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We present a multigrid framework for the simulation of high resolution elas-
tic deformable models, designed to facilitate scalability on shared memory
multiprocessors. We incorporate several state-of-the-art techniques from
multigrid theory, while adapting them to the specific requirements of graph-
ics and animation applications, such as the ability to handle elaborate ge-
ometry and complex boundary conditions. Our method supports simula-
tion of linear elasticity and co-rotational linear elasticity. The efficiency of
our solver is practically independent of material parameters, even for near-
incompressible materials. We achieve simulation rates as high as 6 frames
per second for test models with 256K vertices on an 8-core SMP, and 1.6
frames per second for a 2M vertex object on a 16-core SMP.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Com-
putational Geometry and Object Modeling—Physically based modeling;
G.1.8 [Numerical Analysis]: Finite difference methods—Multigrid and
multilevel methods

Additional Key Words and Phrases: Deformable models, co-rotational lin-
ear elasticity, near-incompressible solids, parallel simulation

1. INTRODUCTION

Simulation of deformable solids was introduced to computer graph-
ics by [Terzopoulos et al. 1987; Terzopoulos and Fleischer 1988].
The quest for visual realism has spawned an ever growing interest
in simulation techniques capable of accommodating larger, more
detailed models. Several researchers have explored approaches
such as adaptivity [Debunne et al. 2001; Capell et al. 2002; Grin-
spun et al. 2002], reduced models [James and Fatahalian 2003;
Barbic and James 2005] or shape matching [Müller et al. 2005;
Rivers and James 2007] to accelerate the simulation of detailed de-
formable models, while others used multi-core platforms [Hughes
et al. 2007; Thomaszewski et al. 2007] to reduce simulation times.

Multigrid methods [Trottenberg et al. 2001; Brandt 1977] are
among the fastest numerical solvers for certain elliptic problems.
Due to their efficiency, multigrid methods have garnered attention
in the graphics community for a diverse spectrum of applications,
including deformable bodies and thin shell simulation [Green et al.
2002; Wu and Tendick 2004; Georgii and Westermann 2006; 2008],
mesh deformation [Shi et al. 2006], image editing [Kazhdan and
Hoppe 2008], biomedical simulation [Dick et al. 2008], geometry
processing [Ni et al. 2004] and in general purpose GPU solvers
[Bolz et al. 2003; Goodnight et al. 2003].

We present a scalable framework for fast deformable model sim-
ulation based on multigrid techniques. We particularly focus on

the simulation of large models with hundreds of thousands of de-
grees of freedom, and aim to create the ideal conditions for our
method to scale favorably on shared memory multiprocessors with
a large number of cores. In addition, we accommodate models of
arbitrary geometry, and our solver is equally effective even on near-
incompressible materials. Although such issues have been individ-
ually discussed in the graphics community, we jointly address the
challenges of irregular geometry, near-incompressibilty and par-
allel performance without limiting our scope to smaller problems
which can achieve interactive performance with a broader variety
of techniques. Our solver accommodates the equations of 3D lin-
ear (or co-rotational) elasticity as opposed to simpler elliptic sys-
tems (e.g. Poisson problems), and performs well for either dynamic
or quasistatic simulation. In order to extract the maximum perfor-
mance that multigrid formulations have to offer, we adopt some less
common choices such as a staggered finite difference discretiza-
tion and a mixed formulation of the elasticity equations. We be-
lieve these decisions are justified by the performance gains, scala-
bility potential and resilience to incompressibility exhibited by our
method. Our main contributions are:

—We introduce a novel, symmetric boundary discretization, en-
abling robust treatment of irregular geometry and efficient
smoothing of the boundary conditions.

—We show how to accommodate both linear and co-rotational lin-
ear elasticity within our framework, for the entire range of com-
pressible to highly incompressible materials.

—We demonstrate the mapping and favorable scalability of our
framework on multi-threaded SMP platforms.

2. BACKGROUND

2.1 Linear elasticity

We represent the deformation of an elastic volumetric object using
a deformation function φ which maps any material point X of the
undeformed configuration of the object, to its position x in the de-
formed configuration, i.e. x = φ(X). Deformation of an object
gives rise to elastic forces [Bonet and Wood 1997] which are ana-
lytically given (in divergence form) as f = ∇TP or, component-
wise fi =

∑
j
∂jPij where P is the first Piola-Kirchhoff stress ten-

sor. The stress tensor P is computed from the deformation map φ.
This analytic expression is known as the elastic constitutive equa-
tion. We will henceforth adopt the common conventions of using
subscripts after a comma to denote partial derivatives, and omit
certain summation symbols by implicitly summing over any right-
hand side indices that do not appear on the left-hand side of a given

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



2 • Y. Zhu et al.

equation. Consequently, the previous equation is compactly written
fi = Pij,j . The constitutive equation of linear elasticity is

P = 2µε+ λtr(ε)I or Pij = 2µεij + λεkkδij (1)

In this equation, µ and λ are the Lamé parameters of the linear
material, and are computed from Young’s modulus E (a measure
of material stiffness) and Poisson’s ratio ν (a measure of material
incompressibility) as µ = E/(2+2ν), λ = Eν/((1+ν)(1−2ν)).
Also, δij is the Kronecker delta, ε is the small strain tensor

ε = 1
2
(F + FT )− I or εij = 1

2
(φi,j + φj,i)− δij (2)

and F is the deformation gradient tensor, defined as Fij = φi,j .
Using (1,2) we derive the governing equations

fi = µφi,jj + (µ+ λ)φj,ij = Lijφj (3)

In this equation L = µ∆I + (µ+ λ)∇∇T is the partial differen-
tial operator of linear elasticity. A static elasticity problem amounts
to determining the deformation map φ that leads to an equilib-
rium of the total forces, i.e. Lφ + fext = 0, where fext are the
external forces applied on the object. For simplicity, we redefine
f = −fext and the static elasticity problem becomes equivalent to
the linear partial differential equation Lφ = f .

2.2 Multigrid correction scheme

Multigrid methods are based on the concept of a smoother which is
a procedure designed to reduce the residual r=f−Lφ of the differ-
ential equation. For example, in a discretized system, Gauss-Seidel
or Jacobi iteration are common smoothers. An inherent property of
elliptic systems is that when the magnitude of the residual is small,
the error e = φ−φexact is expected to be smooth [Brandt 1986].
Smoothers are typically simple, local and relatively inexpensive
routines, which are efficient at reducing large values of the residual
(and, as a consequence, eliminating high frequences in the error).
Nevertheless, once the high frequency component of the error has
been eliminated, subsequent iterations are characterized by rapidly
decelerated convergence. Multigrid methods seek to remediate this
stagnation by using the smoother as a building block in a multi-
level solver that achieves constant rate of convergence, regardless
of the prevailing frequencies of the error. This is accomplished by
observing that any persistent lower frequency error will appear to
be higher frequency if the problem is resampled using a coarser
discretization. By transitioning to ever coarser discretizations the
smoother retains the ability to make progress towards convergence.

The components of a multigrid solver are:

—Discretizations of the continuous operator L at a number of dif-
ferent resolutions, denoted as Lh,L2h,L4h etc. (where the su-
perscripts indicate the mesh size for each resolution).

—Smoothing subroutine, defined at each resolution.

—Prolongation and Restriction subroutines. These implement an
upsampling and downsampling operation respectively, between
two different levels of resolution.

—An exact solver, used for solving the discrete equations at the
coarsest level. As the coarse grid is expected to be small, any
reasonable solver would be an acceptable option.

Algorithm 1 gives the pseudocode for a V(1,1) cycle of the Multi-
grid correction scheme, which is the method used in our paper. The
following sections provide the implementation details for the com-
ponents of the multigrid scheme, and explain our design decisions.

Algorithm 1 Multigrid Correction Scheme – V(1,1) Cycle
1: procedure MULTIGRID(φ,f , L) . φ is the current estimate
2: uh ← φ, bh ← f . total of L+1 levels
3: for l = 0 to L−1 do
4: Smooth(L2lh,u2lh,b2

lh)
5: r2lh ← b2

lh − L2lhu2lh

6: b2
l+1h ←Restrict(r2lh), u2l+1h ← 0

7: end for
8: Solve u2Lh ← (L2Lh)−1b2

Lh

9: for l = L−1 down to 0 do
10: u2lh ← u2lh+Prolongate(u2l+1h)
11: Smooth(L2lh,u2lh,b2

lh)
12: end for
13: φ← uh

14: end procedure

3. DISCRETIZATION

Our method uses a staggered finite difference discretization on
uniform grids, a familiar practice in the field of computational
fluid dynamics (e.g. [Harlow and Welch 1965]). Although far less
widespread for the simulation of solids, this formulation was se-
lected for reasons of efficiency and numerical stability.

