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We introduce a comprehensive biomechanical model of the human upper body. Our model confronts the combined challenge of modeling and controlling more
or less all of the relevant articular bones and muscles, as well as simulating the physics-based deformations of the soft tissues. Its dynamic skeleton comprises
68 bones with 147 jointed degrees of freedom, including those of each vertebra and most of the ribs. To be properly actuated and controlled, the skeletal
submodel requires comparable attention to detail with respect to muscle modeling. We incorporate 814 muscles, each of which is modeled as a piecewise
uniaxial Hill-type force actuator. To simulate biomechanically-realistic flesh deformations, we also develop a coupled finite element model with the appropriate
constitutive behavior, in which are embedded the detailed 3D anatomical geometries of the hard and soft tissues. Finally, we develop an associated physics-based
animation controller that computes the muscle activation signals necessary to drive the elaborate musculoskeletal system in accordance with a sequence of
target poses specified by an animator.
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1. INTRODUCTION

Realistic anatomical modeling aimed at achieving high-fidelity hu-
man animation remains a major challenge in computer graphics.
Since the earliest work [Chadwick et al. 1989], researchers have
made significant progress in this domain by focusing their attention
on biomechanically modeling various body parts, including the face
[Lee et al. 1995; Kähler et al. 2002; Sifakis et al. 2005], the neck [Lee
and Terzopoulos 2006], the torso [Zordan et al. 2004; DiLorenzo
et al. 2008], the hand [Albrecht et al. 2003; Tsang et al. 2005; van
Nierop et al. 2008; Sueda et al. 2008], and the leg [Dong et al. 2002;
Komura et al. 2000]. Because of its complexity, however, researchers
have thus far shied away from undertaking a detailed biomechani-
cal modeling of the entire human body. In particular, the spine and
torso have been drastically simplified in prior work—either they
were modeled in a strictly kinematic manner [Monheit and Badler
1991] or the many articular vertebrae and ribs were grouped and
treated as compound rigid bodies even in the most detailed dynamic
models (e.g., Nakamura et al. [2005] and DiLorenzo et al. [2008]).

In fact, most of the complexity of the human musculoskeletal
system is due to the head-neck-trunk complex, in which there are
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approximately 57 articular bones and many more muscle actuators.
Furthermore, the ribs form closed kinematic loops, which introduces
additional complexities for biomechanical simulation. Nonetheless,
comprehensive biomechanical modeling and control of the human
upper body is the most principled approach to simulating the full
range of motions and deformations that it is capable of producing,
from pronounced motions such as flexing the arms and spine to
more subtle motions such as respiration and laryngeal movements.
We develop a detailed biomechanical model of the human upper
body, comprising the head, neck, trunk, and arms, for use in physics-
based computer animation. Our model features a musculoskeletal
system with a full complement of muscle actuators and a coupled
finite element simulation of soft tissue deformations. We also de-
velop an associated dynamic animation controller that computes
the muscle activation signals necessary to drive the musculoskeletal
system in accordance with a sequence of target poses specified by an
animator.

We confront the challenge of modeling more or less all of the
relevant articular bones, creating a physics-based skeletal model
that consists of 68 bones and 147 degrees of freedom (DOFs),
with each vertebra and most ribs having independent DOFs. To be
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Fig. 1. The biomechanical model in action. A motion controller drives the musculoskeletal system toward a sequence of target poses.

properly actuated and controlled, our jointed skeletal model requires
a comparable level of detail for muscle modeling. We incorporate
814 muscles, which are modeled as piecewise line segment sim-
plified Hill-type force actuators. Coupled to the musculoskeletal
system is a finite element simulation of the soft tissues, which en-
hances the visual richness of our model consistent with a detailed
3D modeling of the musculature. A total of 354,000 tetrahedral fi-
nite elements (including those in the legs) are simulated to produce
realistic, physics-based flesh deformations.

Ours is the most detailed biomechanical model for computer an-
imation developed to date. Its unprecedented complexity requires
special attention to making the simulation feasible by means of the
following features:

—A detailed modeling of the rib bones can introduce closed loops,
which would complicate the simulation of the skeleton. In order
to exploit an efficient, linear-time dynamics algorithm, we model
the skeletal structure topologically as a tree by connecting the ribs
to the costal cartilages using soft rather than hard constraints.

—The naive creation of a tetrahedral finite element mesh directly
from the 3D surface representations of individual soft tissue com-
ponents would result in a prohibitive number of elements, often
with poor aspect ratios. We achieve realistic, robust, and reason-
ably efficient simulation of soft tissue deformation within the fi-
nite element framework by decoupling the visualization geometry
from the simulation geometry. We further reduce the complex-
ity of the simulation mesh by allowing T-junctions in the mesh
simplification process.

—Our volumetric simulation mesh does not resolve the bones, but it
overlaps with them, thus necessitating a special mechanical cou-
pling between the rigid-body and the nonrigid tissue simulations
in order to make the soft tissue deform according to the move-
ment of the skeleton. We achieve this using soft constraints that
produce coupling forces between sample points on the surface of
the bones and appropriate locations in the soft tissue model.

—The existence of bones that are not actuated by muscles (e.g.,
the sternum) prevents us from applying the recursive Newton-
Euler inverse dynamics algorithm. Hence, we perform inverse
dynamics by employing a hybrid system dynamics algorithm.

The remainder of the article is organized as follows: Section 2
discusses additional relevant prior work. Section 3 presents the de-
tails of our upper-body model, including the skeleton (Section 3.1),
the muscle actuators (Section 3.2), and the soft-tissue simulation
(Section 3.3). Section 4 develops the control algorithms that we use

to animate our biomechanical model. Section 5 presents our exper-
iments and animation results. Section 6 concludes the article and
discusses promising avenues for future work.

2. RELATED WORK

Our work spans physical and biological modeling and simulation
in computer animation, as well as related fields such as anatomy,
biomechanics, and control.

Researchers have developed various techniques for anatomi-
cal modeling, including muscles and other soft tissues. Scheepers
et al. [1997] and Wilhelms and Gelder [1997] modeled muscles
geometrically, using primitives such as ellipsoids, and muscle de-
formations were determined entirely by the configuration of the
bones, thus precluding the synthesis of muscle dynamics. Muscle
deformation is more accurately simulated biomechanically, by ap-
propriately modeling the stress-strain constitutive characteristics of
muscles. Chen and Zeltzer [1992] modeled individual muscles as
large finite elements and applied a Hill-type muscle force model to
simulate the deformation of muscular soft tissues. Other interesting
muscle models include the B-spline solids developed by Ng-Thow-
Hing [2001] and the strand model developed by Pai et al. [2005].
Applying the latter, Sueda et al. [2008] created realistic skin defor-
mation of the hand due to the underlying tendons and muscles.

Lee et al. [1995] used volume-preserving, multi-layer mass-
spring-damper meshes with embedded muscle actuators to model
the soft tissues of the face for biomechanical facial expression syn-
thesis. Irving et al. [2004] enabled the robust simulation of soft tissue
deformation by introducing invertible finite elements. Our soft tis-
sue model is based on the work of Sifakis et al. [2005], where the
muscles are embedded within flesh modeled using finite elements.

