
ALGORITHMIC ASPECTS OF THE SIMULATION AND

CONTROL OF COMPUTER GENERATED HUMAN

ANATOMY MODELS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Eftychios D. Sifakis

June 2007

c© Copyright by Eftychios D. Sifakis 2007

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Ronald Fedkiw) Principal Adviser

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Leonidas Guibas)

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Matthew West)

Approved for the University Committee on Graduate Studies.

iii

iv

Preface

Computer aided simulation of the appearance and function of the human body has

found compelling applications in entertainment, biomechanics and medicine. Fur-

thermore, recreating realistic humanlike behavior with a synthetic face or body model

constitutes one of the most challenging benchmarks for physics-based simulation al-

gorithms, due to the complexity and resolution of the utilized models. As a result,

the quest for visual realism and biomechanical accuracy in virtual human simulation

has often inspired novel algorithms with broader impact in the field of physics-based

simulation. Using realistic character animation as the underlying motivation, this

thesis describes a host of new techniques that helped bring physics-based face and

body models to life. These include a robust quasistatic finite element solver able

to simulate meshes with over a million elements in the presence of inverted or de-

generate elements, an optimization algorithm for the automatic extraction of facial

muscle activations from motion captured performances, a hybrid solids simulation

framework that allows the utilization of distinct representations for elastic simula-

tion, collision handling and constraint resolution, and a flexible geometric algorithm

for placing cracks and incisions on deformable structures during simulation. Geomet-

rical and constitutive modeling of active musculature is addressed for musculoskeletal

and facial simulation tasks. Finally, the usability of these algorithms and models is

illustrated both in human anatomy simulation scenarios as well as in more general

physics-based simulation tasks for computer graphics applications.

v

Acknowledgements

The support, compassion and unconditional love of my fiancée, Demetra Makris, have

been a constant source of strength and inspiration for me. From the very beginning,

she embraced my hopes and dreams, personal as well as professional, and made them

her own. It is only appropriate that I dedicate this degree to her. My parents,

Dimitrios and Irini, spared no sacrifice to avail me and my sister of the best education

possible and I know this accomplishment fills them with pride. They are my role

models and I want to thank them for making all of this possible.

My advisor, Ron Fedkiw, had a profound impact on my attitude towards research

and life alike. He taught me not to compromise my dreams and goals for the fear of

the pain that goes into realizing them. I am honored to have had him as my mentor,

and my friend. I would also like to thank the other members of my reading committee

and PhD oral committee, Leo Guibas, Sebastian Thrun, Matthew West and Sandy

Napel, for their valuable feedback.

During my time as a PhD student at Stanford, I was privileged to work with

a number of extremely talented people. My interaction with my co-authors Joey

Teran, Geoffrey Irving, Andrew Selle, Igor Neverov, Tamar Shinar, Kevin Der, Avi

Robinson-Mosher, Padma Sundaram, Cynthia Lau and Sylvia Salinas-Blemker was

absolutely inspirational. I am also grateful to Robert Bridson, Jiayi Chong, Frederic

Gibou, Eran Guendelman, Jeong-Mo Hong, Sergey Koltakov, Ranjitha Kumar, Nipun

Kwatra, Frank Losasso, Neil Molino, Duc Ngyuen, Robert Strzodka, Jonathan Su,

Jerry Talton, Michael Turitzin, Rachel Weinstein for making Ron Fedkiw’s group

such an exciting place work in!

vi

In conjunction with my studies at Stanford, I was given the opportunity to col-

laborate with Intel’s Applications Research Lab and work with the following talented

people: Radek Grzeszczuk, Chris Hughes, Daehuyn Kim, Sanjeev Kumar, Y.K. Chen,

Jatin Chuugani, Pradeep Dubey and Jim Hurley. I am grateful to all of them for mak-

ing this collaboration enjoyable and productive and for educating me in the computer

architect’s perspective of physics-based simulation.

This research would not have been possible without the aid of companies such as

Cyberware (Monterey, CA), XYZrgb (Ottawa, Canada) and Motion Analysis (Santa

Rosa, CA). Their help and dedication to our facial modeling project truly went above

and beyond. I am grateful to our collaborators from the medical field, including Court

Cutting, Aaron Oliker, Garry Gold, Gary Glover, Sabine Girod and Sam Most for

lending us their unique insight in the function and structure of the human face, as

well as for their guidance in pursuing real-world applications that address important

needs in surgery and medicine.

Finally, I wish to thank SAP Labs for sponsoring the Stanford Graduate Fellowship

that supported my work for the majority of my time at Stanford.

vii

Contents

Preface v

Acknowledgements vi

1 Introduction 1

2 Muscles 3

2.1 Introduction . 3

2.2 Related Work . 6

2.3 Model Creation . 7

2.3.1 Level Set Extraction . 8

2.3.2 Meshing Bone And Muscle . 8

2.3.3 Tendon and Bone Attachment Designation 9

2.3.4 B-spline Fiber Representation 11

2.3.5 Skeletal Motion . 12

2.4 Finite element models . 13

2.4.1 Hyperelasticity . 13

2.4.2 Linear finite elements . 15

2.4.3 Mass discretization and lumping 17

2.4.4 Force computation . 18

2.4.5 Isotropic materials . 20

2.4.6 Invertible Finite Elements . 22

2.5 Constitutive Model for Muscle . 24

2.6 Embedding Framework . 26

viii

2.7 Fascia and Connective Tissues . 28

2.8 Simulating Skeletal Muscle . 30

2.9 Summary . 31

3 Quasistatics 33

3.1 Introduction . 33

3.2 Previous Work . 36

3.3 Quasistatic Formulation . 37

3.4 Strain Energy . 38

3.5 Finite Element Forces . 39

3.6 Element Stiffness Matrix . 41

3.7 Diagonalization . 42

3.8 Enforcing Positive Definiteness . 44

3.9 Inverted Elements . 46

3.10 Collisions . 47

3.11 Examples . 49

3.12 Summary . 52

4 Facial analysis 53

4.1 Introduction . 53

4.2 Related Work . 56

4.3 Anatomical Model . 57

4.4 Finite Element Method . 58

4.5 Optimization Framework . 61

4.6 Jacobian Computation . 64

4.7 Muscle Activation Constraints . 65

4.8 Kinematics and Jaw Articulation . 66

4.9 Examples . 70

4.10 Summary . 73

5 Speech synthesis 76

5.1 Introduction . 77

ix

5.2 Previous Work . 79

5.3 Data Capture . 80

5.3.1 Model Building . 80

5.3.2 Motion capture . 80

5.3.3 Inverse activations . 81

5.4 Phonemes and Visemes . 82

5.4.1 A Muscle Activation Basis for Speech 82

5.4.2 Primitives of Speech Simulation (Physemes) 83

5.5 Synthesis . 86

5.5.1 Physeme-based Speech Synthesis 86

5.5.2 Sequence Generation . 89

5.6 Speech and Expression . 91

5.7 Speech and Physics . 91

5.8 Discussion . 92

5.9 Summary . 93

6 Hybrid solids 96

6.1 Introduction . 97

6.2 Hard Bindings . 100

6.2.1 T-junctions . 104

6.2.2 Arbitrary embeddings . 106

6.3 Soft Bindings . 106

6.3.1 Synchronized coupling . 108

6.3.2 Coupling through binding springs 108

6.3.3 Time integration . 109

6.4 Examples . 112

6.5 Extensions to Rigid Body Coupling 115

6.6 Summary . 118

7 Cutting and virtual surgery 120

7.1 Introduction . 121

7.2 Previous Work . 124

x

7.3 Cutting Algorithm . 125

7.3.1 The Cutting Surface . 126

7.3.2 Clipping to the Simulation Mesh 128

7.3.3 Per-Tetrahedron Subdivision 130

7.3.4 Determining Material Connectivity 131

7.4 Examples . 131

7.5 Clinical Applications . 132

7.6 Discussion and Limitations . 138

7.7 Summary . 139

A Quasistatic treatment of muscle forces 140

A.1 Simplified muscle model . 140

A.2 Full muscle model . 143

A.2.1 Along-fiber shear . 143

A.2.2 Cross-fiber shear . 143

A.2.3 Fiber stretch . 145

A.2.4 Volume change . 146

A.3 Enforcing definiteness in general anisotropy 146

B Implicit springs stability 151

B.1 Stability conditions for 2× 2 ODE systems 151

B.2 Stability of modified Newmark . 152

B.2.1 Stability of the step (xn, vn)→
(
xn+1/2, vn+1/2

)
. 153

B.2.2 Stability of the step (xn, vn)→
(
xn+1, vn+1/2

)
. 154

B.2.3 Stability of the step (xn, vn)→ (xn+1, vn+1) 154

B.2.4 Stability of Newmark with explicit positions 157

C Implementing the cutting algorithm 161

D Finite Element Damping 164

D.1 Linear Damping . 164

D.2 Optimization for BCC meshes . 165

xi

Bibliography 168

xii

List of Figures

2.1 Musculoskeletal model created from the visible human data set. . . . 4

2.2 Musculotendon mesh creation using Constructive Solid Geometry. . 10

2.3 Bone attachment specification for the subscapularis and scapula. . . . 11

2.4 Piecewise linear muscle models with wrapping surfaces. 13

2.5 Elastically deforming solid . 13

2.6 Action of an affine deformation map on a tetrahedral element 15

2.7 Deformable torus simulated with the inverting FVM. 23

2.8 Resolution of a topology-offending embedding scenario. 27

2.9 Muscle simulations with and without fascia. 29

2.10 Simulation of muscles in the upper limb. 31

3.1 Quasistatic evolution of highly distorted model towards equilibrium . 35

3.2 Illustration of large deformation in conjunction with collision. 40

3.3 Quasistatic flesh deformation driven by a kinematic skeleton. 43

3.4 Illustration of self-collision handling. 46

3.5 Quasistatic simulation of the upper torso musculature. 49

3.6 A layered, muscle-driven skinning example. 51

4.1 Physics based simulation of a muscle-driven facial model 54

4.2 Finite element flesh mesh for face simulation. 60

4.3 Synthetic expressions created by manual specification of activations. . 62

4.4 Expressions estimated from motion capture data. 63

4.5 Tracking a motion captured narration sequence. 64

4.6 Configuration of the temperomandibular joint model. 68

xiii

4.7 Robust handling of noisy motion capture markers. 71

4.8 Accentuated expressions created by scaling of the force-length curve. 72

4.9 Interaction of the face with an external colliding object. 73

4.10 Interpolation between two expressions in activation space. 74

5.1 A synthesized utterance of the word “algorithm” 78

5.2 Eight camera, 250 marker optical motion capture layout 81

5.3 Estimated muscle activations of expressions. 83

5.4 Estimated phonemes from motion captured examples. 84

5.5 Comparison of the “p” and “w” physemes. 85

5.6 Segmentation of the word “cheese” into constituent physemes. 87

5.7 Arrangement of the word “grind” synthesized from computed physemes. 88

5.8 Synthesized speech segments blended with expressions. 90

5.9 Synthesized speech segment augmented with external object collision. 92

6.1 Parent particles, hard bound target locations and soft bound particles. 98

6.2 Resolution of hard bound particles via refinement of the parent element. 99

6.3 Hard bindings used to improve surface collision resolution 100

6.4 Non-graded red refinement leading to T-junctions. 104

6.5 An elastic sheet with T-junctions is stretched with and without bindings.104

6.6 Triangulated surface embedded in point cloud. 105

6.7 Soft bindings enable subtetrahedron elasticity in response to collision. 107

6.8 Spheres stitched together using binding springs of varying stiffness. . 109

6.9 Cloth pinched between two colliding spheres. 110

6.10 Allowing the hard bound targets to drift enables sub-element plaasticity111

6.11 A coarse cube mesh is cut into 289 sticks. 114

6.12 An adaptive red-only BCC mesh for an embedded face simulation. . . 115

6.13 Binding springs enforcing articulation constraints. 116

6.14 Rigid plates coupled with cloth sheets. 117

6.15 Simulation of a cloth curtain bound to rigid rings. 119

7.1 A spiral cut applied to a piece of cloth creates a long ribbon. 123

xiv

7.2 A single tetrahedron sliced into over a thousand pieces 124

7.3 A single tetrahedron is progressively cut while being simulated. . . . 125

7.4 32 intersecting planes slice a tetrahedral mesh into 289 sticks. 127

7.5 A cookie cutter surface is used to cut into a tetrahedral mesh. 128

7.6 A triangle in the triangle soup intersecting other triangles 129

7.7 Clipping cutting elements in the 2D cutting algorithm. 129

7.8 Progressive carving of a deforming slinky. 130

7.9 Comparison of Z-plasty procedures at different angles. 131

7.10 Topology and node duplication resulting from two cuts 132

7.11 The cutting algorithm used as an embedded meshing tool 133

7.12 A Z-plasty procedure is used to alleviate a scar contracture. 134

7.13 Simulation of a reduction mammoplasty. 134

7.14 Rhomboid flap repair following the removal of a skin cancer. 137

xv

xvi

Chapter 1

Introduction

Simulation of virtual characters is becoming an essential component of many motion

pictures, while emerging applications in biomechanics, medicine and surgery highlight

the value of accurate simulation of human anatomy. Innovative simulation algorithms

and modern hardware have recently led to leaping advances in the quality of physics-

based simulation, allowing applications in computer graphics and visual effects a level

of realism previously unattainable with finite element simulation techniques. More-

over, the ability to combine variable-resolution anatomical geometry with accurate

constitutive models has unveiled the potential for next-generation surgical planning

and training tools, which could combine the usability of an interactive virtual surgery

environment with the predictive power of an accurate physics-based simulator.

Beyond the practical value of physics-based human anatomy simulation technol-

ogy, the pursuit of such tasks often motivates the development of novel simulation

techniques. Anatomical models of human bodies and faces require discretizations

with hundreds of thousands, or even millions of degrees of freedom to resolve the

complex action of musculature, the wrinkling and folding of skin and the forces that

determine skeletal motion. Beyond the large number of degrees of freedom, models

of human anatomy exhibit substantial material inhomogeneity and anisotropy, incor-

porate elements with significant impact on flesh deformation despite their small size

(such as thin muscle sheets, tendons and connective tissue) and are subject to elabo-

rate collision and contact constraints. Traditional simulation techniques that perform

1

2 CHAPTER 1. INTRODUCTION

satisfactorily for simpler, non-actuated physical objects are often proven inadequate

for simulating these elaborate muscle-driven anatomical models. This thesis presents

a survey of novel simulation techniques that were developed to address the unique

challenges of virtual human simulation. Although the exposition employs the photo-

realistic simulation of facial motion and speech as the central benchmark, examples

are given to demonstrate the applicability of the developed techniques to a broader

spectrum of physics-based simulation tasks.

