High-resolution fluid effects

Rasmussen et al, Smoke Simulation for Large Scale Phenomena (SIGGRAPH 2003)

High-resolution fluid effects

Nielsen et al, Out-Of-Core and Compressed Level Set Methods (TOG 2007)

High-resolution fluid effects

Horvath & Geiger, Directable, high-resolution simulation of fire on the GPU (SIGGRAPH 2009)

So, what's holding us back?

• Curse of dimensionality : 8x cost to double the linear resolution (typically more, if the time step needs to be shrunk, too)

So, what's holding us back?

- Curse of dimensionality : 8x cost to double the linear resolution (typically more, if the time step needs to be shrunk, too)
- Footprint : Simulations can't fit on a single system's RAM (out-of-core processing, cluster computing are possible remedies)

So, what's holding us back?

- Curse of dimensionality : 8x cost to double the linear resolution (typically more, if the time step needs to be shrunk, too)
- Footprint : Simulations can't fit on a single system's RAM (out-of-core processing, cluster computing are possible remedies)
- Poor scalability : Kernels with worse-than-linear complexity dominate

Cost and scalability of fluids simulation components :

• Most components : linear complexity & admit efficient parallelization e.g. velocity/particle update, levelset reinitialization, extrapolation, etc.

Cost and scalability of fluids simulation components :

- Most components : linear complexity & admit efficient parallelization e.g. velocity/particle update, levelset reinitialization, extrapolation, etc.
- Poisson pressure projection becomes the bottleneck at high resolution
 - Objective : Solve a discrete Poisson equation $\Delta \mathbf{x} = \mathbf{f}$
 - Common solver in graphics : Preconditioned conjugate gradient

Cost and scalability of fluids simulation components :

- Most components : linear complexity & admit efficient parallelization e.g. velocity/particle update, levelset reinitialization, extrapolation, etc.
- Poisson pressure projection becomes the bottleneck at high resolution
 - Objective : Solve a discrete Poisson equation $\Delta \mathbf{x} = \mathbf{f}$
 - Common solver in graphics : Preconditioned conjugate gradient
 - Popular Poisson preconditioner : Incomplete Cholesky Factorization
 - Introduced in graphics : Foster & Fedkiw, "Practical animation of liquids", 2001
 - Difficult to parallelize without compromising preconditioning efficiency
 - Still too many iterations required for high resolution simulations

Poisson solvers with even more favorable complexity?

- "Fast Poisson Solvers": Cyclic reduction, FFT, FACR, etc.
 - Extremely fast, when applicable
 - Not appropriate for irregularly shaped domains

Poisson solvers with even more favorable complexity?

- "Fast Poisson Solvers": Cyclic reduction, FFT, FACR, etc.
 - Extremely fast, when applicable
 - Not appropriate for irregularly shaped domains
- Multigrid methods
 - Potentially O(N) asymptotic complexity
 - Good parallel potential

Poisson solvers with even more favorable complexity?

- "Fast Poisson Solvers": Cyclic reduction, FFT, FACR, etc.
 - Extremely fast, when applicable
 - Not appropriate for irregularly shaped domains
- Multigrid methods
 - Potentially O(N) asymptotic complexity
 - Good parallel potential
 - Complications can compromise convergence performance
 - Irregular domain shapes, highly variable boundary conditions
 - Elaborate topological features (bubbles, fingers, slits, etc)

The Pressure Poisson equation (for projecting a velocity field to its divergence-free component)

$$\Delta p = f \quad \text{in } \Omega$$
$$p(\mathbf{x}) = \alpha(\mathbf{x}) \quad \text{on } \Gamma_D$$
$$p_n(\mathbf{x}) = \beta(\mathbf{x}) \quad \text{on } \Gamma_N$$

Neumann Cells

"Voxelized" Poisson problem

Interior point discretization

$$\frac{-4u_{ij} + u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1}}{h^2} = f_{ij}$$

Interior point discretization

$$\frac{-4u_{ij} + u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1}}{h^2} = f_{ij}$$

$$\frac{-4u_{ij} + u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1}}{h^2} = f_{ij}$$

	0	
0	0	•
	0	
	•	
•	•	•

Interior point discretization

$$\frac{-4u_{ij} + u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1}}{h^2} = f_{ij}$$

$$\frac{-4u_{ij} + u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1}}{h^2} = f_{ij}$$

