EUROGRAPHICS 2016 /J. Jorge and M. Lin
(Guest Editors)

Volume 35 (2016), Number 2

Fast and Robust Inversion-Free Shape Manipulation

Tiantian Liu', Ming Gao?, Lifeng Zhu'#, Eftychios Sifakis” and Ladislav Kavan'+>

!University of Pennsylvania, 2University of Wisconsin-Madison, >University of Utah, 4Southeast University

Figure 1: A band of surface vertices on a tetrahedralized bunny is constricted to a tight noose. Even with severe distortion, the resulting

mesh is inversion-free, i.e., all tetrahedral elements have positive volume.

Abstract

We present a shape manipulation technique capable of producing deformations of 2D and 3D meshes, guaranteeing that no
elements will be inverted. We achieve this by augmenting the quadratic ex-rotated elastic energy with additional convex terms
that penalize the presence of inverted elements. Using a schedule of increasing penalty coefficients, we efficiently and robustly
converge to an inversion free state by solving a sequence of unconstrained convex minimization problems. This process can
be interpreted as a special purpose Semi-Definite Programming (SDP) solver. We demonstrate that our method outperforms
solvers used in previous work, including commercial-grade SDP software (MOSEK). As an additional benefit, our method also
converges to the solution via a more intuitive path, which can be used for quick preview. We demonstrate the efficacy of our
scheme in a number of 2D and 3D shapes undergoing moderate to drastic deformation.

1. Introduction

Deformable solids may compress or stretch, but by no means van-
ish. This fact is obvious, but very difficult to guarantee in numerical
simulations, where we discretize the simulated objects using ele-
ments, i.e., triangles in 2D or tetrahedra in 3D. Intuitively, inversion
means that an element flips “inside-out,” like an umbrella flipped in
strong wind. Mathematically, the non-inversion constraint can be
expressed by requiring the deformation gradient of each element to
be positive, which yields a rather difficult non-convex set. This fact
greatly complicates the design of numerical algorithms to avoid in-
verted elements.

This paper builds on related recent results [SKPSH13, KABL14]
in order to develop a fast and versatile shape deformation method
which avoids inverted elements, provides robustness guarantees,
and does not rely on third-party optimization packages. We as-
sume the user needs to manipulate a 2D or 3D volumetric shape
using handles — subsets of vertices of our discretization which are
directly coupled to a graphical user interface elements (manipula-
tors). This is a common concept in skinning and shape deformation.
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Unfortunately, classical methods such as skinning with bounded bi-
harmonic weights [JBPS11] quickly lead to inverted elements, even
for moderately complex deformations.

To address this problem, we start by designing a convex quadratic
deformation energy which produces results similar to skinning, but
allows us to enhance the algorithm with non-inversion constraints.
The key idea is to use bounded biharmonic weights to interpolate
the rotations of each handle. Using this procedurally computed ro-
tation field, we formulate a purely quadratic elastic energy which
targets the externally provided rotations, and can be minimized to
generate the deformed shape. Due to these explicitly specified rota-
tions, we call this energy “ex-rotated elasticity.” This concept is not
new: the ex-rotated ideas appeared in [CGC* 02, WPP07, WSLGO07]
as well as in more recent work [GMS14]. In this paper, we combine
ex-rotated elasticity with an efficient method to prevent inversions.

The idea of ex-rotation fields is also utilized in the approach of
[KABL14], who conservatively approximate the full non-convex
non-inversion constraints with a more restrictive set of semi-definite
constraints. Whereas Kovalsky et al. [KABL14] use this convex ap-
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proximation step in an iterative process that ultimately converges to
a solution of the original non-convex non-inversion constraints, we
observe that for the types of deformations targeted by our work,
a single ex-rotation field produces adequate results even though it
imposes more conservative constraints than the non-convex non-
inversion constraint would. This observation is a consequence of
the fact that, for the types of deformation problems we target, we
can procedurally furnish an ex-rotation field that provides a rea-
sonable estimate of the final rotation field, similarly to previous
skinning methods [CGC*02,WPP07, WSLGO7]. Thus, we steer our
attention to the solution process for this single semi-definite opti-
mization problem, with the goal of producing a solver that is (i)
simple to implement, without requiring delicate modeling steps or
third-party software, (ii) provides intermediate iterates which can
be utilized as early previews of the final result, and (iii) matches
or even outperforms established general-purpose semi-definite pro-
gramming packages. An example of a commercial solver package
we use as a measure of reference is MOSEK, which in many of our
examples would not yield competitive performance and would not
be able to provide meaningful preview of the result.

Instead, we propose a specialized semi-definite solver, specifically
designed for interactive inversion-free shape deformation. In con-
trast to interior point methods which are commonly used to solve
semi-definite programs [BV04], we do not require an inversion-
free starting point. Instead, our method works by progressively in-
creasing the penalty term for inversion; upon convergence, all our
elements are inversion-free. An interesting and somewhat counter-
intuitive fact is that we can increase the weight of the penalty terms
to extremely high values without any numerical difficulties. The
convergence path of our method is quite natural, with early itera-
tions providing a good approximation of the final result as inverted
elements are progressively corrected. Thus, we can provide a mean-
ingful preview to the user early on, in contrast to interior-point
solvers whose intermediate iterates are typically not indicative of
the final result.