This thesis is structured as follows. Chapter 2 describes the geometrical and con-

stitutive modeling process for musculoskeletal and facial simulation systems [167, 24]

and presents a formalization of the finite element simulation framework employed

throughout this thesis. Chapter 3 presents a method that brings the simulation of

tetrahedralized models with millions of elements into the realm of feasibility. Operat-

ing under a quasistatic assumption (with the physical accuracy limitations it entails)

this novel static solver [166] is shown to handle complex models robustly even in the

presence of inverted or degenerate elements. In chapter 4 this technology is used in

an optimization framework [155] that solves the inverse problem of determining the

muscle activations that give rise to a motion captured facial expression. Such muscle

activation signals obtained from speech samples are used in chapter 5 to synthesize

new speech animations, which can be augmented by editing the apparent emotion or

through interaction with objects of the environment [156]. The practical restriction

of a quasistatic simulation is alleviated in chapter 6 where an embedded simulation

framework [157] is used to decouple elasticity simulation from collision detection and

attachment handling, reducing the required degrees of freedom to levels that enable

full dynamic simulation. Applications of this hybrid simulation in general physical

simulation tasks are also illustrated, including the ability to simulate composite sys-

tems with rigid and deformable components. An additional use of this framework

is highlighted in chapter 7 where an embedded simulation is used to animate the

processes of cutting and fracture [154] and specific applications in computer aided

surgery are discussed.

Chapter 2

Muscles

Simulation of the musculoskeletal system has important applications in biomechanics,

biomedical engineering, surgery simulation and computer graphics. The accuracy of

the muscle, bone and tendon geometry as well as the accuracy of muscle and ten-

don dynamic deformation are of paramount importance in all these applications. We

present a framework for extracting and simulating high resolution musculoskeletal ge-

ometry from the segmented visible human data set. We simulate 30 contact/collision

coupled muscles in the upper limb and describe a computationally tractable imple-

mentation using an embedded mesh framework. Muscle geometry is embedded in a

non-manifold, connectivity preserving simulation mesh molded out of a lower resolu-

tion BCC lattice containing identical, well-shaped elements leading to a relaxed time

step restriction for stability and thus reduced computational cost. The muscles are

endowed with a transversely isotropic, quasi-incompressible constitutive model that

incorporates muscle fiber fields as well as passive and active components. The sim-

ulation takes advantage of a new robust finite element technique that handles both

degenerate and inverted tetrahedra.

2.1 Introduction

Simulation of anatomically realistic musculature and flesh is critical for many disci-

plines including biomechanics, biomedical engineering and computer graphics where it

3

4 CHAPTER 2. MUSCLES

Figure 2.1: Musculoskeletal model created from the visible human data set.

is becoming an increasingly important component of any virtual character. Animated

characters must have skin that deforms in a visually realistic manner. However, the

complexity of the interaction of muscles, tendons, fat and other soft tissues with the

enveloping skin and our familiarity with this type of motion make these animations

difficult if not impossible to create procedurally. In biomechanics and biomedical en-

gineering, accurate descriptions of muscle geometry are needed to characterize muscle

function. Knowledge of such quantities as muscle length, line of action and moment

arm is essential for analyzing a muscle’s ability to create forces, produce joint mo-

ments and actuate motion [136]. For example, many studies use knowledge of muscle

lengths [6] and moment arms [7] to analyze muscle function for improving diagnosis

and treatment of people with movement disabilities.

In order to create realistic flesh deformation for computer graphics characters,

anatomy based modeling techniques of varying resolutions are typically applied. These

models are generally composed of an underlying skeleton whose motion is prescribed

kinematically (from motion capture or traditional animation) and a model that trans-

mits motion of the underlying skeleton to tissue deformation. The model for this

interaction can have varying levels of detail. For example, [111] maps joint configura-

tions to skin deformers that procedurally warp the surface of the character. The work

in [188] and [151] used anatomically based models of muscles, tendons and fatty tissue

2.1. INTRODUCTION 5

to deform an outer skin layer. The deformation of the muscle and tendon primitives

was based on muscle characteristics such as incompressibility, but dynamic effects

were not included. An obvious improvement to this approach is to include dynamic

effects based on muscle mechanics as in [41, 80, 165], which incorporated theoretical

muscle dynamic models (e.g. the relation between force, length and velocity in mus-

cle) using the equations of solid mechanics to simulate muscle contraction. However

in [41, 165], computational complexity restricted the application of their techniques

to only a few muscles at a time. [80] simulated more tissues in the knee, but the

dynamics were simulated quasi-statically ignoring the visually appealing effects of

ballistic motion and inertia.

Musculoskeletal simulations in biomechanics typically fall into two categories: sim-

ulations of simple models for many muscles composing a large region of the body (e.g.

the upper limb or lower extremity), or highly detailed muscle models that can only be

simulated a few muscles at a time. Common muscle models compute accurate muscle

moment arms and muscle/tendon lengths, but only resolve the average muscle line

of action [52, 66]. However, it is difficult to represent the path of a muscle with

complex geometry because it requires knowledge of how, as joints move, the muscle

changes shape and interacts with underlying muscles, bones and other structures.

These simplified models typically require the construction of elaborate “wrapping”

surfaces and “via points” to resolve contact with other muscles and bones in com-

pensation for simplifying muscles as piecewise linear bands. These simplified models

of contact are difficult to construct robustly, as they require an a priori knowledge of

the contact environment that is not always available. More detailed muscle models

do not suffer from these difficulties, but are burdened by computational complexity.

Typical examples are [192] and [67] which used modern nonlinear solid mechanics to

recreate the stress and deformation, although only a few muscles with simplified ge-

ometry were considered and the simulations were carried out quasi-statically to avoid

the stringent time step restrictions characteristic of explicit schemes.

We present a framework that can be used to create highly realistic virtual char-

acters while still allowing for biomechanically accurate simulation of large muscle

6 CHAPTER 2. MUSCLES

groups. We present a pipeline for creating musculoskeletal models from the seg-

mented visible human data set that allows for the creation of highly detailed models

of muscle, tendon and bone. We demonstrate this by creating a musculoskeletal model

of the upper limb. Then we embed each high resolution muscle geometry in a non-

manifold, uniform simulation mesh. The embedding mesh is comprised of identical,

well conditioned elements thus significantly relaxing the time step restriction allowing

us to avoid quasi-static simulation. Since the elements in each mesh are identical,

we only need to store the material coordinates of a single undeformed tetrahedron

per muscle as opposed to storing material information for every element in the mesh.

Contact is treated directly based on muscle geometry as opposed to procedurally cre-

ated, error prone wrapping surfaces. The inclusion of inertia forces while performing

the simulations in [165] illustrated the importance of the tendonous connective tissue

networks that wrap muscle groups. In response to this phenomenon, we incorporate

the effects of these tissues in a contact/collision algorithm that works between the

high-resolution geometry and the low resolution simulation mesh.

2.2 Related Work

[170, 169] simulated deformable materials including the effects of elasticity, viscoelas-

ticity, plasticity and fracture. Although they mentioned that either finite differences

or the FEM could be used, they seemed to prefer a finite difference discretization.

Subsequently, [72] advocated the FEM for simulating a human hand grasping a ball,

and since then a number of authors have used the FEM to simulate volumetric de-

formable materials.

[41] used the FEM, brick elements, and the constitutive model of [193] to simulate

a few muscles including a human bicep. Due to computational limitations at the

time, very few elements were used in the simulation. [188] built an entire model of a

monkey using deformed cylinders as muscle models. Their muscles were not simulated

but instead deformed passively as the result of joint motions. [151] carried out similar

work developing a number of different muscle models that change shape based on the

positions of the joints. They emphasized that a plausible tendon model was needed

2.3. MODEL CREATION 7

to produce the characteristic bulging that results from muscle contraction. A recent

trend is to use the FEM to simulate muscle data from the visible human data set, see

e.g. [196, 80, 54, 60].

In order to increase the computational efficiency, a number of authors have been

investigating adaptive simulation. [48] used a finite difference method with an octree

for adaptive resolution. This was later improved in [50] using a weighted finite dif-

ference integration technique (which they mistakenly referred to as “finite volume”)

to approximate the Laplacian and the gradient of the divergence operators. [49] used

FEM with a multiresolution hierarchy of tetrahedral meshes, and [74] refined basis

functions instead of elements.

2.3 Model Creation

Geometrically accurate musculoskeletal models are desired in graphics, biomechanics

and biomedical engineering. However, the intricacy of the human anatomy makes

it difficult to procedurally create models of the musculature and skeleton. As a

consequence, researchers have turned to volume data from actual human subjects as

a source for geometry. One such source is the visible human data set which consists

of high resolution images of millimeter-spaced cross sections of an adult male [178].

We use a segmented version of this data to create the muscle, tendon and skeleton

geometry for our simulations. Using the segmented anatomy information, we first

create level set representations of each tissue intended for simulation. Unfortunately,

the segmented data often contains imperfections or is unfit for creating a reasonable

simulation mesh. We repair each tissue using simple level set smoothing techniques

(see e.g. [135]), and/or CSG operations. A tetrahedralized volume is then produced

for each muscle (including tendon), and a triangulated surface is produced for each

bone. Both of these are created using the implicit surface meshing framework of [113].

Once the muscle, tendon and bone geometries have been created, we encode nec-

essary additional information into each muscle representation including material het-

erogeneity (tendon is stiffer than muscle and does not undergo active contraction) as

8 CHAPTER 2. MUSCLES

well as spatially varying muscle fiber directions. Additionally, the kinematic struc-

ture of the underlying skeleton must be created to drive skeletal motion. Finally,

boundary conditions are specified to attach muscle and tendon to bone.

2.3.1 Level Set Extraction

Due to the large amount of noise and occasional inaccuracies present in the segmented

data, creating our model begins with examining and fixing such problems. We rely

on a dual explicit/implicit representation of the muscle geometry to facilitate the

repair process. We first create a level set representation of each tissue we wish to

simulate using the visible human data. This data consists of gray-scale images of 1.0

mm axial slices of the entire body with individual tissues and bones assigned different

values. Information of this type naturally converts to Heaviside descriptions of each

individual tissue. The meshing algorithm we use to create the explicit geometric

representations (tetrahedralized volume or triangulated surface) as well as the level

set procedures we use to smooth noisy data require a signed distance function which

we generate using the fast marching method [177, 153].

After the level sets are generated, slice-by-slice contour sculpting is used to repair

problem regions. First, each slice of a generated level set is viewed graphically to check

for and eliminate errors that would otherwise interfere with either the anatomical

accuracy of our model or the algorithm for the subsequent meshing process. We then

use basic level set smoothing techniques such as motion by mean curvature (see e.g.

[135]) to eliminate any further noise automatically.

2.3.2 Meshing Bone And Muscle

Once the level sets are free of the inaccuracies and noise present in the original data,

we use them to construct a triangulated surface representation of each bone and a

tetrahedralized volume representation of each muscle [113]. The tetrahedral mesh

generation algorithm begins by partitioning all of space with a body-centered cubic

(BCC) tetrahedral lattice, and extracting the subset of the tetrahedra that intersect

with the object volume defined by the level set. Then a red green mesh subdivision

2.3. MODEL CREATION 9

algorithm is used to refine the initial mesh to an appropriate level of detail using

both curvature and surface information as refinement criteria. Extra care is taken

with elements near the boundary in order to obtain a well conditioned simulation

mesh. Finally, using either a mass spring or finite element model, the boundary

nodes of the mesh are compressed towards the zero isocontour of the signed distance

function. For the triangulated surfaces used for the rigid bodies this procedure is

carried out with the surface of the BCC lattice.

2.3.3 Tendon and Bone Attachment Designation

A major flaw in the segmented data set is that a large amount of tendon tissue is

absent. For example, the segmented biceps data lacks any information about the distal

tendon and its proximal tendons are under-resolved. In order to add missing tendon

tissue to each muscle mesh, we make use of both explicit and implicit representations

of each muscle. While explicit representations allow for more efficient and accurate

graphical rendering of objects, implicit representations are advantageous for Boolean

operations. Our method for regenerating missing tendon tissue for a given muscle

mesh makes use of simple CSG methods on graphically positioned tendon primitives.

After a set of tendon primitives is positioned in relation to a muscle mesh where its

missing tendon tissue should be, the union of the tendon primitives and the muscle

mesh is calculated and converted into a new level set (see figure 2.2). This new level

set then undergoes another iteration of the editing, smoothing, and meshing processes

described above. Due to the efficiency of the level set creation and tetrahedral meshing

algorithms, the cost of this second iteration is reasonable. The result of this step is an

improved tetrahedralized volume representation for each muscle that includes both

the muscle tissue and all of its associated tendon tissue.

To improve the accuracy of our model during simulation, it is necessary not only

to include tendons in the tetrahedron meshes, but also to differentiate between muscle

and tendon tissue as well as to define muscle-bone attachment regions. Therefore,

we define subregions within each muscle mesh to represent muscle tissue, tendon tis-

sue, and bone attachment regions. Tetrahedra designated as muscle are influenced

10 CHAPTER 2. MUSCLES

Figure 2.2: Musculotendon mesh creation using Constructive Solid Geometry.

by muscle activations whereas those designated as tendon remain passive during sim-

ulation. Furthermore, tendon tissue is an order of magnitude stiffer than muscle

tissue. Tendon often extends into the belly of certain muscles forming an internal

layer of passive tissue to which the active muscle fibers attach. This layer of con-

nective tissue is known as an aponeurosis and can play a large role in many muscle

functions [137, 63]. We take extra care to model this layer when selecting the regions

of the muscle/tendon geometry to designate as tendon. Additionally, we rigidly at-

tach tetrahedrons in the origin and insertion regions of each muscle mesh to their

corresponding bones. Tetrahedrons that are designated as attached to bone are used

to set Dirichlet boundary conditions during simulations.

Our method for defining the subregions described above involves graphically se-

lecting portions of the mesh to be tendon or bone attachment tetrahedra leaving the

remaining tetrahedra designated as muscle. In general, we use closed triangulated

surfaces to select groups of tetrahedra making use of anatomy texts for anatomical

accuracy. However, a good initial guess can be calculated by simply using a proximity

threshold of the tetrahedra to a particular bone. We correct this guess by growing

regions initially selected based on mesh connectivity as well as by graphical selection.

See figure 2.3.

2.3. MODEL CREATION 11

Figure 2.3: Bone attachment specification for the subscapularis and scapula.

2.3.4 B-spline Fiber Representation

Muscle tissue fiber arrangements vary in complexity from being relatively parallel and

uniform to exhibiting several distinct regions of fiber directions. We use B-spline solids

to assign fiber directions to individual tetrahedrons of our muscle simulation meshes

querying the B-spline solid’s local fiber direction at a spatial point corresponding to

the centroid of a tetrahedron as in [126].

B-spline solids have a volumetric domain and a compact representation of control

points, qijk, weighted by B-spline basis functions Bu(u), Bv(v), Bw(w):

F(u, v, w) =
∑
i

∑
j

∑
k

Bu
i (u)Bv

j (v)Bw
k (w)qijk

where F is a volumetric vector function mapping the material coordinates (u, v, w)

to their corresponding spatial coordinates. Taking the partial derivatives of F with

respect to one of the three material coordinates ∂F/∂u, ∂F/∂v, ∂F/∂w produces an

implicit fiber field defined in the material coordinate direction. In [126], one of these

directions always coincided with the local tangent of the muscle fiber located at the

spatial position corresponding to the material coordinates. The inverse problem of

finding the material coordinates for a given spatial point can be solved using numerical

root-finding techniques to create a fiber query function

X(x) =
∂F(F−1(x))/∂m

‖∂F(F−1(x))/∂m‖

12 CHAPTER 2. MUSCLES

with m = {u, v, w} depending on the parameter chosen and the fiber directions

normalized. The function X describes an operation that first inversely maps the

spatial points back to their corresponding material coordinates (u, v, w) and then

computes the normalized fiber direction at that point.