In contrast to facial animation, where muscle models have been
used for over two decades to generate expressions [Waters 1987],
proportional derivative (PD) servos have traditionally been used to
produce articulated skeletal animation [Hodgins et al. 1995; Falout-
sos et al. 2001]. Recently, Komura et al. [1997, 2000] incorporated
Hill-type muscle models into space-time optimization and motion
retargeting to achieve dynamically and physiologically feasible mo-
tions. Zordan and colleagues [Zordan et al. 2004; DiLorenzo et al.
2008] developed a detailed torso model and simulated breathing
and laughing. They used a Hill-type muscle model to actuate the
thorax, but also used PD servos to control the lumbar vertebrae.
Lee and Terzopoulos [2006] biomechanically modeled the human
neck-head-face complex and developed a two-layer neuromuscu-
lar controller comprising trained neural networks. The head-neck
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Fig. 2. Ventral (a), lateral (b), and dorsal (c) views of the modeled skeleton of the body. Most of the articular bones are individually modeled. There is a total
of 68 bones articulated by 147 DOFs, of which 133 DOFs are in the head-neck-trunk region. Neighboring bones with the same color are treated as a single
rigid body. The parameters of the skeleton are given in [Lee 2008].

portion of our upper body model includes the 7 cervical vertebrae
present in their model, plus the hyoid bone and the thyroid cartilages
modeled as rigid bodies, with a total of 300 muscles, far exceeding
the 72 muscles in the earlier model.

The biomechanics community has ongoing efforts to create de-
tailed human musculoskeletal models. Although state of the art mod-
els such as the Full-Body SIMM model (www.musculographics.
com) and the AnyBody model (www.anybodytech.com) provide ac-
curate muscle parameters, they unfortunately do not provide the data
needed to control a very detailed model like ours, notably lacking
data for muscles in the trunk. Another problem with these biome-
chanics models from the point of view of computer animation is that
they do not specify the detailed geometries of muscles. In our model,
we employ detailed muscle geometry data from the commercially
available Ultimate Human model (www.cgcharacter.com). How-
ever, this model lacks information regarding the force generating
properties of the muscles. We estimate muscle parameters—for ex-
ample, attachment points and physiological cross sectional areas—
by analyzing the muscle geometry data, as detailed in Section 3.2.

There exists a large biomechanics literature on human motor
control mechanisms. Traditionally, biomechanics researchers have
attempted to interpret motor control strategy as an optimization
process and have devoted effort to understanding the optimality
criteria [Crowninshield 1978; Pandy et al. 1990]. Recently, some
researchers have adopted robot control theories for human motor
control. Sapio et al. [2005] proposed a task-level feedback con-
trol framework in the simulation of goal-directed human motion.
Thelen et al. [2003] used static optimization along with feedfor-
ward and feedback controls to drive the kinematic trajectory of a
musculoskeletal leg model toward a set of desired kinematics, and
reported that the muscle excitations computed by their method were
similar to measured electromyographic patterns. Similarly, our mo-
tion controller computes muscle activation levels in the feedforward
controller, but with a novel method for computing the feedforward
signal.

We model almost all the relevant articular joints, including joints
that cannot be controlled by muscles (the sternum and the costal car-
tilages). This prevents us from using the popular, recursive Newton-
Euler inverse dynamics algorithm. Instead, we apply a hybrid system
dynamics algorithm introduced by Featherstone [1987]. When in-
put torques are given to some joints and desired accelerations are
specified for other joints, the hybrid system dynamics algorithm
computes the resulting accelerations for the torque-specified joints
and the required torques for the acceleration-specified joints in linear
time for open loop systems.1 Kokkevis and Metaxas [1998] intro-
duced a similar dynamic control algorithm, but it has O(nm + m3)
complexity, where n is the number of DOFs and m is the number of
acceleration-specified joints.

3. MODELING

This section presents each of the major components of our biome-
chanical model of the human upper body, namely the skeleton, the
muscle-based actuation model, and the soft tissue modeling and
simulation.

3.1 Skeletal Model

The skeleton is modeled as an articulated, multi-body dynamic
system. As shown in Figure 2, we individually modeled most of
the articular bones in the human upper body (the hands remain

1In robotics, the hybrid system dynamics algorithm has been applied to
mechanisms with a zero-torque free-floating root and acceleration-specified
joints, such as robotic animals [Albro et al. 2000; Hu et al. 2005]. We present
an inverse dynamics technique for the hybrid system, particularly when sim-
ulated using an implicit time-integration scheme. Note that our algorithm
differs from other so-called hybrid control approaches, which are mostly con-
cerned with switching between kinematic and dynamic simulation [Shapiro
et al. 2003; Zordan and Hodgins 2002].
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kinematically articulated). The system has a total of 68 bones with
147 DOFs. Among these, 133 DOFs are associated with the head-
neck-trunk region. In particular, all the vertebrae in the lumbar,
thoracic, and cervical regions are modeled as individual rigid bod-
ies interconnected with 3-DOF joints. The first 10 ribs are able to
rotate independently from the spine along axes running through
costotransverse and costovertebral joints [Kapandji 1974] while the
floating ribs (the 11th and 12th ribs) are rigidly attached to their
parent vertebrae. Although costal cartilages are flexible bodies, we
model them as rigid bodies, and the flexibility of the cartilages is
emulated by 3-DOF joints connecting to the sternum and springs
connecting to the ribs. By not modeling the joints between the costal
cartilages and ribs, we maintained the skeleton as an open-loop sys-
tem so that we can use a fast method for simulating articulated body
dynamics. The hyoid bone and the thyroid cartilages are also mod-
eled as rigid bodies. Even though the actual bones are not jointed to
vertebrae, we modeled them for simplicity as child links of nearby
vertebrae, with rotational joints positioned about 5 cm posterior to
the parent bones.

Since we are less concerned about highly coordinated motions of
the clavicle, scapula, and humerus, we simplified the model of the
shoulder; the clavicle has 2 DOFs and the scapula is rigidly attached
to the clavicle. Nevertheless, this allows plausible movement for a
modest range of upper arm motions.

The inertial properties of the skeleton are approximated from the
dense volumetric mesh of the surrounding soft tissues. We associ-
ated the inertial parameters of each volumetric element to the nearest
bone so that each bone’s inertial tensor is augmented by the iner-
tial parameters of the associated soft tissues. The parameters of the
skeleton, among them the inertial properties and the location and
axis of the joints, are provided elsewhere [Lee 2008].

3.2 Muscle Actuation Model

Ideally, to compute the correct activation levels of individual mus-
cles, the parameters of all the muscles of the skeleton should be
known. Since many muscles are highly correlated, assigning inex-
act parameter values to one muscle prevents the computation of
the correct activation level of other muscles. Furthermore, if certain
muscles are omitted, other muscles should be activated more highly
in order to compensate for the missing muscles. These considera-
tions present a challenge. Unfortunately, although the biomechan-
ics literature provides accurate parameters for many muscles (e.g.,
Holzbaur et al. [2005]), no available model provides a full set of pa-
rameter values for all the muscles in the upper body. Notably absent
are the parameters of many of the spinal muscles that are important
for maintaining the stability of the upper body.

As an alternative, we use the comprehensive muscle geometry
information from the Ultimate Human model. Figure 3 shows the
detailed source geometry of the muscles. However, the model pro-
vides no information regarding the force generating properties of
muscles, making it necessary to estimate these properties from the
muscle geometry.

We model most of the skeletal muscles available in the source
data—a total of 814 muscles, modeled using piecewise line segment
(PLS) models (Figure 4). Table I lists the modeled muscles. It may
at first seem that we model more muscles than necessary, but given
the large number of DOFs of our skeletal model, this is only about
2.8 times the minimum number of muscles required to actuate the
system with one agonist/antagonist muscle pair per DOF.

