
Representations of discrete solid geometry.
Dynamic meshes and introduction to Pixar USD

uniform mesh, and a priori or a posteriori error estimators for sim-
ulations. To avoid bad dihedral angles in the simplices one typi-
cally requires the sizing field to vary smoothly [Ruppert 1993].

� Boundary Requirements: Some approaches aim at conforming
to (i.e., matching exactly) the domain boundary by adding Steiner
points if necessary [Cohen-Steiner et al. 2002; Krysl and Ortiz
2001; Cheng and Poon 2003]. Others require of the mesh bound-
ary to only approximate the domain boundary. The latter allows
for higher tet quality since the boundary is not required to match
the input surface. In particular the latter is important when the
initial input is a low quality surface triangulation.

� Strategy: Existing meshing techniques can be roughly classified
by the general strategy they employ:
� Advancing front: Starting from the boundary of the domain,

new vertices are added by a local heuristic to ensure that the
generated tets have acceptable shapes and sizes and conform to
the desired sizing field. Global optimization steps can also be
performed sporadically to improve the mesh quality further. A
number of variants exist, such as sphere or bubble packing [Li
et al. 2000], which provide better tet shape and size control al-
beit adding a significant computational overhead.

� Octree-based methods: An octree is first refined until each of
its leaves is either strictly inside or strictly outside of a finely
voxelized version of the domain. Proper connections of the in-
terior leaves through, for instance, a red-green strategy [Molino
et al. 2003] then ensure a good initial mesh of the domain, usu-
ally improved through optimization or physically-based relax-
ation in particular to better approximate the domain boundary.
Other similar methods offer bounds of worst dihedral angles
even without a relaxation stage [Mitchell and Vavasis 2000].
Unfortunately, octree-based meshes have preferred edge direc-
tions, which may be detrimental to subsequent use in simulation.

� Delaunay approaches: For a given set of sample points in
3D, its Delaunay triangulation has the canonical property of
minimizing the maximum radius of the minimum containment
sphere. This property is very useful in approximation theory:
this radius provides an upper bound on the L� difference be-
tween any function f and its piecewise linear approximant, as-
suming f has bounded second derivatives. Thus a Delaunay
triangulation provides good control over the worst interpola-
tion error inside a domain. Consequently a large body of work
in numerical analysis provides error estimates for a variety of
applications using these meshes. Because of these as well as
many other optimality properties, mesh generation relying on
Delaunay triangulation such as Delaunay refinement [Ruppert
1993; Shewchuk 1998b; Shewchuk 2002b; Cheng et al. 2004],
unit mesh [Borouchaki et al. 1997a; Borouchaki et al. 1997b],
or centroidal Voronoi tessellations [Du and Wang 2003] have
flourished in the meshing and Computational Geometry com-
munities. Delaunay refinement methods offer some theoretical
guarantees on the resulting meshes: they provide bounds on the
radius-edge ratio, and are shown to be asymptotically optimal
with respect to the number of elements in the mesh. Delau-
nay refinement, however, can generate slivers; some attempts
have been made to handle the sliver problem within Delaunay
refinement [Cheng et al. 1999; Cheng and Dey 2002; Li and
Teng 2001]. Unfortunately the theoretical guarantees are quite
poor, and the mesh either is no longer Delaunay but a regu-
lar (weighted Delaunay) triangulation, or comes with degraded
bounds on the radius-edge ratio.

� Mesh Optimization Techniques: Even if fast and robust Delau-
nay triangulators are available, the previous strategies can re-
quire substantial implementation effort to make them robust to
arbitrary input domains. A large number of practical meshing
techniques instead employ local optimization methods which
move vertices adjacent to poorly-shaped tets to improve mesh

Figure 3: Stanford bunny: meshing the interior of the bunny with adapted
tets (smaller near the boundary, larger inside, and smooth gradation (K =
1) in between). The cutaway views show the well-shapedness of the mesh
elements inside the domain; notice also the quality of the boundary mesh.

quality. Coupled with local face swapping between adjacent tets
as well as tet insertions and deletions, these strategies can result
in nice final meshes [Freitag and Ollivier-Gooch 1996; Cutler
et al. 2004]. Unfortunately, these optimizations often use highly
non-convex functionals and get easily stuck in local minima.