We created these B-spline solids based on anatomy texts, however working with

anatomy experts as in [126] or using fiber information from scanning technologies

would improve accuracy. Additionally, using a fiber primitive template as was done

in [22] would also improve accuracy and simplify the process.

2.3.5 Skeletal Motion

Bones are naturally articulated by ligaments and other soft tissues that surround

them. However, we consider the inverse problem: a kinematic skeleton that drives

the motion and contraction of the muscles and tendons attached to it. The joint spaces

used to create a realistic kinematic structure involve intricate couplings of revolute

and prismatic components resulting from the geometric complexity and redundancy

of the muscles, tendons and ligaments that articulate the bones. Fortunately, there

is much existing literature dedicated to the joint structures in the human body. We

turned to the results of [65] to create the kinematic structure of the upper limb. In

[65] the visible male was used to create a skeleton model of the right shoulder, elbow

and wrist. Anatomical landmarks were then used to identify joint centers and to

set up local coordinate frames for each of the bones. State of the art joint models

with thirteen overall degrees of freedom were used to describe the relative motion

of the sternum, clavicle, scapula, humerus, radius and ulna. Using the same virtual

anatomy, we were able to directly incorporate their results.

Additional work was done in [66] to create a muscle model in the upper limb

based on the Obstacle Set method for computing musculo-tendon paths, see figure

2.4 (left). This model for muscle length and moment arm computation assumes

constant cross-sectional stress and simplifies the muscles to average lines of action.

Basic geometric primitives like cylinders and spheres are used as collision objects to

compute the paths of muscles as they collide with bones and other tissues. With this

2.4. FINITE ELEMENT MODELS 13

infrastructure in place, we use an inverse dynamics analysis with the results of [165]

to compute activations for the muscles in the right upper limb. These techniques

work with both motion capture and traditional animation.

Figure 2.4: Piecewise linear muscle models with wrapping surfaces.

2.4 Finite element models

2.4.1 Hyperelasticity

Consider a volumetric object occupying a region Ω ∈ RN in its rest state. We model

an elastic deformation of this object as a function φ : Ω → RN which maps the

undeformed object into its deformed state φ[Ω]. We denote the independent variable

of the mapping function φ by X ∈ Ω and associate it with the rest position of a

material point. The respective deformed position is denoted by x = φ(X) ∈ φ[Ω].

Figure 2.5: Elastically deforming solid

14 CHAPTER 2. MUSCLES

A deformed hyperelastic material stores potential energy, which is defined via a

constitutive law as Ψ̂ = Ψ̂(φ[·]; X). Ψ̂(X) corresponds to the hyperelastic energy

density at X, i.e. it is the ratio of the energy stored in an infinitesimal volumetric

region dΩ around X normalized by the volume dV of dΩ. Consequently, the total

energy stored in a deformed hyperelastic object is

Ψ =

∫
Ω

Ψ̂(X)dX. (2.1)

The specific formula for the energy density Ψ̂ is the defining property of different

materials. However, the nature of a hyperelastic material mandates a number of

important properties for the energy density function:

• Ψ̂(X) depends only on the local properties of the deformation map φ around

X. For smooth functions the dependence of Ψ̂(X) on φ reduces to the Taylor

expansion of the latter around X. In typical constitutive models (such as all the

models addressed in this thesis) Ψ̂(X) only depends on the local linearization

of φ around X, i.e. the values of φ(X) and ∂φ(X)/∂X.

• The hyperelastic energy density is independent of the deformation history. As

a result, hyperelastic forces are conservative, i.e. the energy difference between

two deformed states is independent of the path that was followed to transition

from one to the other.

• The energy density is zero at locations where φ is locally a rigid body transfor-

mation and nonnegative everywhere else. Consequently, rigid body transforma-

tions of a deformable object (including the rest state) are global minima of the

total hyperelastic energy.

In analogy with equation 2.1 the total momentum P and kinetic energy K of the

deformable object are given by

P =

∫
Ω

ρ(X)v(X)dX, and K =

∫
Ω

ρ(X)‖v(X)‖2dX (2.2)

2.4. FINITE ELEMENT MODELS 15

2.4.2 Linear finite elements

As a first step to modeling an elastically deforming object on the computer one has to

discretize its state into a finite-dimensional representation. The techniques presented

in this thesis utilize a linear finite element discretization on simplicial meshes. A

formal definition of a Lagrangian FEM discretization using linear basis functions is

given in [25] while [167] illustrates the equivalence of this discretization with the

Finite Volume Method for the case of constant strain elements. Here, we present

an equivalent intuitive definition which is best adapted to the formulations in the

remaining of this work.

The continuous geometry of a volumetric deformable object is discretized into

a tetrahedral mesh via a mesh-generation process. The degrees of freedom of this

discrete deformable geometry are identified with the nodes of the tetrahedral mesh.

Thus the deformation map φ is constrained to satisfy xi = φ(Xi) for every node Xi

in the rest state of the deformable mesh and its counterpart xi in the deformed mesh.

In addition the deformation map φ is defined to be affine within every tetrahedron of

the mesh.

Figure 2.6: Action of an affine deformation map on a tetrahedral element

These conditions are sufficient to fully determine the deformation function from

the positions xi of the deformed mesh nodes. Within each tetrahedron T (x0x1x2x3)

the deformation map is an affine function x = φ(X) = FX + t. The 3×3 matrix F =

∂x/∂X is called the deformation gradient and is constant within each tetrahedron.

16 CHAPTER 2. MUSCLES

It is computed as:

xi − x0 = (FXi + t)− (FX0 + t)

= F(Xi −X0)(
x1 − x0 | x2 − x0 | x3 − x0

)
= F

(
X1 −X0 | X2 −X0 | X3 −X0

)
or Ds = FDm where Dm = (X1 −X0,X2 −X0,X2 −X0) and Ds = (x1 − x0,x2 −
x0,x2−x0) are the material (undeformed) and spatial (deformed) 3×3 shape matrices

for the tetrahedron T . The deformation gradient can subsequently be computed

as F = DsD
−1
m , while the translation t can be computed from any of the relations

xi = FXi + t.

Since F and t fully define the deformation map φ within each tetrahedron, the

energy density function Ψ̂ is fully defined as a function of these. Furthermore, since

the elastic energy is invariant under rigid body transformations, Ψ̂ does not depend on

the translation f and can be written solely as a function of the deformation gradient

Ψ̂ = Ψ̂(F). We note that due to the invariance of hyperelastic energy under rigid

rotation, the energy density function satisfies Ψ̂(F) = Ψ̂(RF) for any rotation matrix

R. Finally, due to the deformation gradient F being constant across T we can compute

the hyperelastic energy stored in the deformed tetrahedron φ[H!] from equation (2.1):

ΨT =

∫
T

Ψ̂(F)dX =
1

6
det DmΨ̂(FT)

= bTΨ(FT) (2.3)

where in equation (2.3) bT = 1
6

det Dm is the volume of the undeformed tetrahedron

and the simplified notation Ψ(F) is used to denote the energy density associated with

a deformation gradient F (ΨT will refer to the total energy stored in tetrahedron T).

Finally, the piecewise affine nature of the deformation map φ implies that the

kinematic properties of any point within a tetrahedron can be computed via barycen-

tric averaging. Specifically, if the undeformed position X of a point interior to the

2.4. FINITE ELEMENT MODELS 17

tetrahedron (X0X1X2X3) yields the barycentric coordinates w1, w2, w3 such that

X = (1− w1 − w2 − w3)X0 + w1X1 + w2X2 + w3X3

= X0 + w1(X1 −X0) + w2(X2 −X0) + w3(X3 −X0)

FX + t = FX0 + t + w1F(X1 −X0) + w2F(X2 −X0) + w3F(X3 −X0)

x = x0 + w1(x1 − x0) + w2(x2 − x0) + w3(x3 − x0)

= (1− w1 − w2 − w3)x0 + w1x1 + w2x2 + w3x3

thus the deformed position of the interior point is interpolated from the deformed

positions of the tetrahedron nodes using the barycentric weights computed from its

undeformed position. Differentiating this equation, we see that the velocity and

acceleration of an interior point is interpolated from the respective velocities and

accelerations of the tetrahedron nodes using the same barycentric weights.

2.4.3 Mass discretization and lumping

The ability to define the velocity of any point interior to an element via barycentric

interpolation from the velocities of the element nodes allows us to write the kinetic

energy of the element from equation (2.2) in closed form. For simplicity, we consider a

deformable object in two dimensions, which has been discretized into a triangle mesh.

Using the relation v =
∑
wivi we write the kinetic energy of a triangle T (x1x2x3) as

K =

∫
T

ρ‖v(X)‖2dX

=
1

2

(
vT1 vT2 vT3

)
M/6 M/12 M/12

M/12 M/6 M/12

M/12 M/12 M/6

v1

v2

v3

=

1

2
vTMv

where the velocity vector v is the concatenation of the nodal velocities v1, v2, v3 and M

is a symmetric, positive semi-definite mass matrix. The density ρ is assumed constant

throughout each element. Although this representation of mass yields an accurate

18 CHAPTER 2. MUSCLES

measure for the kinetic energy of the element, it gives rise to an important algorithmic

complication: Computation of nodal accelerations by application of Newton’s law

a = M−1f would require inversion of the mass matrix. The typical remedy is to

lump the mass matrix into a diagonal matrix by redistributing the continuous mass

of the elements into discrete masses at the nodes of the simulation mesh. This is

accomplished by computing the total mass of each element and distributing it equally

among the vertices of the element. In the example above, this would yield the lumped

diagonal mass matrix M̂ = diag(M/3,M/3,M/3). Consequently, the global mass

matrix is diagonal as is its inverse which can be precomputed prior to simulation.

Mass lumping induces a perturbation on FEM forces in comparison to using non-

lumped symmetric mass matrices, however this perturbation vanishes under refine-

ment and is perfectly acceptable for the anatomical modeling applications described

in this thesis, where they are easily outweighed even by subtle geometrical or con-

stitutive modeling inaccuracies. Notably, both the lumped and non-lumped mass

matrix yield the same value of the kinetic energy when all the vertices of the element

share the same velocity. Likewise, the total momentum (computed by adding the

nodal momenta p = Mv) of the triangle is accurately measured when using either

mass matrix, for any value of the nodal velocities (a consequence of the fact that

momentum, in contrast with kinetic energy, has a linear dependence on velocity).

2.4.4 Force computation

Given a deformable object with nodal positions x and nodal velocities v we can derive

the definition of hyperelastic forces f via application of the conservation of energy. In

the absense of damping or external forces, the total energy of the object is the sum

of the kinetic (K) and potential (Ψ) energy and remains constant. Therefore

K + Ψ = const

Kt + Ψt = 0

d

dt

(
1

2
vTMv

)
+
∂Ψ

∂x

dx

dt
= 0

2.4. FINITE ELEMENT MODELS 19

vTMa + vT
(
∂Ψ

∂x

)T
= 0

−
(
∂Ψ

∂x

)T
= Ma = f

This definition of force as the negative gradient of potential energy is characteristic

of a conservative force.

Although forces may be computed via direct evaluation of f = −∇TΨ on a per-

node basis, it is computationally beneficial to perform this evaluation on a per-element

basis instead. This is facilitated by introducing for each tetrahedron T (x0x1x2x3)

the force matrix G = (f1 f2 f3). Note that the force on x0 can be computed as

f0 = −f1− f2− f3 since the internal elastic forces cannot affect the total momentum of

the element, thus must sum to zero on each respective element. G can be computed

as

G =
(
− (∂ΨT/∂x1)T − (∂ΨT/∂x2)T − (∂ΨT/∂x3)T

)
= − ∂ΨT

∂(x1,x2,x3)

= − ∂ΨT

∂(x1 − x0,x2 − x0,x3 − x0)
= −∂ΨT

∂Ds

(2.4)

= −∂ΨT

∂F
:
∂F

∂Ds

= −bT
∂Ψ(FT)

∂F
:
∂F

∂Ds

(2.5)

where equation (2.4) is due to the translational invariance of the hyperelastic energy.

ΨT denotes the total energy stored in tetrahedron T while Ψ(F) is the energy density

associated with a deformation gradient F. The fourth order tensor ∂F/∂Ds has entries

[∂F/∂Ds]ijkl = δik(D
−T
m)jl, thus after some tensor algebra equation (2.5) becomes

G = −bT
∂Ψ

∂F

∣∣∣∣
FT

D−Tm = P(FT)Bm (2.6)

where Bm = (1/6) det Dm ·D−Tm and P = ∂Ψ/∂F is the First Piola-Kirchhoff stress

20 CHAPTER 2. MUSCLES

tensor. Since by virtue of equation (2.6) nodal forces may be computed using only

the first Piola-Kirchhoff stress tensor and the precomputed Bm matrix, constitutive

laws are often formulated as a relation that defines P (instead of the energy density

Ψ) as a function of F.

2.4.5 Isotropic materials

As noted in section 2.4.1 any hyperelastic constitutive model will not be affected by

spatial rotations of the deformation gradient, that is Ψ(RF) = Ψ(F) for any rotation

matrix R. We can isolate the subset of degrees of freedom within F that affect

the energy Ψ by considering the Singular Value Decomposition of the deformation

gradient F = UΣVT , where U and V are rotation matrices. In this setting, the

degrees of freedom of the deformation gradient are factored into three degress of

freedom for each of the rotations U and V and three degrees of freedom in the

diagonal matrix Σ.

Isotropic materials carry the additional property that the hyperelastic energy Ψ

does not depend on either of the material (V) or spatial (U) rotations, but only on

the singular values of the deformation gradient (Σ). Such materials do not have any

preferred directions and a rotation of the deformation function simply leads to the

same deformation of resulting elastic forces. The independence of isotropic materials

on spatial or material rotations can be formalized as

Ψ(R1FR2) = Ψ(F) (2.7)

for any rotation matrices R1,R2. Equation (2.7) can be regarded as the definition of

an isotropic constitutive model.

Although the constitutive law for an isotropic material could express the energy

as a function of the singular values Σ of the deformation gradient (and this form of

definitions is used in some cases) it is often more convenient to express it in terms of

algebraic quantities that can readily be computed from F without explicit computa-

tion of the SVD. Such algebraic quantities must be constant when evaluated over the

family of matrices {R1FR2} where F is a given 3×3 matrix and R1,R2 are rotations.