In a number of practical shape deformation scenarios, we demon-
strate that our method outperforms solvers used in previous
work, including commercial semi-definite programming software
(MOSEK). As an additional benefit, our method relies only on stan-
dard linear algebra libraries, we do not need any third-party opti-
mization software. Our algorithm is much simpler to implement
than modern interior point methods and we believe it will be a wel-
come addition among existing tools of geometry processing and
physics-based simulation.

2. Related Work

In physics-based animation, it is common to design material mod-
els which penalize inversion [ITF04, CPSS10,SHST12, SWM™14,
CFS14]. However, under larger external forces, these penalties may
not be strong enough to prevent inversions and the resulting un-
desired self-overlaps. Specialized material models such as Neo-
hookean elasticity [BW97] contain terms that grow to infinity as
the area/volume of a deformed element approaches to zero. Un-
fortunately, these terms greatly complicate the numerics and may
grind the classical Newton’s method to a halt [SKPSH13]. Chen et

al. [CZXZ14] discusses how to overcome these numerical difficul-
ties in the context of inverse elastic shape design.

Physics-based simulation is known for its relatively high computa-
tional costs. Skinning techniques have been developed to produce
plausible deformations quickly, fast enough even for real-time ap-
plications [JDKL 14]. Our method builds on the concept of skinning
with explicitly provided rotations for each element (“ex-rotations”)
[CGC*02, WPP0O7, WSLGO07]. More recently, Gao et al. [GMS14]
used ex-rotated skinning to speed up collision response. However,
they detect and resolve collisions only at the boundary; internal el-
ements are free to invert and self-overlap. In this paper, we focus
on the orthogonal problem of element inversions. Indeed, if bound-
aries are deformed without self-intersections and all elements are
non-inverted, the entire volumetric deformation is a bijective map;
this result as well as alternative necessary and sufficient conditions
were studied by Lipman [Lip14].

The problem of computing inversion-free mappings received con-
siderable attention in recent years. Lipman [Lip12] reduced the
2D version of the problem to second order conic programming
(SOCP), while Weber et al. [WMZ12] pointed out the connections
to the theory of Teichmiiller maps. In addition to non-inversion,
these algorithms also strive to reduce conformal distortion but, un-
fortunately, both of these methods are limited to 2D. One year later,
Aigerman and Lipman [AL13] generalized the previous approach
to 3D, but only in the context of projections on an inversion-free
configuration — arbitrary deformation energies were not supported.
This limitation was lifted in [KABL14], proposing a general frame-
work for controlling singular values. This framework embeds many
different instances of inversion-free problems but requires us to
solve a sequence of semi-definite programs (SDP). Even though
robust and highly optimized SDP solvers exist (e.g., the commer-
cial MOSEK package), their computational requirements are rather
high even for modest meshes, hampering interactivity.

The long wait-times of existing solvers motivated Schiiller et
al. [SKPSH13] to develop Locally Injective Mappings (LIM),
a custom barrier method which provides real-time feedback to
the user. LIM was subsequently improved by online remeshing
[JHT14]. Assuming the input configuration is inversion-free, LIM
guarantees that no elements will ever invert. Unfortunately, there
are no convergence guarantees and indeed, we observed that in cer-
tain cases LIM makes only very small progress towards the solution
and requires a lot of iterations. Even upon convergence, global op-
timality is not guaranteed. In contrast, we design our problem to be
convex, which allows us to reap the benefits of convex optimiza-
tion: guaranteed convergence to a global optimum. Poranne and
Lipman [PL14] investigated an interactive approach of inversion-
free deformations with provable guarantees. While producing fast
and smooth results, their method is limited to 2D deformations
with limited number of degrees of freedom. Recently, Kovalsky
et al. [KABL15] proposed another efficient algorithm to compute
bounded distortion mappings based on projections onto approxi-
mate tangent planes. However, this method converges poorly in
challenging deformation cases, and may produce oscillatory behav-
iors.

Element inversions are problematic also in mesh parameterization.
Even though related, parameterization is not the main focus of this
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paper and we refer to surveys [FHOS5, SPR0O6] for more complete
literature review. Finding optimal parameterizations can be formu-
lated as an optimization problem [HG00, DMKO3] but finding ac-
curate numerical solutions are difficult due to sharp non-linearities
of the objective, similar to the Neo-hookean material in physics-
based simulation. Schneider et al. [SHF13] constructed a bijective
map between a source and target domain by creating a sequence of
intermediate polygons. More recently, [WZ14] and [SH15] lever-
aged the Radd-Kneser-Choquet theorem which guarantees bijec-
tivity of a harmonic map as long as the boundary of the target
domain is convex. Even though preliminary 3D results were pre-
sented, these approaches are currently limited to 2D. In three and
more dimensions, it is possible to guarantee bijectivity with inte-
gral curve coordinates [HG15]. However, all of the above described
methods require the deformation of the entire boundary to be spec-
ified. This precludes these methods from applications in skinning
and shape deformation, where we need to control the shape using
internal handles, such as bones [JBPS11].

