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Introduction

So, what'’s holding us back?

* Curse of dimensionality : 8x cost to double the linear resolution
(typically more, If the time step needs to be shrunk, too)

* Footprint: Simulations can't fit on a single system’'s RAM
(out-of-core processing, cluster computing are possible remedies)

* Poor scalability : Kernels with worse-than-linear complexity dominate
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Cost and scalability of fluids simulation components :

* Most components : linear complexity & admit efficient parallelization
e.g. velocity/particle update, levelset reinitialization, extrapolation, etc.

* Poisson pressure projection becomes the bottleneck at high resolution
« Obijective : Solve a discrete Poisson equation Ax = f
 Common solver in graphics : Precondrtioned conjugate gradient

* Popular Poisson preconditioner : Incomplete Cholesky Factorization
* Introduced in graphics : Foster & Fedkiw, “Practical animation of liquids”, 200 |
e Difficult to parallelize without compromising preconditioning efficiency

* Still too many iterations required for high resolution simulations
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Introduction

Poisson solvers with even more favorable complexity?

* “Fast Poisson Solvers™: Cyclic reduction, FFT, FACR, etc.
* Extremely fast, when applicable
* Not appropriate for irregularly shaped domains
* Multigrid methods
* Potentially O(N) asymptotic complexity
* (Good parallel potential

* Complications can compromise convergence performance
* lIrregular domain shapes, highly variable boundary conditions

* Elaborate topological features (bubbles, fingers, slits, etc)



Problem description

The Pressure Poisson equation

(for projecting a velocity field
to its divergence-free component)

Ap = f in )
p(x) =a(x) onlIp
pn(x)=pB(x) onl'y

— Dirichlet Boundary (I'p)

Neumann Boundary (I )

Computational Domain (£2)




Problem description

—— Dirichlet Boundary (I'p)

Interior Cells
Neumann Boundary (T'y) B Dirichlet Cells

Computational Domain (£2) B Neumann Cells

“Voxelized” Poisson problem
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Problem description

Interior point discretization

Discretization near a Dirichlet boundary

—dug Ui Ui T U1 Qg
h2 T f’l]

Discretization near a Neumann boundary
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Problem description

Properties of the resulting discretization
* Symmetric, sparse (banded) system
* Negative semi-definite (strictly definite with any Dirichlet boundary)

* Symmetric Krylov solvers are applicable, 1.e. preconditioned CG



Sample 2D domain (51 2x5 12 resolution)




Exact solution
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Problem description

Properties of the resulting discretization

Symmetric, sparse (banded) system
Negative semi-definite (strictly definite with any Dirichlet boundary)

Symmetric Krylov solvers are applicable, 1.e. preconditioned CG

Convergence deterioration is even more pronounced in 3 dimensions,
at higher resolutions and with more elaborate domain geometries



Multigrid

What about multigrid solvers?
*  Well surited for Poisson-type problems

* Should be able to provide resolution-independent convergence



Multigrid iterations towards convergence (| V-Cycle/frame)




frame 0

Multigrid iterations towards convergence (random initial guess)




Conjugate Gradients (with parallel multigrid preconditioner)




Multigrid

What about multigrid solvers?
*  Well surited for Poisson-type problems

* Should be able to provide resolution-independent convergence



Multigrid: relaxation
Au = f
u(0) = a,u(l) = b Relaxation:
— ?@r%lg e|’[Sesrat|ve

1 BExgadbedgkgicreidel

easiler to solve
Error equation:

After iteration 1
iteration 2 Ae=1 (=Atyyon—f)



Multigrid cycle

~ Relaxation
O O COa rse g ri d SO IV er
* Prolongation



Multigrid V-cycle

~ Relaxation

- Restriction

O Coarse grid solver
"~ Prolongation

* Recursive coarsening
» Multigrid V-Cycle - O(N)

» Resolution independent
numerical efficiency



Multigrid

What about multigrid solvers?
*  Well surited for Poisson-type problems

* Should be able to provide resolution-independent convergence

For a multigrid solver, we need 3 algorithmic components
* A hierarchy of discretizations
* Transfer operators (restriction - prolongation)

*  A'smoothing” routine



Multigrid

Creating a hierarchy of discretizations ...
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Creating a hierarchy of discretizations ...

Every group of 4 cells is coarsened into | cell of at the immediately coarser level



Multigrid

Creating a hierarchy of discretizations ...