From this brief overview we see that meshing has been approached
with two very different emphases: theory and practice. Theoreti-
cal methods, most commonly using iterative Delaunay refinement
approaches, come with quality guarantees that are often not suited
to further use in practical applications: the presence of fairly de-
generated tets are a serious problem for many numerical methods.
Alternatively, optimization methods provide viable solutions with
relatively little implementation effort, and the quality obtained is
satisfactory for a class of applications. Alas, their ad-hoc nature
does not warrant high-quality meshes. When seeking high qual-
ity meshes, a method combining optimization with solid theoreti-
cal foundations would provide the best of both worlds, promising
meshes of a quality that none of the existing approaches could ob-
tain by themselves.

1.2 Approach and Contributions
In this chapter, we present a Delaunay-based optimization tech-
nique, that we call Variational Tetrahedral Meshing, to efficiently
mesh a bounded 3D domain � of arbitrary topology or number of
connected components. The domain boundary �� is assumed to be
a manifold, watertight and intersection-free triangular mesh. Draw-
ing on recent work on surface approximation [Cohen-Steiner et al.
2004] and Optimal Delaunay Triangulations [Chen and Xu 2004],
we propose a simple minimization procedure that alternates global
3D Delaunay triangulation and local vertex relocation to consis-
tently and efficiently minimize a global energy over the domain.
It results in a robust meshing technique that generates high qual-
ity isotropic meshes in terms of radius ratios, as well as angles.
A notable feature of the method is that it removes slivers inside
the domain. To provide a flexible meshing tool, we also introduce
an automatic sizing field construction that guarantees an arbitrary
smooth gradation of the mesh together with faithful approximation
of the domain boundary. Equipped with these tools, the user has full
control over the mesh design, and can require a specific number of
vertices for the final mesh. We demonstrate the versatility and ro-
bustness of our method through a series of results and comparisons;
we also give details on the current limitations.

2 Variational Approach to Meshing
Variational approaches (that is, methods relying on energy mini-
mization) have been advocated as a powerful and robust tool in
meshing both in graphics for triangle [Hoppe et al. 1993; Cohen-
Steiner et al. 2004] and tet [Molino et al. 2003; Cutler et al. 2004]

CS839 Physics-Based Modeling and Simulation - 6 Sep 2019

• If you have trouble enrolling in Piazza:

• Try : http://piazza.com/wisc/fall2019/cs839 (signup link)

• If still not working, email the instructor

• Do try the USD installation, as soon as possible!

• Just first of 3 stages of getting class software set-up

• Seek help early!

• Some up-front pain, to save you later headaches!

• Decisions of enrollment authorization by next Wednesday  
 
 

Announcements

http://piazza.com/wisc/fall2019/cs839

CS839 Physics-Based Modeling and Simulation - 6 Sep 2019

• Big THANK YOU to troubleshooting contributors on Piazza!

• Great showing of class service, immensely appreciated

• Please keep it up :)  
 
 
 
 
 
 
 
 
 
 

Announcements

CS839 Physics-Based Modeling and Simulation - 6 Sep 2019

• Describe established discrete representations used to encode
solid bodies for modeling and simulation purposes

• Surface (polygon) meshes

• Volumetric meshes

• Introduction to Pixar USD - Demo & API walkthrough

• Discuss the features of these representations specific to
simulation, as opposed to general geometry processing or
rendering

• Objects need to support dynamic deformation

• Volumetric objects need internal structure

• Discrete geometry needs to be simulation-quality (well-conditioned)  

Today’s topics

CS839 Physics-Based Modeling and Simulation - 6 Sep 2019

• Previous lecture : Installing USD (Part 1 of infrastructure setup)

• Today : Download, compile and test simple demos that use the USD API (Part II
of setup)

• Obtain from :  
https://github.com/uwgraphics/PhysicsBasedModeling-Demos

• Should provide 3 tools (helloWorld, animateAttribute, USDtoOBJ)

• (demonstration of results)

• As always, report build issues on Piazza.