Similar problems arise also in quad meshing. Bommes et
al. [BZKO09] addresses element inversions using local stiffening,
which is effective in many cases, but some inverted elements may
remain. A more recent strategy is based on the idea of convexifica-
tion [BCE™13], similar in spirit to [Lip12], but generalizable also
to 3D.

A different approach to produce bijective maps is based on the fact
that time integration of a smooth velocity field results in path-lines
that do not intersect in space-time [VFTS06,AS07,ERF*11]. How-
ever, this fact is true only in the continuous settings. In practice,
the performance and accuracy of this approach is limited by spatio-
temporal discretization. Another possibility is to employ advanced
deformation energies, e.g., involving the /- norm instead of the
usual I, metric [LZ14]. This allows us to control the worst-case
distortion but, unfortunately, element inversions can still occur.

3. Method

We assume that our domain is discretized using a triangle (d = 2) or
tetrahedral mesh (d = 3). We did not investigate d > 3. We denote
the current deformed configuration as x € R™ where n is the num-
ber of vertices. We can define the deformation gradient of element
number i as F; € R4, assuming a fixed rest pose configuration.
We note that the deformation gradients are linear functions of x.
To reduce notation clutter we will write only F; instead of denoting
this dependence explicitly (such as F;(x)). We refer to [SB12] for
details on Finite Element discretizations of deformable solids.

We use ex-rotated elasticity as our material model. The term ex-
rotated elasticity was adopted by [GMS14] as a shorthand for “ex-
plicit rotations” of finite elements; similar ideas appeared in earlier
work [CGC*02, WPP07, WSLG07]. Compared to the more com-
monly used co-rotated elasticity model [CPSS10] which defines
element rotations implicitly, ex-rotated elasticity has a significant
practical advantage: the energy function is convex. This property
is key to our robust and efficient numerical solution procedures.
Ex-rotated elasticity assumes a user provided rotation R; € S0(d)
for each element i. Because our goal is an interactive shape de-
formation system, we assume the user provides position and ori-
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entation of subsets of vertices, called handles. We use bounded
biharmonic weights [JBPS11] to compute non-negative influence
weights associated with each handle. The ex-rotation R; for each
element i is then calculated by quaternion blending of handle rota-
tions [KZOS], using the bounded biharmonic weights as blending
coefficients. The ex-rotated elastic potential is then defined as:

Eex(x) = . |IFi — Ryl )

The constraints on positions and orientations of the handle vertices
are affine, and therefore can be expressed as Cx = d. Even though
these constraints can be enforced as hard constraints, we prefer to
use only “soft” penalties which allow us to compromise the con-
straints if necessary:

Ear(x) = 0f|Cx — d|? )

where o > 0 is a constant specifying the weight of this term. In
all our experiments we use Ol = 10*. Because both Eex and Etr
are convex quadratic functions, it is very easy and efficient to com-
pute x which minimizes Eex(X) + Etar(X). This leads to an interac-
tive skinning technique, producing results of quality not only com-
parable to skinning with bounded biharmonic weights [JBPS11],
but in many cases even competitive with full co-rotated simulation,
as shown by Gao et al. [GMS14]. Unfortunately, when the target-
ing constraints require larger deformations, this technique quickly
starts to produce inverted elements, i.e., triangles/tets with negative
area/volume, which lead to undesired self-intersections.

Assuming that all elements have positive area/volume in the
rest pose, the condition to avoid inversions can be expressed as
det(F;) > 0. While some works attempted to satisfy this constraint
directly [SKPSH13], the stumbling block is the fact that the set of
matrices F; € R*? satisfying det(F;) > 0 is not convex. In order
to benefit from the robustness and efficiency of convex optimiza-
tion methods, we follow [KABL14] and propose to further restrict
our deformations to a convex subset of det(F;) > 0. Because there
are many convex subsets, we inform our choice by the ex-rotations
R; which suggest the ideal desired rotation of element number i.
Formally, we write:

det(F;) = det(R] F;) = det(S; + A;) > det(S;) A3)

where S; := %(IA{,-TF,- +F[R;) is the symmetric part of R} F; and
A= %(RiTFi —F/R;) is the anti-symmetric part. In other words,
we decompose IAl;rF,- into its symmetric and anti-symmetric parts
and note that the anti-symmetric component can only increase the
determinant, please see our supplemental document for a proof.
Therefore, if we ensure det(S;) > 0, we will automatically ob-
tain non-inversion. This inequality is satisfied for all positive semi-
definite matrices S;. Most importantly, the set of symmetric posi-
tive semi-definite matrices is convex and it can be shown that it is
the maximal convex subset of det(F;) > 0 containing our target ex-
rotation ﬁ,- [KABL14]. We note that, if the rotational component
of F;, computed from the polar decomposition, matches R;, Eq. 3
becomes an equality and our semi-definite constraint reduces to
non-inversion. Since Eq. 1 encourages agreement between explicit
and implicit rotations, we expect our semi-definite constraints to be
not much tighter than det(F;) > 0 in most cases. In contrast, the
method of Kovalsky et al. [KABL14] iterates this convexification
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Figure 2: Increasing the penalty parameter T will correct the shape towards an uninverted state in an intuitive path, we show x*(t) =
argminy E(X,T) with different T values using this hippo example: (a) T =1, (b) T = 103, (c)Tt= 104, (d)t= 106, (e)T= 103, where (e) is

the globally converged solution.