We model broad muscles such as the trapezius and latissimus dorsi
using multiple PLS models (Figure 5(a)). Although the external
obliques and internal obliques are abdominal muscles organized in

different layers, we construct PLS models of the left (right) external
obliques and right (left) internal obliques as if they were connected.

With regard to the deep muscles, we can determine the via points
for the PLS model without much difficulty, because deep muscles
are positioned close to bones and the distance from a muscle to
neighboring bones does not change much as the bones move. When
a deep muscle spans many vertebrae, via points are set only to
some of the bones for computational efficiency (Figure 5(b)). It is
more difficult to model the superficial muscles using PLS models,
since these muscles are rather far from bones, making it harder
to determine via points, and because their positions relative to the
bones vary significantly as the bones move. For superficial muscles,
we subjectively selected a few (typically 2 to 4) via points, making
sure that the resulting PLS muscle model deforms convincingly as
the skeleton moves (Figure 5(a),(c)).

We did not model the diaphragm as a grid of PLS muscles, but it
is not important for pose control. As a result, respiratory movement
is accomplished mainly by the intercostal muscles. We also omitted
the transversus abdominis muscles to avoid the complication of
modeling them as parallel PLS models.

The force generating characteristic of the PLS muscle is modeled
as a linearized Hill-type model [Lee and Terzopoulos 2006]. As-
suming that the length of the tendon is constant, we model a muscle
force as the sum of the forces from a contractile element (CE) and
a parallel element (PE).

The PE force is modeled as an unidirectional exponential spring;

fP = max(0, ks(exp(kce) − 1) + kd ė), (1)

where ks , kc, and kd are elastic and damping coefficients, e = (l −
l0)/ l0 is the strain of the muscle, with l and l0 its length and slack
length, respectively, and ė = l̇/ l0 is the strain rate.

The CE force is expressed as

fC = aFl (l)Fv (l̇), (2)

where 0 ≤ a ≤ 1 is the activation level of the muscle. The
force-length relation is Fl (l) = max(0, kmax(l − lm)), where kmax

is the maximum stiffness of a fully activated muscle and lm is
the minimum length at which the muscle can produce force, and
Fv (l̇) = max(0, 1 + min(l̇, 0)/vm), where vm(≥ 0) is the maximum
contraction velocity under no load. We set lm = 0.3l0, vm = 8l0

sec−1, and kc = 6 for all the muscles. The coefficients ks , kd , and
kmax for each muscle are scaled by the physiological cross sectional
area (PCSA) of the muscle. We used ks = 0.8A, kd = 0.1ks , and
kmax = A/(l − lm), where A is the PCSA of a muscle, which is cal-
culated by dividing its geometric volume by its mean fiber length
(Figure 6). The parameters of each muscle, such as the PCSA, rest
length, and the attachment points are listed elsewhere [Lee 2008].

It is important to note that even if we had faithfully modeled the
majority of the skeletal muscles, the sternum and the costal carti-
lages cannot be controlled by muscles. This is natural because they
are in fact moved only passively by the motion of the neighboring
ribs; hence, we dub them passive joints. This does not pose any
problem in forward dynamics simulation, but it does complicate in-
verse dynamics: computing the muscle forces needed to generate
desired accelerations. We will address this problem in Section 4.3.

Even though some muscles exert forces on passive joints, we
assume that such forces contribute negligibly to the accelerations of
the passive joints compared to the forces exerted by the connecting
tissues. Consequently, the equations of motion of the skeletal system
are as follows:

M(q)

[
q̈m
q̈p

]
+ c(q, q̇) =

[
P(q)fC

0

]
+ JT fe, (3)
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Fig. 3. Source geometry data of the modeled muscles. The superficial muscles are shown on the right side of the body, while deeper muscles are revealed on
the left side.

where q = [qT
m, qT

p ]T is the state vector with qm the generalized
coordinates of the muscle-driven joints and qp those of the passive
joints, M is the mass matrix, and c accounts for the forces from
connecting tissues and muscle parallel elements ( fP ) as well as
gravity, Coriolis forces, and centrifugal forces. The Jacobian matrix
J(q) transforms the applied external force fe into joint torques. The
moment arm matrix P transforms the muscle force fC to the joint
space torque and is defined as PT = dl/dq, where l is the vector of
the lengths of each muscle. The algorithm to compute P is detailed
in Delp and Loan [1995].

To simulate the skeletal dynamics, we use the implicit Euler time-
integration method with linearized equations of motion. The equa-
tions of motion (3) can be written as:

q̈ = φ(q, q̇, τ ). (4)

Rather than computing φ from (3), we perform forward dynamics.
Then the implicit Euler method computes q̇(t + h) by solving:

q̇(t + h) − q̇(t) = hφ(q(t + h), q̇(t + h), τ ), (5)

which requires the use of iterative root-finding methods. We simplify
the problem by using the first-order approximation:

�q̇ = h
[
φ(q(t), q̇(t), τ ) + ∂φ

∂q
�q + ∂φ

∂q̇
�q̇

]
(6)

= h
[
φ(q(t), q̇(t), τ ) + ∂φ

∂q
h (q̇(t) + �q̇) + ∂φ

∂q̇
�q̇

]
, (7)

where �q̇ = q̇(t+h)−q̇(t). We use a simulation time step h ≈ 7ms.

3.3 Soft Tissue Model

In our human body model, the muscle activation parameters are
computed using a PLS idealization of the musculature. Driven by
these muscle actions, a companion volumetric, finite element simu-
lation of the musculoskeletal structure introduces the visual richness
of more detailed, 3D musculature models (Figure 7).

3.3.1 Skin Surface Model Creation. The first step in the con-
struction of our physics-based soft tissue model is the creation of a
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Fig. 4. The lines-of-action of the uniaxial muscle actuators in the body. A total of 814 actuators are modeled. Table I lists the modeled muscles.

Table I. A total of 814 muscles are modeled. The numbers in
parentheses indicate the number of muscle actuators of each kind.

Head/Neck muscles (300)
Iliocostalis thoracis (2), Interspinalis (12), Intertransversi (28),

Rotatores (10), Semispinalis thoracics (4), Trapezius (4), Masseter (2),
Iliocostalis cervicis (10), Longissimus capitis (16), Longissimus cervicis (10),

Semispinalis cervicis (12), Splenius capitis (10), Semispinalis capitis (18),
Longus capitis (8), Geniohyoid (2), Longus colli (14), Obliquus capitis (4),

Omohyoid (2), Rectus capitis posterior (4), Rectus capitis anterior (2),
Scalenes (50), Sternocleidomastoid (4), Sternohyoid (2), Sternothyroid (2),

Stylohyoid (2), Rectus capitis lateralis (2), Levator scapulae (16),
Multifidus (36), mylohyoid (2), Splenius cervicis (8), Rhomboid minor (2)

Trunk muscles (432)
External/Internal obliques (22), Rectus abdominis (6), Iliocostalis lumborum (24),

Iliocostalis thoracis (18), Interspinalis (14), Intertransversi (34),
Multifidus (116), Rotatores (30), Semispinalis thoracics (8),

Spinalis thoracis (16), Trapezius (10), External intercostal (20),
Pectoralis minor (6), Serratus anterior (16), Rhomboid major (2),

Quadratus lumborum (10), Subclavius (2), Iliocostalis cervicis (2),
Longissimus thoracis (48), Serratus posterior inferior (8), Internal intercostal (20)

Arm muscles (41)
Pectoralis major (6), Latissimus dorsi (7), Biceps brachii (2), Brachioradialis (1),

Brachialis (1), Coracobrachialis (1), Triceps Brachii (3), Infraspinatus (1),
Deltoid (3), Supraspinatus (1), Teres major (1), Extensor carpi radialis brevis (1),

Extensor carpi radialis longus (1), Extensor carpi ulnaris (1), Supinator (1),
Flexor carpi ulnaris (1), Flexor digitorum superficialis (4), Palmaris longus (1),

Pronator quadratus (1), Pronator teres (2), Extensor pollicis longus (1)

high quality skin surface geometry. The initial high-resolution skin
surface mesh that serves as our prototype is created by subdividing
the original mesh of the Ultimate Human model. Although rich in
geometric detail, it does not clearly define the volumetric boundary
of the body, since it is not a closed, intersection-free surface due to
openings at the eye sockets, spurious intersections near the ears, and
so on. Additionally, the mesh is rather poorly conditioned for the
purposes of a volumetric physics-based simulation, with elements
exhibiting aspect ratios as high as 60:1, while the ratio of the longest
to the shortest edge in the mesh is in excess of 1000:1. This would
hinder the time integration of the resulting physics-based model

and collision processing. We ameliorate these shortcomings as
follows:

—Holes in the skin mesh (e.g., eyes) were procedurally closed.

