SIGGRAPH2012

The 39th International Conference and Exhibition on Computer Graphics and Interactive Techniques

FEM Simulation of 3D Deformable Solids: A practitioner's guide to theory, discretization and model reduction

Part One : The classical FEM method and discretization methodology

Eftychios Sifakis
University of Wisconsin - Madison

Find the latest version of course notes at: www.femdefo. org

Introduction

What does this course aim to do?

$\sqrt{ }$ Give you a brief exposure to the concepts and methods associated with Finite Elements
\checkmark Provide a primer on continuum mechanics Give you enough insight to start implementing
$\sqrt{ }$ Encourage you to study further, and improve your understanding

Find the latest version of course notes at : www. femdefo. org

Introduction

How do graphics practitioners describe FEM methods?

... a way to model elastic bodies that provides more detail and fidelity than using mass-spring networks ...

> ... a simulation technique for deformable models represented by tetrahedral (or triangle) meshes ...
... a method for deriving the governing equations of 3D solids, based on the potential energy they store when deformed ...

Introduction

We associate FEM with

- The Galerkin-based discretization method (core concept)
- Continuum mechanics concepts (stress, strain, energy, etc.)
- Common material models (corotated, StVK, Neohookean, etc.)

Introduction

FEM: Just one possible method for solving partial differential equations (PDEs)

Finite Elements vs. Finite Differences (the executive summary) :
Finite Differences replace the differential equation with an approximate algebraic expression

Finite Elements replace the solution with a parametric approximation, and then compute the best parameter values

FEM vs. Finite Differences

Example : The Poisson equation

Problem statement:

$$
\begin{aligned}
f^{\prime \prime}(x) & =2 \quad x \in(0,3) \\
f(0) & =-2 \\
f(3) & =1
\end{aligned}
$$

Solution:

$$
f(x)=x^{2}-2 x-2
$$

FEM vs. Finite Differences

Example : The Poisson equation

Using Finite Differences:

i. Introduce a number of data points
$\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right), x_{k}:=x_{0}+k h$

FEM vs. Finite Differences

Example : The Poisson equation

Using Finite Differences:

i. Introduce a number of data points
$\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right), \quad x_{k}:=x_{0}+k h$
ii. Approximate the PDE with a finite difference formula at each point

$$
2=f^{\prime \prime}\left(x_{k}\right) \approx \frac{y_{k-1}-2 y_{k}+y_{k+1}}{h^{2}}
$$

iii.Solve all FD equations as a system

FEM vs. Finite Differences

Example : The Poisson equation

Using Finite Elements:

i. Define a family of candidate functions (which can approximate the solution)

- Piecewise linear polynomials
- Splines
- etc.

FEM vs. Finite Differences

Example : The Poisson equation

Using Finite Elements:

i. Define a family of candidate functions (which can approximate the solution)

- Piecewise linear polynomials
- Splines
- etc.
ii. Tune the available parameters to best approximate the solution to the PDE

FEM vs. Finite Differences

Example : The Poisson equation

Using Finite Elements:

i. Define a family of candidate functions (which can approximate the solution)

- Piecewise linear polynomials
- Splines
- etc.
ii. Tune the available parameters to best approximate the solution to the PDE

FEM vs. Finite Differences

FEM vs. Finite Differences

FEM vs. Finite Differences

$$
y(x):=\sum_{k} y_{k} \mathcal{N}_{k}(x)
$$

FEM vs. Finite Differences

$$
y(x):=\sum_{k} y_{k} \mathcal{N}_{k}(x)
$$

FEM vs. Finite Differences

FEM vs. Finite Differences

How do we find the optimal values $y_{0}, y_{1}, \ldots, y_{n}$?

$$
y(x):=\sum_{k} y_{k} \mathcal{N}_{k}(x)
$$

FEM vs. Finite Differences

How do we find the optimal values $y_{0}, y_{1}, \ldots, y_{n}$?
Can we substitute into the PDE?