2.4. FINITE ELEMENT MODELS 21

Consequently such quantities are known as isotropic invariants. The three isotropic

invariants most commonly in use are:

I1(F) = tr
(
FTF

)
, I2(F) = tr

(
FTFFTF

)
, I3(F) = det

(
FTF

)
The invariance of these tensors is easily verified. Although they can be computed

from the deformation gradient algebraically, they can also be expressed in terms of

its singular values (by simply substituting Σ for F, using the invariance property) as:

I1 =
∑

σ2
i , I2 =

∑
σ4
i , I3 =

∏
σ2
i

If an isotropic constitutive model is defined in terms of the isotropic invari-

ants I1, I2, I3, the first Piola-Kirchhoff stress can be computed as P = ∂Ψ/∂F =∑
ΨIk∂Ik/∂F. The derivatives of the three invariants with respect to the deforma-

tion gradient are

∂I1

∂F
= 2F,

∂I2

∂F
= 4FFTF,

∂I3

∂F
= 2I3F

−T

leading to the final expression for the first Piola-Kirchhoff stress

P = 2ΨI1F + 4ΨI2FFTF + 2I3ΨI3F
−T (2.8)

In the remaining of this thesis the symbols I1, I2, I3 will be used interchangeably

with I, II, III where notational convenience favors the latter. Two additional invari-

ants that are used in certain constitutive models are

I∗2 =
1

2

(
I2

1 − I2

)
=
∑
i<j

σ2
i σ

2
j and J =

√
I3 = det F =

∏
σi

Notably, J is the volume change ratio (J > 1 for expanded elements, J < 1 for

compressed ones). Locally incompressible materials satisfy J = 1 at all times.

Certain constitutive models choose to separate the hyperelastic energy due to

22 CHAPTER 2. MUSCLES

volumetric compression or expansion from the energy due to deformation modes or-

thogonal to volume change. In the interest of this separation we define the deviatoric

invariants of F as the respective isotropic invariants evaluated on the scaled deforma-

tion gradient F̂ = J−1/3F which satisfies J(F̂) = det F̂ = 1. The expressions for the

deviatoric counterparts of I1 and I2 are

Î1(F) = I1(F̂) = J−2/3I1 and Î2(F) = I2(F̂) = J−4/3I2.

Constitutive models that separate the dependence of the elastic energy Ψ on the

deviatoric invariants Î1, Î2 and the volume change J are used extensively in this thesis

where the approach of quasi-incompressibility is used to promote volume preservation.

2.4.6 Invertible Finite Elements

Motivated by our geometric FVM formulation, [82] introduced a strategy that allows

one to robustly treat inverted or degenerate tetrahedra via a new polar SVD technique

that expresses the deformation gradient in a space that makes it a diagonal matrix.

In this doubly rotated space, one can readily extend any constitutive model into the

degenerate and inverted regime in a fashion that results in smooth force behavior

that opposes degeneracy and inversion.

To extend constitutive models to degenerate elements, [82] makes use of the newly

proposed polar SVD of F = UF̂VT where U and V are rotation matrices and F̂

is a diagonal matrix. The inverting elements framework is applied in the following

fashion. First, VT rotates the tetrahedron from material coordinates into a coordinate

system where the deformation gradient is conveniently a diagonal matrix. Similarly,

UT rotates the tetrahedron from spatial coordinates into this same space. Typically

researchers work to find the polar decomposition that gives the rotation relating

material space to world space. Removing this rotation produces a still difficult to work

with symmetric deformation gradient. In contrast, the polar SVD gives two rotations,

one for the material space tetrahedron and one for the world space tetrahedron. After

applying these, the deformation gradient has a much more convenient diagonal form.

In practice, the polar SVD is used to find the diagonal deformation gradient, to apply

2.4. FINITE ELEMENT MODELS 23

the constitutive model and the FVM forces in diagonal space in standard fashion,

and then map the forces on the nodes back to world space using U. The beauty of

working in a space that has a diagonal deformation gradient is that it is trivial to

extend constitutive models to work for degenerate and inverted elements.

Figure 2.7: Deformable torus simulated with the inverting FVM.

We display the robustness of the inverting FVM algorithm which was developed

from the geometric FVM framework. An exceptionally soft torus is dropped to the

ground and crushed flat by its own weight. The Young’s modulus is then substantially

increased causing it to jump from the ground and into the air demonstrating that

simulation can proceed despite large numbers of inverted and degenerate elements.

The results are shown in figure 2.7.

The simulation environment for large muscle groups can be considerably volatile.

In regions like the shoulder girdle, muscles are constantly in contact with other mus-

cles, tendons and bones. In addition, the kinematic skeleton subjects them to an

extreme range of boundary conditions. An additional complication comes from the

errors in modeling the complex structure of the glenohumeral and sternoclavicular

joints that determine the motion of the clavicle, scapula and humerus relative to the

sternum. Errors inherent in modeling these joints can cause spurious configurations of

the musculature that can cause tetrahedra in the computational domains involved to

24 CHAPTER 2. MUSCLES

invert. Perfectly recreating the joint kinematics in the region might alleviate these is-

sues, however it is prohibitively difficult. Rather, we employ the inverting FVM/FEM

framework. This algorithm allows elements to arbitrarily invert and return to more

reasonable configurations later in the simulation, enabling simulations to progress

that would have otherwise ground to a halt.

2.5 Constitutive Model for Muscle

Muscle tissue has a highly complex material behavior—it is a nonlinear, incom-

pressible, anisotropic, hyperelastic material and we use a state-of-the-art constitutive

model to describe it with a strain energy of the following form

W (I1, I2, λ, ao, α) = F1 (I1, I2) + U (J) + F2 (λ, α)

where I1 and I2 are deviatoric isotropic invariants of the strain, λ is a strain invariant

associated with transverse isotropy (it equals the deviatoric stretch along the fiber

direction), ao is the fiber direction, and α represents the level of activation in the

tissue. F1 is a Mooney-Rivlin rubber-like model that represents the isotropic tissues

in muscle that embed the fasicles and fibers, U(J) is the term associated with in-

compressibility, and F2 represents the active and passive muscle fiber response. F2

must take into account the muscle fiber direction ao, the deviatoric stretch in the

along-fiber direction λ, the nonlinear stress-stretch relationship in muscle, and the

activation level. The tension produced in a fiber is directed along the vector tangent

to the fiber direction. The relationship between the stress in the muscle and the fiber

stretch has been established using single-fiber experiments and then normalized to

represent any muscle fiber [193]. This strain energy function is based on [186] and is

the same as that used in [165].

This model does have some notable limitations. Muscle undergoes history depen-

dent changes in elasticity such as strain hardening and has a force/velocity relation-

ship in addition to force/length dependence [193, 150]. Additionally, we neglect any

model for anisotropic shear behavior relative to the fiber axis. Our model includes

2.5. CONSTITUTIVE MODEL FOR MUSCLE 25

only what is necessary to produce bulk length based contraction along the muscle

fiber directions. Given the large number of colliding and contacting muscles we wish

to simulate, the effects of these phenomena on the bulk muscle deformation are subtle

at best. However, when focusing on more specific behavior in a more localized region

of muscle, e.g. non-uniform contraction of the biceps as in [137], it would be useful

to add the effects of these phenomena. Note that our framework readily allows for a

more sophisticated constitutive model such as that proposed in [23].

The diagonalized FEM framework of [82] is most naturally formulated in terms

of a first Piola-Kirchoff stress. A stress of this type corresponding to the above

constitutive model has the form

P = w12F− w2F
3 + (p− pf)F−1 + 4JccT (Ffm)fm

T

Jc = det(F)−
1
3 , Jcc = J2

c , I1 = JccC, λ =

√
fm

TCfm

w1 = 4Jccmatc1, w2 = 4J2
ccmatc2, w12 = w1 + I1W2

p = Klog(J), pf =
1

3
(w12Tr(C)− w2Tr(C

2) + Tλ2)

Here, F is the deformation gradient, C = FTF is the Cauchy strain and fm is the

local fiber direction (in material coordinates). matc1 and matc2 are Mooney-Rivlin

material parameters and K is the bulk modulus. T is the tension in the fiber direction

from the force length curve (see [193]). Typical values for these parameters are:

matc1 = 30000Pa (muscle),matc1 = 60000Pa (tendon),

matc2 = 10000Pa (muscle and tendon),

K = 60000Pa (muscle), K = 80000Pa (tendon),

T = 80000Pa.

This formula holds throughout both the muscle and tendon tetrahedra, however the

tendons are passive (no active stress). Note that tendon is considerably stiffer than

muscle. Modeling this inhomogeneity is essential for generating muscle bulging during

contraction (as well as for accurately computing the musculotendon force generating

capacity). Also, large muscles like the deltoid, trapezius, triceps and latissimus dorsi

26 CHAPTER 2. MUSCLES

have multiple regions of activation. That is, muscle contraction and activation is non-

uniform in the muscle. In general, the effects of varying activation within a muscle

can be localized to a few contractile units in each muscle. For example, each head of

the biceps and triceps receive individual activations (see figure 2.4).

Fascia tissues wrap individual muscles and muscle groups and are made up of

fibrous material with a stiffness similar to that of tendon. These elastic sheaths hold

the muscles together and as a result keep the muscle near the underlying skeleton

during motion. The stiffness of these connective tissues must be incorporated into

the muscle constitutive model. One approach is to make each muscle inhomogeneously

stiff near the muscle boundary (i.e. similar material to tendon). However, we simply

add an additional resistance to elongation in the constitutive model to encourage

resistance to stretching on the boundary of the muscles. This is done by adding in an

additional linearly elastic stress into the diagonalized form of the constitutive model

during elongation. The problematic effects of large rotations associated with linear

elasticity are naturally removed in the diagonalized setting, see [82]. Elongation is

identified when the diagonalized deformation gradient values are greater than 1.

2.6 Embedding Framework

The human musculature is geometrically complex and creating a visually realistic

model requires many degrees of freedom. Our upper limb model has over thirty

muscles made up of over 10 million tetrahedra. The simulation of such a model

is hindered by both its overall size and the time step restriction imposed by the

smallest tetrahedron in the mesh. To reduce the computational cost, our system

uses a dynamic Free Form Deformation embedding scheme. The simulation mesh is

created by overlaying a BCC lattice on the high resolution geometry (as in [113]). For

each particle on the surface of the initial high resolution tetrahedralized volume, we

compute its barycentric coordinates in the low resolution tetrahedron that contains it

and use these to update the high resolution geometry during subsequent simulation.

Our BCC embedding approach gives rise to several substantial benefits. The BCC

grid size we used led to a tenfold reduction in the size of the simulation mesh, from

2.6. EMBEDDING FRAMEWORK 27

about ten million to about one million tetrahedra. Most importantly, the time step

restriction for stability was relaxed by a factor of 25 owing to the regular structure of

the BCC tetrahedra and the elimination of poorly shaped elements. These combined

facts enabled the full finite element simulation of the whole upper limb musculature at

rates of 4 minutes per frame on a single CPU Xeon 3.06Ghz workstation. Substantial

RAM savings are also achieved, since all simulation tetrahedra are identical up to

a rigid body transform eliminating the need to store the rest state matrix on an

individual tetrahedron basis. Only one rest state tetrahedron is stored per muscle.

The embedding process can potentially change the topology of the original high

resolution geometry, since the original connectivity of the input geometry is projected

to the connectivity of the embedding coarse tetrahedra. Cases where parts of the high

resolution geometry attempt to separate but cannot since they are embedded in the

same coarse tetrahedron (see figure 2.8) are particularly frequent in our musculoskele-

tal simulation, for example in the concavity between the two heads of the bicep. To

some extent, this change of topology is inevitable as we are reducing the number

of degrees of freedom. Nevertheless, we propose to limit the undesirable topology

changes by relaxing some constraints on the embedding mesh. In particular we allow

it to be non-manifold and to possess multiple copies of nodes corresponding to the

same location in space in a fashion similar to the “virtual node algorithm” of [112].

Figure 2.8: Resolution of a topology-offending embedding scenario.

Consider a coverage of our high resolution geometry by a manifold tetrahedral

mesh as illustrated in figure 2.8 (left). We note that the fragment of the high resolution

geometry that is contained within each tetrahedron might consist of several disjoint

28 CHAPTER 2. MUSCLES

connected components as is the case in the two rightmost elements of our example. In

order to avoid connecting such disjoint material fragments by embedding them in the

same tetrahedral element, we create a copy of the original tetrahedron for each one

of them as shown in figure 2.8 (middle). All tetrahedra thus created are completely

disjoint, in the sense that we assign a different copy of each vertex of the original

mesh to each duplicate tetrahedron that contains it. We subsequently assign each

connected material fragment within an original tetrahedron to a different one of its

newly created copies.

In the second phase of our algorithm, we rebuild the connectivity of our mesh by

collapsing vertices on adjacent tetrahedra that should correspond to the same degree

of freedom. In particular, when two of the newly created tetrahedra exhibit material

continuation somewhere across their common face, their corresponding vertices are

identified. Such pairs are indicated with double arrows in figure 2.8 (middle). For each

corresponding pair of vertices on the common boundary of two materially contiguous

tetrahedra, we collapse the two vertices onto a single one using a union-find data

structure for the vertex indices. The resulting tetrahedron mesh is non-manifold in

general, as illustrated in figure 2.8 (right).

After our mesh generation process we project the fiber directions, inhomogeneities

(tendon material) and boundary conditions (origins and insertions) from the high res-

olution mesh to the coarse simulation mesh. Using a BCC covering of space as our

generator mesh provides for an efficient implementation as most point location or

tetrahedron intersection queries can be performed in constant and linear time respec-

tively. We note that in our current implementation the mesh generation is a static

process performed prior to the beginning of the simulation, although the described

technique extends to a dynamic context if the topology of our input geometry is

changing in time.

2.7 Fascia and Connective Tissues

Skeletal muscles are contained in a network of connective tissue, much of which is

fascia, that keeps them in tight contact during motion. Without modeling these

2.7. FASCIA AND CONNECTIVE TISSUES 29

constraints, dynamic models will have difficulties with ballistic motion and exhibit

spurious separation as shown in figure 2.9. Our fascia model enforces a state of

frictionless contact between muscles. It is similar in spirit to [86, 39, 30] which all

used “sticky” regions in one sense or another to create (possibly temporary) bonds

between geometry in close proximity.

Figure 2.9: Muscle simulations with and without fascia.

The fascia framework works in the context of the embedding techniques presented

in section 2.6. First, we find all intersections between the high resolution muscle

surface and the edges of the BCC simulation mesh and label these embedded nodes.

The primitives in our fascia model are line segments (links) that connect each embed-

ded node to its closest point (anchor) on the high resolution surface of each nearby

muscle. Links between each embedded node and all its neighboring muscles within a

certain distance are initially created and their anchors are maintained as the closest

points of the corresponding muscle surfaces during simulation. Each time step, the

link corresponding to the closest anchor is selected as the active one and dictates the

contact response.

Every time step, the fascia links are used to adjust the BCC mesh. Each embedded

node has a position xemb and velocity vemb which can be compared to the position

xa and velocity va of its anchor. Ideally, we need the positions and velocities along

the normal direction to the surface at the anchor position to match closely. Thus, we

30 CHAPTER 2. MUSCLES

compute a new desired position and velocity for the embedded point:

~x′emb = ~xemb + α[(~xa − ~xemb) · ~N]~N

~v′emb = ~vemb + β[(~va − ~vemb) · ~N]~N.

The embedded particle and the anchor should optimally meet halfway with α =

β = .5, although we cannot move either of these points since they are both enslaved

by their embedding BCC lattices. Thus, we first compute the desired position and

velocity changes for all embedded particles and map these to the BCC mesh in a

second step. The anchor end of each link does not inflict any correction on the

neighboring muscle as that effect is accomplished by the links originating on that

particular muscle. We found values of α = .1 and β = .5 to work well in practice and

attenuate them as the length of a link surpasses a given threshold.

