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• Curse of dimensionality :  8x cost to double the linear resolution  
(typically more, if the time step needs to be shrunk, too)

• Footprint :  Simulations can’t fit on a single system’s RAM 
(out-of-core processing, cluster computing are possible remedies)

• Poor scalability :  Kernels with worse-than-linear complexity dominate
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Cost and scalability of fluids simulation components :

• Most components :  linear complexity & admit efficient parallelization 
e.g. velocity/particle update, levelset reinitialization, extrapolation, etc.

• Poisson pressure projection becomes the bottleneck at high resolution

• Objective :  Solve a discrete Poisson equation

• Common solver in graphics :  Preconditioned conjugate gradient

• Popular Poisson preconditioner :  Incomplete Cholesky Factorization

• Introduced in graphics : Foster & Fedkiw, “Practical animation of liquids”, 2001

• Difficult to parallelize without compromising preconditioning efficiency

• Still too many iterations required for high resolution simulations

Introduction

�x = f
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Poisson solvers with even more favorable complexity?

• “Fast Poisson Solvers” :  Cyclic reduction, FFT, FACR, etc.

• Extremely fast, when applicable

• Not appropriate for irregularly shaped domains

• Multigrid methods

• Potentially O(N) asymptotic complexity

• Good parallel potential

• Complications can compromise convergence performance

• Irregular domain shapes, highly variable boundary conditions

• Elaborate topological features (bubbles, fingers, slits, etc)

Introduction



Problem description

The Pressure Poisson equation  
 

(for projecting a velocity field  
to its divergence-free component)

⇥p = f in ⇤

p(x) = �(x) on �D

pn(x) = ⇥(x) on �N



Problem description

“Voxelized” Poisson problem
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Properties of the resulting discretization

• Symmetric, sparse (banded) system

• Negative semi-definite (strictly definite with any Dirichlet boundary)

• Symmetric Krylov solvers are applicable, i.e. preconditioned CG
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Sample 2D domain (512x512 resolution)
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Properties of the resulting discretization

• Symmetric, sparse (banded) system

• Negative semi-definite (strictly definite with any Dirichlet boundary)

• Symmetric Krylov solvers are applicable, i.e. preconditioned CG

• Convergence deterioration is even more pronounced in 3 dimensions,  
at higher resolutions and with more elaborate domain geometries

Problem description



What about multigrid solvers?

• Well suited for Poisson-type problems

• Should be able to provide resolution-independent convergence

Multigrid



Multigrid iterations towards convergence (1 V-Cycle/frame)



Multigrid

Multigrid iterations towards convergence (random initial guess)



Multigrid

Conjugate Gradients (with parallel multigrid preconditioner)



What about multigrid solvers?

• Well suited for Poisson-type problems

• Should be able to provide resolution-independent convergence

Multigrid



Fine level errorCoarse error 
easier to solve

Error equation:

Error

35

�e=r (=�ucurrent�f)

�u = f

u(0) = a, u(1) = b

Multigrid: relaxation

e=ucurrent�u

After 
iteration 2
After 
iteration 3
After iteration 1

Initial guess

Exact solution

After 
iteration 2
After 
iteration 3
After iteration 1

�u = f

u(0) = a, u(1) = b Relaxation: 
a simple iterative 
solver 
e.g. Gauss-Seidel 



Multigrid cycle
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Relaxation
Restriction
Coarse grid solver  
Prolongation



Multigrid V-cycle
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• Recursive coarsening 
• Multigrid V-Cycle - O(N) 
• Resolution independent 

numerical efficiency 

Relaxation
Restriction
Coarse grid solver  
Prolongation



What about multigrid solvers?

• Well suited for Poisson-type problems

• Should be able to provide resolution-independent convergence

For a multigrid solver, we need 3 algorithmic components

• A hierarchy of discretizations

• Transfer operators (restriction - prolongation)

• A “smoothing” routine

Multigrid



Multigrid
Creating a hierarchy of discretizations ...



Multigrid
Creating a hierarchy of discretizations ...

Every group of 4 cells is coarsened into1 cell of at the immediately coarser level



Multigrid
Creating a hierarchy of discretizations ...