	0	
0	0	0
	0	
	•	
•	•	•

Interior point discretization

$$\frac{-4u_{ij} + u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1}}{h^2} = f_{ij}$$

Discretization near a Dirichlet boundary

$$\frac{-4u_{ij} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1}}{h^2} = f_{ij} - \frac{u_{i+1,j}}{h^2}$$

	•	
•	0	0
	•	
	•	
0	•	•

Interior point discretization

$$\frac{-4u_{ij} + u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1}}{h^2} = f_{ij}$$

Discretization near a Dirichlet boundary

$$\frac{-4u_{ij} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1}}{h^2} = f_{ij} - \frac{\alpha_{i+1,j}}{h^2}$$

	0	
•	0	0
	0	
	•	
•	•	0

Interior point discretization

$$\frac{-4u_{ij} + u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1}}{h^2} = f_{ij}$$

Discretization near a Dirichlet boundary

$$\frac{-4u_{ij} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1}}{h^2} = f_{ij} - \frac{\alpha_{i+1,j}}{h^2}$$

$$\frac{-4u_{ij} + u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1}}{h^2} = f_{ij}$$

Interior point discretization

$$\frac{-4u_{ij} + u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1}}{h^2} = f_{ij}$$

Discretization near a Dirichlet boundary

$$\frac{-4u_{ij} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1}}{h^2} = f_{ij} - \frac{\alpha_{i+1,j}}{h^2}$$

$$\frac{-3u_{ij} - u_{ij} + u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1}}{h^2} = f_{ij}$$

Interior point discretization

$$\frac{-4u_{ij} + u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1}}{h^2} = f_{ij}$$

Discretization near a Dirichlet boundary

$$\frac{-4u_{ij} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1}}{h^2} = f_{ij} - \frac{\alpha_{i+1,j}}{h^2}$$

$$\frac{-3u_{ij} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1}}{h^2} = f_{ij} - \frac{u_{i+1,j} - u_{ij}}{h^2}$$

Interior point discretization

$$\frac{-4u_{ij} + u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1}}{h^2} = f_{ij}$$

Discretization near a Dirichlet boundary

$$\frac{-4u_{ij} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1}}{h^2} = f_{ij} - \frac{\alpha_{i+1,j}}{h^2}$$

$$\frac{-3u_{ij} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1}}{h^2} = f_{ij} - \frac{\beta_{i+\frac{1}{2},j}}{h}$$

Properties of the resulting discretization

- Symmetric, sparse (banded) system
- Negative semi-definite (strictly definite with any Dirichlet boundary)
- Symmetric Krylov solvers are applicable, i.e. preconditioned CG

Properties of the resulting discretization

- Symmetric, sparse (banded) system
- Negative semi-definite (strictly definite with any Dirichlet boundary)
- Symmetric Krylov solvers are applicable, i.e. preconditioned CG
- Convergence deterioration is even more pronounced in 3 dimensions, at higher resolutions and with more elaborate domain geometries

Multigrid

What about multigrid solvers?

- Well suited for Poisson-type problems
- Should be able to provide resolution-independent convergence

Multigrid

What about multigrid solvers?

- Well suited for Poisson-type problems
- Should be able to provide resolution-independent convergence

Multigrid cycle

- Relaxation
 - Restriction
- Coarse grid solver
 Prolongation
Multigrid V-cycle

- Relaxation
 - Restriction
- Coarse grid solver
 Prolongation
- Recursive coarsening
- Multigrid V-Cycle O(N)
- Resolution independent numerical efficiency

What about multigrid solvers?

- Well suited for Poisson-type problems
- Should be able to provide resolution-independent convergence

For a multigrid solver, we need 3 algorithmic components

- A hierarchy of discretizations
- Transfer operators (restriction prolongation)
- A ''smoothing'' routine

Creating a hierarchy of discretizations ...

Creating a hierarchy of discretizations ...

Every group of 4 cells is coarsened into I cell of at the immediately coarser level

Creating a hierarchy of discretizations ...

When fine grid cells have more than one type, the coarse cell becomes (by priority) Dirichlet -- Interior (if no Dirichlet) -- Neumann (if no Interior or Dirichlet)

Inter-grid transfer operators (Prolongation - Restriction)

Smoothing procedure :

- Perform N sweeps of relaxation (e.g. Gauss-Seidel method) on a band around the boundary
- Perform 1 sweep in the interior
- Perform N more sweeps on the boundary band

No free lunch ...

