SIGGRAPH2012 The 39th International Conference and Exhibition on Computer Graphics and Interactive Techniques

FEM Simulation of 3D Deformable Solids: A practitioner's guide to theory, discretization and model reduction

Part One : The classical FEM method and discretization methodology

Eftychios Sifakis University of Wisconsin - Madison

Find the latest version of course notes at : www.femdefo.org

What does this course aim to do?

Give you a brief exposure to the concepts and methods associated with Finite Elements Provide a primer on continuum mechanics Give you enough insight to start implementing understanding

Find the latest version of course notes at : www.femdefo.org

- Encourage you to study further, and improve your

How do graphics practitioners describe FEM methods?

... a way to model elastic bodies that provides more detail and fidelity than using mass-spring networks ...

... a simulation technique for deformable models represented by tetrahedral (or triangle) meshes ...

... a method for deriving the governing equations of 3D solids, based on the potential energy they store when deformed ...

We associate FEM with

- The Galerkin-based discretization method (core concept)
- Continuum mechanics concepts (stress, strain, energy, etc.)
- Common material models (corotated, StVK, Neohookean, etc.)

FEM: Just *one* possible method for solving partial differential equations (PDEs)

Finite Elements vs. Finite Differences (the executive summary) :

Finite Differences replace the <u>differential equation</u> with an approximate algebraic expression

Finite Elements replace the <u>solution</u> with a parametric approximation, and then compute the best parameter values

Example : The Poisson equation

Problem statement:

$$f''(x) = 2 \quad x \in (0,3)$$

 $f(0) = -2$
 $f(3) = 1$

Solution:

$$f(x) = x^2 - 2x - 2$$

Example : The Poisson equation

Using Finite Differences:

i. Introduce a number of data points

 $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n), x_k := x_0 + kh$

Example : The Poisson equation

Using Finite Differences: i. Introduce a number of data points $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n), x_k := x_0 + kh$ ii. Approximate the PDE with a finite difference formula at each point $2 = f''(x_k) \approx \frac{y_{k-1} - 2y_k + y_{k+1}}{h^2}$

iii.Solve all FD equations as a system

$$y(x) := \sum_{k} y_k \mathcal{N}_k(x)$$

$$y(x) := \sum_{k} y_{k} \mathcal{N}_{k}(x)$$

$$y(x) := \sum_{k} y_k \mathcal{N}_k(x)$$

How do we find the optimal values y_0, y_1, \ldots, y_n ?

 $y(x) := \sum y_k \mathcal{N}_k(x)$ k

 $y(x) := \sum y_k \mathcal{N}_k(x)$ k

 $y(x) := \sum y_k \mathcal{N}_k(x)$ k

Solve ...

y''(x) = 0

Elasticity on a flexible string

Finite Elements

√Works naturally with mesh-based discretizations ✓ Produces numerically nice (sparse, symmetric, definite) discrete systems **X** Requires attention in choosing proper elements **X** Discretization is not as sparse as finite differences

Finite Differences

- ✓ Very straightforward to write
 ✓ Generally produces sparse
 systems (often sparser than
 FEM)
- X Accommodating irregular geometries (e.g. meshes) is nontrivial
- X Need to be very careful to preserve useful numerical properties (e.g. symmetry)

SIGGRAPH2012 The 39th International Conference and Exhibition on Computer Graphics and Interactive Techniques

Undeformed configuration (*material* coordinates)

Deformed configuration (**spatial** coordinates)

Undeformed configuration (*material* coordinates)

Deformed configuration (**spatial** coordinates)

 $\phi(X)$ is a map from \mathbb{R}^3 to \mathbb{R}^3

$$\vec{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \phi(\vec{X}) = \begin{pmatrix} x(X, Y, Z) \\ y(X, Y, Z) \\ z(X, Y, Z) \end{pmatrix}$$

Deformation gradient: the Jacobian of $\phi(X)$

$$\mathbf{F} := \frac{\partial}{\partial \vec{X}} \phi(\vec{X}) = \begin{pmatrix} \partial x/\partial X & \partial x/\partial Y & \partial x \\ \partial y/\partial X & \partial y/\partial Y & \partial y \\ \partial z/\partial X & \partial z/\partial Y & \partial z \end{pmatrix}$$