process using the rotation field extracted from the previous iterate,
ultimately converging to a solution of a non-convex optimization
problem. Instead, we perform only a single convex (semi-definite)
approximation using the procedurally computed ex-rotation field.
Although the iterative update of the ex-rotation fields is quite jus-
tified in the problems targeted by Kovalsky et al. [KABL14], we
observed that our (single) convex approximation yields quite satis-
factory results for shape manipulation. Therefore, in the following
we focus on improving the qualities of the numerical solver used
for this semi-definite optimization problem.

The problem of minimizing Eex + Etar Subject to S; being pos-
itive semi-definite is a semi-definite program (SDP), a classical
convex optimization problem which can be solved using existing
convex optimization software packages. Even though commercial-
grade packages such as MOSEK [AA99] are robust and highly
optimized, solving SDPs is time-consuming and precludes inter-
active user experience even with small meshes [KABL14]. In this
paper, we therefore propose a different approach, which does not
rely on third-party convex optimization software and is much faster
in many practical situations. The basic idea is related to classical
penalty methods [NWO06]. Specifically, we introduce a term to pe-
nalize negative eigenvalues of S;:

Epen(x) = }_p(X;(Si) “
2y

where A; for j = 1,...,d is a function which returns the j-th eigen-
value of the input matrix. Note that because the S; matrices are
always real and symmetric, all of their eigenvalues are real and
therefore can be ordered, as is commonly done in numerical linear
algebra subroutines. Similarly to deformation gradients, the matri-
ces S; are also linear functions of x, even though, again, we do not
denote this linear dependence explicitly.

The function p : R — R is a penalty function that will help us
enforce A;(S;) > 0. A common strategy used in previous methods
to achieve non-inversion [SKPSH13] as well as interior-point meth-
ods for convex optimization [BV04] is to employ a barrier function,
such as —log(x), which is defined only for positive real numbers.
An important distinction of our method is that our penalty function
p is finite and well-defined on the entire R. One specific penalty
function that works well is clamped quadratic:

2.
(x—g) ifx<e
= . 5
p(x) { 0 x> e ©)
where € > 0 is a small constant which we use to cope with limited
precision of floating point arithmetics. In all our experiments we
usee =107,

Using this penalty function, we define our final objective as:
E(x,T) = Eex(X) + TEpen(X) + Etar(X) (6)

Note that as a function of x, E is finite and convex on the entire
domain R™. Convexity is easy to see for the terms Eex and Etar,
which are quadratic. The convexity of the Epen term follows from
the convexity of p and the symmetry of S; [BL10,PB13]. This sym-
metry is the key difference between the ex-rotated and co-rotated
elastic energies.

If we denote:

x*(t) = argmin E(x, 7) ™)

X

the desired solution can be written as:

X" = lim x*(1) 8)
T—>00

For any fixed T, the minimizer x*(t) can be found using Newton’s
method. At first sight, attempting to calculate x* according to (8)
seems to be a folly, because large values of T will inevitably lead
to poorly conditioned Hessians V2E. Indeed, if we execute stan-
dard Newton’s method with backtracking line-search [BV04] on a
problem with moderately high 7, such as 10°, we often observe a
very poor convergence behavior. Even though the objective is con-
vex, the steep penalties force Newton’s method to take only very
small steps, resulting in an excessive number of iterations. Similar
problems were observed by [SKPSH13].

An important observation is that x* can be computed efficiently
and robustly by solving a sequence of relaxed problems with in-
creasing complexity, using the solution of previous (simpler) prob-
lem to bootstrap the solve of the subsequent (harder) problem. This
is a very broadly applicable principle, common to many efficient
numerical algorithms, including multigrid and interior point meth-
ods. In our case, the parameter T lends itself as a natural relax-
ation parameter. We start with T = 0, which corresponds to ignoring
the semi-definiteness constraints. In this case, we are minimizing
convex quadratic function which amounts to a single linear sys-
tem solve. Of course, some elements of the resulting state x*(0)
can be inverted. Therefore, we increase the T to a small number,
e.g., 1, and apply Newton’s method. With this relatively small 7,
Newton’s method converges quickly to the solution x*(1), typi-
cally in 20 or even much fewer iterations, regardless of the number
of vertices. This is the expected (text-book) behavior of Newton’s
method [BV04]. A nice property of Newton’s method is that it com-
putes highly accurate solutions, limited only by machine precision.
Subsequently, we increase the T e.g. to 10 and calculate x*(10) us-
ing the previously computed x* (1) as an initial guess. We repeat the
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Number of Newton iterations v.s. p
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Number of Newton iterations

Figure 3: Total number of iterations (y-axis) vs. the multiplier u
(x-axis). The total number of iterations is approximately constant
over a large range of multipliers p.

process for T = 100, 1000, ..., 10%3, stopping at 101 only because
at this point we start to approach the limits of double-precision
floating point accuracy. Fig. 2 shows the converging sequence
with increasing T. Surprisingly, despite the very steep penalties for
higher 7, the number of Newton iterations remains very small, often
even much less than 20, even for high resolutions. The reason for
this somewhat counter-intuitive behavior are the high quality initial
starting points, computed with previous values of 1.