$$
\begin{aligned}
f^{\prime \prime}(x) & =2 \quad x \in(0,3) \\
f(0) & =-2 \\
f(3) & =1
\end{aligned}
$$

$$
y(x):=\sum_{k} y_{k} \mathcal{N}_{k}(x)
$$

FEM vs. Finite Differences

How do we find the optimal values $y_{0}, y_{1}, \ldots, y_{n}$?
Can we substitute into the PDE?

$$
\begin{aligned}
f^{\prime \prime}(x) & =2 \quad x \in(0,3) \\
f(0) & =-2 \\
f(3) & =1
\end{aligned}
$$

$y(x)$ is not differentiable enough!

$$
y(x):=\sum_{k} y_{k} \mathcal{N}_{k}(x)
$$

FEM vs. Finite Differences

$$
\begin{aligned}
& \text { Solve ... } \\
& y^{\prime \prime}(x)=0 \\
& \longleftrightarrow \quad \mathrm{E}[\mathrm{y}]=\int\left|y^{\prime}(x)\right|^{2} \mathrm{~d} x \mathrm{Minimize} \ldots
\end{aligned}
$$

$E[y]=E\left(y_{1}, y_{2}, \ldots, y_{N}\right)$

Elasticity on a flexible string

$$
E=l_{0} \frac{k}{2}\left(\frac{l}{l_{0}}-1\right)^{2}
$$

FEM vs. Finite Differences

Finite Elements

\checkmark Works naturally with mesh-based discretizations \checkmark Produces numerically nice (sparse, symmetric, definite) discrete systems x Requires attention in choosing proper elements x Discretization is not as sparse as finite differences

Finite Differences

\checkmark Very straightforward to write \checkmark Generally produces sparse systems (often sparser than FEM)
x Accommodating irregular geometries (e.g. meshes) is nontrivial
x Need to be very careful to preserve useful numerical properties (e.g. symmetry)

SIGGRAPH2012

The 39th International Conference and Exhibition on Computer Graphics and Interactive Techniques

2D/3D Elasticity - The deformation map

2D/3D Elasticity - The deformation map

2D/3D Elasticity - The deformation map

Undeformed configuration (material coordinates)

Deformed configuration (spatial coordinates)

2D/3D Elasticity - The deformation map

2D/3D Elasticity - The deformation map

$\phi(X)$ is a map from $R^{\mathbf{3}}$ to $R^{\mathbf{3}}$

$$
\vec{x}=\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right)=\phi(\vec{X})=\left(\begin{array}{c}
x(X, Y, Z) \\
y(X, Y, Z) \\
z(X, Y, Z)
\end{array}\right)
$$

Deformation gradient: the Jacobian of $\phi(X)$

$$
\mathbf{F}:=\frac{\partial}{\partial \vec{X}} \phi(\vec{X})=\left(\begin{array}{lll}
\partial x / \partial X & \partial x / \partial Y & \partial x / \partial Z \\
\partial y / \partial X & \partial y / \partial Y & \partial y / \partial Z \\
\partial z / \partial X & \partial z / \partial Y & \partial z / \partial Z
\end{array}\right)
$$

2D/3D Elasticity - The deformation map

$\phi(X)$ is a map from R^{3} to R^{3}

$$
\vec{x}=\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right)=\phi(\vec{X})=\left(\begin{array}{c}
x(X, Y, Z) \\
y(X, Y, Z) \\
z(X, Y, Z)
\end{array}\right)
$$

Deformation gradient: the Jacobian of $\phi(X)$

$$
\text { F }:=\frac{\partial}{\partial \bar{X}} \phi(\vec{X})=\left(\begin{array}{lll}
\partial x / \partial X & \partial x / \partial Y & \partial x / \partial Z \\
\partial y / \partial X & \partial y / \partial Y & \partial y / \partial Z \\
\partial z / \partial X & \partial z / \partial Y & \partial z / \partial Z
\end{array}\right)
$$

$$
E=l_{0} \frac{k}{2}\left(\frac{l}{l_{0}}-1\right)^{2}
$$

2D/3D Elasticity - Deformation examples

Simple translation

$$
\begin{gathered}
\vec{x}=\phi(\vec{X})=\vec{X}+\vec{t} \\
\mathbf{F}=\mathbf{I}
\end{gathered}
$$