—The closed skin mesh is rasterized into a level set implicit surface
[Osher and Fedkiw 2002]. A grid size of 1.5 mm is used for most
of the body, while certain areas with thin features, such as the
ears, are additionally rasterized into local level sets with a grid
size of 0.5 mm. This implicit surface is slightly dilated (by 1 mm)
and smoothed to eliminate excessively thin flesh features (some
of which were present in the ears) and artifacts caused by spurious
self-intersection of the original surface. These subtle corrections
are hardly noticeable, even upon close inspection.

—The meshing algorithm of Molino et al. [2003] is utilized to con-
vert the level set implicit model of the flesh geometry into a well-
conditioned tetrahedralized volumetric mesh. We create a mod-
erately adaptive tetrahedral mesh with element diameters ranging
from 1 mm to 10 mm, resolving the surface geometry at an aver-
age resolution of 3–5 mm. The resulting mesh has an overwhelm-
ing 6.2 million tetrahedral elements; however, instead of directly
using this model for simulation, we keep only the triangulated
surface of this tetrahedralized volume (its topological boundary),
which we use in the context of an embedded simulation frame-
work described in the next section. The interior structure of this
tetrahedral mesh is discarded. Constructing the surface mesh as
the topological boundary of a well-conditioned tetrahedralized
volume imposes even more stringent mesh quality standards; for
example, we penalize bad dihedral angles and narrow parts in
the volume enclosed by the computed surface, in addition to en-
forcing good conditioning along the surface itself. Although this
construction may be more conservative than it strictly needs to be,
this is a tolerable, one-time modeling cost. Alternative tetrahedral
meshing schemes (e.g., Labelle and Shewchuk [2007]) or mesh
optimization schemes (e.g., Hoppe et al. [1993]) can be used for
this task, as long as they are tuned to produce a high-quality result.

The resulting triangulated skin geometry has 302K triangles, with
an average diameter of 4–5 mm and a maximum aspect ratio of
3.8:1 (Figure 8). This well-conditioned mesh provides an excellent
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Fig. 5. (a) Broad muscles such as the Latissimus dorsi are modeled using multiple line segments. Yellow spheres indicate the position of via points. (b) When
a deep muscle spans many vertebrae, one in every two or three vertebrae is assigned a fixation point (blue sphere) to conform the muscle to the movement of
the vertebrae. (c) The via points of muscles that have a large range of motion are determined subjectively such that the resulting PLS muscle model deforms
convincingly as the skeleton moves.

Fig. 6. The PCSA of a muscle is calculated as its volume divided by its
mean fiber length. Blue lines indicate the fiber direction of the biceps brachii.

starting point for physics-based flesh modeling and greatly helps
collision handling.

3.3.2 Generation of the Embedded Simulation Mesh. Having
created a high-quality surface representation, our next goal is to
generate a volumetric simulation mesh on which the governing equa-
tions of the soft tissue will be discretized. One possibility would be
simply to create a tetrahedral mesh directly from the implicit surface
representation of the flesh volume that was previously created. In
fact, we have already described the creation of such a tetrahedral
mesh with the purpose of using its boundary triangle mesh as the
skin surface representation. However, there are problems with using
such a mesh for simulation. The mesh resolves the skin surface at a
resolution of 3–5 mm, with an interior element size of 10 mm. At
this resolution, the mesh comprises 6.2 million tetrahedra, impracti-
cally many for a full nonlinear finite element flesh simulation. One
possible remedy would be a more aggressive adaptivity; increas-
ing the maximum element size to 20–30 mm could lead to 8 to 27
times fewer interior elements. Unfortunately, at the given level of
surface resolution, as many as 1.0–1.5 million tetrahedra would be
incident to the surface where high refinement would be necessary.
In practice, we found that even with very aggressive adaptivity in
the interior of the flesh, the minimum mesh size attainable with-
out coarsening near the surface would be approximately 2 million
tetrahedra. Finally, even if we tolerated a lower surface resolution
for most of the skin surface, there are certain regions that need to
be adequately resolved due to high-curvature features (e.g., fingers,
face) or to facilitate collision handling (e.g., inner thighs, elbow,
armpit).

Our goal is to reduce the size of our simulation model to a few hun-
dred thousand tetrahedral elements. This represents a reduction of
the number of simulation elements by roughly an order of magnitude
from the aforementioned approaches, but our experience indicates
that the coarser resolution can require two or three orders of mag-
nitude less computation time. This is attributable to the decreased
number of solver iterations—both for the outer Newton iteration
for the solution of the nonlinear problem, as well as for the con-
jugate gradients solver of the linearized problem at each Newton
step—as a result of using fewer, larger tetrahedral elements. Note
that the computational cost of every conjugate gradient iteration
scales faster than linearly in practice as the state variable storage
requirements of million-element models begin to outgrow the size
of processor cache, further impeding performance due to memory
bandwidth limitations.

We address these issues with a hybrid simulation technique,
adapting the framework of Sifakis et al. [2007b] to our soft tis-
sue simulation task. We use an embedded simulation scheme that
decouples the geometric representation of the skin surface from the
volumetric simulation mesh. Thus, we can benefit from the higher
resolution of the triangulated skin surface mesh for rendering and
collision handling, while simulating the elastic flesh deformation
on a coarser adaptive tetrahedral mesh in which the detailed skin
surface is embedded.

We start by generating a Body-Centered-Cubic (BCC) tetrahedral
lattice (see Molino et al. [2003] for the details), which completely
covers the volume bounded by the human body (Figure 9(a)), as
shown in Figure 9(b). We use a uniform size of 7 mm for the tetra-
hedral elements at this step. Subsequently, we use the algorithm of
Sifakis et al. [2007a] to cut this background tetrahedral along the
triangulated surface of the skin into two separate parts—the frag-
ment interior to the skin surface, which corresponds to the human
body volume, and the exterior part, which forms a negative mold
enclosing the body, as shown in Figure 9(c). We discard this exte-
rior volume as it is irrelevant to our simulation. The interior volume
comprises the soft tissue model that we wish to simulate. The cut-
ting algorithm of Sifakis et al. [2007a] provides the subset of the
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Fig. 7. Our volumetric human body model incorporates (a) detailed aspects
of skin geometry and (b) active muscle tissues, passive soft tissues, and skele-
tal substructure. The skin surface is discretized into a 300K-triangle mesh.
Resolving this surface detail with a fully tetrahedralized mesh through the
bounded volume would make any form of finite element simulation imprac-
tical. To overcome this difficulty, we decouple the visualization geometry
from the simulation geometry by creating an embedded model. To this end,
an adaptive, BCC tetrahedralized mesh is superimposed on the soft tissue
volume (c). This mesh embeds the high-resolution surface representation by
means of barycentric interpolation of the surface nodes from the nodes of
the tetrahedral simulation mesh.

original tetrahedral mesh that intersects this volume (Figure 10(b))
plus an embedded skin surface geometry in terms of a triangle mesh
whose vertices are barycentrically embedded into the tetrahedra of
the embedding volume.