There is of course nothing special about the multiplicative constant
10. Our experiments indicate that any multiplier u within the range
of, roughly, 5 — 500 works well. For small multipliers, the initial
guess for the subsequent problem will be very good because the
problems are almost the same, however, we have to increase the
multiplier many times, resulting in many total iterations. For too
high multipliers (e.g., more than 1000), the optimization problem
changes too dramatically and our initial guesses are no longer reli-
able, resulting in slow convergence of Newton’s method. Interest-
ingly, this behavior does not seem to vary much with resolution or
complexity of the deformations, see Fig. 3. In all our experiments,
we fix u = 10, which gives us a smoother convergence path than
higher values of p.

Similar ideas appear also in classical interior point methods for
semi-definite programming (SDP). However, compared to SDP
solvers, our penalty approach behaves quite differently. One ob-
vious difference is that our method is not an interior point method,
because inequality constraints can be violated at intermediate it-
erations. A practical benefit is that there is no need to provide a
feasible starting point — all points x € R™ are feasible. Another
advantage is that well-behaved elements (i.e., with eigenvalues of
the S; matrix greater then €) are not penalized, because the func-
tion p is constant zero. Therefore, unlike barrier methods which
influence all elements, our method focuses only on elements which
violate the semi-definite constraints. This means that a reasonable
estimate of the solution is available well before convergence, which
is very useful for interactive preview. The convergence path of inte-
rior point methods is much less intuitive as the shape of all elements
changes, even well-behaved ones (see Fig. 8).

Another advantage of our method is speed. Even if we require full
accuracy and dutifully increase our parameter T up to its maxi-
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Algorithm 1: Inversion-free Shape Deformation

1 Given a starting point X := X, T := Tg, u > 1, tolerance € > 0,
upper bound { > 0

2 (default values: tg = 1,u = 10,e = 10~7,{ = 10")

3 repeat

4 Compute Hessian H := V2E(x, 1)
5 Compute gradient g := VxE(X,T)
6 Compute descent direction: Ax := —H™ ! g
7 Linesearch: find step size ¢
8 Update: X := X +1AX
9 if gTHflg < €% then
10 ‘ increase T: T := ut
11 end

12 until T > {

mal level 10'3, our algorithm often outperforms a commercial SDP
solver (we used MOSEK for our experiments, see Sec. 4). This
is remarkable, because our algorithm is much easier to implement
than modern interior point methods and our prototype implementa-
tion is much less carefully optimized than commercial software.

4. Results

We tested our algorithm on various 2D and 3D shapes. In each
example, we compare the performance of our method to MOSEK
SDP (the same as used in [KABL14]), MOSEK SOCP solver used
in [Lip12] (applicable only to 2D problems) and solving a dual
problem formulated using CVX. The results can be found in Ta-
ble 1. In addition, in Fig. 4 we show how the performance of our
method scales when increasing the resolution of the mesh. In our
current implementation, we use the soft formulation of targeting
constraints, according to Equation (2). We also experimented with
hard constraints incorporated using Lagrange multipliers (New-
ton’s method with equality constraints [BV04]). Unfortunately, this

107
Number of Elements

Figure 4: Scalability of our method. We executed the bunny defor-
mation example with resolutions ranging from 10* t0 10° tets, mea-
suring the number of floating point operations and compute time.
Linear regression (dashed lines, slope r) shows that our method
scales sub-quadratically.
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our method YALMIP + MOSEK SDP CVX+MOSEK Dual Solver YALMIP + MOSEK SOCP

model d n " #iter. per»iil::uon total modeling  solving total modeling  solving total modeling solving total