• Convergence & Stability may necessitate an impractically intensive boundary smoothing effort

Smoothing procedure :

N = 30 for stability !

- Perform N sweeps of relaxation (e.g. Gauss-Seidel method) on a band around the boundary
- Perform 1 sweep in the interior

- Perform N more sweeps on the boundary band

No free lunch ...

- Convergence & Stability may necessitate an impractically intensive boundary smoothing effort
- For moderate resolutions (e.g. 128^3) one V-cycle iteration may cost as much as 20-30 iterations of (unpreconditioned) CG

No free lunch ...

- Convergence & Stability may necessitate an impractically intensive boundary smoothing effort
- For moderate resolutions (e.g. 128^3) one V-cycle iteration may cost as much as 20-30 iterations of (unpreconditioned) CG
- Boundary cost goes away *asymptotically*, but only at impractically high resolutions

No free lunch ...

- Convergence & Stability may necessitate an impractically intensive boundary smoothing effort
- For moderate resolutions (e.g. 128^3) one V-cycle iteration may cost as much as 20-30 iterations of (unpreconditioned) CG
- Boundary cost goes away *asymptotically*, but only at impractically high resolutions
- Even worse, when considering parallelism

Problem #1 : Geometric discrepancies lead to instability

Remedies : Intensive boundary smoothing, algebraic coarsening, specialized transfer operators or using MG as a preconditioner for a Krylov method

Problem #2 : Topological discrepancies lead to stagnation

Remedies : Algebraic coarsening, recombined iterants, using a fully Algebraic Multigrid method or using MG as a preconditioner for a Krylov method

Basic concepts of Preconditioned Conjugate Gradients :

• Basic problem : $\mathbf{A}\mathbf{x} = \mathbf{b}$

Basic concepts of Preconditioned Conjugate Gradients :

- Basic problem : $\mathbf{A}\mathbf{x} = \mathbf{b}$
- Consider a matrix ${\bf M}$ such that ${\bf M}{\bf A}\approx {\bf I}$

Basic concepts of Preconditioned Conjugate Gradients :

- Basic problem : $\mathbf{A}\mathbf{x} = \mathbf{b}$
- Consider a matrix ${f M}$ such that ${f MA}pprox {f I}$
- This matrix needs to be symmetric and positive definite. In this case we can write : ${f M}={f U}^2$ where ${f U}$ is symmetric

Basic concepts of Preconditioned Conjugate Gradients :

- Basic problem : $\mathbf{A}\mathbf{x} = \mathbf{b}$
- Consider a matrix ${\bf M}$ such that ${\bf M}{\bf A}\approx {\bf I}$
- This matrix needs to be symmetric and positive definite. In this case we can write : ${f M}={f U}^2$ where ${f U}$ is symmetric
- The PCG method is algebraically equivalent to applying the Conjugate Gradients method on the modified system :

 $(\mathbf{U}\mathbf{A}\mathbf{U})(\mathbf{U}^{-1}\mathbf{x}) = \mathbf{U}\mathbf{b}$

Preconditioned Conjugate Gradients

1: procedure MGPCG(
$$\mathbf{r}, \mathbf{x}$$
)
2: $\mathbf{r} \leftarrow \mathbf{r} - \mathcal{L}\mathbf{x}, \ \boldsymbol{\mu} \leftarrow \mathbf{\bar{r}}, \ \mathbf{v} \leftarrow \|\mathbf{r} - \boldsymbol{\mu}\|_{\infty}$
3: if $(\mathbf{v} < \mathbf{v}_{max})$ then return
4: $\mathbf{r} \leftarrow \mathbf{r} - \boldsymbol{\mu}, \ \mathbf{p} \leftarrow \mathcal{M}^{-1} \mathbf{r}^{(\dagger)}, \ \mathbf{\rho} \leftarrow \mathbf{p}^{T} \mathbf{r}$
5: for $k = 0$ to k_{max} do
6: $\mathbf{z} \leftarrow \mathcal{L}\mathbf{p}, \ \mathbf{\sigma} \leftarrow \mathbf{p}^{T} \mathbf{z}$
7: $\alpha \leftarrow \mathbf{\rho}/\mathbf{\sigma}$
8: $\mathbf{r} \leftarrow \mathbf{r} - \alpha \mathbf{z}, \ \boldsymbol{\mu} \leftarrow \mathbf{\bar{r}}, \ \mathbf{v} \leftarrow \|\mathbf{r} - \boldsymbol{\mu}\|_{\infty}$
9: if $(\mathbf{v} < \mathbf{v}_{max} \text{ or } k = k_{max})$ then
10: $\mathbf{x} \leftarrow \mathbf{x} + \alpha \mathbf{p}$
11: return
12: end if
13: $\mathbf{r} \leftarrow \mathbf{r} - \boldsymbol{\mu}, \ \mathbf{z} \leftarrow \mathcal{M}^{-1} \mathbf{r}^{(\dagger)}, \ \mathbf{\rho}^{new} \leftarrow \mathbf{z}^{T} \mathbf{r}$
14: $\mathbf{\beta} \leftarrow \mathbf{\rho}^{new}/\mathbf{\rho}$
15: $\mathbf{\rho} \leftarrow \mathbf{\rho}^{new}$
16: $\mathbf{x} \leftarrow \mathbf{x} + \alpha \mathbf{p}, \ \mathbf{p} \leftarrow \mathbf{z} + \beta \mathbf{p}$
17: end for
18: end procedure