Use of regular grids. We discretize the elasticity problem on a
regular Cartesian lattice. Our deformable model is embedded in
this lattice, similar to the approach of [Rivers and James 2007].
Although an unstructured mesh provides more flexibility, we opted
for a regular grid for economy of storage. For example, storing the
topology of a tetrahedral lattice could easily require 4-5 times more
than the storage required for the vertex positions, taking up valu-
able memory bandwidth. Additionally, the discrete PDE and trans-
fer operators are uniform across regular grids, eliminating the need
for explicit storage. Although not used in this paper, adaptivity can
also be combined with regular grids, see e.g. [Brandt 1977].

Use of finite differences. Finite elements are arguably the most
common discretization method for elasticity applications in graph-
ics (see e.g. [O’Brien and Hodgins 1999]). Finite elements have
also been successfully combined with multigrid. However, we
based our method on a finite difference discretization for the fol-
lowing reasons: Our method owes its good performance for highly
incompressible materials to a mixed formulation of elasticity (sec-
tion 4.1). Although it is possible to combine this formulation with
finite elements (see e.g. [Brezzi and Fortin 1991]) it is much sim-
pler to implement it using finite differences. For regular lattices,
both finite elements and finite differences are second-order accurate
discretizations away from the boundary, while both are susceptible
to degrading to first order near the boundaries as discussed in sec-
tion 9.2. In addition, our finite difference scheme leads to sparser
stencils than finite elements: in our formulation of 3D linear elas-
ticity, each equation has 15 nonzero entries, while 81 entries are
required by a trilinear hexahedral finite element discretization, and
45 for BCC tetrahedral finite elements. This translates to a lower
computational cost for a finite difference scheme. Finally, as part
of our contribution we derive a specific finite difference scheme
that guarantees the same symmetry and definiteness properties that
are automatic with finite element methods.
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Fig. 1: Staggering of variables in 2D(left) and 3D(right). Equations
L1,L2,L3 are also stored on φ1,φ2,φ3 locations respectively.

Use of staggered variables. In a regular grid it would be most
natural to specify all components of the vector-valued deformation
map φ at the same locations, for example at the nodes of the grid.
However, for equation (3) doing so may result in grid-scale oscilla-
tions, especially for near-incompressible materials. This is qualita-
tively analogous to an artifact observed in the simulation of fluids
with non-staggered grids, where spurious oscillations may be left
over in the pressure field. For multigrid methods, such oscillatory
modes are problematic, as they may not respect the fundamental
property of elliptic PDEs that a low residual implies a smooth error,
requiring more elaborate and expensive smoothers to compensate.
We avoid this issue by adopting a staggered discretization (Figure
1), which is free of this oscillatory behavior. More specifically, φi
variables are stored at the centers of grid faces perpendicular to the
Cartesian axis vector ei. For example, φ1 values are stored on grid
faces perpendicular to e1, i.e. those parallel to the yz-plane. The
same strategy is followed in 2D, where faces of grid cells are now
identified with grid edges, thus φ1 values are stored at the center of
y-oriented edges, and φ2 values at the center of x-oriented edges.
We define discrete first-order derivatives using central differences:

D1u[x, y, z] = u[x+ 1
2
hx, y, z]− u[x− 1

2
hx, y, z]

D2u[x, y, z] = u[x, y+ 1
2
hy, z]− u[x, y− 1

2
hy, z]

D3u[x, y, z] = u[x, y, z+ 1
2
hz]− u[x, y, z− 1

2
hz]

where (hx, hy, hz) are the dimensions of the background grid cells.
Second-order derivative stencils are defined as the composition of
two first-order stencils, i.e. Dij = DiDj . An implication of these
definitions is that the discrete first derivative of a certain quantity
will not be collocated with it. For example, all derivatives of the
form Diφi are naturally defined at cell centers, while D1φ2 is lo-
cated at centers of z-oriented edges in 3D, and at grid nodes in
2D. However, derivatives are centered at the appropriate locations
for a convenient discretization of (3). In particular, all stencils in-
volved in the discretization of equation Li are naturally centered
on the location of variable φi. Thus, the staggering of the unknown
variables implies a natural staggering of the discretized differential
equations. Figure 2 illustrates this fact in 2D, where the discrete
stencils for the operators L1 and L2 from (3) are shown to be natu-
rally centered at φ1 and φ2 variable locations, respectively.

4. CONSTRUCTION OF THE SMOOTHING OPERATOR

A majority of elastic materials of interest to computer graphics
(e.g. the muscles and flesh of animated characters) are ideally
incompressible. A number of authors [Irving et al. 2007; Kauf-
mann et al. 2008] have discussed the simulation challenges of near-
incompressible materials and proposed solutions. For a multigrid

Fig. 2: Discrete stencils for operators L1(left) and L2(right) of the PDE
system (3). The red and green nodes of the stencil correspond to φ1 and φ2

values respectively. The dashed square indicates the center of the stencil,
where the equation is evaluated.

solver, naive use of standard smoothers (e.g. Gauss-Seidel) in the
presence of high incompressibility could lead to slow convergence
or even loss of stability. Our proposed solution is computationally
inexpensive and achieves fast convergence independent of material
parameters.

4.1 Augmentation and stable discretization

When the Poisson’s ratio approaches the incompressible limit ν →
0.5, the Lamé parameter λ becomes several orders of magnitude
larger than µ. As a consequence, the dominant term of the elastic-
ity operator L = µ∆I+(µ+λ)∇∇T is the rank deficient operator
(µ+λ)∇∇T ; thus L becomes near-singular. More specifically, we
see that any divergence-free field φ will be in the nullspace of the
dominant term, i.e. λ∇∇Tφ = 0. Thus, a solution to the elasticity
PDE Lφ = f could be perturbed by a divergence-free displace-
ment of substantial amplitude, without introducing a large residual
for the differential equation. These perturbations can be arbitrar-
ily oscillatory, and lead to high-frequency errors that the multigrid
method cannot smooth efficiently or correct using information from
a coarser grid. Fortunately, this complication is not a result of in-
herently problematic material behavior, but rather an artifact of the
form of the governing equations. Our solution is to reformulate the
PDEs of elasticity into an equivalent system, which does not suf-
fer from the near-singularity of the original. This stable differential
description of near-incompressible elasticity is adapted from the
theory of mixed variational formulations [Brezzi and Fortin 1991].
We introduce a new auxiliary variable p (which we call pressure)
defined as p = −(λ/µ)∇Tφ = −(λ/µ)divφ. We can write

Lφ = µ(∆I + ∇∇T )φ+ λ∇(∇Tφ)

= µ(∆I + ∇∇T )φ− µ∇p (4)

Thus, the equilibrium equation Lφ = f is equivalently written as(
µ(∆I+∇∇T ) −µ∇

µ∇T µ2

λ

)(
φ
p

)
=

(
f
0

)
(5)

The top of system (5) follows directly from equation (4), while the
bottom is the definition of pressure p. Conversely, the original dif-
ferential equation (3) can be obtained from (5) by simply eliminat-
ing the pressure variable. Thus the augmented differential equation
system of (5) is equivalent to the governing equations of linear elas-
ticity (e.g. the two systems agree in the value of φ when solved).
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Fig. 3: Placement of pressures in 2D (left) and 3D (right).

The important consequence of this manipulation is that this new
discretization is stable, in the sense that the system can be smoothed
with standard methods without leaving spurious oscillatory modes.
This property can be rigorously proved via Fourier analysis; we
can verify however that as λ tends to infinity, the term µ2/λ van-
ishes, and the resulting limit system is now non-singular. In section
4.2 we describe a simple smoother, specifically tailored to equation
(5). The newly introduced pressure variables are also discretized
on an offset Cartesian lattice, with pressures stored in cell centers
(see Figure 3). Pressure equations are also cell centered. As was the
case with the non-augmented elasticity equations, the staggering of
deformation (φ) and pressure (p) variables is such that all discrete
differential operators are well defined where they are needed.

