

- Point clouds : why do we use them?
 - Many scanning devices produce them
 - Simplest graphics primitive to argue about
 - Can render directly (do we?)
 - Can manipulate directly (if desired)
- What are other geometry representations?
 - Splines?
 - Meshes?
 - Implicit surfaces?

Highlights

- Describe a number of discrete representations used to encode geometric objects for modeling and simulation purposes
 - Meshes
 - Implicit surfaces
 - Point clouds
- Explain the features that make one representation better than another for certain tasks (e.g. meshes vs. implicit surfaces)
 - Static vs. dynamic topology (connectivity)
 - "Shape memory" and deformation drift
 - Regular, structured storage
 - Efficiency of geometric queries

Geometry representations

Tetrahedral meshes (volumetric)

Hexahedral meshes (volumetric)

Geometry representations

Triangular surface meshes (not volumetric)

Explicit meshes

Example: **A quadrilateral mesh**

Explicit meshes

Vertex data structure

Vertex ID	Position
Pı	(I,I)
P ₂	(, -)
P ₃	(-1, -1)
P ₄	(-1,1)
P 5	(3, 3)
P ₆	(3, -3)
P ₇	(-3, -3)
P ₈	(-3, 3)

Explicit meshes

Mesh data structure

Element (Quad) ID	Vertices
Qı	(P ₁ , P ₂ , P ₃ , P ₄)
Q ₂	(P_1, P_5, P_6, P_2)
Q ₃	(P ₂ , P ₆ , P ₇ , P ₃)
Q4	(P ₃ , P ₇ , P ₈ , P ₄)
Q 5	(P_4, P_8, P_5, P_1)

- Motivation
 - \checkmark Accelerated geometric queries for problems such as:
 - \blacksquare Is a point (x*,y*) inside the object?
 - ➡ Is a point (x*,y*) within a distance of d* from the object surface?
 - ➡ What is the point on the surface which is closest to the query point (x*,y*)?

- Motivation
 - ✓ Easy modeling of motions that involve topological change, e.g. shapes splitting or merging

✓ Such operations are difficult to encode with meshes, since they don't "split" or "merge" unless we force them to

- Familiar representations address some of these demands:
 - ✓ e.g. Analytic equations
 - ➡ For an ellipsis:

$$\frac{x_*^2}{a^2} + \frac{y_*^2}{b^2} < 1 \Leftrightarrow (x_*, y_*) \text{ is inside}$$

- Familiar representations address some of these demands:
 - ✓ Describe a closed region via its boundary; split and reconnect when necessary

This may be tractable in isolated cases, but very cumbersome and impractical for more complicated cases, and with 3dimensional surfaces

• Represent a curve in 2D (or, a surface in 3D) as the zero isocontour of a (continuous) function, i.e.

$$\mathcal{C} = \{(x.y) \in \mathbf{R}^2 : \phi(x,y) = 0\}$$

e.g.

- This representation may seem redundant (we store information everywhere, just to capture a curve), but it conveys important benefits:
 - ➡ Containment queries

Is (x_*, y_*) inside $\mathcal{C}? \Leftrightarrow \phi(x_*, y_*) < 0$

➡ Composability

 $\begin{array}{l} \phi_1(x,y) \text{ encodes } \Omega_1 \\ \phi_2(x,y) \text{ encodes } \Omega_2 \end{array} \end{array} \xrightarrow{} \begin{array}{l} \max(\phi_1,\phi_2) \text{ encodes } \Omega_1 \cap \Omega_2 \\ \max(\phi_1,\phi_2) \text{ encodes } \Omega_1 \cup \Omega_2 \end{array} \\ \end{array} \\ \begin{array}{l} & \clubsuit \text{ We model both shape & topology change by simply} \\ \text{ varying the level set function} \end{array}$

Contouring - marching cubes