• Deliverable by Sunday Sep 15th (end-of-day)

• Create your own, animated USD scene (however simple), created
programmatically via a program using the USD API

• Don’t worry about it being “simulated” (we’ll do that next)

• Suggested : Try a nontrivial deformation (Stretch, scale, twist, pinch, etc)

• Optional : Import a custom model from the Web (e.g. as OBJ file)  

Your TODO list

https://github.com/uwgraphics/PhysicsBasedModeling-Demos

CS839 Physics-Based Modeling and Simulation - 6 Sep 2019

• Explain the features that make one representation better than
another for certain tasks (e.g. meshes vs. implicit surfaces)

• Static vs. dynamic topology (connectivity)

• “Shape memory” and deformation drift

• Regular, structured storage

• Efficiency of geometric queries

Up next …

CS839 Physics-Based Modeling and Simulation - 6 Sep 2019

sweeps we end up only optimizing roughly 10% of the
nodes, and in the final sweeps we optimize 30%-50%
of the nodes.

While more efficient gradient methods may be used
for the nodal optimization, we found a simple pattern
search (see e.g. [68]) to be attractive for its robust-
ness, simplicity of implementation, and flexibility in
easily accommodating any quality metric. For inte-
rior nodes we used seven well spread-out directions in
the pattern search. We implemented the normal direc-
tion constraint on boundary nodes simply by choosing
five equally spaced pattern directions orthogonal to
the average mesh normal at the node. The initial step
size of the pattern search was .05 times the minimum
distance to the opposite triangle in any tetrahedron
incident on the node (to avoid wasting time on steps
that crush elements). After four “strikes” (searches at
a given step size that yielded no improvement in qual-
ity, causing the step size to be halved) we move to the
next node. For interior nodes we use as a quality met-
ric the minimum of a

L + 1
4 cos(θM) over the incident

tetrahedra, where a is the minimum altitude length,
L is the maximum edge length, and θM is the maxi-
mum angle between face normals. For surface nodes
we add to this a measure of the quality of the incident
boundary triangles, the minimum of at

Lt
+ 1

ψM
where at

is the minimum triangle altitude, Lt is the maximum
triangle edge, and ψM is the maximum triangle angle.
We found that including the extra terms beyond the
tetrahedron aspect ratios helped guide the optimiza-
tion out of local minima and actually resulted in better
aspect ratios.

9. RESULTS

We demonstrate several examples of tetrahedral
meshes that were generated with our algorithm. The
results for all three compression techniques are compa-
rable, with the FEM simulations taking slightly longer

Figure 5: Tetrahedral mesh (left) and cutaway
view (right) of a cranium (80K elements).

Figure 6: Tetrahedral mesh (left) and cutaway
view (right) of a model Buddha (800K ele-
ments).

(ranging from a few minutes to a few hours on the
largest meshes) than the mass spring methods, but
producing a slightly higher quality mesh. For exam-
ple, the maximum aspect ratio of a tetrahedron in the
cranium generated with finite elements is 6.5, whereas
the same mesh has a maximum aspect ratio of 6.6
when the final compression is done using a mass spring
model. Mass spring networks have a long tradition in
mesh generation, but a finite element approach offers
greater flexibility and robustness that we anticipate
will allow better three-dimensional mesh generation in
the future. Currently the fastest method is the opti-
mization based compression, roughly faster by a factor
of ten.

We track a number of quality measures including the
maximum aspect ratio (defined as the tetrahedron’s
maximum edge length divided by its minimum alti-
tude), minimum dihedral angle, and maximum dihe-
dral angle during the compression phase. The max-
imum aspect ratios of our candidate mesh start at
about 3.5 regardless of the degree of adaptivity, em-
phasizing the desirability of our combined red green
adaptive BCC approach. This number comes from the
green tetrahedra (the red tetrahedra have aspect ra-
tios of

√
2). In the more complicated models, the worst

aspect ratio in the mesh tends to increase to around
6–8 for the physics based compression methods and to
around 5–6 for the optimization based compression.

For the cranium model, the physics based compression
methods gave a maximum aspect ratio of 6.5 and aver-

Tetrahedral meshes 
(volumetric)

Hexahedral meshes 
(volumetric)

Tetrahedral meshes 

Discrete representation of solid geometry

CS839 Physics-Based Modeling and Simulation - 6 Sep 2019

Triangular surface meshes 
(not volumetric)

Tetrahedral meshes 

Discrete representation of solid geometry

CS839 Physics-Based Modeling and Simulation - 6 Sep 2019

Discrete representation of solid geometry

“Meshed” geometry
(or just “geometry”)

Particles

Mesh
(topology/connectivity)