4.2 Distributive smoothing

The discretization of system (5) yields a symmetric, yet indefinite
matrix (discrete first order derivatives are skew-symmetric). Al-
though this system has the stability to admit efficient local smooth-
ing, this cannot be accomplished with a standard Gauss-Seidel or
Jacobi iteration. Additionally, for a differential equation such as (5)
exhibiting nontrivial coupling between the variables φ1, φ2, φ3 and
p, a smoothing scheme which smoothes a given equation by updat-
ing several variables at once is often the optimal choice in terms of
efficiency [Trottenberg et al. 2001]. The technique we use in our
formulation is the distributive smoothing approach. This technique
was applied to the Stokes equation in [Brandt and Dinar 1978]
while [Gaspar et al. 2008] discussed its application to linear elastic-
ity. In section 7 we generalize it to co-rotated linear elasticity. Let
us redefineL to denote the augmented differential operator of equa-
tion (5), and write u = (φ, p) for the augmented set of unknowns
and b = (f , 0) for the right-hand side vector. Thus, system (5) is
written as Lu = b. Consider the change of variables(

φ
p

)
=

(
I −∇

∇T −2∆

)(
ψ
q

)
or u =Mv (6)

where v = (ψ, q) is the vector of auxiliary unknown variables,
and M is called the distribution matrix. In accordance with our
staggered formulation, the components ψ1, ψ2, ψ3 of the auxiliary
vector ψ will be collocated with φ1, φ2, φ3 respectively, while q
and p values are also collocated. Using the change of variables of
equation (6), our augmented systemLu = b is equivalently written
as LMv = b. Composing the operators L andM yields

LM =

(
µ∆I 0

µ(1 + µ
λ

)∇T −µ(1 + 2µ
λ

)∆

)
(7)

That is, the composed system is lower triangular, and its diago-
nal elements are simply Laplacian operators. This system can be

smoothed with any scheme that works for the Poisson equation, in-
cluding the Gauss-Seidel or Jacobi methods. In fact, the entire sys-
tem can be smoothed with the efficiency of the Poisson equation,
following a forward substitution approach, i.e. we smooth all ψ1-
centered equations across the domain first, followed by sweeps of
ψ2, ψ3, and q-centered equations in sequence.While we do not nec-
essarily have the auxiliary variables (ψ, q) at our disposal, such an
explicit transformation is not necessary. Consider the Gauss-Seidel
iteration for the system Lu = b: At every step, we calculate a
point-wise correction to the variable ui, such that the residual of
the collocated equation Li will vanish. That is, we replace variable
ui with ui + δ (or u with u+ δei) such that:

eTi (b− L(u+ δei)) = 0⇒ (eTi Lei)δ = eTi (b− Lu)

The last equation is equivalent to Liiδ = rold
i or δ = rold

i /Lii,
where Lii is the i-th diagonal element of the discrete operator and
rold
i denotes the i-th component of the residual. In an analogous

fashion, a Gauss-Seidel step on the distributed system LMv = b
amounts to changing ψi into ψi + δ (or v into v + δei) such that
the i-th residual of the distributed equation is annihilated

eTi (b− LM(v + δei)) = 0⇒ eTi (b− L(u+ δMei)) = 0

⇒ (eTi LMei)δ = eTi (b− Lu)⇒ δ = rold
i /(LM)ii

In this derivation the auxiliary vector v is only used in the form
Mv which is equal to the value of the original variable u. Thus,
after the value of δ has been determined,u is updated tou+δMei.
The computational cost of distributive smoothing is comparable to
that of simple Gauss-Seidel iteration, yet it allows efficient smooth-
ing of the equations of linear elasticity, independent of Poisson’s ra-
tio. We summarize the distributive smoothing process in Algorithm
2.

Algorithm 2 Distributive Smoothing
1: procedure DISTRIBUTIVESMOOTHING(L,M,u,b)
2: for v in {φ1, φ2, φ3, p} do . Must be in this exact order
3: for i in Lattice[v] do . i is an equation index
4: r ← bi − Li · u . Li is the i-th row of L
5: δ ← r/(LM)ii
6: u += δmT

i . mi is the i-th row ofM
7: end for
8: end for
9: end procedure

5. TREATMENT OF BOUNDARIES

The previous sections did not address the effect of boundaries, in-
stead focusing on the treatment of the interior region. The efficiency
of the interior smoother can be evaluated using a periodic domain.
In fact, it is known [Brandt 1994] that a boundary value problem
can be solved at the same efficiency as a periodic problem, at the
expense of more intensive smoothing at the boundary. In theoreti-
cal studies, the computational overhead of this additional boundary
smoothing is often overlooked, as the cost of interior smoothing is
asymptotically expected to dominate. Nevertheless, practical prob-
lem sizes may never reach the asymptotic regime and slow, generic
boundary smoothers can pose a performance bottleneck. In this
section, we develop a boundary discretization strategy, including
a novel treatment of traction boundary conditions, that facilitates
the design of efficient and inexpensive boundary smoothers.
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Fig. 4: Classification of cells,variables and equations near the boundary.

5.1 Domain description

Our geometrical description of the computational domain is based
on a partitioning of the cells of the background grid (Figure 4).
Initially, cells that have an overlap with the simulated deformable
body are characterized as interior cells, otherwise they are desig-
nated exterior cells. Additionally, any cell can be user-specified to
be a constrained (or Dirichlet) cell, overriding any interior/exterior
designation this cell may otherwise carry. Dirichlet cells practically
correspond to kinematically constrained parts of the object. This
classification into interior, exterior and Dirichlet cell types provides
an intuitive way to specify the degrees of freedom of our problem,
and define their associated equations. We categorize discrete vari-
ables and equations as follows:

—Interior variables and equations. Any of the variables φ1, φ2, φ3

or p located strictly inside the interior region (i.e. either on an
interior cell center, or on the face between two interior cells) is
designated an interior variable. For every interior variable, we
label its collocated equation from (5) as an interior equation and
we include this equation as part of our discrete system. Locations
of interior variables and equations are depicted as red dots in
figure 4.

—Boundary variables and equations. Certain interior equations
(near the boundary) have a discrete stencil that extends onto vari-
ables that are not interior variables themselves. We label these as
boudary variables. More specifically, a boundary variable is des-
ignated a Dirichlet boundary variable if it touches a Dirichlet cell
(either inside or on the boundary of one), otherwise it is desig-
nated a traction boundary variable. Dirichlet and traction bound-
ary variables are depicted as green and blue dots respectively, in
figure 4. Similar to interior variables, for every boundary vari-
able we add a boundary equation (or boundary condition) to our
discrete system, in order to have the same number of equations
as unknowns. Dirichlet variables are matched with a boundary
condition of the form φ(X) = c, while traction variables are
associated with a condition of the form P(X)N = t, whereN
is the surface normal (t = 0 corresponds to a free boundary).

—Variables that have not been designated interior or boundary are
labeled inactive and can be ignored (depicted as dashed circles
in figure 4). No equation is added to our system for these inactive
grid locations.

5.2 A general-purpose box smoother

Although a well-posed system can be constructed as described, the
distributive smoothing scheme is not valid near the boundary, as

Fig. 5: Left: Extent of distributive smoothing (interior region), Right:
Boundary region with some boxes used by the box smoother.

the distribution extends outside the domain. In such situations a
box smoother [Brandt and Dinar 1978] is a broadly applicable so-
lution. This process amounts to collectively solving a number of
equations in a subdomain, simultaneously adjusting the values of
all variables within. Our complete smoothing procedure starts with
a boundary box smoothing sweep, proceeds with interior distribu-
tive smoothing and finishes with a last boundary pass. An interior
equation is smoothed distributively if the stencil of its respective
equation in the composed system (LM)v = b only includes in-
terior variables, as illustrated in Figure 5 (left). For the boundary,
we use overlapping boxes that are two grid cells wide, and cen-
tered at the outermost layer of interior cells, as seen in Figure 5
(right). In our experiments the box smoother performed very well,
generally achieving near-optimal efficiency for the entire multigrid
scheme. In practice, however, this good convergence behavior came
at the cost of an enormous computational overhead. This added
cost stems from the need to solve a coupled linear system within
each box. The computational effort spent on boundary smoothing
was often two orders of magnitude more than the cost of interior
smoothing on models with tens of thousands of vertices; although
the interior cost scales with volume and the boundary cost scales
with surface area, even with million-vertex models the cost of the
boundary smoother would still dominate by a factor of 10. We ad-
dress this issue in the next section by designing an effective, yet
simple and inexpensive boundary smoother.

5.3 A fast symmetric Gauss-Seidel smoother

We propose a novel formulation that enables equation-by-equation
smoothing that is both efficient and inexpensive. The main obsta-
cle to efficient equation-by-equation boundary smoothing schemes,
is lack of symmetry, definiteness or diagonal dominance. Addition-
ally, discretizations of the boundary conditions (especially traction)
can easily result in loss of symmetry. An alternative local smoother
is the Kaczmarz method [Trottenberg et al. 2001], which does not
require symmetry or definiteness; we have nevertheless found it to
converge extremely slowly, requiring a very large number of itera-
tions. Our solution stems from a new perspective of the constitutive
equations and the boundary conditions.

We will show that it is possible to construct a symmetric negative
definite discretization that uses only interior variables (as defined in
section 5.1). First, we revisit the constitutive equation of linear elas-
ticity (1). The scalar coefficient tr(ε) appearing in equation (2) is
equivalently written as tr(ε)=

∑
i
εii=

∑
i
φi,i−d, where d=tr(I)

equals the number of spatial dimensions. Similarly, the last equa-
tion of system (5) is equivalent to −(µ/λ)p = ∇Tφ =

∑
i
φi,i.
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Fig. 6: Left: Equations L1,L2 expressed as divergence stencils. Right:
Placement of the components of stress tensor P in 3D.