When fine grid cells have more than one type, the coarse cell becomes (by priority)  
Dirichlet -- Interior (if no Dirichlet) -- Neumann (if no Interior or Dirichlet)



Multigrid

Inter-grid transfer operators  
(Prolongation - Restriction)



Multigrid

Smoothing procedure :

  - Perform N sweeps of relaxation  
    (e.g. Gauss-Seidel method)  
    on a band around the boundary

  - Perform 1 sweep in the interior

  - Perform N more sweeps  
    on the boundary band



Multigrid

Stable Multigrid V-cycle (30 boundary smoothing sweeps)
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Smoothing procedure :

  - Perform N sweeps of relaxation  
    (e.g. Gauss-Seidel method)  
    on a band around the boundary

  - Perform 1 sweep in the interior

  - Perform N more sweeps  
    on the boundary band

N = 30 for stability !

V-Cycle iteration, 10 boundary iterations per cycle  
(1/3 of the effort needed for convergent method)
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No free lunch ...

• Convergence & Stability may necessitate an impractically intensive 
boundary smoothing effort

• For moderate resolutions (e.g. 128^3) one V-cycle iteration may cost 
as much as 20-30 iterations of (unpreconditioned) CG

• Boundary cost goes away asymptotically, but only at impractically high 
resolutions

• Even worse, when considering parallelism

Multigrid



Multigrid
Problem #1 :  Geometric discrepancies lead to instability

Remedies :  Intensive boundary smoothing, algebraic 
coarsening, specialized transfer operators ...

... or using MG as a preconditioner for a Krylov method



Multigrid
Problem #2 :  Topological discrepancies lead to stagnation

Remedies :  Algebraic coarsening, recombined iterants,  
using a fully Algebraic Multigrid method ...

... or using MG as a preconditioner for a Krylov method
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Basic concepts of Preconditioned Conjugate Gradients :

• Basic problem :  

• Consider a matrix       such that 

• This matrix needs to be symmetric and positive definite. 
In this case we can write :                   where      is symmetric 

• The PCG method is algebraically equivalent to applying the Conjugate 
Gradients method on the modified system :

Multigrid preconditioning

M

Ax = b

MA ⇡ I

M = U2 U

(UAU)(U�1x) = Ub



Conjugate Gradients (w/o preconditioning)



Conjugate Gradients (with a stock preconditioner)



McAdams et al. / A parallel multigrid Poisson solver for fluids simulation on large grids

cussed in [TOS01]. We will show that this sensitivity to the
boundary treatment is removed when the V-Cycle is used as
a preconditioner.

Stagnation: Even when the V-Cycle iteration is stable, on
certain irregular domains the residual reduction rate quickly
degrades towards 1, as opposed to converging to a value
less than 0.5 as typically expected of functional multi-
grid schemes. This complication appears on irregular do-
mains where successive levels of the multigrid hierarchy
may exhibit significant topological differences, as coarse
modes may not be accurately represented. In these cases,
costly eigenanalysis or recombined iterants may prove use-
ful [TOS01]; however, the highly irregular and changing do-
mains common to fluid simulations make these methods im-
practical.

3.3. Multigrid-preconditioned conjugate gradient

The instability and slow convergence issues described in
the previous section can be efficiently ameliorated by using
the multigrid V-Cycle as a preconditioner for an appropri-
ate Krylov method. Our experiments indicated that the ele-
mentary multigrid scheme in section 3.2 can be an extremely
efficient preconditioner, achieving convergence rates compa-
rable or superior to the ideal performance of the V-Cycle on
regular domains, even if the smoothing effort vested in the
multigrid V-Cycle is significantly less than what is necessary
to make it a convergent solver on its own.

We will use the V-Cycle described in Section 3.2 as a pre-
conditioner for the conjugate gradient method. Algorithm
3 provides the pseudocode for our PCG solver. Our algo-
rithm is numerically equivalent to the traditional definition
of PCG, as stated for example in [GvL89], but certain vari-
ables are being reused for economy of storage, and opera-
tions have been rearranged to facilitate optimized execution,
as discussed in Section 4. Preconditioning operates by con-
structing a symmetric, positive definite matrix M which is
easier to invert than L, and such that M�1L is significantly
better conditioned than L.

In our case, we will use the multigrid V-Cycle as the pre-
conditionerM�1 as described in [Tat93]. In particular, if we
define u :=M�1b, then u is the result of one iteration of the
multigrid V-Cycle for the problem Lu = b with zero initial
guess, and zero boundary conditions. We can easily verify
that under these conditions, the action of the V-Cycle indeed
corresponds to a linear operator; the requirement that M be
symmetric and positive definite, however, is less trivial. We
refer to [Tat93] for a detailed analysis of the conditions for
symmetry and definiteness, and only present here a set of
sufficient conditions instead. The V-Cycle of Algorithm 1
will produce a symmetric and definite preconditioner if:

• The restriction/prolongation operators are the transpose of
one another (up to scaling). This is common practice, and
also the case for the V-Cycle we described.