Our decision to create the embedding geometry using the cutting
method of Sifakis et al. [2007a] is influenced by the ability of this
algorithm to create new degrees of freedom to better resolve parts
of the embedded material exhibiting branching or narrow separa-
tion. For example, in the vicinity of the fingers, a single embedding
tetrahedron from our background BCC mesh will often touch two
neighboring fingers. A naive strategy that simply embeds every part
of the surface into the tetrahedron in which it lies would effec-
tively join these otherwise separate parts of flesh, whereas the use
of the aforementioned cutting method automatically introduces new
degrees of freedom to separate the parts and to better resolve the
topology of the embedded material.

Fig. 8. Detail from the chest of the anatomical model. The Ultimate Hu-
man model skin surface, riddled with sliver elements when subdivided for
smoothness (a), compared to our well-conditioned surface mesh (b).

Since the embedding mesh thus created originates from a uniform
resolution lattice, its total number of elements (3.8 million) is still
prohibitively high. Leveraging the highly regular structure of the un-
derlying BCC lattice, we proceed to coarsen this mesh adaptively by
reversing the process of a red refinement as defined by Molino et al.
[2003]. The inverse of this process, red coarsening, collapses eight
child tetrahedra into one, similar to each of the child tetrahedra with
an edge ratio of 2:1. The criterion for coarsening is that all eight child
tetrahedra must be present in the embedding mesh and that none of
them has been duplicated by the cutting algorithm of Sifakis et al.
[2007a]. After recursively coarsening for a maximum of two levels
(a tetrahedron size of 28 mm), we obtain the final simulation mesh
consisting of 354,000 tetrahedra (Figure 10(c)). Due to the nature
of our refinement process, T-junctions are present at the boundaries
between different levels of refinement. These special points are sim-
ulated in a straightforward fashion using the framework of Sifakis
et al. [2007b].

The individual challenges presented by our biomechanical simu-
lation can be addressed by a number of techniques documented in
the literature. For example, adaptivity and T-junctions are accommo-
dated in approaches such as those due to Grinspun et al. [2002] and
Wicke et al. [2007], large nonlinear deformation and element inver-
sion is treated by Irving et al. [2004], while the work of Bridson et al.
[2002] can be used for robust treatment of collisions. In our work, we
opted for the hybrid simulation framework of Sifakis et al. [2007b],
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Fig. 9. (a) Triangulated skin geometry. (b) Background BCC-tetrahedralized material volume. (c) After cutting along the skin surface, the material volume
has been separated into an embedded volumetric body model, and an outer mold of unused material (sliced and peeled open for illustration purposes).

Fig. 10. (a) Visual reference. (b) Uniform embedding mesh at a resolution of 7 mm. (c) The embedding mesh after 2 steps of adaptive coarsening, down to
an element resolution of 28 mm. T-junctions are visible at the boundaries between refinement levels.

which provides a simple, unified infrastructure for accommodating
embedding, adaptivity, and complex boundary conditions. Specifi-
cally, our hybrid formulation incorporates the techniques of Irving
et al. [2004] and Teran et al. [2005c] for large, nonlinear deforma-
tion, and the collision processing methods of Bridson et al. [2002].

3.3.3 Modeling Musculature and Skeletal Structure. The tetra-
hedral simulation mesh created in the previous step does not strictly
conform to the geometry of muscles or bones. In analogy to the
treatment of the high-resolution skin surface, these geometric fea-
tures are embedded into the simulation mesh. As a first step, we
use the geometry of the muscles to modulate the material properties
assigned to each simulation element. A number of randomly gener-
ated sample points (we used between 103 and 104 points, depending
on element size) are uniformly distributed in each tetrahedron of the
simulation mesh. We check whether each of these sample points,

indicated as colored dots in Figure 11(a), is located inside any mus-
cle volume—in which case the direction of the muscle fiber field
at the given location is associated with the sample point. In the
figure, these samples are depicted as red and orange vector fields
corresponding to the two distinct muscles intersecting the simula-
tion element. Points outside any muscle volume, displayed as blue
dots in the figure, are regarded as locations of passive flesh or fatty
tissue. Using these sample points, we compute a muscle density
dm ∈ [0, 1], denoting the fraction of the simulation element covered
by muscle m, while dp denotes the fraction of the simulation ele-
ment covered by passive flesh outside any muscle. Consequently,
these densities satisfy dp + ∑

m dm = 1. Finally, we average the
fiber directions of the sample points inside muscle m and normal-
ize the result to unit length to obtain a representative fiber direc-
tion fm for this muscle with respect to the simulation element in
question.
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Fig. 11. (a) Randomly scattered point samples in a simulation element are
classified as belonging to active muscles (red and orange points, with their
associated fiber directions) or passive flesh (blue points). (b) A rigid bone
(the area between the brown outlines) is sampled on its surface (blue points).
These sample points are connected with zero length springs to barycentrically
embedded locations (green points) in the simulation mesh.

We describe the constitutive model of each simulation tetrahedron
in terms of the strain energy density �(F), which is defined at each
point as a function of the deformation gradient F = ∂φ/∂X. Here, φ
is the deformation function, which maps a point X in the undeformed
configuration of the body to its deformed position x = φ(X). The
total strain energy E is obtained by integrating the energy density
�(F) over the entire deformable body. Subsequently, this energy
can be used to compute nodal forces by taking the negative gradient
f = −∂ E/∂x of the strain energy with respect to the nodal position
x. Refer to Bonet and Wood [1997] for a detailed discussion of
hyperelastic constitutive models and methods for their numerical
discretization, and Teran et al. [2005b] for a specialized exposition
in the context of musculoskeletal simulation.

Our constitutive model is defined as a weighted average of the
constitutive models for passive flesh and active muscles, using the
previously computed muscle densities dm , as follows:

�(F) = dp�p(F) +
∑

m

dm�m(F). (8)

The passive flesh is modeled as an isotropic, quasi-incompressible
Mooney-Rivlin material [Bonet and Wood 1997], leading to the
following formula for its strain energy density �p:

�p = μ10(trĈ − 3) + 1

2
μ01[(trĈ)2 − Ĉ : Ĉ − 6] + 1

2
κ log2 J,

(9)

where J = det F is the volume change ratio and Ĉ = F̂T F̂ is the
deviatoric Cauchy strain tensor with F̂ = J −1/3F the deviatoric
component of the deformation gradient. We use the values μ01 =
0.06MPa and μ10 = 0.02MPa for the elasticity moduli, and the bulk
modulus (a measure of incompressibility of the tissue) κ = 10MPa.
The constitutive model for active muscles is the sum of the isotropic
contribution �p and an anisotropic muscle term �m:

�m = �p + �m(λm), (10)

where λm = ‖F̂fm‖ is the along-fiber contraction ratio of muscle m
in the simulation element, and the function �m is defined via its first
derivative:

∂�m(λ)

∂λ
= σmax

λopt
ftot(λ), (11)

where σmax = 0.3MPa is the peak isometric stress of skeletal muscle,
λopt = 1.4 is the optimal fiber contraction ratio for force genera-

tion, and ftot is the normalized force-length function for the passive
and active components. We define ftot in accordance with a stan-
dard Hill-type model [Zajac 1989]. We refer the interested reader
to Blemker [2004], Teran et al. [2005b], and Sifakis [2007] for a
further discussion of the constitutive model used in our system, al-
ternative models offering even higher biomechanical accuracy, and
details on the numerical discretization and implementation of these
models.