In the second step we map the desired state of the embedded nodes to the BCC

mesh. For each node on the BCC mesh, we look through all its edges to find embedded

nodes, and change the position and velocity of this BCC node using the average

desired change recorded by the embedded nodes. See [112] for more details.

Figure 2.9 shows a comparison of a simulation with and without fascia. The effects

of the connective tissues and the problems that inertia forces can cause in their absence

are evident in the muscles of the forearm that wobble around, unnaturally separating

from the bone.

2.8 Simulating Skeletal Muscle

We demonstrate the strength of our pipeline with a series of skeletal animations of

the upper limb (see figure 2.10). The bones in the shoulder and the arm are animated

through a series of key-frames and thirty muscles are simulated with FVM. Inverse

dynamics were used with the results of [165] to compute muscle activations at each one

of the key-frame poses in the animation. The activations obtained were interpolated

at key-frames (just as for the bone positions) throughout the simulation.

2.9. SUMMARY 31

Figure 2.10: Simulation of muscles in the upper limb.

2.9 Summary

Unfortunately, computational complexity and limitations in existing algorithms limit

the scope and accuracy of musculoskeletal models in both graphics and biomechanics.

In computer graphics, the emphasis is on the visual nature of the musculature and

particularly the effect that it has on the skin. As a result, models in the field have

focused mainly on generating plausible muscle geometry at the expense of other quan-

tities. However, muscle geometry, fasicle length, stress, force generating properties,

etc. are all coupled together. As technology and algorithms improve and demands for

realism are met in both graphics and biomechanics, the models used for examining

the respective quantities will become more and more similar. Our framework is a step

in this direction.

The presented framework allows for the creation of highly detailed geometry as

well as for realistic anisotropies and heterogeneities. Additionally, realistic dynamic

deformations are produced from a transversely isotropic muscle constitutive model.

The computational burden of simulating large muscle groups is ameliorated by our

embedding framework while preserving high resolution geometry for rendering. The

volatile simulation environment, inherent in the complex coupling of intricately ar-

ticulated rigid bodies and dozens of contacting deformable objects, is handled by

32 CHAPTER 2. MUSCLES

the extremely robust diagonalized FEM. In addition, our fascia model both robustly

recreates the effects of the connective tissues that surround the muscles as well as

efficiently resolving the unique contact environment inherent in the musculoskeletal

system.

However, many aspects of the pipeline could be improved. More realistic muscle

constitutive models that include the force/velocity relationship, time dependent elas-

ticity changes noted in [150] as well as anisotropic shear behavior relative to the fiber

axis as in [23, 22] can be used when examining more specific phenomena on a smaller

scale such as nonuniform contraction of the biceps.

While the geometry of the musculoskeletal system extracted from the segmented

visible human is very well resolved, the tendon/aponeurosis and fiber information

could be improved with the aid of scanning technologies or anatomy experts. In

the future, subject specific models would be desirable using segmented data from

MRI and CT. However, the resolution of the visible human data set is still greater

than those that are attainable with scanning technologies. Thus, given the additional

difficulty of segmenting the scanned data, a reasonable alternative approach is to use

the model created from the visible human data set and to deform (or morph) it to

match a specific subject or body type using anatomical landmarks similar to [60].

Chapter 3

Quasistatics

Quasistatic and implicit time integration schemes are typically employed to alleviate

the stringent time step restrictions imposed by their explicit counterparts. However,

both quasistatic and implicit methods are subject to hidden time step restrictions

associated with both the prevention of element inversion and the effects of discontin-

uous contact forces. Furthermore, although fast iterative solvers typically require a

symmetric positive definite global stiffness matrix, a number of factors can lead to

indefiniteness such as large jumps in boundary conditions, heavy compression, etc.

We present a novel quasistatic algorithm that alleviates geometric and material indef-

initeness allowing one to use fast conjugate gradient solvers during Newton-Raphson

iteration. Additionally, we robustly compute smooth elastic forces in the presence

of highly deformed, inverted elements alleviating artificial time step restrictions typi-

cally required to prevent such states. Finally, we propose a novel strategy for treating

both collision and self-collision in this context.

3.1 Introduction

Fast and robust simulations of elastic solids are becoming increasingly important in

computer graphics applications due largely to the prominence of virtual characters.

Feature films such as Van Helsing, Spiderman, The Lord of the Rings and countless

33

34 CHAPTER 3. QUASISTATICS

others benefit from the use of humanoid characters in scenes that would be diffi-

cult and expensive if not impossible to create with live actors, see e.g. [92, 162].

Typical models are composed of an underlying skeleton whose motion is prescribed

kinematically (from motion capture or traditional animation) and a mechanism for

transmitting the skeletal motion to skin deformation. Physics based simulations of

musculature and fleshy tissues are becoming increasingly popular for producing these

deformations, especially when virtual characters undergo contact and collision with

the surrounding environment. Moreover, faithfully depicting the artist’s conception

of the character requires reasonably high resolution tetrahedral meshes placing addi-

tional demands for efficiency on the simulation algorithm.

Since explicit time integration schemes can often have stringent time step re-

strictions, various authors have investigated the use of semi-implicit (e.g. [30]), fully

implicit (e.g. [169, 10]) and quasistatic (e.g. [80, 122]) time integration schemes. Qua-

sistatic schemes ignore inertial effects and thus are not suitable for simulating less

constrained phenomena such as ballistic motion. However, in applications where in-

ertial effects are relatively small compared to the deformation caused by contact,

collision, and time varying boundary conditions, quasistatic solvers can often provide

a speedup of one to two orders of magnitude over explicit schemes. For example,

quasistatic simulations are well suited for flesh deformation where the flesh is rigidly

attached to bones and heavily influenced by contact, collision and self-collision.

Although implicit and quasistatic schemes remove the time step restriction associ-

ated with wave propagation, the Newton-Raphson method used to solve the resulting

nonlinear equations may produce inverted elements during iteration when large time

steps are used, bringing the algorithm to a halt. For example, large displacement

boundary conditions tend to invert elements unless steps are taken to distribute the

effects to surrounding elements, and the typical approach is to impose an artificial

time step restriction even in the quasistatic case. This has been discussed in both

the computer graphics (e.g. [80]) and the computational physics (e.g. [77]) literature.

Even in the case where the final mesh will be inversion free, artificially small time

steps are required to ensure that every intermediate state considered during Newton-

Raphson iteration is also inversion free restricting the speed at which one can converge

3.1. INTRODUCTION 35

Figure 3.1: Quasistatic evolution of highly distorted model towards equilibrium

to the desired solution. Recently, researchers have aimed at handling inversion using

altitude springs [113], volume preservation terms [175], rotated linear models [119],

etc. However, these methods change or limit the underlying partial differential equa-

tion, whereas [82] allows for general nonlinear constitutive models with forces that are

smooth enough to be used in conjunction with iterative methods. Thus, we adopt the

approach of [82] and extend it to the quasistatic regime removing the artificial time

step restriction required by other schemes making our solution method extremely

efficient.

In each Newton-Raphson iteration, the nonlinear system of equations is reduced to

a linear system that must be solved to advance to the next iteration. This linear sys-

tem is guaranteed to be symmetric and positive definite in the vicinity of equilibrium

states, enabling the use of fast conjugate gradient solvers. Unfortunately, the use of

large time steps produces substantial divergence from a steady state, leading to a sym-

metric linear system that is often indefinite. State of the art finite element packages

such as NIKE3D still use direct solvers such as that proposed in [164], even though

such methods are much slower and require considerably more memory than iterative

methods. [77] first try a fast iterative solver switching to a slower direct method when

36 CHAPTER 3. QUASISTATICS

it fails. [80] discussed these issues in the context of quasistatic simulation pointing

out the erratic behavior of conjugate gradient methods and a preference against direct

methods. By adding an artificial “viscosity” to their simulations, they were able to

obtain reasonable results with a GMRES iterative scheme. In the context of implicit

time integration, [44] pointed out that extra damping forces such as those applied

in [10, 181] can help to overcome indefiniteness, but not guarantee it. Furthermore,

they point out that this damping degrades the realism of the simulation. Instead,

they take a closer look at the problem in the case of springs identifying compression

as a source of indefiniteness and proposing a technique to guarantee definiteness in

the special case of cloth simulation with springs. A key contribution of our paper is a

new and general method for guaranteeing positive definiteness, thus allowing for the

use of fast conjugate gradient solvers under all circumstances (including inversion) for

arbitrary constitutive models in the finite element framework. Our method modifies

the search path followed towards equilibrium without altering the set of equilibrium

solutions or the governing equations.

3.2 Previous Work

[170, 169, 168] pioneered deformable models in computer graphics including early

work on plasticity and fracture. Finite element simulations have been used to model

a hand grasping a ball [72], for virtual surgery [141], fracture [132, 122, 131, 112],

etc. Other work includes the adaptive frameworks of [49, 74, 35], the rotation based

approaches in [118, 119, 45] (see also [173]), the bending models in [30, 73], the

precomputed data driven models of [83], and the point based methods in [121].

The construction of muscles and/or flesh deformation is important for computer

graphics characters, and anatomy based modeling techniques of varying resolutions

have been applied. [188, 151] used anatomically based models of muscles, tendons

and fatty tissue to deform an outer skin layer. [126] fit deformable B-spline solids to

anatomic data in order to create volumetric, anisotropic representations of muscles

and their internal structures. [1] used a variety of techniques to model a human hand.

More biomechanically accurate techniques for muscle simulation were proposed in

3.3. QUASISTATIC FORMULATION 37

[41, 80, 165], and a number of researchers are working to simulate data from the NIH

visible human dataset, e.g. [196, 80, 54, 165].

Instead of creating an explicit model for muscle and fatty tissue, one can place an

articulated skeleton inside the character skin and formulate correspondences between

each vertex on the skin mesh and the various joints in the skeleton. This is typically

called enveloping or skinning and can suffer from a number or artifacts especially near

joints such as elbows and shoulders. A number of techniques have been proposed

to overcome these difficulties, see for example [103, 158, 182, 111]. [2] used these

techniques in conjunction with range scan data, and [99] used them to model a human

hand. [97] proposed a similar method that used principal component analysis and

a library of deformations precomputed with nonlinear static finite element analysis.

Although these techniques are fast and do not require one to build an underlying

muscle model for each character, they can lead to lower quality results than full

finite element simulations. A physically based approach was taken in [84] to add

ballistic motion to character skins in otherwise kinematically constructed motions.

[34] approaches this problem by embedding the character in a coarse finite element

mesh which deforms rigidly with the bones, but obeys a linear finite element model

locally to each bone.

3.3 Quasistatic Formulation

Using Newton’s second law of motion we can describe the evolution of a deformable

body using the equations ~xt = ~v and ~vt = M−1~f(t, ~x, ~v) where ~x, ~v and ~f denote the

positions, velocities and aggregate forces of all the nodes of the tetrahedral mesh. (We

use x as the vector valued position of a single node.) M is the mass matrix, which is

diagonal in our lumped mass formulation. The nodal forces can be decomposed into

internal and external forces, ~f = ~fint +~fext, the latter being supplied as time varying

input to the simulation.

We apply a quasistatic assumption that both the accelerations and velocities are

zero to obtain ~f(t, ~x, ~0) = ~0 which states that the externally supplied time varying

input must be balanced by the internal resistance of the material. In particular, we

38 CHAPTER 3. QUASISTATICS

use a nonlinear finite element method to solve for the internal forces, and thus we

must invert a nonlinear equation to find the time varying positions ~x(t) at any time t.

This is accomplished with a Newton-Raphson iterative solver, and each step towards

the steady state solution begins with the linearization of the nodal forces about the

current solution estimate ~xk, i.e. ~f(~xk+∆~xk) ≈ ~f(~xk)+ (∂~f/∂~x)
∣∣∣
~xk

∆~xk where ∆~xk =

~xk+1 − ~xk. Since we desire force equilibrium with ~f(~xk+1) = ~f(~xk + ∆~xk) = ~0, we

solve the linear system

− ∂~f

∂~x

∣∣∣∣∣
~xk

∆~xk = ~f(~xk) (3.1)

to find the next iterate ~xk+1.

Although the quasistatic assumption does not apply to free falling, unconstrained,

lightly damped objects whose richness of deformation is largely enhanced by the

effects of inertia, it is a viable modeling strategy for a range of applications in which

boundary conditions and external forces predominantly determine the material state

(e.g. skeletal muscles under a variety of conditions).

3.4 Strain Energy

For a hyperelastic material, the nodal forces can be defined via the energy as ~f =

−∂Ψ/∂~x, and thus we can rewrite equation (3.1) as

∂2Ψ

∂~x2

∣∣∣∣
~xk

∆~xk = −∂Ψ

∂~x

∣∣∣∣
~xk

. (3.2)

That is, the global stiffness matrix −∂~f/∂~x is always symmetric, as a result of the

hyperelastic energy having continuous second derivatives with respect to the spatial

configuration. Furthermore, a steady state corresponds to a local minimum of the

hyperelastic energy indicating that the energy Hessian, ∂2Ψ/∂~x2, (or equivalently

the global stiffness matrix) is positive definite in the vicinity of an isolated steady

state. Moreover, systems that possess steady states along a continuous manifold in

configuration space, such as underconstrained bodies with rigid degrees of freedom

3.5. FINITE ELEMENT FORCES 39

(e.g. a single spring with only one fixed endpoint that is otherwise free to rotate),

still exhibit semi-definite stiffness matrices at their steady state. Thus, such systems

can be reduced to the fully constrained case by factoring out the manifold of the

configuration space that does not affect the hyperelastic energy.

Symmetry of the coefficient matrix in the linear system (3.2) allows for the use

of symmetric solvers, and direct methods are commonly used. However, the fact

that the stiffness matrix is positive definite close to the steady state suggests that

symmetric positive definite solvers such as the conjugate gradient method might be

applicable. This would alleviate the drawbacks of direct methods including the need

to explicitly form the stiffness matrix, the memory demands incurred by matrix fill

during the direct solve, and the excessive computational expense of direct solvers as

opposed to iterative methods.

Our method modifies the coefficient matrix in equation (3.2) into a positive definite

symmetric matrix and proceeds to compute the next iterate ∆~xk using this modified

system. We emphasize that this modification only alters individual steps towards a

minimum of the strain energy and not those minima themselves. These modifications

are localized to regions of the simulation mesh that contribute to this indefiniteness.

This practice of modifying the Hessian of the optimization functional is common in

the optimization literature (see e.g. [68]) and is usually referred to as a modified

Newton method.

3.5 Finite Element Forces

We follow the notation of [165], and their geometric interpretation of the finite element

method. Consider a time dependent map φ from the undeformed material coordinates

X to world coordinates x. The stress at a point X in the material depends on

the deformation gradient F(X) = ∂x/∂X of this mapping. We use constant strain

tetrahedral elements where F is a constant 3 × 3 matrix in each tetrahedron. We

define edge vectors for each tetrahedron in both material coordinates, dm1 = X1−X0,

dm2 = X2−X0, dm3 = X3−X0, and world coordinates, ds1 = x1−x0, ds2 = x2−x0,

ds3 = x3 − x0, and construct 3 × 3 matrices Dm and Ds using the edge vectors as

40 CHAPTER 3. QUASISTATICS

Figure 3.2: Illustration of large deformation in conjunction with collision.

columns. Then F = DsD
−1
m , and D−1

m is constant and can be precomputed and stored

for efficiency.