Thus, we have tr(ε) = −(µ/λ)p− d, and equation (1) becomes

P = µ(F + FT )− µpI− (2µ+ dλ)I (8)

The difference between equations (1) and (8) is that the original
definition of stress is physically valid for any given deformation
field φ while the formulation of equation (8) will correspond to the
real value of stress only when the augmented system (5) is solved
exactly. In detail, the diagonal and off-diagonal components of the
stress tensor P are given as:

Pii = 2µφi,i − µp− (2µ+ dλ)

Pij = µ(φi,j + φj,i). (i 6=j)

The finite difference approximations of these stress values are:

Pii(X) = 2µ
φi(X+hi

2
ei)− φi(X−hi

2
ei)

hi
−µp(X)− (2µ+ dλ) (9)

Pij(X) = µ

[
φi(X+

hj

2
ej)− φi(X−

hj

2
ej)

hj

+
φj(X+hi

2
ei)− φj(X−hi

2
ei)

hi

]
(10)

The staggering of the position and pressure variables implies a nat-
ural placement of the stress values, in accordance with equations
(9) and (10). Diagonal stress components are always located at
cell centers, while off diagonal components Pij(i 6= j) are node-
centered in 2D and edge-centered in 3D (see Figure 6, right). In a
fashion similar to our classification of variables and equations, we
label stresses as interior if their discrete stencils (defined in equa-
tions (9) and (10)) contain only interior or Dirichlet variables, while
boundary stresses include at least one traction boundary variable in
their stencil. Interior and boundary stresses are depicted in green
and red, respectively, in figure 7 (left).

We can verify that the position equations L1,L2,L3 of system (5)
are equivalent to the divergence form Liu=∂jPij , where P is now
given by the new definition of equation (8). The discrete stencils
for these equations can be constructed as a two-step process. First,
we construct a finite difference discretization for each equation
fi = ∂jPij , treating every value Pij appearing in this stencil as
a separate variable:

fi(X) =

d∑
j=1

Pij(X+
hj

2
ej)− Pij(X−

hj

2
ej)

hj
(11)

Fig. 7: Left: Stress variables used in the divergence form of certain interior
equations. Boundary stress variables are colored red, interior stresses are
green. All boundary stresses can be set to a specific value using a traction
condition from a nearby boundary. Right: Interior and boundary gradients
used in pressure equations.

See figure 6 (left) for a visual illustration of this divergence sten-
cil in 2D. As a second step, we replace the stress values Pij in
equation (11) using either a finite difference approximation, or a
boundary condition. Each of the stress values Pij (4 stresses in 2D,
6 in 3D) can either be an interior or a boundary stress. For all inte-
rior stresses, we simply substitute the appropriate finite difference
stencil, from equation (9) or (10). For boundary stresses, instead
of computing them using a finite difference, we assume that their
value is known by virtue of a traction boundary condition, thus this
value can be simply substituted in equation (11). The assumption
that every boundary stress is determined by a traction boundary
condition is justified as follows:

—Stress variables of the form Pij(i 6= j) are centered on grid
edges in 3D (see Figure 6, right) and on grid nodes in 2D. This
stress variable appears in the finite difference approximation of
the term ∂jPij in the interior equationLi. LetX∗ be the location
where equation Li is centered. The stress variable Pij is located
one half of a grid cell away from X∗, along the direction ej .
Without loss of generality, assume Pij is located at X∗+

hj

2
ej .

Pij neighbors exactly four cells; out of those, the two centered
at X∗ ± hi

2
ei are interior cells, since we assumed that Li was

an interior equation. The two other neighbor cells of Pij are cen-
tered at X∗ ± hi

2
ei + hjej . We can verify that if those two

cells were interior or Dirichlet, Pij would have been an interior
stress. Thus, Pij is a boundary stress and one of the cells cen-
tered at X∗ ± hi

2
ei + hjej must be exterior. This means that

Pij is incident on a traction boundary face perpendicular to the
direction ej , and there exists a traction condition Pej = t that
specifies a value Pij = ti for this component of the stress. For a
free boundary we simply have Pij = 0.

—Stress variables of the form Pii are located at cell centers, and
appear in the finite difference approximation of ∂iPii in the inte-
rior equation Li. Similar to the previous case, Pii is located one
half grid away from the locationX∗ ofLi along the direction ei.
Without loss of generality, assume Pii is located at X∗+hi

2
ei.

From (9) we see that the stencil for Pii contains the variables
φi(X

∗), p(X∗+hi
2
ei) which are both interior (since Li is inte-

rior) and the one additional variable φi(X∗+hiei).Pii would be
a boundary stress only if φi(X∗+hiei) was an exterior variable;
in this case Pii would have been “near” (specifically half a cell
away from) a traction boundary face normal to ei. Once again,
we will use the traction condition associated with this boundary
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to set Pii = ti (or Pii = 0 for a free boundary). The subtlety of
this formulation is that the stress variable Pii is not located ex-
actly on the boundary; nevertheless the discrete stencil for Pii is
still a valid first-order approximation of the Pii at the boundary.

In summary, we have justified that all boundary stress variables can
be eliminated (and replaced with known constants) from the diver-
gence form of interior position equations. Notably, for equations
that are far enough from the traction boundary (specifically, those
that do not require any boundary stresses in equation (8)), this pro-
cess yields exactly the same results as the direct discretization of
system (5). A similar treatment is performed on the discretization
of the pressure equation Lp=µ

∑
i
Fii + µ2

λ
p. Similar to stresses,

the deformation gradients Fii are also characterized as interior or
boundary, based on whether they touch traction boundary variables.
Since Pii = 2µFii−µp−(2λ+dµ), we observe that Fii is bound-
ary if and only if the stress Pii is boundary (see figure 7, right). For
such boundary gradients or stresses we can use the traction con-
dition Pii = ti to eliminate Fii from the pressure equation. This
is accomplished by replacing Lp ← Lp− 1

2
(Pii − ti) for every

boundary gradient Fii.

Our manipulations effectively remove all traction boundary vari-
ables from the discretization of the interior equations. For every
Dirichlet boundary variable, we assume a Dirichlet condition of
the form φi = ci is provided. Thus, we can substitute a given value
for every Dirichlet variable in the stencil of every interior equation
that uses it. As a result, our overall discrete system can be written
as L∗u∗ = b − bD = b∗, where u∗ only contains interior vari-
ables, and bD results from moving the Dirichlet conditions to the
right-hand side. The discrete system matrix L∗ has as many rows
and columns as interior variables, and will differ from L near the
boundaries, as it incorporates the effect of the boundary conditions.
An analysis of our formulation can verify that L∗ has the form

L∗ =

(
Lφ G
GT Dp

)
In this formulation Lφ is symmetric, negative definite, and Dp is
a diagonal matrix with positive diagonal elements. As a final step,
we define the substitution matrix U

U =

(
I −GD−1

p

0 I

)
and use it to pre-multiply our equation as

UL∗u∗ =

(
Lφ −GD−1

p GT 0
GT Dp

)
u∗ = Ub∗ (12)

The top left block Lφ −GD−1
p GT is essentially a symmetric and

negative definite discretization of our non-augmented system (3)
and can be smoothed via Gauss-Seidel iteration. The boundary and
interior regions are smoothed in separate sweeps; during the sweep
of the boundary smoother, all interior variables not being smoothed
are effectively treated as Dirichlet values. The boundary smoother
is confined in a narrow region between boundary conditions (vari-
ables of this narrow band are depicted in red in Figure 5, right).
This narrow support of the boundary smoother has a strong stabi-
lizing effect, and compensates for any difficulties encountered with
near-incompressible materials. In practice, we found that 2 Gauss-
Seidel boundary sweeps for every sweep of the distributive interior
smoother are sufficient for Poisson’s ratio up to ν = .45, while 3-4
Gauss-Seidel sweeps suffice for values as high as ν = .495. Fi-
nally, we note that Gauss-Seidel is not the only option for smooth-

ing the discrete system derived in this section; in fact it is even
possible to use a distributive smoother as in Algorithm 2, taking
care to restrict the distribution stencil to active variables.

After completing the smoothing process, we need to update the val-
ues of the pressure and traction boundary variables that were pre-
viously annihilated. Since the lower right block of equation (12) is
diagonal, all pressure equations can be satisfied exactly via a simple
Gauss-Seidel sweep. Similarly, the boundary traction variables can
be updated using the traction conditions Pij = ti in a simple back-
substitution step, first updating variables on faces between interior
and exterior cells, and then variables located at half-cell distance
away from the interior region. Notably, at the end of the process all
boundary conditions are satisfied exactly (i.e. they will have zero
residuals), which simplifies our inter-grid transfers discussed next.