Next, we address the issue of integrating the rigid skeleton with
our soft tissue simulation model. Our volumetric simulation mesh
does not resolve the rigid bones; in fact, the simulation mesh over-
laps with the skeleton, requiring special treatment of the interface
between the hard and soft tissues. One possibility would be to con-
strain any node of the simulation mesh that lies inside or near a bone
to a fixed position within the local coordinate frame of that bone.
However, this approach leads to issues with, (a) simulation nodes
that are near more than one bone, (b) bones located very close to
the skin surface, leading to odd-looking patches of skin that move
rigidly with the bones underneath, and (c) thin bones (e.g., ribs) lo-
cated deeper inside the flesh where the simulation mesh is coarser,
which may be inadequately constrained unless an unnaturally large
constraint radius is used.

We circumvent these problems by using soft constraints and ap-
plying them to embedded locations rather than true nodes of the
simulation mesh, as follows: A set of points is uniformly sampled
on the surface of each bone. These samples, displayed as blue dots
in Figure 11(b), move with the bone. We then duplicate each of these
samples with the locations that they have in the undeformed config-
uration of the soft tissue. The duplicated samples, illustrated with a
slight displacement as green dots in Figure 11(b), are barycentrically
embedded into the simulation element with which they overlap. Fi-
nally, the samples attached to a bone are connected with their dupli-
cate embedded counterparts using zero rest-length elastic springs,
which apply traction forces on the surrounding soft tissue as the
bone moves, thus inducing an appropriate soft tissue movement and
deformation. This embedded treatment of skeletal attachments al-
lows us to decouple the resolution of the simulation mesh from the
resolution of the skeletal geometry and define the attachment regions
as arbitrarily point-sampled surfaces.

3.3.4 Numerical Simulation and Time-Integration. Our muscu-
loskeletal simulation model contains features such as T-junctions,
hybrid descriptions using embedded collision geometries, and em-
bedded point sets for skeletal attachments, as well as soft constraints
implemented as zero-length elastic springs. We use the hybrid sim-
ulation framework of Sifakis et al. [2007b], which accommodates
such simulation elements in the context of either explicit or implicit
time-integration schemes. In particular, T-junctions and points em-
bedded in the simulation mesh are naturally handled without com-
promising the symmetry or definiteness of the linear systems aris-
ing from the finite element discretization of the simulation mesh.
Additionally, the elastic springs used to enforce soft constraints
are handled fully implicitly in the context of Newmark-type time-
integration schemes, alleviating timestep restrictions that could arise
from stiff constraint springs. For the examples illustrated later in this
article, we used the quasi-static time-integration scheme of Teran
et al. [2005c], which provides robust handling of extreme deforma-
tion and element inversion, both of which are frequent occurrences
in our application. Depending mostly on the rate of change of muscle
activation and the velocity of the skeleton, we obtained simulation
times of 1–4 minutes per frame using a single core of a 3.0 GHz
Intel Xeon CPU workstation.
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Fig. 12. Overview of the motion controller.

4. CONTROL

To animate our model, we take a computed muscle force control
approach: We first employ the equations of motion (3) of the muscu-
loskeletal system to compute the muscle forces necessary to produce
some desired motion—say, a sequence of target key poses set by an
animator or from motion capture data specifying the desired joint
angles over time—subject to external forces, and then we apply
the computed muscle forces to produce the final forward dynam-
ics simulation. To this end, we develop a physics-based animation
controller that computes accelerations to drive the musculoskeletal
system toward the sequence of target poses, and then computes the
required activation signal for each muscle through inverse dynamics.

4.1 Overview

Figure 12 shows a schematic of our motion controller. The inputs to
the controller are the target pose and muscle coactivation of agonist
and antagonist muscles of the body. Although the pose/coactivation
inputs can be dense time series, such as motion capture data, we
will use sparse key frames, at an approximate rate of 1 frame/sec, as
inputs in our experiments. Given the inputs and the current state, the
motion controller determines the desired acceleration of the joints,
and then computes the required muscle activation levels in order to
achieve the desired accelerations and target coactivation. Then the
articulated-body dynamics of the skeletal system are simulated using
the implicit Euler method, and the joint angles and muscle activation
levels are made available to the soft tissue simulator. Finally, given
the position of the bones and the activation level of each muscle, the
soft tissue is displaced and deformed by the elastic spring traction
forces coupling the soft tissue to the bones, as well as the muscle
forces along the fiber directions, as was described in the previous
section.

4.2 Computing the Desired Accelerations

Given target positions and orientations of the head and chest
(the T1 bone) as well as target joint angles of the arms and
legs, the motion controller first performs inverse kinematics to de-
termine the desired angles of the joints. Specifically, we iteratively
update the joint angles in a gradient-descent manner such that the
differences between the current and target poses of the head and T1
bone are minimized.

At each animation time step, the controller determines the desired
acceleration to reach the target pose, using feedback information
about the joint angle and velocity. In our experiments, we compute
the desired accelerations q̈∗ as follows:

q̈∗ = kp(q∗ − q) + kv (q̇∗ − q̇), (12)

where q∗ and q̇∗ are the desired joint angles and angular veloci-
ties, respectively, and kp and kv determine the characteristics of the
acceleration, given the differences between the desired and actual
values.

4.3 Generalized Force Computation

Prior to computing the muscle activation levels, it is convenient to
compute the equivalent generalized forces by solving the inverse dy-
namics problem in the joint space. The efficient, recursive Newton-
Euler inverse dynamics method is predominantly used for open-loop
systems, but we cannot use this method because some joints (the
sternum and costal cartilages) cannot be controlled by muscles. In
other words, even if we compute generalized forces for these joints,
no muscle can generate the generalized force. Actually, it would be
unnatural to specify a desired motion for these passive joints as they
are articulated passively by connected bones, while we compute the
muscle forces required to achieve the specified accelerations of the
muscle-driven joints.

The hybrid dynamics algorithm [Featherstone 1987] is an effi-
cient algorithm that serves this purpose. Using this algorithm, we
provide desired accelerations for acceleration-specified joints and
input torques for torque-specified joints and, in linear time com-
plexity in the number of joints, we can compute the required joint
torques for the former and the resulting accelerations of the latter.

To perform inverse dynamics, we set the passive joints to be
torque-specified joints with zero generalized forces, and set the
muscle-driven joints to be acceleration-specified joints with the de-
sired accelerations. Then, the hybrid dynamics algorithm computes
the required generalized forces for the muscle-driven joints and the
resulting acceleration of the passive joints. Mathematically, the al-
gorithm solves for τ ∗ and q̈p in:

[
τ ∗

0

]
= M(q)

[
q̈∗

m

q̈p

]
+ c(q, q̇) − JT fe, (13)

where q̈∗
m is the desired accelerations of the muscle-driven joints.

When applying the implicit time-integration scheme with rather
large time steps, evolving the system using the computed torque
from (13) creates a large error so the system can fail to achieve the
desired motion. This is because the implicit time-integration method
effectively uses (5) as the equations of motion, in which the system
state is described with respect to the next time step. The solution is
to perform inverse dynamics at the next time step, according to the
following procedure:

(1) Set the muscle-driven joints as acceleration-specified joints,
while the passive joints remain torque-specified joints.