For hyperelastic materials, stress is defined as the derivative of a strain energy typ-

ically constructed from various strain invariants, and we use the first Piola-Kirchhoff

stress which is the gradient of the strain energy with respect to the deformation

gradient, P = ∂Ψ/∂F. P maps area weighted normals in material space to forces

in world space. The force on a node i due to a single tetrahedron incident to it is

3.6. ELEMENT STIFFNESS MATRIX 41

gi = −P (A1N1 + A2N2 + A3N3) /3, where the AjNj are the area weighted normals

of the faces of the tetrahedron incident to node i. Since these do not change during

the simulation, we can precompute a vector bi such that gi = Pbi. For efficiency, we

compute g0 = −(g1 +g2 +g3) and compactly express the other three gi as G = PBm

where G = (g1,g2,g3) and Bm = (b1,b2,b3) = −VD−Tm with V the volume of the

tetrahedron in material space.

As noted in [82], the first Piola-Kirchhoff stress is invariant under rotations of

either material or world space for isotropic materials. Furthermore, the deformation

gradient can be transformed into a diagonal matrix, F̂, with an application of a ma-

terial and a world space rotation, F = UF̂VT . This decomposition is obtained from

the standard singular value decomposition of F along with the subsequent removal of

any reflections in the orthogonal U and V. This requires the negation of the smallest

singular value of F̂ for inverted tetrahedra. Combining the rotational invariance of

the first Piola-Kirchoff stress with the diagonalization of the deformation gradient

yields

P(F) = UP(UTFV)VT = UP(F̂)VT (3.3)

where P(F̂) is also diagonal for isotropic materials. This factorization is particularly

convenient, because it allows for a simple extension of the constitutive model to

inverted elements in a smooth manner. That is, one only needs to modify the diagonal

P(F̂) to be valid for a single negative entry in the diagonal F̂. For more details, see

[82].

3.6 Element Stiffness Matrix

The global stiffness matrix in equation (3.1) is constructed from the additive contri-

butions of the element stiffness matrices, −∂f/∂x, which are based on contributions

from individual tetrahedra. As a result of this additive decomposition, definiteness

of the element stiffness matrices is a sufficient condition for definiteness of the global

stiffness matrix. Motivated by this fact, we manipulate the element stiffness matrix

to ensure global definiteness. In section 3.8 we show that this elemental manipulation

42 CHAPTER 3. QUASISTATICS

amounts to the solution of a single 3 × 3 symmetric eigenproblem and a few simple

algebraic operations. In contrast, dealing with the global stiffness matrix directly

can be prohibitively expensive, especially if eigenanalysis or Cholesky factorization of

that matrix is required, as in most standard approaches to treating locally indefinite

optimization problems [68].

In order to establish the positive definiteness of the element stiffness matrix, we

must ensure that δxT (−∂f/∂x)δx = −δxT δf > 0 for any increment δx. Using the

formulas from the last section and some tensor manipulations yields

δxT δf =
3∑
i=1

δxTi δgi − δxT0
3∑
i=1

δgi =
3∑
i=1

(δxi − δx0)T δgi

= δDs : δG = tr[δDT
s δG] = −V tr[δDT

s δPD−Tm]

= −V tr[D−Tm δDT
s δP] = −V tr[δFT δP] = −V (δF : δP) .

Since the material element volume V is always a positive constant, the positive def-

initeness condition reduces to δF : δP > 0 or δF : (∂P/∂F) : δF > 0. Therefore,

the positive definiteness of the element stiffness matrix is equivalent to the positive

definiteness of the fourth order tensor ∂P/∂F. This result is in direct analogy with

the energy based formulation of the Newton-Raphson iteration system (3.2), since by

definition P = ∂Ψ/∂F and thus ∂P/∂F = ∂2Ψ/∂F2.

3.7 Diagonalization

Testing and enforcing positive definiteness of the fourth order tensor ∂P/∂F directly

can be rather unwieldy. Instead, we start as in [82] by rotating both stresses and

deformations into diagonal space (transforming our configuration using the rotation

matrices that diagonalize the current F and P). In order to do this, first note that

δP = (∂P (F) /∂F)|F : δF where we explicitly stress the dependency of P on F with

P (F). We can manipulate this equality into

δP =
∂UP(UTFV)VT

∂(UTFV)

∣∣∣∣
F

: δ(UTFV)

3.7. DIAGONALIZATION 43

Figure 3.3: Quasistatic flesh deformation driven by a kinematic skeleton.

= U

{
∂P(F)

∂F

∣∣∣∣
UT FV

: UT δFV

}
VT

= U

{
∂P

∂F

∣∣∣∣
F̂

: UT δFV

}
VT (3.4)

where the first equality comes from equation (3.3) and replacing δF with a rotated

version, the second comes from a change of variables and the fact that U and V

are chosen independent of F, and the third comes from choosing U and V to be the

rotation matrices that diagonalize the initial value of F, i.e. where we evaluate ∂P/∂F

to linearize for iteration. Also in the last equality, we drop the explicit dependence

of P on F.

Equation (3.4) provides all the information we need for solving the Newton-

Raphson iteration system using a conjugate gradient solver, since the nodal force

differentials can readily be computed from the stress differentials as δG = δPBm.

44 CHAPTER 3. QUASISTATICS

Furthermore we have

δP : δF = U

{
∂P

∂F

∣∣∣∣
F̂

: UT δFV

}
VT : δF

= UT δFV :
∂P

∂F

∣∣∣∣
F̂

: UT δFV

illustrating that the condition for definiteness, δP : δF > 0, derived in section 3.6 is

equivalent to positive definiteness of (∂P/∂F)|F̂. We might expect that applying the

rotations that diagonalize the current deformation F to δP and δF would induce a

simple structure for the tensor (∂P/∂F)|F̂. In fact this tensor turns out to have a

block diagonal structure in the case of isotropic materials.

3.8 Enforcing Positive Definiteness

In order to reveal the block diagonal structure of (∂P/∂F)|F̂, we rewrite the 3×3×3×3

fourth order tensor as a 9 × 9 matrix. To do this, we consider the rearrangement of

a 3 × 3 matrix S into the 9 × 1 vector (s11, s22, s33, s12, s21, s13, s31, s23, s32). We can

then represent (∂P/∂F)|F̂ as the 9× 9 matrix that maps the vector equivalent of δF

to the vector equivalent of δP. For isotropic materials this matrix is block diagonal

with diagonal components A, B12, B13 and B23 where

A =

α11 + β11 + γ11 γ12 γ13

γ12 α22 + β22 + γ22 γ23

γ13 γ23 α33 + β33 + γ33

 , Bij =

[
αij βij

βij αij

]

Here,

αij = 2ΨI + 4(σ2
i + σ2

j)ΨII

βij = 4σiσjΨII −
2IIIΨIII

σiσj

γij =
(

2σi 4σ3
i

2III
σi

) ∂2Ψ

∂ (I, II, III)2

2σj

4σ3
j

2III
σj

+
4IIIΨIII

σiσj

3.8. ENFORCING POSITIVE DEFINITENESS 45

where Ψ = Ψ(I, II, III) is the strain energy written in terms of the invariants I =

tr C, II = C : C and III = det C with C = FTF and subscripts representing partial

derivatives. Also, σ1, σ2 and σ3 are the diagonal components that constitute F̂.

Positive definiteness of (∂P/∂F)|F̂ is equivalent to positive definiteness of each of

the blocks A, B12, B13 and B23. For A a simple 3 × 3 diagonalization is required,

followed by the clamping of all negative eigenvalues to zero. For the 2×2 matrices B12,

B13 and B23 no eigenanalysis is necessary since the negative eigenvalue, if present,

can be clamped to zero analytically.

Our algorithm computes the stress differential δP as outlined in equation (3.4).

First we compute the rotated deformation differential UT δFV, and then convert this

3 × 3 second order tensor into a 9 × 1 vector and multiply it by the 9 × 9 matrix

for (∂P/∂F)|F̂ to carry out the contraction. Of course, we use the clamped positive

definite version of (∂P/∂F)|F̂. The result is then converted from a 9× 1 vector back

to a 3 × 3 second order tensor, before being premultiplied by U and postmultiplied

by VT .

Since we clamp eigenvalues to zero, the element stiffness matrices are only positive

semi-definite, not positive definite, which raises the issue of whether the resulting

global stiffness matrix could be semi-definite or ill-conditioned itself. In practice,

the additive contributions of neighboring elements and boundary conditions always

lead to a positive definite global stiffness matrix, even for configurations as extreme as

shown in Figure 3.1. (Note that one could clamp to a small positive value as well.) The

effect of boundary conditions on the definiteness of the stiffness matrix is analogous to

that observed in the matrix resulting from the discretization of the Poisson equation.

When all Neumann boundary conditions are specified, the resulting matrix is positive

semi-definite. In this case a special version of Conjugate Gradients is still applicable,

since an analytic description of the null space is available and, similarly, the global

stiffness matrix of an elastic object has a null space corresponding to global translation

and linearized rotation. Specification of one or more Dirichlet boundary conditions

makes the Poisson matrix strictly positive definite, with positional constraints having

the same effect on the definiteness of the global stiffness matrix for elasticity.

Anisotropic materials need special treatment in order to enforce definiteness. One

46 CHAPTER 3. QUASISTATICS

Figure 3.4: Illustration of self-collision handling.

possibility would be to perform the explicit eigenanalysis on the 12 × 12 elemen-

tal stiffness matrix and perform the definite projection by clamping its eigenvalues

to positive numbers. A more efficient treatment is presented in appendix A.3 and

analyzed for the special case of transverse isotropy.

3.9 Inverted Elements

Typically, realistic constitutive models have infinite strain energy as the volume of an

element approaches zero, and this discourages element inversion when the equations

of motion are integrated with a small enough time step to resolve the stiff material

response. Nevertheless, each Newton-Raphson iteration of a quasistatic solver begins

with a linearization of the elastic forces after which only a finite amount of energy

is required to invert the element. In order to efficiently solve the equations without

artificial limits on the allowable time step, we adopt the approach of [82] smoothly

3.10. COLLISIONS 47

extending the definition of forces past a maximum compression threshold. Constant,

linear, or smoother extrapolations can be used for this purpose. In our work con-

stant extrapolation proved to be both simple and sufficient. To implement constant

extrapolation we threshold the diagonal values of F̂ and compute both forces and

force differentials using the thresholded deformation gradient. The resulting force

differentials are then treated for indefiniteness.

3.10 Collisions

For volumetric collisions one could use the method in [29] applied to the triangulated

boundary surface of the tetrahedron mesh as was done in [82]. There is also the

self-collision untangling strategy of [11]. But we prefer a penalty based formulation

that can more readily be incorporated into the quasistatic formulation. We use a

penalty force for collision of our objects with themselves, other deformable tetrahedral

bodies and rigid bodies. As a consequence of using penalty forces, the steady state

may exhibit slight interpenetration of the colliding surfaces, an effect that is rather

subtle and acceptable for our line of applications. The penetration depth can also

be adjusted by changing the stiffness of the penalty forces. A penetrating node

receives a force in the form of the gradient of a penetration potential defined as

Ψp(x) = kφ2(x)/2 where φ is the signed distance to the surface of the object for x

interior to the body and zero otherwise. Then the force is fp = −kφ(x)∇φ(x), and the

force differential is δfp = −k(∇φ(x)∇φT (x) + φ(x) ∂2φ/∂x2|x)δx. These forces can

corrupt the definiteness of the linearized forces used with Newton-Raphson iteration.

The potential for indefiniteness arises from isocontours of the signed distance function

with curvatures of differing sign, see e.g. [4]. These curvatures are the eigenvalues of

∂2φ/∂x2, and we assure definiteness by projecting this matrix to its positive definite

component in the case of rigid body collisions. For deformable object collisions,

we omit the last term altogether. As before, this modification does not change the

equilibrium states, only the convergence path towards one of these states.

We take a level set approach (see e.g. [135]) to computing penetration depth as

did [61, 109], but instead of updating the level set function as the object deforms we

48 CHAPTER 3. QUASISTATICS

utilize a static level set in material space as in [80]. However, many key aspects of our

algorithm are significantly different than that proposed in [80]. For each rigid and

deformable object in the scene, we first precompute a signed distance function on a

uniform Cartesian or octree grid as in [75]. This representation is computed in object

space for rigid bodies and material space for deformable bodies and is not updated as

the simulation progresses. Collecting the depth, normal and curvature information

is straightforward for rigid bodies, but we propose a novel approach for deformable

tetrahedral bodies.

To compute point collisions against deforming tetrahedral bodies, we maintain a

bounding box hierarchy for the tetrahedra in each body. Then for each point, we use

this hierarchy to find any tetrahedra that our candidate point may lie inside (inverted

tetrahedra are ignored as they represent negative space). For each tetrahedron, we

compute the barycentric coordinates of our candidate point to determine if the point

is either inside or very close to the tetrahedron in question. We do not require

robustness here as this computation is not used to determine whether a point is

inside an object, but instead the barycentric coordinates are used to transform the

point from world space to material space, i.e. the point is placed in material space

keeping its same barycentric coordinates but using the nodal positions of the material

space tetrahedron.

Then the material space position of the point is used to query the material space

level set to see if the point is inside the object, and if so the local unit normal and

level set value are used to estimate the closest point on the surface as xc = x − φN

(where φ is negative inside the object). If φ 6= 0 at xc this equation can be iterated on

to find an xc as close to the zero level set as is desired. Before the simulation begins,

we also precompute a static bounding box hierarchy for the triangles on the surface of

the object, and this is used to find the triangle closest to xc as well as the barycentric

coordinates of the point on this triangle closest to xc. Before proceeding, we check

to make sure that the local level set value at this point on the triangle, xt, is larger

than that at the original point x, to ensure that xt is actually farther outside the

object than x. This keeps us from incorrectly pulling points back towards the object

(nonphysical stickiness), because of rasterization errors with the level set function

3.11. EXAMPLES 49

that cause it to have a slightly different approximation to the object surface than as

given by surface triangle mesh. Finally, the barycentric coordinates of xt are used

to find the corresponding point in world space, xs, on the surface of the deforming

object.

In this fashion, we do not use the level set in material space to push points

out of the object, which is important because this is unlikely to give us the proper

directions for deformed objects. Instead, we merely use the level set to find a point

that is truly on the surface of the object. Then the distance from xs to x and the

vector pointing between them are used to compute φ(x) and ∇φ(x) for the penalty

forces and differentials.

3.11 Examples

Figure 3.5: Quasistatic simulation of the upper torso musculature.

We demonstrate the applicability of our quasistatic algorithm in a number of

complex scenarios. To illustrate the robustness of the extension of the elastic response

to degenerate and inverted elements, we solve for elastic equilibrium with an armadillo

mesh whose vertices are initially randomly distributed on a cube ten times the size

of the armadillo mesh itself and whose hands and feet are constrained. Figure 3.1

shows a number of iterates in the solution process towards equilibrium. Figure 3.4

50 CHAPTER 3. QUASISTATICS

demonstrates our algorithm for deformable collision detection and response. In the

simulation, the hands are held fixed while the feet twist on the ground plane causing

the legs to self-collide. To demonstrate rigid body collisions, we deform the armadillo

mesh with rigid cylinders as seen in figure 3.2. The interactions with the cylinders

demonstrate the time coherency of the strain energy local minima achieved by using

the previous equilibrium state as an initial guess for the Newton-Raphson solver.