When fine grid cells have more than one type, the coarse cell becomes (by priority)
Dirichlet - Interior (if no Dirichlet) - Neumann (if no Interior or Dirichlet)



Multigrid
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Multigrid

Smoothing procedure :

- Perform N sweeps of relaxation
(e.g. Gauss-Seidel method)
on a band around the boundary

- Perform | sweep in the interior

- Perform N more sweeps

on the boundary band




Stable Multigrid V-cycle (30 boundary smoothing sweeps)




MG-PCG (same boundary smoothing effort as stable V-cycle)




MG-PCG (/3 of the smoothing effort needed for stable V-cycle)
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Multigrid
No free lunch ...

* Convergence & Stability may necessitate an impractically intensive
boundary smoothing effort

Smoothing procedure :

- Perform|N sweeps|of relaxation

N = 30 for stability ! (e.g. Gauss-Seidel method)
on a band around the boundary

- Perform | sweep in the interior

- Perform [N more sweeps
on the boundary band

B —




Iteration 0

V-Cycle iteration, | O boundary iterations per cycle
(1/3 of the effort needed for convergent method)
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Multigrid
No free lunch ...

* Convergence & Stability may necessitate an impractically intensive
boundary smoothing effort

* For moderate resolutions (e.g. 128" 3) one V-cycle iteration may cost
as much as 20-30 rterations of (unpreconditioned) CG

* Boundary cost goes away asymptotically, but only at impractically high
resolutions

* Even worse, when considering parallelism



Multigrid

Problem # | . Geometric discrepancies lead to instability

Remedies : Intensive boundary smoothing, algebraic
coarsening, specialized transfer operators ...
.. or using MG as a preconditioner for a Krylov method



Multigrid

Problem #2 . Topological discrepancies lead to stagnation

Remedies : Algebraic coarsening, recombined iterants,
using a fully Algebraic Multigrid method ...
.. or using MG as a preconditioner for a Krylov method
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Basic concepts of Preconditioned Conjugate Gradients :

*  Basic problem: Ax = Db
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Multigrid preconditioning

Basic concepts of Preconditioned Conjugate Gradients :

Basic problem: AX = b
Consider a matrix M such that MA ~ 1

This matrix needs to be symmetric and positive definite.
In this case we can write : M = U? where U is symmetric

The PCG method s algebraically equivalent to applying the Conjugate
Gradients method on the modified system :

(UAU)(U 'x) = Ub



Conjugate Gradients (w/o preconditioning)




Conjugate Gradients (with a stock preconditioner)




Pfeconditionéd Conjugate Gradients }
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. procedure MGPCG(r, x)

r—r—Lx, u«r, v« |r—uloo
if (V < Vmax) then return
F«—T—U P+ M), p—plr
for k = 0 to kjax do

z—Lp, 6—plz
o« p/o
F«—Tr—O0z u<7r,V+—|r—uloo
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X <«— X+ 0op
return
end if
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X<—X+0p, p<—z+Pp

end for

18: end procedure
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Multigrid preconditioning

Basic concepts of Preconditioned Conjugate Gradients :

Basic problem: AX = b
Consider a matrix M such that MA ~ 1

This matrix needs to be symmetric and positive definite.
In this case we can write : M = U? where U is symmetric

The PCG method s algebraically equivalent to applying the Conjugate
Gradients method on the modified system :

(UAU)(U 'x) = Ub

The final algorithm requires only a routine for computing Mv (for
any Input vector) to be specified
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Multigrid preconditioning
Using a multigrid V-cycle to define a preconditioner :

* Define a hierarchy of discrete Poisson problems with zero Dirichlet and
Neumann Boundary conditions at all levels.

* Use the input vector v as the right hand side at the top level. Use a
zero initial guess at every level of the V-cycle.

* Perform | V-cycle. The result is the desired product Mv.

A valid CG preconditioner (symmetric, definite) is obtained if :

* Restriction - prolongation are defined as adjoint operators.

* Jacobi (or damped Jacobl) is used instead of Gauss-Seidel to relax the
interior of the domain.

* Boundary band is traversed by the smoother in opposite orders during
the downstroke and upstroke of the V-cycle.



Multigrid preconditioning
MG-preconditioned CG benefits :

Remains stable, even If an unstable V-cycle is used for preconditioning
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Multigrid preconditioning

MG-preconditioned CG benefits :

Remains stable, even if an unstable V-cycle is used for preconditioning
Unstable V-cycles simply require a few extra PCG rterations

Intensity of the boundary treatment can be tuned to moderate-difficulty
scenarios, and remain stable even In highly complicated cases

With a well-designed (albert unstable) V-cycle, PCG converges as
quickly as the best-case scenario multigrid cycle, in practice.



Results and performance
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