Arm 2 2135 3945 20 20.4ms 0.409s 12.922s  1.706s 14.628s 34.686s 0.596s 35.282s| 18.206s 1.246s  19.452s
Disc 2 2483 4844| 48 25.6ms 1.228s 15.962s  5.663s 21.625s 48.064s 0.843s 48.907s| 23.036s 1.628s  24.664s
Caterpillar 2 3744 7027 34 32.2ms 1.096s 30.295s  7.685s 37.980s 87.501s 1.123s 88.624s| 41.457s 2.372s  43.829s
Worm 2 10208 19888| 25 84.2ms 2.105s| 245.803s 40.141s  285.944s| 519.225s 3.307s  522.532s| 292.824s 6.770s 299.595s
Woody 2 11290 22065, 33 106.6ms 3.518s| 291.825s 50.053s  341.878s| 660.936s 4.538s  665.474s| 366.795s 10.522s 377.318s
Yogurt Swirl 2 13122 25600| 43 98.2ms 4.220s| 208.112s 55.476s  263.588s| 759.679s 4.604s  764.284s| 250.920s 8.784s 259.705s
Starry Night 2 30502  60000| 91 278.8ms  25.369s| 1333.150s 272.348s 1605.498s| 5217.002s  38.736s 5255.739s|2012.312s 33.561s 2045.873s
Sphere 3 1061 4758 39 51.3ms 2.002s 69.995s  9.760s 79.756s 65.531s 3.886s 69.417s N/A N/A N/A
Hippo 3 2387 8406 34 94.2ms 3.202s| 203.202s 24.273s  227.475s| 169.738s  19.996s  189.735s N/A N/A N/A
Bar 3 2704 10800| 58 123.0ms 7.132s 195.774s  24.540s  220.314x 188.308s  10.193s  198.501s N/A N/A N/A
Bunny 3 4804 15202 36 0.159s 5.706s| 908.782s 43.438s  952.220s| 248.285s  14.251s  262.536s N/A N/A N/A
Bunny 3 8700 27639 41 0.285s  11.704s| 3411.283s 176.116s 3587.398s| 386.077s  18.841s  404.918s N/A N/A N/A
Bunny 3 19443 63040| 47 0.710s  33.374s| 20742.607s 707.191s 21449.798s| 2896.373s  44.988s 2941.360s N/A N/A N/A
Bunny 3 40084 131524| 55 1.617s  88.962s | >12hrs,quit N/A N/A | 21228.970s  320.001s 21548.971s N/A N/A N/A
Bunny 3 52434 171001| 49 2.671s  130.881s|>12hrs,quit N/A N/A | 36060.587s 258.927s* 36319.514s N/A N/A N/A
Bunny 3 76379 247884| 58 3.207s  186.016s | >12hrs,quit N/A N/A | >12hrs,quit N/A N/A N/A N/A N/A
Bunny 3 131451 615068| 37 10.829s  400.665s | >12hrs,quit N/A N/A | >12hrs,quit N/A N/A N/A N/A N/A
Bunny 3 261018 1223023| 45 36.872s 1659.248s | >12hrs,quit N/A N/A | >12hrs,quit N/A N/A N/A N/A N/A

Table 1: Evaluation of our method on several 2D and 3D deformation examples. d is dimension, n is number of vertices and m is number
of elements. #iter. refers to the total number of Newton iterations in our method. In some high resolution Bunny examples, YALMIP or CVX
failed to terminate within 12 hours of computation and therefore we were unable to run the solver on these examples. In YALMIP + SOCP,
we followed the work of [Lip12] which considers 2D deformations only. *Interestingly, in this case the compute time slightly decreased after
increasing the resolution. This is because the MOSEK solver terminated after fewer iterations.

introduces potential infeasibility, because the targeting constraints
may be incompatible with our ex-rotated non-inversion constraints.
The soft formulation of the targeting constraints gracefully de-
grades when the user attempts to prescribe an infeasible configu-
ration.

In addition to the quadratic penalty function (Eq. (5)), we experi-
mented with several other penalty functions. In particular, we tested
a cubic penalty function:

Peubic (¥, T) = {

which has the advantage of being C? continuous, instead of only
C!' continuous as Eq. (5). We also tried a “spline” penalty function:

ifx<e
ifx>e

(~(x—2)*)
0

1(x—¢))>—log(0.5)—0.5

0.3
. log(‘t(xfe)ﬁzrl)
T

if21(x—¢) < —1

Pspli ()C,"C) =
e if 2t(x—g) > —1

In contrast to the previous two penalty func-
tions, the spline penalty is strictly con-
vex on the entire domain. The individual
penalty functions are visualized in the inset
figure to the right.

However, our experiments indicate that
these special properties of the penalty func-
tions do not make a significant difference in
the results. This can be seen in Fig. 5, where
we compare the three types of our penalty
functions. The quadratic and spline penal-
ties lead to approximately the same num- °f
ber of iterations, while the cubic penalty re-
quires slightly more iterations. We use the
quadratic penalty in all of our experiments, x

p(x)

o

[
©

Convergence under different penalty functions

102 T T T T T T T T
—&— Quadratic Penalty
Cubic Penalty
_ —oe— Spline Penalty
o0l ]
% 10
a]
=
g
i
21071 7
2
3%
51
=)
k]
210" b
3 0
10'6 L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50

Number of iterations

Figure 5: Comparison of convergence for different penalty func-
tions. The algorithm converges to the same result in all three cases.

because its simple form opens up opportunities for performance op-
timization (which we defer to future work). Note that by “number
of iterations” we always mean the toral number of Newton steps,
i.e., the number of iterations of lines 3-12 in Algorithm 1. Unless
specified otherwise, we always use the default parameter values in
Algorithm 1. The Hessian and gradient used in Algorithm 1 is com-
puted analytically, using the implicit functions theorem to differen-
tiate the eigen-decomposition [SB12].