2D/3D Elasticity - Deformation examples

Uniform Scaling

$$
\begin{gathered}
\vec{x}=\phi(\vec{X})=\gamma \vec{X} \\
\mathbf{F}=\gamma \mathbf{I}
\end{gathered}
$$

2D/3D Elasticity - Deformation examples

Anisotropic scaling

$$
\begin{gathered}
\vec{x}=\phi\binom{X}{Y}=\binom{0.7 X}{2 Y} \\
\mathbf{F}=\left(\begin{array}{cc}
0.7 & 0 \\
0 & 2
\end{array}\right)
\end{gathered}
$$

2D/3D Elasticity - Deformation examples

Rotation only

$\vec{x}=\phi\binom{X}{Y}=\mathbf{R}_{45^{\circ}}\binom{X}{Y}$
$\mathbf{F}=\mathbf{R}_{45^{\circ}}$

2D/3D Elasticity - Strain measures

How do we quantify shape change?

2D/3D Elasticity - Strain measures

Strain measure: A tensor (matrix) which encodes the severity of shape change

$$
\mathbf{E}=\frac{1}{2}\left(\mathbf{F}^{\top} \mathbf{F}-\mathbf{I}\right)
$$

Green strain

$\epsilon=\frac{1}{2}\left(\mathbf{F}+\mathbf{F}^{\boldsymbol{T}}\right)-\mathbf{I}$| $\begin{array}{c}\text { Infinitesimal strain } \\ \text { (small strain tensor) }\end{array}$ |
| :---: |

Spring analogue:

$$
\left.E=l_{0} \frac{k}{2} \frac{l}{l_{0}}-1\right)^{2}
$$

2D/3D Elasticity - Force, traction and stress

Force density (f) :
Measures the internal elastic force per unit (undeformed) volume

Traction (τ) :

Measures the force per unit area on a material cross-section

2D/3D Elasticity - Force, traction and stress

Force density (f) :
Measures the internal elastic force per unit (undeformed) volume
What is the difference of force and traction?
Tractio
Mé

on

2D/3D Elasticity - Force, traction and stress

Force density (f) :
Measures the internal elastic force per unit (undeformed) volume
What is the difference of force and traction?
Tractio
Mé

2D/3D Elasticity - Force, traction and stress

Force density (f) :
Measures the internal elastic force per unit (undeformed) volume
What is the difference of force and traction?
Tractio
Mea

2D/3D Elasticity - Force, traction and stress

Force density (f) :
Measures the internal elastic force per unit (undeformed) volume

2D/3D Elasticity - Force, traction and stress

Force density (f) :
Measures the internal elastic force per unit (undeformed) volume

Traction (τ):

Measures the force per unit area on a material cross-section

$$
\vec{\tau}=\mathbf{P} \vec{n}
$$

2D/3D Elasticity - Force, traction and stress

Traction (τ):

Measures the force per unit area on a material cross-section

$$
\vec{\tau}=\mathbf{P} \vec{n}
$$

(Piola) Stress tensor (P):
A matrix that describes force response along different orientations

2D/3D Elasticity - Strain energy

Deformation Energy (E) [also known as strain energy] :
Potential energy stored in elastic body, as a result of deformation.

Energy density (Ψ):

Ratio of strain energy per unit (undeformed) volume.

$$
\begin{array}{cc}
\mathrm{E}[\phi]:=\int \Psi[\phi] \mathrm{d} \vec{X} & \text { Total potential energy } \\
\Psi[\phi]:=\Psi(\mathbf{F}) & \text { (for typical materials) }
\end{array}
$$

2D/3D Elasticity - Strain energy

Deformation Energy (E) [also known as Potential energy stored in elastic body,

Energy density (Ψ):
Ratio of strain energy per unit (undefor

$$
\begin{array}{cc}
\mathrm{E}[\phi]:=\int \Psi[\mathbf{F}] \mathrm{d} \overrightarrow{\mathrm{X}} & \text { Total potentic } \\
\Psi[\phi]:=\Psi(\mathbf{F}) & \text { (for typical m }
\end{array}
$$

Spring analogue:

2D/3D Elasticity - Material models

Linear elasticity

$$
\epsilon=\frac{1}{2}\left(\mathbf{F}+\mathbf{F}^{\mathrm{T}}\right)-\mathbf{I}
$$

$$
\Psi=\mu\|\epsilon\|_{F}^{2}+\frac{\lambda}{2} \operatorname{tr}^{2}(\epsilon)
$$

$$
\mathbf{P}=2 \mu \epsilon+\lambda \operatorname{tr}(\epsilon) \mathbf{I}
$$

\checkmark Linear force-position relation
\checkmark Computationally inexpensive
x Bad for large deformations

Corotated linear elasticity

$$
\mathbf{E}=\mathbf{S}-\mathbf{I} \quad[\mathbf{F}=\mathbf{R S}]
$$

$$
\Psi=\mu\left\|\mathbf{E}_{\mathbf{r}}\right\|_{\mathrm{F}}^{2}+\frac{\lambda}{2} \operatorname{tr}^{2}\left(\mathbf{E}_{\mathrm{r}}\right)
$$

$$
\mathbf{P}=\mathbf{R}\left[2 \mu \mathbf{E}_{\mathbf{r}}+\lambda \operatorname{tr}\left(\mathbf{E}_{\mathbf{r}}\right) \mathbf{I}\right]
$$

\checkmark Rotationally invariant
\checkmark Survives collapse \& inversion
x Polar decomposition
overhead
x Inaccurate volume

2D/3D Elacticitv - Material mndels

2D/3D Elasticity - Material models

Additional information on course notes

$\sqrt{ }$ Extended discussion of rotational invariance, isotropy and the common isotropic invariants
$\sqrt{ }$ PDE form of elasticity equations
\checkmark Stress formulas for general isotropic materials
$\sqrt{ }$ Benefits and drawbacks of individual material models

SIGGRAPH2012

The 39th International Conference and Exhibition on Computer Graphics and Interactive Techniques

Tetrahedral models - Deformation measures

Tetrahedral models - Deformation measures

$$
\vec{x}=\mathbf{F} \vec{X}+\vec{t}
$$

$$
\begin{aligned}
& \vec{x}_{1}=\mathbf{F} \vec{X}_{1}+\vec{t} \\
& \vec{x}_{2}=\mathbf{F} \vec{X}_{2}+\vec{t} \\
& \vec{x}_{3}=\mathbf{F} \vec{X}_{3}+\vec{t} \\
& \vec{x}_{4}=\mathbf{F} \vec{X}_{4}+\vec{t}
\end{aligned}
$$

Tetrahedral models - Deformation measures

$$
\vec{x}=\mathbf{F} \vec{X}+\vec{t}
$$

$$
\vec{x}_{1}=\mathbf{F} \vec{X}_{1}+\vec{t}
$$

$$
\vec{x}_{2}=\mathbf{F} \vec{X}_{2}+\vec{t}
$$

$$
\vec{x}_{3}=\mathbf{F} \vec{X}_{3}+\vec{t}
$$

$$
-\left(\vec{x}_{4}=\mathbf{F} \vec{X}_{4}+\overrightarrow{\mathrm{t}}\right)
$$

Tetrahedral models - Deformation measures

$$
\vec{x}=\mathbf{F} \vec{X}+\vec{t}
$$

$$
\left.\begin{array}{rl}
\vec{x}_{1} & =\mathbf{F} \vec{x}_{1}+\vec{t} \\
\vec{x}_{2} & =\mathbf{F} \vec{x}_{2}+\vec{t} \\
\vec{x}_{3} & =\mathbf{F} \vec{x}_{3}+\vec{t} \\
-\left(\vec{x}_{4}\right. & \left.=\mathbf{F} \vec{X}_{4}+\vec{t}\right)
\end{array}\right\} \Rightarrow \begin{array}{r}
\vec{x}_{1}-\vec{x}_{4}=\mathbf{F}\left(\vec{x}_{1}-\vec{x}_{4}\right) \\
\vec{x}_{2}-\vec{x}_{4}=\mathbf{F}\left(\vec{x}_{2}-\vec{x}_{4}\right) \\
\vec{x}_{3}-\vec{x}_{4}=\mathbf{F}\left(\vec{x}_{3}-\vec{x}_{4}\right)
\end{array}
$$