6. CONSTRUCTION OF THE TRANSFER OPERATORS

We designed the Restriction (R) and Prolongation (P) operators
employed by algorithm 1 aiming to keep implementation as in-
expensive as possible, while conforming to the textbook accuracy
requirements for full multigrid efficiency (see [Trottenberg et al.
2001]). We define the following 1D averaging operators

B1u[x] = 1
2
u[x−h

2
] + 1

2
u[x+h

2
]

B2u[x] = 1
4
u[x−h] + 1

2
u[x] + 1

4
u[x+h]

B3u[x] = 1
8
u[x− 3h

2
] + 3

8
u[x+h

2
] + 3

8
u[x−h

2
] + 1

8
u[x+ 3h

2
]

The restriction and prolongation operators will be defined as tensor
product stencils of the preceding 1D operators as

R1 = B2 ⊗ B1 ⊗ B1 PT1 = 8 B2 ⊗ B3 ⊗ B3

R2 = B1 ⊗ B2 ⊗ B1 PT2 = 8 B3 ⊗ B2 ⊗ B3

R3 = B1 ⊗ B1 ⊗ B2 PT3 = 8 B3 ⊗ B3 ⊗ B2

Rp = B1 ⊗ B1 ⊗ B1 PTp = 8 B1 ⊗ B1 ⊗ B1

where Ri,Pi are the restriction and prolongation operators used
for variable ui, respectively, and Rp,Pp are the operators used for
the pressure variables. Our restriction and prolongation are not the
transpose of one another (as commonly done in other methods) but
this practice is not unusual or problematic, see e.g. [Brandt 1977].
Our domain description for the finest grid was based on a partition-
ing of the cells into interior, exterior and Dirichlet. The coarse grid
is derived from the natural 8-to-1 coarsening of the Cartesian back-
ground lattice. Furthermore, a coarse cell is designated a Dirichlet
cell if any of its eight fine sub-cells is Dirichlet. If any of the fine
sub-cells are interior and none is Dirichlet, the coarse cell will be
considered interior. Otherwise, the coarse cell is exterior. Thus, the
coarse active domain is geometrically a superset of the fine, while
its Dirichlet parts are extended. Despite this geometrical discrep-
ancy, which is no larger than the grid cell size, we were still able to
obtain a highly efficient multigrid scheme as described next.

In our treatment of boundary conditions in section 5.3 we effec-
tively forced all boundary conditions to be satisfied exactly after
every application of the smoother. In general, if a smoother leaves
a residual on the boundary conditions, this residual has to be re-
stricted. In our case all boundary residuals in the fine grid are
zero, thus all coarse boundary conditions will be homogeneous;
for Dirichlet equations they will have the form u2h

i = 0 (i.e. the
coarse grid incurs no correction), while traction equations will be
of the form P̂ 2h

ij = 0, where P̂ = µ(F + FT ) − µpI is the ho-
mogeneous part of P. We also note that, due to the possible ge-
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Fig. 8: Boundary discrepancies in the fine (left) and coarse (right) domains.
On the right, red dots indicate locations containing Dirichlet conditions on
the coarse grid, but interior equations on the fine grid. On the left, red dots
indicate interior equations that would restrict residuals on one or more lo-
cations occupied by Dirichlet conditions on the coarse grid; those restricted
residuals will be replaced with zero. Green circles indicate fine interior
variables that prolongate their correction from boundary coarse variables.

ometrical change of the Dirichlet region, certain coarse Dirichlet
equations will be centered on locations that were interior in the fine
grid (shown as red dots in Figure 8, right). The fine grid interior
equations (red dots in Figure 8, left) that would restrict their resid-
uals onto these (now Dirichlet) coarse locations, will not have their
residuals well represented on the coarse grid. We compensate for
this inaccuracy by performing an extra 2-3 sweeps of our boundary
Gauss-Seidel smoother over these equations, driving their resid-
uals very close to zero, just prior to restriction. A similar inac-
curacy may affect the prolongation of the correction: as we pre-
viously mentioned, the active region may have extended more in
the coarse grid, compared to the fine. This discrepancy may intro-
duce inaccuracies in the coarse grid solution near such relocated
boundaries. Again, we compensate by performing an additional 2-
3 Gauss-Seidel smoother sweeps on the locations of the fine grid
that prolongate corrections from such relocated boundary variables
(depicted as green circles in Figure 8, left). This simple treatment
proved quite effective to guarantee a good coarse correction despite
the small geometrical discrepancies of the two domains.

7. CO-ROTATIONAL LINEAR ELASTICITY

In the large deformation regime, and in the presence of large ro-
tational deformations, the linear elasticity model develops artifacts
such as volumetric distortions in parts of the domain with large
rotations. We provide an extension to the co-rotational linear elas-
ticity model, which has been used in slightly different forms by a
number of authors in computer graphics [Müller et al. 2002; Hauth
and Strasser 2004; Müller and Gross 2004], and has also used with
finite elements and multigrid by [Georgii and Westermann 2006;
2008]. The co-rotational formulation extracts the rotational com-
ponent of the local deformation at a specific part of the domain
by computing the polar decomposition of the deformation gradi-
ent tensor F = RS into the rotation R and the symmetric tensor
S. The stress is then computed as P = RPL(S), where PL de-
notes the stress of a linear material, as described in equation (1).
Thus, the co-rotational formulation computes stresses by applying
the constitutive equation of linear elasticity in a frame of reference
that is rotated with the material deformation as follows:

P = RPL(S) = R
[
2µ(RTF−I) + λtr(RTF−I)I

]

Fig. 9: Simulation of a human character driven by a kinematic skeleton. The
high-resolution rendering surface is seen in the left, while the simulation
lattice is depicted on the right (resolution: 142K nodes, grid spacing 9mm).

= 2µ(F−R) + λtr(RTF−I)R

= 2µF + λtr(RTF)R− (2µ+ dλ)R

= 2µF− µpR− (2µ+ dλ)R (13)

where the last form of the stress in equation (13) results from intro-
ducing an auxiliary pressure variable p=−(λ/µ)tr(RTF) similar
to the augmentation used for linear elasticity in section 4.1. As be-
fore, the augmented position equations are defined as ∂jPij=fi.
Combining with the pressure equations and rearranging we get(

2µ∆I −µ(∇TRT )T

µ(R∇)T µ2

λ

)(
φ
p

)
=

(
f−(2µ+dλ)∇ ·R

0

)
. (14)

The notation for the off-diagonal blocks of the matrix in equation
(14) was used to indicate whether the operators ∇,∇T operate or
not on the rotation matrix R. In index form, these operators equal
[µ(∇TRT )T ]i = µ∂jRij , and [µ(R∇)T ]i = µRij∂j respec-
tively. In contrast with the equations of linear elasticity, equation
(14) is a nonlinear PDE, since both the operator matrix and the
right hand side vector contain the rotation matrix R which depends
on the current deformation φ itself. We highlight this fact by writ-
ing this system as L[u]u=f [u]. Nevertheless, for the purposes of
a multigrid scheme it is possible to treat system (14) as a linear
equation, by freezing the values of L and f for the duration of
a V-cycle, and updating them after a better solution to this frozen
coefficient system has been obtained. In an iterative fashion, we ob-
tain the (k+1)-th approximation to the solution of the linear sys-
tem by executing one V-cycle on the constant coefficient system
L[uk]uk+1=f [uk] (or quasi-linear form) of equation (14) in this
context. We generalize the distributive smoothing approach to the
quasi-linear equation (14). In this case, the distribution matrix is

M =

(
I −(∇TRT )T

0 −2∆

)
. (15)
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Then, the distributed operator LM becomes

LM =

(
2µ∆I 2µ

[
(∇TRT )T∆−∆(∇TRT )T

]
µ(R∇)T −µ(1 + 2µ

λ
)∆

)
(16)

The top right block of LM would be equal to zero if R is a spa-
tially constant rotation, but not in the general case. However, near
a solution where the rotations are expected to be smooth, this value
is effectively zero, and LM becomes a triangular matrix, simi-
lar to the linear case. Effectively, even if the distributed system is
near-triangular, a Gauss-Seidel algorithm will still be an acceptable
smoother. In practice we found distributive Gauss-Seidel to be a
good smoother for the quasi-linear problem at all times, although
the convergence rates were slightly lower away from the solution.

For the purposes of boundary smoothing, we again derive a sym-
metric definite discretization where Gauss-Seidel can be used. The
equations are written in the divergence form Liu=∂jPij and any
exterior stresses are eliminated from the divergence stencil us-
ing an appropriate traction equation, as in section 5.3. The only
complication is due to the fact that pressures are now multiplied
by the non-diagonal matrix R in the augmented stress definition
(13), thus off diagonal stresses Pij (i 6= j) require an edge cen-
tered pressure value. Since all exterior stresses have been removed,
the four incident cells to the edge in question are interior. Thus,
we compute the needed pressure value by averaging these four
neighboring pressures. Finally, pressure equations are written as
µRijφi,j + (µ2/λ)p = 0, indicating that all gradient values φi,j
are needed at a cell center. The stencil for off-diagonal gradients
will be averaged from the four neighboring edge centers, where
they are naturally defined. If any such gradient is external, we eval-
uate this term as RijFij as a frozen coefficient and move it to the
right hand side. The resulting discrete system of equations is sym-
metric and definite (after substitution of the pressures) and can be
smoothed with a Gauss-Seidel procedure as in section 5.3.

