations?
- Splines?
- Meshes?
- Implicit surfaces?

Highlights

Highlights

Highlights

- Describe a number of discrete representations used to encode geometric objects for modeling and simulation purposes
- Meshes
- Implicit surfaces
- Point clouds
- Explain the features that make one representation better than another for certain tasks (e.g. meshes vs. implicit surfaces)
- Static vs. dynamic topology (connectivity)
- "Shape memory" and deformation drift
- Regular, structured storage
- Efficiency of geometric queries

Geometry representations

Tetrahedral meshes (volumetric)

Hexahedral meshes (volumetric)

Geometry representations

Triangular surface meshes (not volumetric)

Explicit meshes

Example:
A quadrilateral mesh

Explicit meshes

Vertex data structure

Vertex ID	Position
P_{1}	(I, I)
P_{2}	$(I,-I)$
P_{3}	$(-I,-I)$
P_{4}	$(-I, I)$
P_{5}	$(3,3)$
P_{6}	$(3,-3)$
P_{7}	$(-3,-3)$
P_{8}	$(-3,3)$

Explicit meshes

Mesh data structure

Element (Quad) ID	Vertices
Q_{1}	$\left(\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}, \mathrm{P}_{4}\right)$
Q_{2}	$\left(\mathrm{P}_{1}, \mathrm{P}_{5}, \mathrm{P}_{6}, \mathrm{P}_{2}\right)$
Q_{3}	$\left(\mathrm{P}_{2}, \mathrm{P}_{6}, \mathrm{P}_{7}, \mathrm{P}_{3}\right)$
Q_{4}	$\left(\mathrm{P}_{3}, \mathrm{P}_{7}, \mathrm{P}_{8}, \mathrm{P}_{4}\right)$
Q_{5}	$\left(\mathrm{P}_{4}, \mathrm{P}_{8}, \mathrm{P}_{5}, \mathrm{P}_{1}\right)$

Implicit surfaces - levelsets

- Motivation
\checkmark Accelerated geometric queries for problems such as:
\Rightarrow Is a point $\left(x^{*}\right.$, $\left.^{*}\right)$ inside the object?
\Rightarrow Is a point $\left(x^{*}, y^{*}\right)$ within a distance of d* from the object surface?
\Rightarrow What is the point on the surface which is closest to the query point (x^{*}, y^{*})?

Implicit surfaces - levelsets

- Motivation
\checkmark Easy modeling of motions that involve topological change, e.g. shapes splitting or merging

\checkmark Such operations are difficult to encode with meshes, since they don't "split" or "merge" unless we force them to

Implicit surfaces - levelsets

- Familiar representations address some of these demands:
\checkmark e.g. Analytic equations
\Rightarrow For an ellipsis:

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

\Rightarrow Easy inside/outside tests

$$
\frac{x_{*}^{2}}{a^{2}}+\frac{y_{*}^{2}}{b^{2}}<1 \Leftrightarrow\left(x_{*}, y_{*}\right) \text { is inside }
$$

Implicit surfaces - levelsets

- Familiar representations address some of these demands:
\checkmark Describe a closed region via its boundary; split and reconnect when necessary

$\boldsymbol{\square}$ This may be tractable in isolated cases, but very cumbersome and impractical for more complicated cases, and with 3dimensional surfaces

Implicit surfaces - levelsets

- Represent a curve in 2D (or, a surface in 3D) as the zero isocontour of a (continuous) function, i.e.

$$
\mathcal{C}=\left\{(x . y) \in \mathbf{R}^{2}: \phi(x, y)=0\right\}
$$

e.g.
circle $x^{2}+y^{2}=R^{2} \equiv\{(x, y): \phi(x, y)=0\}$
where $\phi(x, y)=x^{2}+y^{2}-R^{2}$

Implicit surfaces - levelsets

- This representation may seem redundant (we store information everywhere, just to capture a curve), but it conveys important benefits:
\Rightarrow Containment queries

$$
\text { Is }\left(x_{*}, y_{*}\right) \text { inside } \mathcal{C} ? \Leftrightarrow \phi\left(x_{*}, y_{*}\right)<0
$$

\Rightarrow Composability
$\left.\begin{array}{l}\phi_{1}(x, y) \text { encodes } \Omega_{1} \\ \phi_{2}(x, y) \text { encodes } \Omega_{2}\end{array}\right\} \Rightarrow \begin{aligned} & \max \left(\phi_{1}, \phi_{2}\right) \text { encodes } \Omega_{1} \cap \Omega_{2} \\ & \max \left(\phi_{1}, \phi_{2}\right) \text { encodes } \Omega_{1} \cup \Omega_{2}\end{aligned}$
$\boldsymbol{\omega}$ We model both shape \& topology change by simply varying the level set function

Contouring - marching cubes