• The smoother used in the upstroke of the V-Cycle (Algo-
rithm 1, line 11) performs the operations of the smoother
used for the downstroke (line 4) in reverse order. E.g.,
if Gauss-Seidel iteration is used, opposite traversal orders
should be used when descending or ascending the V-Cycle,
respectively. For Jacobi smoothers, no reversal is necessary
as the result is independent of the traversal order.

• The solve at the coarsest level (Algorithm 1, line 8) needs
to either be exact, or the inverse of L(L) should be approxi-
mated with a symmetric and definite matrix. If the smoother
is iterated to approximate the solution, a number of iterations
should be performed with a given traversal order, followed
by an equal number of iterations with the order reversed.

Algorithm 3 Multigrid-preconditioned conjugate gradient.
Red-colored steps in the algorithm are applicable when
the Poisson problem has a nullspace (i.e., all Neumann
boundary conditions), and should be omitted when Dirichlet
boundaries are present.
(†) u⇤M�1b is implemented by calling V-Cycle(u,b)

1: procedure MGPCG(r,x)
2: r⇤ r�Lx, µ⇤ r̄, ⇤⇤⌃r�µ⌃⇥
3: if (⇤ < ⇤max) then return
4: r⇤ r�µ, p⇤M�1r(†), ⌅⇤ pT r
5: for k = 0 to kmax do
6: z⇤ Lp, ⇧⇤ pT z
7: �⇤ ⌅/⇧
8: r⇤ r��z, µ⇤ r̄, ⇤⇤⌃r�µ⌃⇥
9: if (⇤ < ⇤max or k = kmax) then

10: x⇤ x+�p
11: return
12: end if
13: r⇤ r�µ, z⇤M�1r(†), ⌅new ⇤ zT r
14: ⇥⇤ ⌅new/⌅
15: ⌅⇤ ⌅new

16: x⇤ x+�p, p⇤ z+⇥p
17: end for
18: end procedure

Finally, Poisson problems with all-Neumann boundary
conditions (e.g., simulations of smoke flow past objects) are
known to possess a nullspace, as the solution is only known
up to a constant. The algorithm of Algorithm 3 is modified in
this case to project out this nullspace, and the modifications
are highlighted in red in the pseudocode. No modification to
the V-Cycle preconditioner is needed.

4. Implementation and Optimizations

Minimizing boundary cost: The cost of performing 30-40
smoothing sweeps on the boundary to stabilize the V-Cycle
as a solver cannot be neglected, even though the interior
smoothing effort would asymptotically dominate. In prac-
tice, this amount of boundary smoothing would be the most
costly operation of the V-Cycle for a 2563 grid or smaller,

c� The Eurographics Association 2010.
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Basic concepts of Preconditioned Conjugate Gradients :

• Basic problem :  

• Consider a matrix       such that 

• This matrix needs to be symmetric and positive definite. 
In this case we can write :                   where      is symmetric 

• The PCG method is algebraically equivalent to applying the Conjugate 
Gradients method on the modified system :

• The final algorithm requires only a routine for computing          (for 
any input vector) to be specified

Multigrid preconditioning

M

Ax = b

MA ⇡ I

M = U2 U

(UAU)(U�1x) = Ub

Mv
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Using a multigrid V-cycle to define a preconditioner :

• Define a hierarchy of discrete Poisson problems with zero Dirichlet and 
Neumann Boundary conditions at all levels.

• Use the input vector v as the right hand side at the top level. Use a 
zero initial guess at every level of the V-cycle.

• Perform 1 V-cycle. The result is the desired product Mv.

A valid CG preconditioner (symmetric, definite) is obtained if :

• Restriction - prolongation are defined as adjoint operators.

• Jacobi (or damped Jacobi) is used instead of Gauss-Seidel to relax the 
interior of the domain.

• Boundary band is traversed by the smoother in opposite orders during 
the downstroke and upstroke of the V-cycle.

Multigrid preconditioning



MG-preconditioned CG benefits :

• Remains stable, even if an unstable V-cycle is used for preconditioning

Multigrid preconditioning
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MG-preconditioned CG benefits :

• Remains stable, even if an unstable V-cycle is used for preconditioning

• Unstable V-cycles simply require a few extra PCG iterations

• Intensity of the boundary treatment can be tuned to moderate-difficulty 
scenarios, and remain stable even in highly complicated cases

• With a well-designed (albeit unstable) V-cycle, PCG converges as 
quickly as the best-case scenario multigrid cycle, in practice.

Multigrid preconditioning



Results and performance