An important question is how many iterations our algorithm needs
as a function of the number of degrees of freedom (mesh vertices).
In Fig. 6, we study the convergence of our algorithm on the same
shape deformation scenario but with varying mesh resolutions. We
can see that our method scales favorably with increasing numbers

(© 2016 The Author(s)
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Convergence under different resolutions
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Figure 6: Convergence of our method on a single deformation sce-
nario with varying mesh resolutions.

of degrees of freedom — the total number of iterations of our solver
increases only slightly.

We also tested how the number of iterations changes on a fixed
mesh, but with varying complexity of deformations. In Fig. 7, we
examine progressively more and more difficult deformations of
“yogurt swirl”: 90, 180, and 270 rotation of the center of a square
mesh. As expected, with increasing complexity, our algorithm re-
quires more and more iterations to convergence. In the most dif-
ficult case, 270 degrees, the triangle mesh deformation is already
close to its limits — going beyond 270 degrees would require us to
compromise the targeting constraints. However, even in this chal-
lenging case, the total number of iterations is still relatively small:
less than 70 in this case.

Our solver can be interpreted as a special-purpose semi-definite
programming (SDP) method. This invites comparison with con-
vex optimization software used in previous work. Following
[KABL14], we use a combination of YALMIP [Lof0O4] and
MOSEK. YALMIP is a modeling software which converts our

. Convergence under different configurations
10 T T T

T T T
—©—90 degree swirl
—©— 180 degree swirl
—&—270 degree swirl | |

Distance to solution IIx-x*|

70 80

Number of iterations

Figure 7: Convergence of our method with a fixed mesh and three
different configurations of the targeting constraints. Harder defor-
mations require more iterations.
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Figure 8: The top row visualizes the convergence path of our
method at iterations 5, 10, 25 and 33. The bottom row shows the
convergence path of MOSEK at iterations 2, 5, 8, 15 (we attempted
to find the most visually similar states).

problem to a form acceptable by MOSEK. Of course, our problem
has special structure and it would be possible to use a specialized
modeling strategy, more efficient than general-purpose tools such
as YALMIP. However, even if we completely disregard the time
taken by YALMIP, our algorithm is still much faster than MOSEK,
see Tab. 1. In all cases, both MOSEK and our method produce the
same solution. Another advantage of our method is that even the
intermediate iterates, i.e., before reaching convergence, are already
visually similar to the final solution, which gives the user an op-
portunity to interactively preview whether the shape deformation
behaves as intended. This is not the case with MOSEK, which ap-
proaches the solution via a much less natural convergence path, see
Fig. 8. As we can see, the intermediate iterates of MOSEK scale
the mesh in a non-intuitive way.

Our optimization problem can be also solved using augmented La-
grangian methods. These methods are related to penalty methods,
but they add an estimate of Lagrange multipliers, which is updated
along with the penalty weights [NWO06]. The advantage is that the
resulting linear systems are better conditioned, as it is not neces-
sary to increase the penalty weight T to infinity. Two examples of
augmented Lagrangian-type solvers are the Spectral quadratic-SDP
method [ANTT04] and PENNON [KSO03]. Both of them can be
adapted to our problem, and we compare their performance to our

Convergence of our method, spectral SDP and PENNON

—&— Our Method
—<— Spectral SDP
—e— PENNON

Distance to solution IIx-x*Il

108 . . . . I I
0 005 01 015 02 025 03 035 04 045 05

Time (seconds)

Figure 9: Our method outperforms Augmented Lagrangian Meth-
ods: Spectral SDP [ANTT04] and PENNON [KS03].
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Our method Spectral SDP PENNON

? model n m : : - : . .
#iter.  total time | #iter. total time | #iter. total time
Quad20x20 882 1600 28 0.211s 37 0.231s 52 0.373s
Quad40x40 3362 6400 25 0.606s 64 1.63s 49 1.512s
s Quad60x60 7442 14400 34 1.74s 74 4.168s 31 2.754s
Quad80x80 13122 25600 41 3.991s 63 6.313s 35 5.485s

Table 2: Comparison to Augmented Lagrangian Methods: Spectral SDP [ANTT04] and PENNON [KS03]. We tested the quad example
(shown on the left) using different resolution meshes. In all cases, our method is faster and enables interactive preview.

23333

Figure 10: The top row visualizes the convergence path of our algo-
rithm at iterations 1, 5, 10, 25 (converged). The bottom row shows
the convergence path of Locally Injective Mappings at iterations 1,
200, 1000, 3000 (not converged,).

method in Fig. 9 and Tab. 2. Although all methods converge to the
same result and are relatively competitive, our approach is faster.
The reason is that in our settings, the benefits of the augmented La-
grangian methods are diminished by the overheads associated with
using and re-computing the estimates of Lagrange multipliers. Be-
cause we avoid this extra step, our method is easier to implement.
We believe that this simplicity combined with high robustness and
efficiency will prove useful in applications and future extensions.