Inertia effects are neglected when simulating quasistatic elasticity, and deforma-

tion is primarily driven by external time dependent forces due to contact, collision

and boundary conditions. As a result, quasistatic simulations are particularly well

suited for flesh deformation where the flesh is rigidly attached to bones and heavily

influenced by contact, collision and self-collision. We demonstrate the applicability of

our approach with several simulations of flesh and muscles in the upper torso, derived

from the visible human data set as described in chapter 2.

In figure 3.3, we attach the deformable flesh directly to the underlying skeleton.

The flesh naturally deforms from the influence of the skeleton as well as from self col-

lision, providing realistic deformation and wrinkling of the outer skin. The flesh mesh

consists of 600 thousand tetrahedral elements and was simulated with a neo-Hookean

constitutive model extended to the inverted regime as in [82]. Figure 3.5 shows skele-

tal muscle in the upper limb simulated with the muscle constitutive model outlined in

[82] and [165]. Although our quasistatic formulation was only presented for isotropic

materials, it is readily extended to the case of simple transverse isotropy, since the

strain energy is a sum of an isotropic and a transversely isotropic component with

each term being a function of their respective associated invariants. This property

leads to a stiffness matrix which is a sum of an isotropic term (which can be processed

in the standard fashion) and a simple anisotropic term whose eigenstructure is easy

to manipulate. The resulting simulations are enriched by muscle activations that are

computed from the skeletal motion as in chapter 2 to produce realistic contractile

motion. Finally, figure 3.6 shows a layered approach where we use the simulated

motion of the skeletal muscles as kinematic boundary conditions for a second flesh

only simulation to create more realistic muscle based skin deformation. During the

second simulation, flesh nodes are constrained to follow the muscle motion if they are

3.11. EXAMPLES 51

within a tolerance of the musculoskeletal surface.

The originally scattered armadillo geometry of figure 3.1 consists of 380K tetra-

hedra and converged to steady state in 80 Newton-Raphson iterations requiring 2-3

seconds each, under a neo-Hookean constitutive model (collision handling disabled).

For the same 380K element armadillo mesh in figure 3.2 the computational cost was

approximately 90 seconds per frame. The flesh mesh of figure 3.6 consisted of 600K

tetrahedra and was simulated at 2 minutes per frame. All simulations were performed

on a 3 GHz pentium 4 workstation. We stress that these are rather large simulation

meshes, and meshes on the order of 10 thousand elements can be typically simulated

at rates of 5–10 frames per second (computational cost scales nonlinearly). This is

with tight bounds on the tolerance, where additional Newton-Raphson iterations lead

to no visible changes. Additionaly, the authors of [155] use our method for a highly

constrained face simulation application and report running times that translate to

approximately 30 seconds per frame for a 370K tetrahedron mesh with full self and

rigid body collision handling, as opposed to 50 minutes per frame, on average, for a

fully dynamic simulation. Moreover, their use of quasistatic (as opposed to dynamic)

simulation allows them to construct a full system Jacobian enabling the solution of

an inverse problem to find muscle activations based on surface deformation.

Figure 3.6: A layered, muscle-driven skinning example.

52 CHAPTER 3. QUASISTATICS

3.12 Summary

We presented a framework for efficient and robust quasistatic simulation of nonlinear

elastic materials using a modified Newton-Raphson algorithm that can robustly iter-

ate through configurations that give rise to mesh inversion and buckling instabilities.

Fast conjugate gradient solvers can be used, since we enforce positive definiteness of

the modified linear equilibrium equations at each iteration. This simulation technique

is ideal for constrained objects influenced by the motion of their specified boundary

conditions. In particular, it is useful for simulating deformable flesh and skin for

virtual characters whose motion is driven by an underlying kinematic skeleton.

Chapter 4

Facial analysis

We built an anatomically accurate model of facial musculature, passive tissue and un-

derlying skeletal structure using volumetric data acquired from a male subject (the

author of this thesis). The tissues are endowed with a highly nonlinear constitutive

model including controllable anisotropic muscle activations based on fiber directions.

Detailed models of this sort can be difficult to animate requiring complex coordinated

stimulation of the underlying musculature. We propose a solution to this problem

automatically determining muscle activations that track a sparse set of surface land-

marks, e.g. acquired from motion capture marker data. Since the resulting animation

is obtained via a three dimensional nonlinear finite element method, we obtain visually

plausible and anatomically correct deformations with spatial and temporal coherence

that provides robustness against outliers in the motion capture data. Moreover, the

obtained muscle activations can be used in a robust simulation framework including

contact and collision of the face with external objects.

4.1 Introduction

Facial modeling and animation, enabled by recent advances in technology, is a vital

new area in high demand. While this is especially true in the entertainment industry

(e.g. [26]), it is also quite popular elsewhere including applications to lip reading and

surgical planning. For example, [96] pointed out the utility of synthesizing expressions

53

54 CHAPTER 4. FACIAL ANALYSIS

on a post-surgical face to determine the effects of the surgical modifications.

Starting with data from the visible human data set [178], we used the techniques

proposed in chapter 2 to construct a highly detailed anatomically accurate model

of the head and neck region. This includes a triangulated surface for each bone, a

tetrahedralized volume and a B-spline fiber field representation for each muscle, and

a single tetrahedral mesh for all the soft tissue. Then we morphed this anatomically

accurate model to fit data obtained from both laser and MRI scans of a living subject

constructing new meshes where necessary.

Figure 4.1: Physics based simulation of a muscle-driven facial model

Animating such a complex model can be rather difficult, so we propose using three

dimensional sparse motion capture marker data (see e.g. [189, 76]) to automatically

determine muscle activations. [172] took a similar approach early on estimating mus-

cle actuation parameters based on the position of facial features tracked by snakes.

Later, [115] contracted both individual and combinations of muscles in order to learn

patterns, and then used two dimensional marker positions or optical flow as input

for a neural network which estimated muscle contraction parameters. Both of these

approaches aim to match a two dimensional projected image as opposed to our goal

of matching the full three dimensional shape of the face.

A control-theoretic approach was used to estimate muscle contractions that match

optical flow input in [56, 57]. Although this approach might work for more detailed

anatomical models, they only considered a two dimensional finite element model for

skin along with a simple muscle model for actuation. [13, 12] proposed avoiding the

internal anatomy altogether constructing a two dimensional quasistatic finite element

4.1. INTRODUCTION 55

model for the lips that was used to minimize the strain as select nodes tracked motion

data. This was done to train the lips, and PCA was used to reduce the subsequent

degrees of freedom to about ten. This reduction mimics the fact that the actual

degrees of freedom correspond to the muscles which are conveniently already in the

proper lower dimensional space (as opposed to that obtained from PCA). Finally,

they track lip motion automatically determining the parameters of their model that

match the motion data using a steepest descent iterative solver.

More recently, [43] used a two dimensional linear quasistatic finite element model

of the skin surface, along with underlying muscles that apply forces to the surface

mesh based on linear activations. Their lack of anatomical structure led to the use of

heuristic correction forces near the mouth. Given marker data, they used a steepest

descent method to calculate the muscle activations that best track the data including

penalty forces to constrain muscle activations to the physical regime. They point

out that their model is linear greatly simplifying this problem. This formulation

suffered from both a lack of anatomical accuracy and a lack of nonlinearity, and

[42] pointed out that it could produce unnatural artifacts. Thus, they modified this

procedure allowing the artist to sculpt basis elements to be combined linearly, and

used the active set method to solve a constrained quadratic program to obtain the

muscle activations (or weights). Typically, the basis elements need to be resculpted

a number of times to obtain satisfactory results.

A major benefit of our approach is that we strive for anatomical accuracy which

gives biomechanical meaning to our activations, and thus makes the problem tractable

in the sense that a person’s face is driven by muscle activations of this sort. Moreover,

we take a biomechanically accurate fully nonlinear approach to both the constitutive

model and the finite element method, which complicates the solution process but

provides behavior not captured by approaches that linearly blend basis functions.

We automatically solve for not only muscle activations, but the head position and

jaw articulation parameters as well. Moreover, our approach uses a sophisticated

simulation framework allowing us to place the animated face in complex environments

including arbitrary contact and collision with external objects in the scene. During

this interaction, the extracted muscle activation controls can still be applied providing

56 CHAPTER 4. FACIAL ANALYSIS

a realistic combination of muscle contraction and external stimuli. Furthermore, if the

collision events give rise to ballistic phenomena, we can readily replace the quasistatic

simulation with a fully dynamic one while retaining the extracted muscle activation

values.

4.2 Related Work

Three dimensional facial animation began with [138] (see [139] for a review). [146]

built a face model using masses and springs including forces generated by muscles,

and made use of the Facial Action Coding System (FACS) [55]. Other early work

included [185, 108, 91]. [101] constructed an anatomically motivated facial model

based on scanned data, and endowed it with a mass spring system driven by muscle

contractions. [184] built a muscle model for speech animation, stressing that muscles

animate faces and that it is more productive to focus on a muscle model rather than

a surface model. A number of authors have used finite element simulations in the

context of facial surgery, e.g. [142, 95, 93, 149] (see also, [174]).

[51] used variational modeling and face anthropometry techniques to construct

smooth face models. [143] used a number of photographs to fit a three dimensional

template mesh to a given facial pose, and then obtained animations by blending

different poses. [145] used this technique to fit a face model to each frame of a video

sequence estimating the pose for subsequent analysis, and [87] automatically segments

the face into smaller regions for blending. See also, [195]. Starting from a database

of face scans, [20] derive a vector space representation of shapes and textures such

that any linear combination of examples gives a reasonable result. This framework

has been used to transfer animations from one individual to another [18], for face

identification [21], and to exchange a face from one image to another [19]. [88] built a

mass spring model of a face and skull with a muscle model to drive the deformation,

[90] proposed a method for morphing this model to other faces, and [89] extended

this approach to forensic analysis.

Other work includes facial animation based on audio or text input [36, 28, 27,

37, 58, 33, 32], wrinkle formation [190], eye motion [100], and facial motion transfer

4.3. ANATOMICAL MODEL 57

[129, 147, 124, 163]. [31] modified the MPEG-4 Facial Animation Parameters (FAPs)

[117] to add expressiveness, [98] used PCA to deform the mouth during speech, and

[38] used facial tracking to drive animations from a motion capture database. [183]

used a multiresolution deformable mesh to track facial motion, and a low dimensional

embedding technique to learn expression style. [194] proposed a method for tracking

facial animation fitting a template mesh to the data, and then used linear combina-

tions of basis shapes to create an inverse kinematics system that allows one to create

expressions by dragging surface points directly.

4.3 Anatomical Model

Our model building effort started with the volumetric data from the visible human

data set [178]. As in chapter 2, we constructed level sets for each tissue and used

them to create a triangulated surface for each bone and a tetrahedralized volume

for each muscle. Since many of the muscles in the face are quite thin and thus not

amenable to robust and efficient tetrahedral mesh simulation, we took an embedded

approach to muscle modeling. First, a single tetrahedral flesh mesh was created to

represent all the soft tissue in the face, and then we calculated the fraction of overlap

between each muscle and each tetrahedron of the flesh mesh storing that fraction

locally in the tetrahedron. We also create fiber fields for each muscle and store a

single vector direction per muscle in each tetrahedron with a nonzero overlap. One

graduate student spent 6 months constructing this template face and muscle model

from the visible human data, but with existing tools this could be accomplished in 2

weeks.

Subsequently, we obtained laser and MRI scans of a living subject. The laser

scans gave a high-fidelity likeness of the subject, and we wanted to adhere to them

closely. The MRI scan was of much lower quality presenting only an approximate

guideline, and we needed to reuse the bone, muscle, and to a lesser extent flesh

geometry from our visible human template model. To that end we developed a set of

point correspondences between the two models and morphed the geometry from the

first using radial basis functions. This morphed geometry required further manual

58 CHAPTER 4. FACIAL ANALYSIS

editing to satisfy considerations of aesthetics and general anatomical knowledge. Once

we had geometry for the surface of the flesh volume, we again used the meshing

algorithm to create a high-quality tetrahedral mesh for the face flesh. To summarize,

our model consists of a rigid articulated cranium and jaw with about 30 thousand

surface triangles, flesh in the form of a tetrahedral mesh with about 850 thousand

tetrahedra out of which 370 thousand (in the front part of the face) are simulated,

Dirichlet boundary conditions corresponding to bone attachments, and an embedded

representation of 32 muscles. This subject specific model was constructed in 2 months

by 5 undergraduate students, but would only take a single person a few days with

existing tools. For example, rebuilding the facial tetrahedral flesh takes only a few

hours. A cross-section of the simulation volume is illustrated in figure 4.2.

In addition to the main functionality, a number of auxiliary features were consid-

ered. To provide realistic collisions of lips against the underlying rigid structure, we

incorporated scans of teeth molds into the cranium and jaw. To achieve more realistic

muscle action, we independently scaled the strength of each embedded muscle based

on the amplitude and plausibility of their flexion. This biomechanically corresponds

to adjusting the thickness of muscles, which we could not reliably infer from the MRI

scan. Finally, we added eyes, teeth, shoulders, realistic rendering, etc.

4.4 Finite Element Method

The flesh mesh is governed by a Mooney-Rivlin constitutive model for the deviatoric

deformation augmented by a volumetric pressure term for quasi-incompressibility.

Tetrahedra which contain facial muscles have an additional anisotropic response for

each muscle, which consists of both passive and active components scaled by the

volume fraction. See [165, 167] for more details. The definition of nodal forces can

be summarized as

f(x, a) = f0(x) +
M∑
i=1

aifi(x) (4.1)

were f and x denote the forces and positions of all nodes in the simulation mesh, and

a = (a1, a2, . . . , aM)T is the vector of activations of all M muscles. f0 corresponds to

4.4. FINITE ELEMENT METHOD 59

the elastic material response of the flesh including the passive anisotropic component

present in muscle regions. Each force component fi corresponds to the contribution of

a fully activated muscle and is weighted by the corresponding current muscle activa-

tion level with ai ∈ [0, 1]. The fi depend on the spatial configuration x alone, making

the total force an affine function of muscle activations. This linear dependence of

force on activation is a fundamental property of the force-length curve of [193] that

provides a useful simplification to our control framework.

We use a quasistatic simulation scheme where each input of muscle activations

and skeletal configuration is directly mapped to the steady state expression it gives

rise to. Such an assumption is fundamental to our control strategy, since it enables

facial expressions to be defined as functions of the input control parameters without

any dependence on the deformation history. We stress that this hypothesis is adopted

only in the context of our optimization process to automatically determine muscle

activations, and inertial effects can later be included in extracted expressions via a

full dynamic simulation utilizing the same muscle control parameters.

