Let's attempt to understand what differentials mean, and what is the intuition behind them.

→ If \(f : \mathbb{R} \to \mathbb{R} \) (written as \(f(x) \)), for any \(h \in \mathbb{R} \):
 \[\delta f [x^* ; h] := f'(x^*) \cdot h = \frac{df}{dx} \bigg|_{x=x^*} \cdot h \]

→ If \(f : \mathbb{R}^n \to \mathbb{R} \) (write \(f(x) \)), then for \(h \in \mathbb{R}^n \):
 \[\delta f [x^* ; h] := \nabla f(x^*) \cdot h = \sum_{i=1}^{n} \frac{df}{dx_i} \bigg|_{x=x^*} \cdot h_i \]

→ If \(f : \mathbb{R}^n \to \mathbb{R}^m \) (write \(f(x) \)), then \(\forall h \in \mathbb{R}^n \):
 \[\delta f_j [x^* ; h] := \frac{df_j}{dx} \bigg|_{x=x^*} \cdot h \]

 Matrix-Vector Product

 Jacobian

 or, in "index notation"

 \[\delta f_i [x^* ; h] = \sum_{j=1}^{m} \frac{df_i}{dx_j} \bigg|_{x=x^*} \cdot h_j \quad 1 \leq i \leq m \]
You might remember seeing such expressions before... they show up in Taylor (1st order) formulas:

e.g.

\[f: \mathbb{R} \to \mathbb{R} \]

\[f(x^* + h) \approx f(x^*) + f'(x^*)h + o(h^2) \]

\[\delta f[x^*; h] \]

\[f: \mathbb{R}^n \to \mathbb{R}^n \]

\[f(x^* + h) \approx f(x^*) + \frac{\partial f}{\partial x} \bigg|_{x^*} h + o(\|h\|^2) \]

\[\delta f[x^*; h] \]

In this sense, the differential is the linear term in the Taylor approximation of the difference

\[f(x^* + h) - f(x^*) \]

This also gives us a concrete formula to define the differential:

\[
\delta f[x^*; h] = \lim_{\epsilon \to 0} \left[\frac{f(x^* + \epsilon h) - f(x^*)}{\epsilon} \right]
\]

Since eq. (1) doesn't (explicitly) mention derivatives, we could consider taking differentials of more complex functions, e.g. those taking matrices as input (or output), e.g.:

\[f(M) = \text{det} M \]

\[F(M) = M^{-1} \]
There are many convenient features of differentials, including:

- In many cases, we can compute a differential without needing the derivative.
- The derivative might be a matrix (e.g. $\frac{df}{dx}$) which is cumbersome to store/compute (we saw the pseudocode that computes δf).
- The derivative might be a "weird" algebraic object, but the differential is always the same "type" as $f(x)$.

 \[F(M) = M^{-1} \]

 We will see \[\delta F [M^*; H] = -(M^*)^{-1} H M^* \]

 the derivative $\frac{df}{dM}$ is a 4th order tensor.

- Derivative properties are inherited to differentials.

Addition

\[\delta (f+g) [x^*; h] = \delta f [x^*; h] + \delta g [x^*; h] \]

Multiplication

\[\delta (f \cdot g) [x^*; h] = \delta f [x^*; h] \cdot g(x^*) + f(x^*) \cdot \delta g [x^*; h] \]

Also works for dot products, matrix products, etc.
Composition ("Chain Rule")

\[\delta \{ f \circ g \} [x^*; h] = \delta f \left[g(x^*) \right] \delta g [x^*; h] \]

(i.e. \(\delta \{ f(g) \} \))

\[\Rightarrow \text{Differentials can help us compute derivatives!} \]

If we somehow derive \(\delta f [x^*; h] = A \cdot h \)

then \(A \) has to be \(\left[\frac{df}{dx} \right]_{x^*} \)

Examples

W.l.o.g we use \(\delta x \) in place of \(h \), and shorten \(\delta f [x; \delta x] \) to just \(\delta f \) ...

St. Venant Kirchhoff

\[P = F \left\{ 2\mu E + 2\lambda I \cdot E \cdot I \right\} \]

where \(E = \frac{1}{2} (FF + I) \)

\[\Rightarrow \delta E = \frac{1}{2} \left(\delta F^T F + F^T \delta F \right) \]

\[\delta P = \delta F \left\{ 2\mu \delta E + 2\lambda I \cdot I \right\} \]

\[+ F \left\{ 2\mu \delta E + 2\lambda I \cdot (\delta E) \cdot I \right\} \]