8. DYNAMICS

The static formulation of elasticity disregards any dynamic effects.
Our method, however, can easily accommodate the simulation of
dynamic deformation; the effect of inertia actually improves the
conditioning of the discrete equations. For example, a backward
Euler implicit scheme updates positions as(

I− ∆t

m
(∆t+ γ)L

)
xn+1 = xn + ∆tvn − γ∆t

m
Lxn.

Here, γ is the damping coefficient. Velocities are updated as
vn+1=(xn+1−xn)/∆t. Up to scaling, this is equivalent to solv-
ing the problem Lu−cφ = b. This system can also be augmented,
by adding the term−cI to the position equations of (5). Distributive
smoothing can be followed as before, where the bottom right term
−2∆ in the distribution matrix is now replaced by−2∆+c/µ. All
other formulations hold unchanged and convergence for this system
will be at least as good as the static case.

9. RESULTS AND EVALUATION

9.1 Evaluation of solver performance

We first compare the performance of our method with a Conjugate
Gradients (CG) solver, as illustrated in Figure 11. The left figure
plots the reduction of the residual for our synthetic test model: a

Fig. 10: Comparison with alternative multigrid techniques. Convergence
rate is defined as the asymptotic residual reduction factor: |rk+1|/|rk|.

rectangular elastic box under mixed boundary conditions (also de-
picted in figure 20, on the right). We use CG to solve the symmet-
ric, definite system resulting from the discretization of the (non-
augmented) PDE (3) using finite differences on staggered grids of
sizes 323 and 643, for two different values of Poisson’s ratio ν. We
observe that, after some initial progress, the convergence of CG
slows down significantly. This deterioration is more pronounced
on cases with more degrees of freedom, and higher incompressibil-
ity (which are the focus points of our method). Replacing the finite
difference discretization with trilinear, hexahedral finite elements
(middle plot) still exhibits the same stagnation, particularly for the
more incompressible case. Our method (right plot), exhibits a prac-
tically constant convergence rate all the way until the error is at the
levels of the floating point round-off threshold.

We subsequently compare our method with other multigrid tech-
niques (i.e. using different relaxation or discretization approaches),
in Figure 10. As a general comment, all methods evaluated here
were able to achieve convergence rates that are largely indepen-
dent of the model resolution (in contrast with CG). As a point of
reference we include the convergence rate of 0.19 of a periodic 3D
Poisson problem with lexicographical Gauss-Seidel smoothing. We
first experimented with a staggered finite difference discretization
of equation (3) which did not however employ the augmentation of
section 4.1. We observe that the convergence rate is deteriorating
with higher incompressibility, to reach a value of 0.9 for a mate-
rial with ν = 0.49. A similar behavior is observed with a tetrahe-
dral finite element discretization, used in place of finite differences.
These results are compatible with the findings of [Griebel et al.
2003] who observe similar problems with near-incompressibility
even for AMG solvers. Our method exhibits convergence rates of
0.26-0.28 even for highly incompressible materials. Apart from the
convergence experiments performed on our synthetic elastic box
example, figures 10 and 11 include experiments performed on ir-
regular geometries such as the armadillo model of figure 24 and
the human character of figure 9. We further discuss the convergence
rates and run times of these irregular models in section 9.3.

9.2 Discretization accuracy analysis

Our method simulates objects of irregular shapes by embedding
them in regular Cartesian lattices. Embedded simulation has been
a popular method for physics-based animation, using either Carte-
sian lattices [Müller et al. 2004; Rivers and James 2007] for sim-
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Fig. 11: Comparison of a CG solver on finite difference (left) or finite element (middle) discretizations, with our proposed method (right)

plicity and efficiency, or tetrahedral embedding meshes for applica-
tions such as biomechanics [Lee et al. 2009] and fracture modeling
[Molino et al. 2004]. Although embedded models are computation-
ally efficient and easy to generate, conforming meshes generally
approximate the surface geometry of a model better than embedded
models of comparable resolution. Several authors have proposed
methods to compensate for this effect, for example by resolving
collision and surface dynamics at a sub-element level [Sifakis et al.
2007] or using an alternative interpolation method to generate the
embedded surface for rendering [Kaufmann et al. 2009]. In this
section we evaluate the accuracy of our embedded method against
a conforming discretization, and also compare our finite-difference
method to an embedded discretization using finite elements.

For our accuracy analysis, we construct a 2D elasticity problem
with an analytically known solution. Our testing model is the disc
D = {(x, y) : (x− 0.5)2 + (y − 0.5)2 ≤ 0.252} and is deformed
according to the deformation function φ(X)=(φ1, φ2) defined as

(φ1(x, y), φ2(x, y)) =
2x√
π

(
cos
(
πy

2

)
, sin

(
πy

2

))
(17)

We assume a linear elastic material. We substitute this analytic form
of the deformation function φ into the linear elasticity equations
(3) to obtain the analytic expression of the elastic forces f . We
treat two quadrants of the outline of D (the thick shaded curves in
figure 12) as Dirichlet boundary conditions, while the rest of the
boundary (the two unshaded quadrants of the outline) are treated
as traction boundaries. We analytically compute the traction value
along the circular boundary of D as t = PN where the stress P is
computed from equation (1) and N is the outward pointing normal.
Despite its geometric simplicity, this test problem highlights certain
challenges related to embedding and discretization, especially for

Fig. 12: Illustration of the analytic deformation in our accuracy study. The
thick shaded boundary sections indicate Dirichlet boundary conditions. The
undeformed object is depicted on the left, the deformed state on the right.

large values of Poisson’s ratio, since the deformation prescribed
in equation (17) incurs substantial change of volume in different
parts of the domain (as seen in figure 12) giving rise to large elastic
forces. We compare our embedded finite difference discretization
with two finite element discretizations, one defined on a conform-
ing tessellation ofD, and one using an embedding triangular mesh,
as illustrated in figure 13.

Since our test problem involves non-zero traction conditions on the
embedded boundary (in contrast with our other examples in this pa-
per which use free boundaries, with zero traction) we need to treat
this traction condition properly for the embedded finite element
or finite difference grids. For these embedded discretizations, we
start by approximating the circular boundary of D (the green curve
in figure 13) with a polygonal curve. We subsequently compute a
force for each segment of this polygonal curve that falls within the
part of the boundary where traction conditions are given. This force
is computed from the traction value as f = l·t where l is the length
of the segment. We distribute half of this force to each endpoint of
the segment; the traction condition is thus converted into individ-
ual forces on the vertices of the embedded boundary. Finally, we
remap these forces from the polygonal boundary curve back to the
degrees of freedom of the embedding simulation mesh. For a tri-
angular embedding, this is accomplished by simply distributing the
force from a vertex of the embedded boundary to the three vertices
of its containing simulation triangle, weighted by the barycentric
weights of the boundary location in the triangle (see figure 14, left).
In our staggered, Cartesian embedding the x and y coordinates are
embedded in two non-collocated lattices; thus, we distribute the x
component of the force (denoted as f1 in 14, right) to φ1 grid loca-
tions, weighted by the bilinear embedding weights of the boundary
location in this grid, while the y component of the force (denoted
as f2) will be similarly distributed to φ2 grid locations. After this

Fig. 13: The three discretization methods in our comparative study. Left: A
conforming tessellation, discretized with the finite element method. Middle:
An embedded finite element discretization on a triangular mesh. Right: Our
staggered finite difference method based on a Cartesian background lattice.
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Fig. 14: Left: Boundary traction forces are barycentrically distributed to
the vertices of a triangular embedding mesh. Right: In our staggered dis-
cretization, each component of the traction force is bilinearly distributed to
the grid locations of the respective (staggered) variable.

remapping, traction forces that have been mapped to locations of
interior variables are scaled by 1/h2 (to remove the area weighting
and convert them to force densities, as in the PDE form of elastic-
ity) and then added to the right hand side of the discrete equation
Lφ = f , while forces mapped to boundary variable locations are
converted back into traction conditions on the faces of the embed-
ding grid as ti = fi(N · N ′)/h, where N is the normal to the
embedded boundary and N ′ is the normal to boundary face of the
embedding grid. Notably, for free (zero-traction) boundaries, this
treatment simply reduces to the method described in section 5.3.