Tetrahedral models - Deformation measures

$$
\vec{x}=\mathbf{F} \vec{X}+\vec{t}
$$

$$
\left.\begin{array}{r}
\vec{x}_{1}=\mathbf{F} \vec{x}_{1}+\vec{t} \\
\vec{x}_{2}=\mathbf{F} \vec{x}_{2}+\vec{t} \\
\vec{x}_{3}=\mathbf{F} \vec{x}_{3}+\vec{t} \\
-\left(\vec{x}_{4}=\mathbf{F} \vec{x}_{4}+\vec{t}\right)
\end{array}\right\} \Rightarrow \begin{array}{r}
\vec{x}_{1}-\vec{x}_{4}=\mathbf{F}\left(\vec{x}_{1}-\vec{x}_{4}\right) \\
\vec{x}_{2}-\vec{x}_{4}=\mathbf{F}\left(\vec{x}_{2}-\vec{x}_{4}\right) \\
\vec{x}_{3}-\vec{x}_{4}=\mathbf{F}\left(\vec{x}_{3}-\vec{x}_{4}\right)
\end{array}
$$

$$
\begin{aligned}
& \left(\vec{x}_{1}-\vec{x}_{4}\left|\vec{x}_{2}-\vec{x}_{4}\right| \vec{x}_{3}-\vec{x}_{4}\right)= \\
& \quad=\left(\mathbf{F}\left(\vec{x}_{1}-\vec{x}_{4}\right)\left|\mathbf{F}\left(\vec{x}_{2}-\vec{x}_{4}\right)\right| \mathbf{F}\left(\vec{x}_{3}-\vec{x}_{4}\right)\right)
\end{aligned}
$$

Tetrahedral models - Deformation measures

$$
\vec{x}=\mathbf{F} \vec{X}+\vec{t}
$$

$$
\left.\left.\begin{array}{r}
\vec{x}_{1}=\mathbf{F} \vec{x}_{1}+\vec{t} \\
\vec{x}_{2}=\mathbf{F} \vec{x}_{2}+\vec{t} \\
\vec{x}_{3}=\mathbf{F} \vec{x}_{3}+\vec{t} \\
-\left(\vec{x}_{4}\right.
\end{array}\right\}=\mathbf{F} \vec{x}_{4}+\vec{t}\right) \quad\left\{\begin{array}{r}
\vec{x}_{1}-\vec{x}_{4}=\mathbf{F}\left(\vec{x}_{1}-\vec{x}_{4}\right) \\
\vec{x}_{2}-\vec{x}_{4}=\mathbf{F}\left(\vec{x}_{2}-\vec{x}_{4}\right) \\
\vec{x}_{3}-\vec{x}_{4}=\mathbf{F}\left(\vec{x}_{3}-\vec{x}_{4}\right)
\end{array}\right.
$$

$$
\begin{aligned}
& \left(\vec{x}_{1}-\vec{x}_{4}\left|\vec{x}_{2}-\vec{x}_{4}\right| \vec{x}_{3}-\vec{x}_{4}\right)= \\
& \quad=\left(\mathbf{F}\left(\vec{x}_{1}-\vec{x}_{4}\right)\left|\mathbf{F}\left(\vec{x}_{2}-\vec{x}_{4}\right)\right| \mathbf{F}\left(\vec{x}_{3}-\vec{x}_{4}\right)\right) \\
& \quad=\mathbf{F}\left(\vec{x}_{1}-\vec{x}_{4}\left|\vec{x}_{2}-\vec{x}_{4}\right| \vec{x}_{3}-\vec{x}_{4}\right)
\end{aligned}
$$