(2) Set the desired accelerations for the muscle-driven joints.

(3) Run the hybrid dynamics algorithm to compute the resulting
acceleration of the passive joints.

(4) Advance to the next time step with the forward Euler method
using the accelerations computed in Step (3).

(5) Run the hybrid dynamics algorithm to compute the required
torques for the muscle-driven joints.

(6) Return to the state of the current time step.

(7) Reset the muscle-driven joints to torque-specified joints.

We can employ this scheme with reasonably large time-steps even
if we use Equation (7), which is the linearization of (5).

4.4 Computation of the Muscle Activation Levels

Next, we will determine the muscle activation levels required to gen-
erate the generalized forces. One of the most distinguishing features
of muscles is that their stiffness varies according to the activation
level. In addition to controlling pose, humans readily control the
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stiffness of their bodies by exploiting the redundancy of their mus-
cle actuators. Stiffness is an important aspect of stylistic motions,
such as dance.

We introduce a new method to compute the muscle activation lev-
els. Our method achieves the desired stiffness by explicitly comput-
ing agonist and antagonist muscle activations. The agonist muscle
activation level, ag , is determined by solving the following opti-
mization problem:

ag = argmin
a

1

2

∑
i

(wi ai )
2 such that PfC = τ ∗, a ≥ 0, (14)

where wi is the muscle weight.2 We did not enforce an upper bound
inequality constraint, a ≤ 1, because muscles should not reach
their maximum state in normal situations. We define the antagonist
muscle activation as generating an opposing force—we perform the
optimization only to change the sign of the generalized force:

an = argmin
a

1

2

∑
i

(wi ai )
2 such that PfC = −τ ∗, a ≥ 0. (15)

Naturally, the total muscle activation level, ag + an , generates zero
net generalized force, but it increases the stiffness of the system.
Using a non-negative coactivation parameter γ , we determine the
activation level as:

a = (1 + γ )ag + γ an . (16)

For computational efficiency, we divide the muscles into four
groups and perform separate optimizations for the muscles in each
of the two arms, the head-neck complex, and the torso. First, we
optimize the activation levels of the arm and head-neck muscles.
Naturally, muscles that cross the torso to other parts of the body
apply torques on joints in the torso. Therefore, we determine the
activation level of the torso muscles so that the net torque is the
same as the desired torque. In this way, the coactivation parameter
can also be specified on a per body part basis.

Lee and Terzopoulos [2006] also solved two optimization prob-
lems in order to control both pose and stiffness, but their optimiza-
tion problems are different—one computes agonist muscle activa-
tion similarly to ours, while the other finds a vector in the null-space
of the moment arm matrix. In contrast, our method solves the same
optimization problem twice, but with different equality constraints.
Our new method promises to be better for implementing a learning
machine (say, neural networks) that can determine muscle activation
levels, potentially enabling a single trained machine to determine
both agonist and antagonist muscle activation levels. Additionally,
in our method the stiffness is determined by the desired accelera-
tion as well as the state of the system, while Lee and Terzopou-
los [2006] determine the maximum stiffness signal solely from the
pose.

4.5 Sensor Modeling

Since we impose exact control, the resulting motion follows the
target motion very well. However, this is not always desirable in
the context of computer animation. Since this method computes the
required control input to create the desired motion under any given
external force, the resulting body motion can easily lack its natural
response to rapidly varying external forces, making the movement

2The muscle weights serve to regularize the muscle activation levels. When
solving (14), if the activation level for some muscle i exceeds 1, we in-
crease wi in order to reduce the activation level, which will commensurately
increase the activation levels of the associated synergistic muscles.

appear too stiff. For example, when a ball unexpectedly impacts the
character, the body motion would not be affected, since our method
computes the control inputs that nullify the external force from the
ball.3

Sensor modeling can avoid this problem by discriminating be-
tween the external force input to the controller and the actual ap-
plied external force. The response time delay of biological control
systems yields a natural response to the external forces. To pro-
duce plausible reactive motion, we use the following simple delay
model:

d
dt

f̃e = σ (fe − f̃e), (17)

where f̃e is the sensed external force that is used to compute the
muscle force and σ is the time lag coefficient. To apply the sensor
model, we replace fe in (13) with f̃e as computed in (17). While
simplistic, our sensor model does enable intuitive control of the
character’s response.

5. EXPERIMENTS AND RESULTS

Our experiments with our biomechanical upper-body model range
from simulating dumbbell curls to creating respiratory movement.
We have produced several simulations demonstrating that our mus-
cle control algorithms can readily actuate the elaborate muscu-
loskeletal system in a controlled manner in order to track various
input key-pose sequences, such as arm flexing motions with dumb-
bell loads (Figure 1). We also demonstrate an autonomous breathing
animation in which plausible respiratory movement is produced by
the intercostal muscles. Finally, we created a “pectoral dance” ani-
mation in which the activation signals to the pectoralis muscles are
modulated through time to make them bulge rhythmically.

Figure 13 shows a sample still frame from one of our animation
experiments. As the figure shows, the soft tissue exhibits natural de-
formations due to the activation of the muscles and the motion of the
skeleton. The embedded volumetric muscles also demonstrate cred-
ible, volume-preserving bulging, which suggests that our embedded
model approach is a promising technique for accurately estimating
muscle deformation.4

Figure 14 shows a close-up of the shoulder region with differ-
ent coactivations of agonist/antagonist muscle pairs. Naturally, high
coactivation produces more muscle bulging, as is clear from the de-
formations of the skin surface.

A “dumbbell curl” animation, illustrated in Figure 15, demon-
strates sensor modeling in the controller. When the mass of the
dumbbells suddenly increases, the biomechanical character exhibits
transient pose control failure before recovering the target pose. With-
out sensor modeling, the target pose would have been perfectly
maintained in an unnatural manner, despite the unexpected change
in the external load.

3The computed muscle force approach can also lead to implausible results
when excessively large muscle forces are computed in order for the sys-
tem to achieve unnatural target poses as a result of external forces. We do
not consider this possibility, assuming instead that the animator provides
realistically achievable target poses.
4Since we use static optimization to compute muscle activation levels, their
temporal smoothness is not guaranteed. Therefore, although in most cases
the optimal muscle activation levels change smoothly to produce smooth
target motions, we observe occasional muscle twitches in our experiment.
Had we used a full dynamic simulation of the soft tissue rather than quasi-
static simulation, these discontinuities would have been smoothed out.

ACM Transactions on Graphics, Vol. 28, No. 4, Article 99, Publication date: August 2009.



Comprehensive Biomechanical Modeling and Simulation of the Upper Body • 99:13

Fig. 13. The soft tissue simulator produces realistic deformations of (a) the visualization geometry, and (b) embedded volumetric muscles.

Fig. 14. Compared to zero muscle coactivation (a), higher coactivation, (b) results in greater muscle bulging and stiffness in the shoulder.

Figure 16 shows snapshots of an autonomous breathing animation
in which plausible respiratory movement is produced by the inter-
costal muscles. For the purposes of this demonstration, we have
specified a simple periodic function, ρ = ρmax(1 − cos θ )/2, where
θ is the phase angle, and set q j = c jρ as target joint angles for the
ribs. Here, c j linearly increases until the fifth rib and stays constant
for the remaining ribs.