Figure 16 illustrates the accuracy of the different discretization
methods in our test, for different resolutions and degrees of incom-
pressibility. Figure 15 plots the maximum error in the computed
discrete solution under different levels of refinement. Since a dis-
cretization with order of accuracy equal to κ bounds the error as
|e| = O(hκ) and h ≈ N−1/2 where N is the number of ver-
tices in a uniform discretization, the asymptotic order of accuracy
is approximated as κ ≈ −2 log |e|/ logN =−2m, where m is the
slope of the doubly-logarithmic plot of figure 15. We emphasize
that the order of accuracy assessed in this section is completely
independent of the convergence rate of the solver used for each dis-
cretization (see section 9.1). The discrete problems formulated in
this section were solved to full convergence with an appropriate
solver (multigrid or conjugate gradients). Our findings are summa-
rized as follows:

—Although the different discretizations under consideration start
with different levels of error for a base resolution, this er-
ror is asymptotically reduced at comparable rates under refine-
ment. We estimated an asymptotic order of accuracy between
1.15−1.25 from the tests plotted in figure 15. This approximate
first-order accuracy is to be expected both from our finite dif-
ference scheme (due to the first-order treatment of the boundary)
and the finite element discretizations (due to the use of first-order
linear triangle elements, see e.g. [Hughes 1987]).

—The conforming discretizations produced lower errors than both
the finite difference, and finite element based embedded dis-
cretizations. For materials with low Poisson’s ratio, our proposed
embedded method would require approximately 10−20 times
more degrees of freedom to match the accuracy of the conform-
ing discretization. For near-incompressible materials this dis-
crepancy is smaller, with our embedded method requiring ap-
proximately one extra grid refinement to reach the accuracy of
the conforming method. Of course, a comparison of the degrees
of freedom necessary for a given measure of accuracy does not
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Fig. 15: Plots of the maximum solution error for various discretizations.
Solid lines indicate near-incompressible material parameters while dashed
lines correspond to low Poisson’s ratio. In this doubly-logarithmic plot, a
slope of−0.5 indicates a first-order accurate method. The asymptotic order
of accuracy observed from all six experiments ranges between 1.15−1.25.

necessarily reflect the computational cost of each approach. Our
method typically leads to significantly reduced run times com-
pared to conforming tetrahedral FEM models with the same
number of degrees of freedom, due to the regularity of the dis-
cretization, convergence efficiency of the multigrid solver and
improved numerical conditioning from our treatment of near-
incompressibility. These performance benefits are less evident
for low-resolution models (with up to a few thousand of degrees
of freedom) where a conforming model, if available, may offer
better accuracy per computation cost. For large models such as
the ones demonstrated in our examples in section 9.3 our method
can significantly outperform conforming tetrahedral meshes for
the same degree of accuracy, even if our method requires a higher
number of degrees of freedom to achieve the same accuracy. Fi-
nally, generating a good conforming tetrahedral model for de-
tailed geometries such as those in figures 25 and 27 is a nontrivial
meshing task which is not necessary in our embedded scheme.

—We also observe a tendency for the error on the embedded dis-
cretizations to be more oscillatory near the boundary, compared
to the conforming case. These embedding artifacts are typically
less pronounced with our method than with an embedded finite
element approach on near-incompressible materials (see figure
16), they are attenuated under refinement and can be significantly
reduced in practice by slightly padding the embedding mesh out-
wards, typically by as little as one layer of cells (see figure 17).

—Our method matches or exceeds the accuracy of the embedded fi-
nite element discretization in our tests. The two embedded meth-
ods yield comparable accuracy for materials with low Poisson’s
ratio, especially in the asymptotic limit. For modest to high de-
grees of incompressibility, our method is noticeably more accu-
rate and less prone to embedding artifacts than the embedded
finite element discretization at the same resolution. Finally, our
method performs similarly for materials of low and high incom-
pressibility, although the embedded boundary surface tends to be
slightly smoother for compressible materials.
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ν = 0.49ν = 0.2

ν = 0.45ν = 0.2

ν = 0.49ν = 0.2

ν = 0.49ν = 0.2 ν = 0.49ν = 0.2

ν = 0.49

Fig. 16: Convergence of different discretizations under refinement. The analytic solution is depicted in green, the discrete solution in red. The
Poisson’s ratio (ν) used for each experiment is given. Top row: A finite element discretization on a conforming triangle mesh. Compressible
(ν=0.2) and near-incompressible (ν=0.49) cases are shown. Second and third row: Embedded finite element simulation on a triangle mesh.
An additional case of moderate incompressibility (ν=0.45) is illustrated. Bottom row: Our embedded finite difference method. Note that both
the embedded boundary and the background lattice are independently interpolated from the staggered deformation variables (not pictured).
Also, the resolution in the rightmost column corresponds to approximately the same number of degrees of freedom for all discretizations.
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Two important caveats should also be mentioned: The circular elas-
tic body in our test had a smooth boundary surface which was well
approximated by conforming tesselations even at low resolutions.
Highly detailed models with intricate features (see e.g., figures 25
and 27) would incur significantly higher approximation errors for a
conforming tesselation that does not descend to the resolution level
necessary to resolve all the geometric detail. Secondly, in our em-
bedded examples we used the analytic expression of the deforma-
tion field in equation (17) to specify Dirichlet boundary conditions
directly on the vertices of the embedding meshes. This can be an
acceptable practice for applications such as skeleton-driven charac-
ters, where kinematic constraints have a volumetric extent and can
therefore be sampled at the locations of the simulation degrees of
freedom. However, when Dirichlet conditions need to be specified
at sub-grid locations and extrapolating these constraints to simu-
lation vertices is not convenient, conforming meshes that resolve
the constraint surface would be at an advantage. In future work we
will investigate adding embedded soft-constraints in our framework
(see e.g. [Sifakis et al. 2007]) to provide this additional flexibility.
Finally, in our tests we considered discretizations of approximately
uniform density (even when the mesh topology was irregular). It is
also possible to use an adaptive discretization, either in the form of
an adaptive conforming tesselation or an adaptive finite difference
scheme (see e.g. [Losasso et al. 2004]). In fact, there are well estab-
lished multigrid methods that operate in conjunction with adaptive
discretizations [Brandt 1977], and we believe the elasticity solver
proposed in this paper can be similarly applied to adaptive (e.g. oc-
tree) discretizations. We defer this extension to future work, along
with a principed comparative evaluation of different adaptive dis-
cretization schemes for elasticity, especially in light of the nontriv-
ial implications adaptivity may have on accuracy, numerical condi-
tioning and potential for parallelization.

9.3 Animation tests

In addition to our comparative benchmarks, we tested our method
on models with elaborate, irregular geometries. Figure 9 demon-
strates the simulation of flesh of a human character with keyframed
skeleton motion. The model was simulated at 2 resolutions yield-
ing V-cycle times of 0.62sec for a 142K vertex model (pictured in
figure 9), and 3.48sec for a larger resolution with 1.15M vertices
(figure 17, right). The convergence rate for this example, as seen in
Figures 11(right) and 10, was slightly better than our synthetic box
examples at 0.24. We attribute this result to the extensive Dirich-
let regions throughout the body induced by the kinematic skeleton,
which stabilize the model and allow for highly efficient smooth-
ing. In contrast, the armadillo model of figure 24 is very weakly
constrained, with Dirichlet regions defined only over the hands and
feet (see also [Griebel et al. 2003] for a discussion of sub-optimal
smoothing performance with dominating traction boundaries). In
this model with extensive zero-traction boundary conditions, our
method exhibited convergence rates between 0.21-0.35 for the first
7-8 V-cycles after a large perturbation; at that point the residual
had been reduced by four orders of magnitude and the model had
visually reached convergence after just the first few iterations. Sub-
sequent V-cycles would ultimately settle at an asymptotic rate of
0.62 which could be improved by increasing the intensity of the
boundary smoother, although this was not pursued since the model
was already well converged and the extra smoothing cost would
not be practically justified. With typical incremental motion of the
boundary conditions, 1-2 V-cycles per frame would be enough to
produce a visually converged animation.

Fig. 17: Closeup of the elbow joint from figure 9. Left: Grid spacing 9mm
(142K vertices). Embedding artifacts are visible on the surface. Middle:
Padding the embedding cage with one additional layer of cells visibly re-
duces the artifacts. Right: Surface artifacts are outright reduced using a
higher resolution embedding cage (4.5mm spacing, 1.15M vertices).

Figure 10 also reports the convergence rates for the armadillo
model of figure 24 simulated using co-rotational linear elasticity.
Since the coefficients of the discrete system vary with the current
configuration, the convergence rate is also variable. Additionally,
the residual of the quasi-linearized system will differ from its ac-
tual non-linear counterpart; this discrepancy will also depend on
whether the quasi-linearization process is close to convergence.
The rates reported are typical of the animations shown, assuming 2
V-cycles per frame, and update of the quasi-linearization every 5 V-
cycles. The average run time was 5.1sec per V-cycle, 10.2sec/frame
(with 2 V-cycles). For comparison, we also simulated the tetrahe-
dral armadillo model of [Teran et al. 2005] using the quasistatic
solver described in their paper. This tetrahedral model contains
380K tets and 76K vertices, thus contains approximately one quar-
ter of the degrees of freedom of our embedded model in figure 24.
For a Poisson’s ratio of 0.4 each Newton-Raphson iteration (which
includes a CG solve) required approximately 8.7sec while 5 New-
ton iterations per frame were required for acceptable convergence,
leading to an approximate cost of 43.5sec/frame.