Tetrahedral models - Deformation measures

$$
\begin{aligned}
& \left(\vec{x}_{1}-\vec{x}_{4}\left|\vec{x}_{2}-\vec{x}_{4}\right| \vec{x}_{3}-\vec{x}_{4}\right)= \\
& \quad=\left(\mathbf{F}\left(\vec{x}_{1}-\vec{x}_{4}\right)\left|\mathbf{F}\left(\vec{x}_{2}-\vec{X}_{4}\right)\right| \mathbf{F}\left(\overrightarrow{\mathrm{X}}_{3}-\overrightarrow{\mathrm{x}}_{4}\right)\right) \\
& \quad=\mathbf{F}\left(\overrightarrow{\mathrm{x}}_{1}-\overrightarrow{\mathrm{X}}_{4}\left|\overrightarrow{\mathrm{x}}_{2}-\overrightarrow{\mathrm{X}}_{4}\right| \overrightarrow{\mathrm{x}}_{3}-\overrightarrow{\mathrm{X}}_{4}\right) \\
& \\
& \quad \mathbf{D}_{\mathrm{s}}=\mathbf{F} \mathbf{D}_{\mathrm{m}} \quad \mathbf{F}=\mathbf{D}_{s} \mathbf{D}_{m}^{-1}
\end{aligned}
$$

$\mathbf{D}_{\mathrm{s}}=\left(\vec{x}_{1}-\vec{x}_{4}\left|\vec{x}_{2}-\vec{x}_{4}\right| \vec{x}_{3}-\vec{x}_{4}\right)$
Spatial shape matrix
$\mathbf{D}_{\mathrm{m}}=\left(\overrightarrow{\mathrm{X}}_{1}-\overrightarrow{\mathrm{X}}_{4}\left|\overrightarrow{\mathrm{X}}_{2}-\overrightarrow{\mathrm{X}}_{4}\right| \overrightarrow{\mathrm{X}}_{3}-\overrightarrow{\mathrm{X}}_{4}\right) \quad$ Material shape matrix

Tetrahedral models - Force computation

Compute:

$$
\begin{aligned}
& \mathbf{F}=\mathbf{F}\left(\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}, \vec{x}_{4}\right) \text { Deformation gradient } \\
& \Psi(\mathbf{F})=\Psi\left(\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}, \vec{x}_{4}\right) \quad \text { Energy density } \\
& \begin{array}{c}
\mathrm{E}(\text { tet })=\operatorname{Vol}(\text { tet }) \Psi(\mathbf{F}) \quad \text { Total tetrahedron } \\
=\mathrm{E}\left(\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \overrightarrow{\mathrm{x}}_{3}, \overrightarrow{\mathrm{x}}_{4}\right) \quad \begin{array}{c}
\text { energy }
\end{array}
\end{array} \\
& \vec{f}_{i}:=-\frac{\partial}{\partial \vec{x}_{i}} E\left(\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}, \vec{x}_{4}\right)=?!?!?
\end{aligned}
$$

Tetrahedral models - Force computation

Compute:

$$
\begin{aligned}
\mathbf{H} & =\left(\overrightarrow{\mathrm{f}}_{1}\left|\overrightarrow{\mathrm{f}}_{2}\right| \overrightarrow{\mathrm{f}}_{3}\right) \\
& =-\operatorname{Vol}(\operatorname{tet}) \mathbf{P}(\mathbf{F}) \mathbf{D}_{\mathrm{m}}^{-\mathrm{T}}
\end{aligned}
$$

$\vec{f}_{4}=-\vec{f}_{1}-\vec{f}_{2}-\vec{f}_{3} \quad$ (Balance of forces)
$\mathbf{P}=\mathbf{P}(\mathbf{F}) \quad$ (from material model definition)

$$
\begin{gathered}
\mathbf{D}_{s}=\left(\vec{x}_{1}-\vec{x}_{4}\left|\vec{x}_{2}-\vec{x}_{4}\right| \vec{x}_{3}-\vec{x}_{4}\right) \\
\mathbf{D}_{\mathrm{m}}=\left(\overrightarrow{\mathrm{X}}_{1}-\overrightarrow{\mathrm{X}}_{4}\left|\overrightarrow{\mathrm{X}}_{2}-\overrightarrow{\mathrm{X}}_{4}\right| \overrightarrow{\mathrm{X}}_{3}-\overrightarrow{\mathrm{X}}_{4}\right) \\
\mathbf{F}=\mathbf{D}_{s} \mathbf{D}_{m}^{-1}
\end{gathered}
$$