Z) Z) Z)

Z6Ζ6\

 $\phi(X)$ is a map from \mathbb{R}^3 to \mathbb{R}^3

$$\vec{\mathbf{x}} = \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{pmatrix} = \phi(\vec{\mathbf{X}}) = \begin{pmatrix} \mathbf{x}(\mathbf{X}, \mathbf{Y}, \mathbf{Z}) \\ \mathbf{y}(\mathbf{X}, \mathbf{Y}, \mathbf{Z}) \\ \mathbf{z}(\mathbf{X}, \mathbf{Y}, \mathbf{Z}) \end{pmatrix}$$

Deformation gradient: the Jacobian of $\phi(X)$

$$\mathbf{F} := \frac{\partial}{\partial \vec{X}} \phi(\vec{X}) = \begin{pmatrix} \partial x/\partial X & \partial x/\partial Y & \partial x/\partial Y \\ \partial y/\partial X & \partial y/\partial Y & \partial y/\partial Y & \partial y/\partial Y \\ \partial z/\partial X & \partial z/\partial Y & \partial$$

Simple translation

$\vec{\mathbf{x}} = \boldsymbol{\Phi}(\vec{\mathbf{X}}) = \boldsymbol{\gamma}\vec{\mathbf{X}}$ $\mathbf{F} = \boldsymbol{\gamma}\mathbf{I}$

2D/3D Elasticity - Strain measures

How do we quantify shape change?

2D/3D Elasticity - Strain measures

Force density (f) : Measures the internal elastic *force per unit (undeformed) volume*

Traction (τ) : Measures the *force per unit area* on a material **cross-section**

Measures the internal elastic force per unit (undeformed) volume

What is the difference of force and traction?

Measures the internal elastic force per unit (undeformed) volume

What is the difference of force and traction?

Force density (f) : Measures the internal elastic *force per unit (undeformed) volume*

Traction (τ) : Measures the *force per unit area* on a material **cross-section**

$\vec{\tau} = \mathbf{P}\vec{n}$

(Piola) Stress tensor (P): A matrix that describes force response along different orientations

Measures the force per unit area on a material cross-section

$\vec{\tau} = \mathbf{P}\vec{n}$

2D/3D Elasticity - Strain energy

Deformation Energy (E) [also known as strain energy]:

Energy density (Ψ) : Ratio of strain energy per unit (undeformed) volume.

$$\mathsf{E}[\phi] := \int \Psi[\phi] d\vec{X}$$

(for typical materials) Ψ

Potential energy stored in elastic body, as a result of deformation.

Total potential energy

2D/3D Elasticity - Strain energy

Deformation Energy (E) [also known as Potential energy stored in elastic body,

Energy density (Ψ) : Ratio of strain energy per unit (undeformation)

$$\mathsf{E}[\phi] := \int \Psi[\mathbf{F}] \, \mathrm{d}\vec{X}$$

 $\Psi[\boldsymbol{\Phi}] := \Psi(\mathbf{F})$ (for

[Source: Müller et al, "Stable real-time deformations", 2002]

Linear elasticity

- $=\frac{1}{2}(\mathbf{F}+\mathbf{F}^{\mathsf{T}})-\mathbf{I}$ $= \mu \| \boldsymbol{\epsilon} \|_{\mathrm{F}}^2 + \frac{\lambda}{2} \mathrm{tr}^2(\boldsymbol{\epsilon})$
- $\mathbf{P} = 2\mu\boldsymbol{\epsilon} + \lambda \mathrm{tr}(\boldsymbol{\epsilon})\mathbf{I}$

ear force-position

mputationally

ensive **X** Bad for large deformations

2D/3D Elasticity - Material models

Linear elasticity

- $\mathbf{\epsilon} = \frac{1}{2} (\mathbf{F} + \mathbf{F}^{\mathsf{T}}) \mathbf{I}$ $\Psi = \mu \|\boldsymbol{\epsilon}\|_{\mathrm{F}}^2 + \frac{\lambda}{2} \mathrm{tr}^2(\boldsymbol{\epsilon})$
 - $\mathbf{P} = 2\mu\boldsymbol{\epsilon} + \lambda \mathrm{tr}(\boldsymbol{\epsilon})\mathbf{I}$
- ✓ Linear force-position relation ✓ Computationally inexpensive **X** Bad for large deformations