Basic concepts of Preconditioned Conjugate Gradients :

- Basic problem : $\mathbf{A}\mathbf{x} = \mathbf{b}$
- Consider a matrix ${\bf M}$ such that ${\bf M}{\bf A}\approx {\bf I}$
- This matrix needs to be symmetric and positive definite. In this case we can write : ${f M}={f U}^2$ where ${f U}$ is symmetric
- The PCG method is algebraically equivalent to applying the Conjugate Gradients method on the modified system :

 $(\mathbf{U}\mathbf{A}\mathbf{U})(\mathbf{U}^{-1}\mathbf{x}) = \mathbf{U}\mathbf{b}$

- The final algorithm requires only a routine for computing ${f Mv}$ (for any input vector) to be specified

Using a multigrid V-cycle to define a preconditioner :

Using a multigrid V-cycle to define a preconditioner :

• Define a hierarchy of discrete Poisson problems with zero Dirichlet and Neumann Boundary conditions at all levels.

Using a multigrid V-cycle to define a preconditioner :

- Define a hierarchy of discrete Poisson problems with zero Dirichlet and Neumann Boundary conditions at all levels.
- Use the input vector **v** as the right hand side at the top level. **Use a** zero initial guess at every level of the V-cycle.

Using a multigrid V-cycle to define a preconditioner :

- Define a hierarchy of discrete Poisson problems with zero Dirichlet and Neumann Boundary conditions at all levels.
- Use the input vector **v** as the right hand side at the top level. **Use a** zero initial guess at every level of the V-cycle.
- Perform I V-cycle. The result is the desired product *Mv*.

Using a multigrid V-cycle to define a preconditioner :

- Define a hierarchy of discrete Poisson problems with zero Dirichlet and Neumann Boundary conditions at all levels.
- Use the input vector **v** as the right hand side at the top level. **Use a** zero initial guess at every level of the V-cycle.
- Perform I V-cycle. The result is the desired product *Mv*.

A valid CG preconditioner (symmetric, definite) is obtained if :

- Restriction prolongation are defined as adjoint operators.
- Jacobi (or damped Jacobi) is used instead of Gauss-Seidel to relax the interior of the domain.
- Boundary band is traversed by the smoother in opposite orders during the downstroke and upstroke of the V-cycle.

MG-preconditioned CG benefits :

• Remains stable, even if an *unstable* V-cycle is used for preconditioning

Multigrid preconditioning

MG-preconditioned CG benefits :

- Remains stable, even if an *unstable* V-cycle is used for preconditioning
- Unstable V-cycles simply require a few extra PCG iterations

Multigrid preconditioning

MG-preconditioned CG benefits :

- Remains stable, even if an *unstable* V-cycle is used for preconditioning
- Unstable V-cycles simply require a few extra PCG iterations
- Intensity of the boundary treatment can be tuned to *moderate-difficulty* scenarios, and remain stable even in highly complicated cases

Multigrid preconditioning

MG-preconditioned CG benefits :

- Remains stable, even if an *unstable* V-cycle is used for preconditioning
- Unstable V-cycles simply require a few extra PCG iterations
- Intensity of the boundary treatment can be tuned to *moderate-difficulty* scenarios, and remain stable even in highly complicated cases
- With a well-designed (albeit unstable) V-cycle, PCG converges as quickly as the best-case scenario multigrid cycle, in practice.

Results and performance