We also demonstrate examples of fully dynamic simulation. In fig-
ure 26, a 43K vertex car model is simulated using the static elas-
ticity equations, as well as the dynamic scheme of section 8. As
expected, the convergence rate for the Backward Euler system was
significantly faster than our static problem (due to the addition of
the identity term in the system matrix). Using a time step ∆t equal
to the frame time, our observed convergence rate was 0.08. Fig-
ure 27 illustrates the dynamic simulation of an elastic dragon fig-
urine. The embedding grid has 402K cells/voxels and simulation
cost is 8.2sec/frame. Figure 25 illustrates a high-velocity impact of
a rigid body on a face model. The embedding grid contains 915K
cells/voxels and simulation cost is 21sec/frame. We note that no ex-
plicit collision handling was performed for this example; instead,
the degrees of freedom of the face that came in contact with the im-
pacting object were kinematically prescribed to move with it for the
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Fig. 18: Comparison of trilinear (left) and tricubic interpolation (right) on
a coarse simulation. The embedding grid includes only 11K cells.

duration of the impact. For these dynamic simulations just a single
V-cycle per frame was sufficient, due to the better conditioning of
the Backward Euler equations. Additionally, figure 22 provides a
detailed breakdown of the execution cost of the individual subrou-
tines on some of our benchmarks.

Finally, we note that usual trilinear interpolation would infre-
quently give rise to visual artifacts. Such artifacts would surface
in simulations where the resolution of the embedding grid was sub-
stantially coarser than that of the embedded surface (see, e.g. figure
18) and in conjunction with very extreme deformation. Since trilin-
ear interpolation does not produce continuous derivatives, surface
normals would exhibit visible discontinuities in these cases. We
found that using tricubic interpolation as in [Lekien and Marsden
2005] effectively eliminates this problem, as seen in figure 18. No-
tably, their method is based on evaluating higher order derivatives
at the nodes of the interpolation lattice, a process that is trivially
implemented with finite differences in our regular discretization.

9.4 Parallelization

Our discretization of elasticity and the multigrid solver proposed
in our paper possess a number of characteristics that favor paral-
lelism and scalable performance. The use of regular grids promotes
locality, allows operations such as smoothing and transfer between
grids to be implemented as streaming operations and allows for
easy domain partitioning based on the background grid. Indirect
memory access is avoided since we do not use an explicit mesh
to represent the simulated model. In addition, the regularity of the
discrete equations enables a compact storage of the matrix in our
linear system. For example, in the case of linear elasticity, all in-
terior equations use the same stencil, thus there is no need to store
a separate equation per grid location; this allows for a small mem-
ory footprint, even for large domains (see figure 23). In the case
of co-rotational linear elasticity, only the rotation field needs to be
stored and updated on the grid, while the system matrix can be built
on-the-fly. We evaluated the potential of our algorithm for parallel
performance by multi-threading a specific test problem on shared
memory platforms. In this section we describe our parallelization
methodology and present performance measurements.

Parallelization of the components of the multigrid solver is based
on an appropriate domain decomposition. Operations such as the
interior (distributive) smoother, the computation and restriction of
residuals, and prolongation of the coarse-grid correction are per-

Fig. 19: Volumetric partitioning using colored blocks in a 2D domain.

formed throughout the volumetric extent of the simulated model.
Consequently, these subroutines require a volumetric partitioning
of the simulation domain. This is simply accomplished by parti-
tioning the background cartesian grid into rectangular blocks, as
depicted in the two-dimensional illustration of figure 19, which can
then be processed by separate threads. However, operations such as
the smoother incur data dependencies between neighboring blocks.
In lieu of locking, we employ a coloring of the blocks (4 colors are
used in the two-dimensional example of figure 19, 8 colors would
be used in 3D) such that no two blocks of the same color are neigh-
boring. All blocks of the same color can be processed in parallel
without data dependencies, while different color groups are pro-
cessed in sequence. The optimal block size depends on the desired
number of blocks per color group (to allow simultaneous use of
more processing threads) and the properties of the memory subsys-
tem. For example, rectangular blocks of 16× 8× 8 cells will align
well with 512-bit cache lines (16× 4-byte floats) while providing a
few tens of blocks per color for problems in the order of 105 nodes.

Additionally, the rectangular shape of these blocks simplifies their
traversal, as this can simply be performed with a triple loop over
fixed index ranges. Such static loops yield improved cache and
prefetching performance, and facilitate vectorization (either explic-
itly or as a compiler optimization). Care needs to be taken for
blocks that include the domain boundaries, since some of their cells
are outside the active simulation domain. In order to retain the ben-
efits of traversing the block with a static triple loop, we perform the
operation in question (i.e. smoothing, residual computation, inter-
grid transfer) for all cells of a block, but only write the output of
this operation conditionally on the value of a bitmap that indicates
active/inactive grid locations. Finally, there are certain subroutines
of our multigrid solver (e.g. boundary smoothing) that operate on
a band around the surface of the object. Since a volumetric par-
titioning could be inefficient and unbalanced for these operations,
we perform a separate partitioning of the surface of the object. A
chromatic grouping of these surface partitions is precomputed, as
seen in figure 20, to allow all blocks withing a color group to be
processed in parallel without locking.

We evaluated the potential of our algorithm for parallel perfor-
mance using a multi-threaded version of our solver on the follow-
ing shared-memory platforms: An 8-core SMP workstation with
3.0GHz Intel X5365 Xeon processors, a 16-core SMP server with
2.93GHz Intel X7350 CPUs, and a cycle-accurate performance
simulator for the upcoming x86-based many-core Intel architecture
codenamed Larrabee. Our benchmarks were based on our synthetic
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Fig. 20: Surface partitioning of 3D models into colored surface patches.

elastic box example, under high incompressibility (ν = .48), with
mixed boundary conditions and at resolutions ranging from 323

to 2563 vertices. Figure 23 illustrates the speedup of our bench-
marks, and associated working set sizes, on the 8- and 16-core
SMPs. Figure 21 illustrates the speedup of individual subroutines
on the Larrabee simulator, for two different problem sizes and at
configurations up to 32 cores, with 4 threads/core. We note that
the utilization of more than 1 thread per core does not increase the
computational bandwidth (instructions are sequentially dispatched
from different threads), but serves to hide instruction and mem-
ory latencies. Although we did not exploit the SIMD capacity of
Larrabee in this experiment, the memory utilization was at a low
0.5GB/Gcycles per core, demonstrating there is a substantial mem-
ory bandwidth margin to allow vectorization to further improve the
performance of our solver.

10. CONCLUSION

Our multigrid framework allows for the efficient simulation of de-
formable materials with many degrees of freedom over a wide
range of material parameters including the near-incompresible limit
and our finite difference discretization naturally accommodates ar-
bitrary irregular geometries. However, the strength of the approach
would be improved with the generalization to arbitrary hyperelas-
tic constitutive models. We also plan to investigate efficient self-
collision detection and handling techniques that will not become a

Fig. 21: Parallel scaling on a Larrabee simulator for a number of different
configurations. NcM t indicates a simulated platform with N cores and
M threads/core. Prolongation/restriction were serialized on grids 323 and
smaller. “Core 2” indicates the speedup of a single-threaded execution on
an Intel Core 2 processor at the same clock frequency as the simulated
platform.

Fig. 22: Single-core execution profiles. (*) The cost of the operator update
was amortized based on 1 update every 5 V-cycles

performance bottleneck, given the efficiency of the elasticity solver.
Multi-resolution collision detection and response techniques (e.g.
[Otaduy et al. 2007]) would be expected to be the most compat-
ible candidates. In addition, if a penalty-based collision response
were desired, the embedded treatment of non-zero traction condi-
tions described in section 9.2 can be used to apply those penalty
forces at sub-cell resolution. Finally, although our initial investiga-
tion has demonstrated excellent potential for scaling on many-core
platforms, a more principled investigation needs to assess the per-
formance of our method platforms with SIMD capability, and ad-
dress a broader spectrum of constitutive behaviors and interacting
geometries.
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Fig. 24: Quasistatic simulation of armadillo model with co-rotational linear elasticity. Resolution: 302K cells.

Fig. 25: Dynamic simulation of an object impacting a face at high velocity. Modeled as a thick layer of flesh (no skull) using co-rotational
linear elasticity. The embedding simulation cage contains 915K cells. The high-resolution embedded surface contains 10.1M triangles.

Fig. 26: Dynamic simulation of a soft elastic car model deforming under kinematic constraints, using linear elasticity. Resolution: 43K cells.

Fig. 27: Embedded animation of a deformable dragon shaking his head, using co-rotational linear elasticity and simulation of dynamics.
The embedded surface contains 7.2M triangles, while the simulated embedding cage has 402K cells (closeup pictured on the right).
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