Tetrahedral models - Force computation

Compute:

$$
\begin{gathered}
\mathbf{D}_{s}=\left(\vec{x}_{1}-\vec{x}_{4}\left|\overrightarrow{\mathrm{x}}_{2}-\overrightarrow{\mathrm{x}}_{4}\right| \overrightarrow{\mathrm{x}}_{3}-\overrightarrow{\mathrm{x}}_{4}\right) \\
\mathbf{D}_{\mathrm{m}}=\left(\overrightarrow{\mathrm{X}}_{1}-\overrightarrow{\mathrm{X}}_{4}\left|\overrightarrow{\mathrm{X}}_{2}-\overrightarrow{\mathrm{X}}_{4}\right| \overrightarrow{\mathrm{X}}_{3}-\overrightarrow{\mathrm{X}}_{4}\right)
\end{gathered}
$$

Your material definition goes here

$$
\begin{gathered}
\mathbf{F}=\mathbf{D}_{s} \mathbf{D}_{m}^{-1} \\
\qquad \mathbf{P}=\mathbf{P}(\mathbf{F}) \\
\mathbf{H}=\left(\overrightarrow{\mathrm{f}}_{1}\left|\overrightarrow{\mathrm{f}}_{2}\right| \overrightarrow{\mathrm{f}}_{3}\right) \\
=-\operatorname{Vol}(\text { tet }) \mathbf{P}(\mathbf{F}) \mathbf{D}_{m}^{-\mathrm{T}} \\
\overrightarrow{\mathrm{f}}_{4}=-\overrightarrow{\mathrm{f}}_{1}-\overrightarrow{\mathrm{f}}_{2}-\overrightarrow{\mathrm{f}}_{3}
\end{gathered}
$$

Tetrahedral models - Force computation

Compute:

$$
\begin{gathered}
\mathbf{D}_{s}=\left(\vec{x}_{1}-\vec{x}_{4}\left|\vec{x}_{2}-\vec{x}_{4}\right| \vec{x}_{3}-\vec{x}_{4}\right) \\
\mathbf{D}_{\mathfrak{m}}=\left(\overrightarrow{\mathrm{X}}_{1}-\overrightarrow{\mathrm{X}}_{4}\left|\overrightarrow{\mathrm{X}}_{2}-\overrightarrow{\mathrm{X}}_{4}\right| \overrightarrow{\mathrm{X}}_{3}-\overrightarrow{\mathrm{X}}_{4}\right) \\
\mathbf{F}=\mathbf{D}_{\mathrm{s}} \mathbf{D}_{m}^{-1} \\
\mathbf{P}=\mathbf{P}(\mathbf{F}) \\
\mathbf{H}=\left(\overrightarrow{\mathrm{f}}_{1}\left|\overrightarrow{\mathrm{f}}_{2}\right| \overrightarrow{\mathrm{f}}_{3}\right) \\
=-\operatorname{Vol}(\text { tet }) \mathbf{P}(\mathbf{F}) \mathbf{D}_{m}^{-\top} \\
\overrightarrow{\mathrm{f}}_{4}=-\overrightarrow{\mathrm{f}}_{1}-\overrightarrow{\mathrm{f}}_{2}-\overrightarrow{\mathrm{f}}_{3}
\end{gathered}
$$

Additional information on course notes

$\sqrt{ }$ Optimizations and precomputation opportunities
$\sqrt{ }$ Newton methods for implicit integration of nonlinear materials
$\sqrt{ }$ Outline of an unconditionally stable, Backward Euler integration scheme
$\sqrt{ }$ Force differentials for matrix-free implementation of implicit solvers

FEM Simulation of 3D Deformable Solids: A practitioner's guide to theory, discretization and model reduction

Part One : The classical FEM method and discretization methodology

Eftychios Sifakis
University of Wisconsin - Madison

Find the latest version of course notes at: www.femdefo. org

SIGGRAPH2012

The 39th International Conference and Exhibition on Computer Graphics and Interactive Techniques