+

CS839 Physics-Based Modeling and Simulation - 6 Sep 2019

Discrete representation of solid geometry

Example:
A quadrilateral mesh

(-3, 3)

(-3,-3) (3,-3)

(3, 3)

(-1,-1)

(-1, 1) (1, 1)

(1,-1)

CS839 Physics-Based Modeling and Simulation - 6 Sep 2019

Discrete representation of solid geometry

Particle ID Position
P1 (1, 1)
P2 (1, -1)
P3 (-1, -1)
P4 (-1, 1)
P5 (3, 3)
P6 (3, -3)
P7 (-3, -3)
P8 (-3, 3)

Particle data structure

P1

P2P3

P4

P5

P6P7

P8

CS839 Physics-Based Modeling and Simulation - 6 Sep 2019

Discrete representation of solid geometry

Mesh data structure

P1

P2P3

P4

P5

P6P7

P8

Q1 Q2

Q3

Q4

Q5

CS839 Physics-Based Modeling and Simulation - 6 Sep 2019

Discrete representation of solid geometry

Mesh data structure

P1

P2P3

P4

P5

P6P7

P8

Q1 Q2

Q3

Q4

Q5

Element
(Quad) ID

Vertices

Q1 (P1, P2, P3, P4)

Q2 (P1, P5, P6, P2)

Q3 (P2, P6, P7, P3)

Q4 (P3, P7, P8, P4)

Q5 (P4, P8, P5, P1)

CS839 Physics-Based Modeling and Simulation - 6 Sep 2019

Discrete representation of solid geometry

Why “particles”?
(and not “points”, “vertices”, ...)

Physical
attributes

✓ Position
✓ Velocity
✓ Acceleration
✓ Force
✓ Mass, etc

Secondary
attributes

✓ Texture
coordinates

✓ Color
✓ Translucency,

etc ...

CS839 Physics-Based Modeling and Simulation - 6 Sep 2019

Discrete representation of solid geometry

Particles : Implementation #1 Particles : Implementation #2

struct Particle{
 float position[3];
 float velocity[3];
 float mass;
};

struct Particle particle_array[N];

struct Particles{
 float positions[N][3];
 float velocities[N][3];
 float masses[N];
} particle_array;

CS839 Physics-Based Modeling and Simulation - 6 Sep 2019

Discrete representation of solid geometry

Particles : Implementation #1 Particles : Implementation #2

struct Particle{
 float position[3];
 float velocity[3];
 float mass;
};

struct Particle particle_array[N];

struct Particles{
 float positions[N][3];
 float velocities[N][3];
 float masses[N];
} particle_array;

Implementation #1 - BENEFITS

• Particles are self-contained
• Easy to construct subsets of particles
• Can extend to accommodate

particles with different attributes, on
the same array

CS839 Physics-Based Modeling and Simulation - 6 Sep 2019

Discrete representation of solid geometry

Particles : Implementation #1 Particles : Implementation #2

struct Particle{
 float position[3];
 float velocity[3];
 float mass;
};

struct Particle particle_array[N];

struct Particles{
 float positions[N][3];
 float velocities[N][3];
 float masses[N];
} particle_array;

Implementation #2 - BENEFITS

• Simulation algorithms typically
stream different properties during
different passes - separation
improves bandwidth

• Easy to construct subsets of
attributes (e.g. for visualization)

CS839 Physics-Based Modeling and Simulation - 6 Sep 2019

Wavefront OBJ mesh format (.obj)

v 0.0625 0.125 0.25
v 0.0625 0.125 1.25
v 0.0625 1.125 0.25
v 0.0625 1.125 1.25
v 1.0625 0.125 0.25
v 1.0625 0.125 1.25
v 1.0625 1.125 0.25
v 1.0625 1.125 1.25
f 1 2 3
f 2 4 3
f 5 7 8
f 5 8 6
f 1 5 6
f 1 6 2
f 3 7 4
f 4 7 8
f 2 8 4
f 2 6 8
f 1 3 5
f 3 7 5

Note: 1-based indexing
of vertices

CS839 Physics-Based Modeling and Simulation - 6 Sep 2019

A USD (static) scene with a triangle mesh 
(helloWorld.usda)