5.1 Sensitivity Analysis

We have measured the sensitivity of our method to various mus-
cle modeling parameters. Figure 17(a)–(b) show the effect of the
PCSA of muscles on the computation of muscle activation levels.
In each test, we randomly perturbed the PCSAs of every muscle
by up to ±5% and measured the change of activation levels for 6
different poses. We executed a total of 10 tests; Figure 17(a) shows
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Fig. 15. When the mass of the dumbbells increases suddenly, the arms show a natural failure to maintain the pose and are lowered for an instant (center).
Soon, they return to the desired, original pose (right). The horizontal lines highlight the displacement.

Fig. 16. Normal breathing. The ribs in inspiration (right) are elevated relative to those in expiration (left). The horizontal lines highlight the displacement.

a histogram of the mean change of activation levels of each muscle.
We excluded non-activated muscles from the histograms. The fig-
ure indicates that more than 90% of the muscles show an average
activation level change of less than 0.03. Figure 17(b) shows the
histogram of maximum change of activation levels of each muscle
throughout the test.

We performed the same experiment with respect to the via points
of muscles. In this case, we randomly perturbed the position of
every via point by up to 3% of their rest length while the origin
and insertion points remain fixed. Figure 17(c) shows the average
change of muscle activation levels due to the perturbation of via
points and Figure 17(d) shows the histogram of maximum change
of activation level of each muscle throughout the test.

Figures 17(b) and (d) reveal that the resulting muscle activation
level can vary considerably due to changes in the muscle parame-
ters. Actually, it has been known in the biomechanics community
that the estimated muscle force from optimization is highly sen-
sitive to modeling parameters such as the PCSA and the moment
arm as well as with respect to the optimization method employed
[Nussbaum et al. 1995; Raikova and Prilutsky 2001]. This stresses

the importance of employing more accurate modeling parameters
and better criteria for computing muscle forces, which remains an
active research area in biomechanics. It is worth noting, however,
that the muscle force patterns are not as sensitive to the muscle
modeling parameters as are the muscle force magnitudes [Raikova
and Prilutsky 2001].

6. CONCLUSION AND FUTURE WORK

We have introduced a highly detailed biomechanical model of the
human upper body, which comprises a dynamic, articulated skele-
ton, numerous Hill-type muscle actuators, and a realistic finite ele-
ment simulation of soft tissues. We were able to achieve reasonably
fast performance in soft tissue simulation by decoupling the visual-
ization geometry from the simulation geometry, using an embedded
model. To tackle the complexity of controlling the skeletal model in
the presence of both active and passive joints, we developed an in-
verse dynamics algorithm for this hybrid system in conjunction with
an implicit time-integration scheme. Additionally, we presented an

ACM Transactions on Graphics, Vol. 28, No. 4, Article 99, Publication date: August 2009.



Comprehensive Biomechanical Modeling and Simulation of the Upper Body • 99:15

Fig. 17. The sensitivity of muscle activation levels to muscle modeling parameters. Histogram (a) shows the mean and (b) the maximum change of activation
levels when the PCSAs of the muscles are randomly perturbed by up to ±5%. Histogram (c) shows the mean and (d) the maximum change of activation levels
when the via points of muscles are randomly perturbed by up to 3% of their rest lengths (origins and insertion points remain unchanged). Non-activated muscles
are excluded from the histograms.

improved method to compute muscle activation levels by explicitly
computing agonist and antagonist muscle forces in order to control
the stiffness of the body.

Despite the rich history of biomechanical modeling and control
research, we have yet to see a truly integrated muscle-controlled
human animation system (except perhaps in the case of facial an-
imation), where volume-preserving 3D soft-tissue muscles actuate
hard tissues (bones) and deform the surrounding skin. Our detailed
musculoskeletal and soft tissue model represents an important stride
toward this challenging long-term objective. Since our soft tissue
model approximates the actual deformation of each muscle, rather
than approximating muscle forces using simple line segment mod-
els, we can directly compute the moment arm of each muscle from
the soft tissue simulator. Moreover, by avoiding the urge to lump
all the inertial properties of the surrounding tissues into the bones,
the soft tissues can retain their inertial properties, enabling a more
accurate dynamics simulation.

The embedding technique that we employed for soft tissue mod-
eling enables the robust and efficient simulation of soft tissue defor-
mation within the finite element framework. An important benefit of
this embedding approach is the avoidance of small or ill-conditioned
elements that might be necessary to resolve intricate anatomical de-
tail (e.g., tendons and connective tissue) in the simulation mesh.
We do, however, incur the compromise that such anatomical fea-
tures are only represented at the resolution of the simulation mesh.
Our treatment effectively computes a weighted average of the mate-
rial properties of the tissues contained in every simulation element,
without any subsequent attention to their relative placement. This
is a source of inaccuracy that we necessarily tolerate at present, and
that we expect will vanish with refinement. Another aspect miss-

ing from our current embedded model is the ability for muscles in
contact to slide along one another and relative to the passive tissue
surrounding them. This is in contrast with systems such as those of
Sueda et al. [2008] and Teran et al. [2005a] that modeled muscles
individually. In fact, the embedded simulation of individual muscles
is an option (as demonstrated by Teran et al. [2005a]) that we would
like to investigate in the future, even at the cost of requiring explicit
handling of collision and contact between individual muscles and
tissue [Pai et al. 2005].

For some applications, it would be necessary to model not only
additional individual muscles, but also the ligaments and disks (car-
tilage filled with a gelatinous substance) that deform to cushion
the vertebrae. A more complete model would enable us to simulate
cervical injuries such as whiplash and other injuries of the spinal
column.

Regarding the modeling of joints, since we modeled the scapula
as rigidly attached to the clavicle, the shoulder complex is restricted
to a moderate range of motion, which also limits the richness of
the resulting soft tissue deformation. In future work we will aim to
improve the modeling of this region using the spline joint modeling
technique proposed by Lee and Terzopoulos [2008].

Our animations employed a quasi-static time-integration scheme
for soft tissue simulation, which lacks the proper resolution of in-
ertial motion effects. This was a choice motivated by the lower
computational cost of a quasi-static simulation. Nevertheless, the
use of an implicit backward Euler scheme or a semi-implicit New-
mark integrator is readily supported within our framework. In our
future work, we expect to leverage the performance offered by par-
allel and multicore platforms to compensate for the higher overall
cost of dynamic integration schemes.
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In our work to date, we have treated each muscle force as an
independent actuator when computing activation levels. However,
muscles show highly correlated patterns of activity during normal
human movements. We have applied principal components analysis
(PCA) to a set of sample activation levels of the 422 torso muscles
and satisfied ourselves that as few as 50 to 100 basis vectors can ap-
proximate the sample activations reasonably well. An opportunity
for future work would be to develop a more efficient muscle con-
troller for the entire body that utilizes a lower-dimensional control
space through dimensionality reduction and, ultimately, a machine
learning approach that generalizes the one already demonstrated for
the neck [Lee and Terzopoulos 2006].

Another important future effort would be to extend our modeling
framework to include a full biomechanical model of the hands and,
indeed, to encompass the entire human body (see Lee [2008]). As far
as the skeletal and soft tissue modeling are concerned, a full-body
model would not introduce substantial new difficulties. Indeed, our
current model already includes finite element soft tissue simulation
in the lower body, albeit no muscle actuation. However, it would
surely be a significant control challenge to enable such a compre-
hensive biomechanical model to, say, locomote autonomously while
maintaining dynamic balance in gravity.

Additional interesting venues of future work would be to develop
associated algorithms for creating person-specific biomechanical
models for use in, say, surgery simulation, as well as to adapt and
extend our framework to the modeling of nonhuman primates and
other lower animals.
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