Our method also invites comparison to Locally Injective Mappings
(LIM) [SKPSH13], because LIM is another interactive shape de-
formation tool which avoids inversions. However, LIM is solving
a different optimization problem: it imposes non-negativity con-
straints directly on det(F). This is more challenging because the re-
sulting problem is non-convex. In situations such as in Fig. 10, LIM
requires a very high number of iterations, where each step makes
only minuscule progress towards the solution: we terminated LIM
after 3000 iterations without reaching even a local minimum. Pro-
ducing an analogous deformation with our method requires only 25
iterations using our algorithm (Fig. 10).

We also compared our method with Large-Scale Bounded Distor-
tion Mappings [KABL15], a very recent inversion-free shape de-
formation method. For comparison purposes, we replaced the orig-
inal quasi-conformal constraints with our ex-rotated non-inversion
constraints. In deformation examples where most of the elements
are not inverted, [KABL15] is significantly faster than our method.
With moderate deformations, the performance of [KABLI15] is
comparable to our method. In challenging cases where the non-
inversion constraints are hard to satisfy, [KABL15] may produce
oscillatory behavior, while our method still converges reliably.

A logical question is whether our algorithm would directly extend
to the non-convex det(F) > 0 regime. We attempted to apply our

penalty functions directly to det(F). In addition to the fact that we
lose global optimality guarantees (we can only hope to find a local
minimum at best), we observed the number of iterations required to
converge even to a local minimum increases drastically. In Fig. 12,
we show an example where the above mentioned strategy failed to
converge to a local minimum even after 1000 iterations, whereas
our method converged to a global optimum in 50 iterations. This
result highlights the benefits of our convex ex-rotated energy for-
mulation.

It is straightforward to generalize our method to different convex
quadratic elastic potentials. For example, we can add a linearized
approximation of incompressibility [GMS14]:

1 .
5 Ztracez(RiTFi -1 )
1

Adding this term to Eq. (1) encourages the elements preserve vol-
ume, as most real-world materials do. The problem is that upon
significant extension, the material “shrinks” too much and many
elements invert, see Fig. 11(b). Our method produces much more
realistic results, shown in Fig. 11(c).

% LN
N NININL N
ﬂggﬂﬂ

(©)

Figure 11: Stretching an elastic bar (a) with ex-rotated elastic-
ity and non-zero Poisson ratio produces many inverted elements
(b). The same energy augmented with our ex-rotated non-inversion
constraints produces a much more natural result (c).
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Figure 12: The top row shows the convergence path of our method at iterations 5, 15, 30, 50 (converged). The bottom row shows the
convergence path of a modified version of our method which applies the quadratic penalty functions directly to det(F). We show results at

iterations 5, 15, 30, 1000 (still not converged).

In some 3D shape deformation cases, correcting the interior in-
verted elements also changes the surface mesh. Fig. 13 shows an
example of a better surface mesh when we enable our non-inversion
constraints.

Finally, inspired by van Gogh’s Starry Night painting, we attempted
to create a similar effect by deforming a photograph. Unlike ex-
rotated skinning, our inversion-free approach is able to produce the
desired result, see Fig. 14.

5. Limitations and Future Work

One limitation of our method is the assumption that an appropriate
ex-rotation field is specified by the user. In our current implemen-
tation we use handle rotations interpolated using bounded bihar-
monic weights, which works very well in skinning, but may not be
ideal in other applications which require inversion-free mappings.

Our algorithm does not rely on any initial guess provided by the
user, because we always start from ex-rotated skinning. On one
hand, this means that we are not taking advantage of previously

(®)

Figure 13: Pinching an elastic sphere: (a) our result shows natu-
ral deformation without inverted elements, (b) ex-rotated skinning
exhibiting inversions.

(© 2016 The Author(s)
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computed states. On the other hand, if we are rendering an entire
animation, this “history-independece” allows us to compute each
animation frame in parallel — a coveted feature in production en-
vironments. This trivial parallelism is typically elusive in physics-
based animation where the result of the next frame depends on the
solution of the previous frame.

In the future we would like to conduct a more rigorous study of
feasibility. Our preliminary experiments indicate that in some con-
trived cases (with very poor tessellation and highly varying ex-
rotations) our semi-definite problem may be infeasible, even with
soft targeting constraints. We never encountered this situation in
practice even when we experimented with randomly generated ex-
rotations. In future work we would like to investigate sufficient
and necessary conditions for feasibility, especially when account-
ing also for hard targeting constraints.

As noted already in recent related work [SKPSH13, KABL14],
preventing element inversions does not guarantee that there will
be no self-intersections of the boundary. To avoid boundary self-
intersections, we could employ standard collision detection and
response methods. Modern global collision processing algorithms
are very robust, but also time consuming [HVS*09, HPSZ11]. In
the future, we plan to combine our algorithm with a boundary
collision response method, e.g., building on the results of Gao et
al. [GMS14].
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(a)

(b)

Figure 14: Deformation of a photograph (shown in bottom-left) inspired by van Gogh’s Starry Night painting: (a) our result, (b) ex-rotated
skinning. Ex-rotated skinning fails to produce the desired effect due to the presence of inversions.
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