Corotated linear elasticity

$\mathbf{E} = \mathbf{S} - \mathbf{I} \quad [\mathbf{F} = \mathbf{RS}]$ $\Psi = \mu \|\mathbf{E}_{\mathbf{r}}\|_{\mathbf{F}}^2 + \frac{\lambda}{2} \mathrm{tr}^2(\mathbf{E}_{\mathbf{r}})$

$\mathbf{P} = \mathbf{R} \left[2\mu \mathbf{E}_{\mathbf{r}} + \lambda tr(\mathbf{E}_{\mathbf{r}}) \mathbf{I} \right]$

✓ Rotationally invariant ✓ Survives collapse & inversion **X** Polar decomposition overhead X Inaccurate volume

2D/3D Elasticity - Material models

Corotated

 $\mathbf{E} = \mathbf{S}$ - $\Psi = \mu \| \mathbf{E}$

 $\mathbf{P} = \mathbf{R} [2\mu]$

✓ Rotational ✓ Survives c **X** Polar decd overhead

[Source: Müllar et al, "Stable real-time deformations", 2002]

St. Venant-Kirchhoff material

$\mathbf{E} = \frac{1}{2} (\mathbf{F}^{\mathsf{T}} \mathbf{F} - \mathbf{I})$ $\Psi = \mu \|\mathbf{E}\|_{\mathrm{F}}^2 + \frac{\lambda}{2} \mathrm{tr}^2(\mathbf{E})$

$\mathbf{P} = \mathbf{F} \left[2\mu \mathbf{E} + \lambda tr(\mathbf{E}) \mathbf{I} \right]$

VRotationally invariant **V**No polar decomposition heeded

X Weak resistance to compression

2D/3D Elasticity - Material models

Machackean elasticity

 $||_{\mathbf{F}}^2, J = \det \mathbf{F}$ $-\mu \log(J) + \frac{\lambda}{2} \log^2(J)$ $|\mathbf{T}^{\mathsf{T}}| + \lambda \log(\mathbf{J})\mathbf{F}^{\mathsf{T}}$ blume

s collapse/

X Undefined when inverted

Additional information on course notes

and the common isotropic invariants VPDE form of elasticity equations Stress formulas for general isotropic materials

- Extended discussion of rotational invariance, isotropy
- Benefits and drawbacks of individual material models

SIGGRAPH2012 The 39th International Conference and Exhibition on Computer Graphics and Interactive Techniques

b₃

$$\vec{\mathbf{x}} = \mathbf{F}\vec{\mathbf{X}} + \vec{\mathbf{t}}$$

 $\vec{x}_1 = \mathbf{F}\vec{X}_1 + \vec{t}$ $\vec{x}_2 = \mathbf{F}\vec{X}_2 + \vec{t}$ $\vec{x}_3 = \mathbf{F}\vec{X}_3 + \vec{t}$ $\vec{x}_4 = \mathbf{F}\vec{X}_4 + \vec{t}$

 \vec{x}_3

$$\vec{\mathbf{x}} = \mathbf{F}\vec{\mathbf{X}} + \vec{\mathbf{t}}$$

 $\vec{x}_1 = \mathbf{F}\vec{X}_1 + \vec{t}$ $\vec{x}_2 = \mathbf{F}\vec{X}_2 + \vec{t}$ $\vec{x}_3 = \mathbf{F}\vec{X}_3 + \vec{t}$ $-(\vec{x}_4 = \mathbf{F}\vec{X}_4 + \vec{t})$