#usda 1.0

def Mesh "TriangulatedSurface"
{
 float3[] extent = [(0, 0, 0), (1, 1, 1)]
 int[] faceVertexCounts = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]
 int[] faceVertexIndices = [0, 1, 2, 1, 3, 2, 4, 6, 7, 4, 7, 5, 0, 4, 5, 0, 5, 1,
 2, 6, 3, 3, 6, 7, 1, 7, 3, 1, 5, 7, 0, 2, 4, 2, 6, 4]
 point3f[] points = [(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0),
 (1, 0, 1), (1, 1, 0), (1, 1, 1)]
}

Note: 0-based indexing
of vertices

CS839 Physics-Based Modeling and Simulation - 6 Sep 2019

A USD (dynamic) scene with a triangle mesh 
(helloWorld.usda)

#usda 1.0

def Mesh "TriangulatedSurface0"
{
 float3[] extent = [(0, 0, 0), (1.625, 2.25, 3.5)]
 int[] faceVertexCounts = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]
 int[] faceVertexIndices = [0, 1, 2, 1, 3, 2, 4, 6, 7, 4, 7, 5, 0, 4, 5, 0, 5, 1,
 2, 6, 3, 3, 6, 7, 1, 7, 3, 1, 5, 7, 0, 2, 4, 2, 6, 4]
 point3f[] points.timeSamples = {
 0: [(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)],
 1: [(0.03125, 0.0625, 0.125), (0.03125, 0.0625, 1.125), (0.03125, 1.0625, 0.125),
 (0.03125, 1.0625, 1.125), (1.03125, 0.0625, 0.125), (1.03125, 0.0625, 1.125),
 (1.03125, 1.0625, 0.125), (1.03125, 1.0625, 1.125)],
 2: [(0.0625, 0.125, 0.25), (0.0625, 0.125, 1.25), (0.0625, 1.125, 0.25), (0.0625, 1.125, 1.25),
 (1.0625, 0.125, 0.25), (1.0625, 0.125, 1.25), (1.0625, 1.125, 0.25), (1.0625, 1.125, 1.25)],
 3: [(0.09375, 0.1875, 0.375), (0.09375, 0.1875, 1.375), (0.09375, 1.1875, 0.375),
 (0.09375, 1.1875, 1.375), (1.09375, 0.1875, 0.375), (1.09375, 0.1875, 1.375),
 (1.09375, 1.1875, 0.375), (1.09375, 1.1875, 1.375)],
 [...]
 20: [(0.625, 1.25, 2.5), (0.625, 1.25, 3.5), (0.625, 2.25, 2.5),
 (0.625, 2.25, 3.5), (1.625, 1.25, 2.5), (1.625, 1.25, 3.5),
 (1.625, 2.25, 2.5), (1.625, 2.25, 3.5)],
 }
}

CS839 Physics-Based Modeling and Simulation - 6 Sep 2019

• Meshed objects are composed of 2 parts:

• An array of particles (with “attributes” such as position, velocity,
mass, etc)

• A mesh data structure, encoded as an array of segments, triangles,
tetrahedra, etc 
(whose vertices are the predefined particles)

• Topological queries & Derivative structures

✓ Can be precomputed, do not need to store explicitly

• Geometrical queries (collisions, inside/outside tests)

✓ Cannot be precomputed, since they depend on the particle
attribute values

✓ Potentially expensive to determine

Summary

(Sneak preview; more in 2nd half of class)  
Alternative representations of volumetric geometry
Point Clouds, Levelsets & implicit surfaces

Point Set Surfaces
Marc Alexa
TU Darmstadt

Johannes Behr
ZGDV Darmstadt

Daniel Cohen-Or
Tel Aviv University

Shachar Fleishman
Tel Aviv University

David Levin
Tel Aviv University

Claudio T. Silva
AT&T Labs

Abstract
We advocate the use of point sets to represent shapes. We pro-
vide a definition of a smooth manifold surface from a set of points
close to the original surface. The definition is based on local maps
from differential geometry, which are approximated by the method
of moving least squares (MLS). We present tools to increase or de-
crease the density of the points, thus, allowing an adjustment of the
spacing among the points to control the fidelity of the representa-
tion.
To display the point set surface, we introduce a novel point ren-

dering technique. The idea is to evaluate the local maps according
to the image resolution. This results in high quality shading effects
and smooth silhouettes at interactive frame rates.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms; I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling—Curve, surface,
solid, and object representations;

