Collision detection (for simulated objects)

- Cannot (easily and efficiently) convert into levelsets to facilitate
 O(1) collision queries
 - Sometimes we seek collisions between open surfaces, which do not have an *"interior"* to describe as a levelset
- If simulation contains N primitives (particles, segments, triangles, etc) there is a potential for O(N^2) "candidate" intersection pairs
 - Brute force check would require O(N^2) cost
 - Every simulation step ideally requires O(N) effort (e.g. with Forward Euler, or BE with fixed CG iterations)
 - Ideally the detection cost should not exceed O(N) by much
- Popular approach : Using axis-aligned bounding box (AABB) queries to accelerate collision detection

Embedded collisions (w/penalty forces)

Embedded collisions (w/penalty forces)

ALL ALL

Disney

Underlying Bones

Embedded collisions (w/penalty forces)

ALL ALL

Disney

Underlying Bones

Self collisions : Can we use level sets?

Production Rig

Our Method

©Disney

Self collisions : Can we use level sets?

Implicit Surface $\mathcal{C} = \{(x,y) | \phi(x,y) = 0\}$

Signed Distance Field

$$\phi(x,y) = \sqrt{x^2 + y^2} - 1$$

Collision detection (for simulated objects)

- Popular approach : Using axis-aligned bounding box (AABB) queries to accelerate collision detection
 - Prunes away most of the *"faraway"* collisions
 - Cost to check one primitive, against a box B-tree hierarchy with k leaves : O(logk) in the best case
 - Cost will increase if the box hierarchy is not optimally constructed (i.e. if we chose to merge faraway boxes)
 - Quality of hierarchy will degrade as object moves : May choose to re-build the hierarchy from scratch every few time steps
 - KD-Tree or Quad-/Oct-trees can be used to generate box hierarchies