 \vec{x}_3

$$\vec{\mathbf{x}} = \mathbf{F}\vec{\mathbf{X}} + \vec{\mathbf{t}}$$

 \vec{x}_3

$$\vec{\mathbf{x}} = \mathbf{F}\vec{\mathbf{X}} + \vec{\mathbf{t}}$$

 $(\vec{x}_1 - \vec{x}_4 \mid \vec{x}_2 - \vec{x}_4 \mid \vec{x}_3 - \vec{x}_4) =$ $= \left(\mathbf{F}(\vec{X}_1 - \vec{X}_4) \mid \mathbf{F}(\vec{X}_2 - \vec{X}_4) \mid \mathbf{F}(\vec{X}_3 - \vec{X}_4) \right)$

 \vec{x}_3

$$\vec{\mathbf{x}} = \mathbf{F}\vec{\mathbf{X}} + \vec{\mathbf{t}}$$

 $(\vec{x}_1 - \vec{x}_4 \mid \vec{x}_2 - \vec{x}_4 \mid \vec{x}_3 - \vec{x}_4) =$ $= \left(\mathbf{F}(\vec{X}_1 - \vec{X}_4) \mid \mathbf{F}(\vec{X}_2 - \vec{X}_4) \mid \mathbf{F}(\vec{X}_3 - \vec{X}_4) \right)$ $= \mathbf{F} \left(\vec{X}_1 - \vec{X}_4 \mid \vec{X}_2 - \vec{X}_4 \mid \vec{X}_3 - \vec{X}_4 \right)$

 \vec{x}_3

$$\begin{aligned} (\vec{x}_1 - \vec{x}_4 \mid \vec{x}_2 - \vec{x}_4 \mid \vec{x}_3 - \vec{x}_4) &= \\ &= \left(\mathbf{F}(\vec{X}_1 - \vec{X}_4) \mid \mathbf{F}(\vec{X}_2 - \vec{X}_4) \right) \\ &= \mathbf{F}\left(\vec{X}_1 - \vec{X}_4 \mid \vec{X}_2 - \vec{X}_4 \mid \vec{X}_3 - \vec{X}_4 \mid \vec{X}_3 \right) \end{aligned}$$

 $\mathbf{D}_{s} = (\vec{x}_{1} - \vec{x}_{4} | \vec{x}_{2} - \vec{x}_{4} | \vec{x}_{3} - \vec{x}_{4})$

 $\vec{f}_i := -\frac{\sigma}{\partial \vec{x}_i} E(\vec{x}_1, \vec{x}_2, \vec{x}_3, \vec{x}_4) = ?!?!?$

Tetrahedral models - Force computation

$\mathbf{H} = \left(\vec{f_1} \mid \vec{f_2} \mid \vec{f_3}\right)$ $= -Vol(tet)\mathbf{P}(\mathbf{F})\mathbf{D}_{m}^{-T}$ $\vec{f}_4 = -\vec{f}_1 - \vec{f}_2 - \vec{f}_3$ (Balance of forces) $\mathbf{P} = \mathbf{P}(\mathbf{F})$ (from material model definition)

Compute: $\mathbf{D}_{s} = (\vec{x}_{1} - \vec{x}_{4} | \vec{x}_{2} - \vec{x}_{4} | \vec{x}_{3} - \vec{x}_{4})$ $\mathbf{D}_{\rm m} = (\vec{X}_1 - \vec{X}_4 | \vec{X}_2 - \vec{X}_4 | \vec{X}_3 - \vec{X}_4)$ $\mathbf{F} = \mathbf{D}_{s}\mathbf{D}_{m}^{-1}$

Tetrahedral models - Force computation

Your material definition goes here

Tetrahedral models - Force computation

 \vec{x}_3

Additional information on course notes

Optimizations and precomputation opportunities \checkmark Newton methods for implicit integration of nonlinear materials Outline of an unconditionally stable, Backward Euler integration scheme Force differentials for matrix-free implementation of implicit solvers

FEM Simulation of 3D Deformable Solids: A practitioner's guide to theory, discretization and model reduction

Part One : The classical FEM method and discretization methodology

Eftychios Sifakis University of Wisconsin - Madison

Find the latest version of course notes at : www.femdefo.org

SIGGRAPH2012 The 39th International Conference and Exhibition on Computer Graphics and Interactive Techniques