Keywords: surface representation and reconstruction, moving
least squares, point sample rendering, 3D acquisition

1 Introduction
Point sets are receiving a growing amount of attention as a repre-
sentation of models in computer graphics. One reason for this is the
emergence of affordable and accurate scanning devices generating
a dense point set, which is an initial representation of the physical
model [28]. Another reason is that highly detailed surfaces require
a large number of small primitives, which contribute to less than
a pixel when displayed, so that points become an effective display
primitive [33, 36].
A point-based representation should be as small as possible

while conveying the shape, in the sense that the point set is nei-
ther noisy nor redundant. It is important to have tools which ade-
quately adjust the density of points so that a smooth surface can be
well-reconstructed. Figure 1 shows a point set with varying density.
Amenta et al [1] have investigated the problem from a topological
point of view, that is, the number of points needed to guarantee a
topologically equivalent reconstruction of a smooth surface. Our
approach is motivated by differential geometry and aims at mini-
mizing the geometric error of the approximation. This is done by
locally approximating the surface with polynomials using moving
least squares (MLS).

Figure 1: A point set representing a statue of an angel. The density
of points and, thus, the accuracy of the shape representation are
changing (intentionally) along the vertical direction.

We understand the generation of points on the surface of a shape
as a sampling process. The number of points is adjusted by either
up-sampling or down-sampling the representation. Given a data
set of points P = {pi} (possibly acquired by a 3D scanning de-
vice), we define a smooth surface SP (MLS surface) based on the
input points (the definition of the surface is given in Section 3).
We suggest replacing the points P defining SP with a reduced set
R = {ri} defining an MLS surface SR which approximates SP .
This general paradigm is illustrated in 2D in Figure 2: Points P ,
depicted in purple, define a curve SP (also in purple). SP is resam-
pled with points ri � SP (red points). This typically lighter point
set called the representation points now defines the red curve SR

which approximates SP .
The technique that defines and resamples SP provides the fol-

Figure 3: Our New Method (140x110x90 grid cells).

spheres allows for an enhanced reconstruction capability of the liq-
uid surface.

3.2.2 Time Integration

The marker particles and the implicit function are separately in-
tegrated forward in time using a forward Euler time integration
scheme. The implicit function is integrated forward using equa-
tion 1, while the particles are passively advected with the flow us-
ing d⇧xp/dt =⇧up, where ⇧up is the fluid velocity interpolated to the
particle position⇧xp.

3.2.3 Error Correction of the Implicit Surface

Identification of Error: The main role of the particles is to de-
tect when the implicit surface has suffered inaccuracies due to the
coarseness of the computational grid in regions with sharp features.
Particles that are on the wrong side of the interface by more than
their radius, as determined by a locally interpolated value of � at
the particle position ⇧xp, are considered to have escaped their side
of the interface. This indicates errors in the implicit surface rep-
resentation. In smooth, well resolved regions of the interface, our
dynamic implicit surface is highly accurate and particles do not drift
a non-trivial distance across the interface.

Quantification of Error: We associate a spherical implicit func-
tion , designated �p, with each particle p whose size is determined
by the particle radius, i.e.

�p(⇧x) = sp(rp� |⇧x�⇧xp|). (3)

Any difference in � from �p indicates errors in the implicit function
representation of the surface. That is, the implicit version of the
surface and the particle version of the surface disagree.

Error Correction: We use escaped positive particles to rebuild
the � > 0 region and escaped negative particles to rebuild the � ⇥ 0
region as defined by the implicit function. The reconstruction of the
implicit surface occurs locally within the cell that each escaped par-
ticle currently occupies. Using equation 3, the �p values of escaped
particles are calculated for the eight grid points on the boundary of
the cell containing the particle. This value is compared to the cur-
rent value of � for each grid point and we take the smaller value
(in magnitude) which is the value closest to the � = 0 isocontour
defining the surface. We do this for all escaped positive and escaped

Figure 4: Foster and Fedkiw 2001 (140x110x90 grid cells).

negative particles. The result is an improved representation of the
surface of the liquid.

3.2.4 When To Apply Error Correction

We apply the error correction method discussed above after any
computational step in which � has been modified in some way.
This occurs when � is integrated forward in time and when the
implicit function is smoothed to obtain a visually pleasing surface.
We smooth the implicit surface with an equation of the form

�⇥ =�S(�⇥=0)(|∇� |�1), (4)

where ⇥ is a fictitious time and S(�) is a smoothed signed distance
function given by

S(�) =
��

�2+(Δx)2
. (5)

More details on this are given in [Foster and Fedkiw 2001].

3.2.5 Particle Reseeding

In complex flows, a liquid interface can be stretched and torn in a
dynamic fashion. The use of only an initial seeding of particles will
not capture these effects well, as regions will form that lack a suffi-
cient number of particles to adequately perform the error correction
step. Periodically, e.g. every 20 frames, we randomly reseed par-
ticles about the “thickened” interface to avoid this dilemma. This
is done by randomly placing particles near the interface, and then
using geometric information contained within the implicit function
(e.g. the direction of the shortest possible path to the surface is
given by ⇧N = ∇�/|∇� |) to move the particles to their respective
domains, � > 0 or � ⇥ 0. The goal of this reseeding step is to pre-
serve the initial particle resolution of the interface, e.g. 64 particles
per cell. Thus, if a given cell has too few or too many particles,
some can be added or deleted respectively.

3.2.6 A Note on Alternative Methods

If we felt that preserving the volume of the fluid was absolutely nec-
essary in order to obtain visually pleasing fluid behavior, we would
have chosen to use a volume of fluid (VOF) [Hirt and Nichols 1981]
representation of the fluid. Although VOF methods explicitly con-
serve volume, they produce visually disturbing artifacts allowing
thin liquid sheets to artificially break up and form “blobbies” and

CS839 Physics-Based Modeling and Simulation - 6 Sep 2019

• Motivation

✓ Accelerated geometric queries for problems such as:

➡ Is a point (x*,y*) inside the object?

➡ Is a point (x*,y*) within a distance of d* from the object
surface?

➡ What is the point on the surface which is closest to the
query point (x*,y*)?

Implicit curves and surfaces (a.k.a. level-sets)

CS839 Physics-Based Modeling and Simulation - 6 Sep 2019

• Motivation

✓ Easy modeling of motions that involve topological change, e.g.
shapes splitting or merging

✓ Such operations are difficult to encode with meshes, since they
don’t “split” or “merge” unless we force them to

✓

Implicit curves and surfaces (a.k.a. level-sets)

CS839 Physics-Based Modeling and Simulation - 6 Sep 2019

• Familiar representations address some of these
demands:

✓ e.g. Analytic equations

➡ For an ellipsis:

➡ Easy inside/outside tests

✓

x2

a2
+

y2

b2
= 1

x2
⇤

a2
+

y2⇤
b2

< 1 , (x⇤, y⇤) is inside

Implicit curves and surfaces (a.k.a. level-sets)

CS839 Physics-Based Modeling and Simulation - 6 Sep 2019

• Familiar representations address some of these demands:

✓ Describe a closed region via its boundary; split and
reconnect when necessary

➡ This may be tractable in isolated cases, but very cumbersome
and impractical for more complicated cases, and with 3-
dimensional surfaces 
 

Implicit curves and surfaces (a.k.a. level-sets)

CS839 Physics-Based Modeling and Simulation - 6 Sep 2019

• Represent a curve in 2D (or, a surface in 3D) as
the zero isocontour of a (continuous) function, i.e.  
 
 
e.g.  
 
 
 
 
 

C = {(x.y) 2 R2 : �(x, y) = 0}

circle x2 + y2 = R2 ⌘ {(x, y) : �(x, y) = 0}

where �(x, y) = x2 + y2 �R2

z = 0

The level-set concept

CS839 Physics-Based Modeling and Simulation - 6 Sep 2019

• This representation may seem redundant (we store
information everywhere, just to capture a curve), but it
conveys important benefits:

➡ Containment queries 

➡Composability 
 
 

➡We model both shape & topology change by simply 
varying the level set function  

Is (x⇤, y⇤) inside C? , �(x⇤, y⇤) < 0

�1(x, y) encodes ⌦1

�2(x, y) encodes ⌦2

�
) max(�1,�2) encodes ⌦1 \ ⌦2

max(�1,�2) encodes ⌦1 [⌦2

The level-set concept

CS839 Physics-Based Modeling and Simulation - 6 Sep 2019