Given a set of muscle activation parameters, a, and appropriate boundary con-

ditions, we substitute these into equation (4.1) and solve the resulting nonlinear

equation f(x) = 0. The boundary conditions are derived from the position of the

cranium and jaw (see section 4.8), and we abstractly encode this state with a vector

b. Solving this equation leads to an equilibrium configuration for the mesh, X(a,b).

These steady state positions are defined implicitly with the aid of equation (4.1) as

f(X(a,b), a) = 0. (4.2)

Note that b does not explicitly appear in the definition of the finite element forces,

but instead fully determines the value of some constrained nodes in the simulation

mesh, which we denote XC(b). Equation (4.2) can therefore be considered an implicit

definition for the quasistatic positions of the unconstrained set of mesh nodes, denoted

by XU(a,b).

We solve equation (4.2) with a Newton-Raphson iterative solver. At each step, the

finite element forces are linearized around the current estimate Xk as f(Xk + δX) ≈

60 CHAPTER 4. FACIAL ANALYSIS

f(Xk) + ∂f/∂x|Xk
δX. Then we compute the displacement δX that would restore

the linearized equilibrium −∂f/∂x|Xk
δX = f(Xk), and define the next iterate as

Xk+1 = Xk + δX. Unfortunately, ∂f/∂x|Xk
is often indefinite leading to significant

computational cost when solving for δX. Thus, we utilize the enabling technology

described in 3 that allows a fast conjugate gradient solver to be used to find δX. More-

over, the method proposed in 3 allows for element inversion during the quasistatics

solve speeding up our Newton-Raphson iteration by a significant amount. Overall,

the convergence is particularly fast yielding an admissible solution to the nonlinear

equilibrium problem within a few Newton-Raphson iterations even for drastic changes

of activation levels. Although other solvers could be used, and solving equation (4.2)

can be considered a “black box” as far as our method is concerned, this particular

solver makes our estimation of muscle activations practical as opposed to just doable.

Mesh collisions between the lips or the lips and the teeth or gums are handled with the

penalty force formulation of chapter 3. See also [79], [176], etc. for more on collision

handling.

Figure 4.2: Finite element flesh mesh for face simulation.

4.5. OPTIMIZATION FRAMEWORK 61

4.5 Optimization Framework

We group all the muscle activations and kinematic parameters into a single set of

controls c = (a,b) writing the equilibrium positions as X(c). The input to our model

consists of a sparse set of motion capture marker data, but markerless techniques

or animator key framing could alternatively be used as long as the final inputs are

converted to target locations for points on the surface mesh. In the rest pose, we find

the surface triangle closest to each marker and compute the barycentric coordinates

for the marker rest position. If the marker does not lie on the surface mesh, we

subtract its vector offset from all the data for that marker so that it does lie on

the surface mesh (and should continue to as it is animated). Given values for the

control parameters, the vector of all our embedded landmark positions is given by

XL(c) = WX(c) where W is a sparse matrix of barycentric weights. Our goal is then

to find the set of controls that minimize the distance between our landmark positions

XL(c) and the motion capture marker data target positions XT , i.e.

copt(X
T) = arg min

c∈C0

‖XL(c)−XT‖

where copt(X
T) stresses that the optimal set of controls is a function of the target

positions. Here, C0 is the feasible set of control configurations restricting the muscle

activations (to the interval [0, 1]) as well as the positioning and articulation of the

head and jaw. Although any geometric or statistical norm could be used, we use the

Euclidean norm which leads to a nonlinear least squares optimization problem. The

nonlinearity is from the dependence of XL(c) on X(c) which is a complex nonlinear

map defined implicitly by equation (4.2).

A standard Newton iterative approach to minimizing the functional φ(c) = ‖XL(c)−
XT‖2

2 consists of replacing φ(c) by its quadratic Taylor expansion about the current

guess ck, i.e. φ(ck + δc) ≈ φ(ck) + δcT∇φ(ck) + 1
2
δcTHφ(ck)δc where Hφ(ck) =

2JTk Jk + 2WT (XL(ck) − XT) : ∂2X/∂c2|ck
, Jk = W ∂X/∂c|ck

and δc = c − ck.

Then the quadratic approximation is minimized by solving −Hφ(ck)δc = ∇φ(ck) to

find the next iterate ck+1 = ck + δc. In section 4.6 we illustrate how the Jacobian,

62 CHAPTER 4. FACIAL ANALYSIS

∂X/∂c, of the quasistatic configuration can be computed using an efficient and reli-

able process. However, computation of ∂2X/∂c2 is particularly expensive as well as

error prone unless very stringent accuracy requirements on the computation of both

the quasistatic solution and its Jacobian are satisfied. In light of this, we propose an

alternative optimization technique linearizing about ck to obtain

X(c) ≈ X(ck) + ∂X/∂c|ck
δc (4.3)

which can be substituted into φ(c) to obtain φ̂(c) = ‖XL (ck) + Jkδc −XT‖2
2. φ̂(c)

is minimized by the least squares solution of the linear system −Jkδc ∼= XL (ck)−XT ,

and the normal equations approach to this requires solving−JTk Jkδc = JTk
(
XL (ck)−XT

)
or −2JTk Jkδc = ∇φ(ck). Notably, this final equation is equivalent to the Newton ap-

proach where the Hessian has been approximated by only its first term, removing the

problematic ∂2X/∂c2 term. This is known as the Gauss-Newton approach (see e.g.

[68]).

Figure 4.3: Synthetic expressions created by manual specification of activations.

When XT is physically attainable, the Hessian is well approximated by its first

term in the vicinity of the optimal value copt. We have found this to be a very frequent

case due to the expressive ability of our simulation model, especially in the context of

expression tracking where the estimated control parameters at each frame constitute

a very good initial guess to those at the next frame. However, large changes in

activations or boundary conditions can make the solution to equation (4.2) unreliable

causing the Gauss-Newton step to be suboptimal. This can also happen when low

4.5. OPTIMIZATION FRAMEWORK 63

quality input causes XT to be distant from the physically attainable configuration

manifold. In order to safeguard against this suboptimal behavior, we use δc = ck+1−
ck as a search direction and minimize φ(c) along the line segment connecting ck

and ck+1. Since φ(c) seemed to be unimodal in the vast majority of test cases, we

used golden section search. Using linear interpolation to estimate the quasistatic

configuration at internal points of the line segment provided a particularly good

initial guess to the quasistatic solver making it typically converge in a single Newton-

Raphson iteration for each golden section refinement. Given that no computation

of Jacobians is necessary during the explicit line search, we found the incorporation

of this process to incur only about a 10% performance overhead. As far as overall

performance is concerned, remote initial guesses typically converge within an absolute

maximum of 4-5 Gauss-Newton steps, while reasonable quality inputs typically led

to convergence in a single step (notably with the full Gauss-Newton step to ck+1).

Figure 4.4: Expressions estimated from motion capture data.

64 CHAPTER 4. FACIAL ANALYSIS

Figure 4.5: Tracking a motion captured narration sequence.

4.6 Jacobian Computation

Our optimization framework relies on the ability to compute both the equilibrium

positions, X∗ = X (c∗), and the Jacobians, ∂X/∂c|c∗ , for a given control configuration

c∗ = (a∗,b∗). The first of these is readily computed by solving equation (4.2), and the

results of this can be used to (nontrivially) compute the Jacobians as well. To do this,

we rewrite equation (4.2) to explicitly highlight the dependence on both constrained

and unconstrained nodes

f(XC(b),XU(a,b), a) = 0 (4.4)

stressing that there is still only one equation for each unconstrained node, since the net

force at constrained nodes is trivially zero. Differentiating equation (4.4) with respect

to an activation parameter ai yields ∂f/∂xU
∣∣
X∗,a∗

∂XU/∂ai
∣∣
a∗,b∗

+ ∂f/∂ai|X∗,a∗ = 0

or

− ∂f/∂xU
∣∣
X∗,a∗

∂XU/∂ai
∣∣
a∗,b∗

= fi(X
∗) (4.5)

where fi was defined in equation (4.1) as the active force induced by a unit activation

of the i-th muscle. This is a linear system of equations for the unknown partial

derivatives ∂XU/∂ai. Additionally note that the activations have no effect on the

constrained boundary nodes, and thus ∂XC/∂ai is identically zero.

Some of the kinematic controls, b, such as the base frame of reference for the posi-

tion of the cranium, do not affect the strain of the deformable model. The Jacobian of

the quasistatic positions with respect to such controls can be determined analytically

4.7. MUSCLE ACTIVATION CONSTRAINTS 65

since a rigid transformation of their associated boundary conditions simply induces

the same rigid body transformation for the entire simulation mesh. Other kinematic

parameters, such as those that articulate the jaw, nonrigidly change the quasistatic

configuration. Differentiating equation (4.4) with respect to such a kinematic param-

eter bi and rearranging gives

− ∂f/∂xU
∣∣
X∗,a∗

∂XU/∂bi
∣∣
a∗,b∗

= ∂f/∂xC
∣∣
X∗,a∗

∂XC/∂bi
∣∣
b∗

(4.6)

which is a linear system of equations for the unknown ∂XU/∂bi. Note that ∂XC/∂bi

is analytically known from the definition of the kinematic parameters. Also, ∂f/∂xC

is the stiffness of the forces on the unconstrained nodes with respect to the positions

of the boundary conditions and is also analytically known from the definition of the

finite element forces in our model. The entire right hand side of equation (4.6) can

be interpreted as the linearized differential of the forces on the unconstrained nodes

resulting from a displacement by ∂XC/∂bi of only the boundary conditions.

Both equations (4.5) and (4.6) require solving a linear system with the coefficient

matrix −∂f/∂xU which is the same coefficient matrix used in section 4.4, and thus

the same solution techniques can be applied. Moreover, the coefficient matrix is sym-

metric positive definite near an equilibrium configuration, and thus special treatment

is required only for element inversion (not definiteness). The Jacobians need to be

computed before each Gauss-Newton step amounting to 44 applications of the conju-

gate gradient solver (for 32 activations and 12 kinematics parameters). In a sequence

of expression tracking, an excellent initial guess to the conjugate gradient solver con-

sists of using the Jacobians from the previous frame rotated according to the cranium

motion. In fact, this allows us to update all the Jacobians at a cost approximately

equal to that of a single quasistatic solve.

4.7 Muscle Activation Constraints

In order to restrict the optimization process to the allowable parameter set C0, we aug-

ment φ̂(c) with a weighted penalty term ρφp(c) which consists of piecewise quadratic

66 CHAPTER 4. FACIAL ANALYSIS

penalty terms of the form (min {0, ai, 1− ai})2 for each activation. These C2 con-

tinuous functions vanish within the allowable parameter space C0, and penalize the

optimization functional when the control parameters drift away from C0. We typi-

cally initialize ρ with a value that is smaller than φ(copt) (for example the variance of

the localization error of the motion capture system), and then progressively increase

its value in multiplicative increments of 5% until it is 106 times larger than the current

value of φ(c). This drives the activations to within a maximum distance of 10−4 of

the allowed interval [0, 1]. At the maximum value of ρ, the contribution of ρφp(c) to

the overall optimization functional is typically on the order of .1% implying that our

minimization effort is properly focused on the constrained minimum of the proximity

error φ(c).

In each step of the Gauss-Newton approach, we replace φ(c) with φ̂(c) and ap-

ply the standard Newton approach to obtain −Hφ̂(ck)δc = ∇φ̂(ck) or −2JTk Jkδc =

∇φ̂(ck). In our penalty term formulation, ck+1 is obtained as the limit of the so-

lutions cik to a nested sequence of unconstrained optimization problems minimizing

φ̂(c) + ρiφp(c) for an increasing procession of weights ρi, i.e. ck+1 = cNk where the

maximum ρ is ρN . Each step of this nested iteration is given by

−
(

2JTk Jk + ρi ∂
2φp/∂c2

∣∣
ci

k

)
δci = ∇φ̂(cik) + ρi∇φp(cik) (4.7)

where δci = ci+1
k − cik. Note that all derivatives of φp can be computed analytically,

Each iteration involves the solution of a low dimensional system (32 dimensions for the

activations, but 56 total when the 24 kinematics parameters are included as outlined

in section 4.8), and thus the overall computational cost is practically negligible.

4.8 Kinematics and Jaw Articulation

The kinematic parameters determine the placement of the cranium and mandible, and

thus the position of specific mesh nodes of the interior flesh surface that have been

rigidly attached to these bones. The frame of reference for the cranium determines

the position and orientation of the entire head, while the frame of reference of the

4.8. KINEMATICS AND JAW ARTICULATION 67

jaw is specified relative to the cranium and is subject to anatomical constraints that

limit its relative placement and degrees of freedom. In order to define each frame

of reference, a displacement vector for the origin of each system must be supplied

together with a descriptor of the orientation. Typical descriptions of orientation are

poor choices for our optimization framework, since equation (4.3) indicates that we

need to linearize the quasistatic configuration with respect to the control parameters.

Large linearized rotations induce significant erroneous nonrigid distortion leading to a

poor approximation of the rotation slowing convergence of the Gauss-Newton iteration

especially for a remote initial guess. Thus, we propose an atypical penalty term

formulation.

We begin by describing the rigid body frame by a general affine transform, i.e. the

frames that describe the cranium and mandible are (Mc, tc) and (Mm, tm) where M

is any matrix (not necessarily orthogonal) and t is a translation. Then the vector of

kinematic controls, b, consists of the 24 coefficients specifying these two affine trans-

forms. Under this parameterization the mapping from the coefficients of the global

frame of reference (Mc, tc) to the positions of all nodes in the flesh mesh is linear,

when the matrix Mc is restricted to the set of rotation matrices. This implies that

the linearization of equation (4.3) can capture exactly all rigid body transformations

of the landmarks without any geometric distortion. Orthogonality of Mc and Mm

(implying rigidity of the corresponding linear transform) can be enforced using the

penalty term φrigid(M) = ‖MTM − I‖2
F with F representing the Frobenius norm.

Note that this does not penalize the rotation, since a polar decomposition of M = QS

into a rotation plus a symmetric matrix yields MTM = STQTQS = STS which re-

moves the rotation. Thus it only penalizes the symmetric nonrigid deformation to be

the identity matrix, thus removing it. Under the progressive stiffening schedule for

ρ described in section 4.7, this penalty term keeps the singular values of the affine

matrices within 10−5 of unity. In order to ensure convexity of this penalty term we

should project its Hessian to its positive definite component either through explicit

eigenanalysis or through the process proposed in chapter 3. Furthermore, we only

need to solve equation (4.6) for the jaw, as the partial derivative of the quasistatic

68 CHAPTER 4. FACIAL ANALYSIS

positions with respect to a component of the cranium affine transform can be analyt-

ically computed as ∂Xj/∂bi = (∂Mc/∂bi) Xj + ∂tc/∂bi for the quasistatic position of

any node Xj assuming orthogonality of Mc.

Figure 4.6: Configuration of the temperomandibular joint model.

We model the joint between the cranium and the mandible by a three degree

of freedom articulation system as depicted in figure 4.6. During opening of the

mouth, the lower jaw rotates around a horizontal axis passing through the mandibular

condyles, which are located at the rear extreme of the jawbone and are free to slide

a short distance along the temporal bone of the cranium. We model the allowable

trajectories of the condyles with two parallel line segments. The condyles can slide

symmetrically or asymmetrically along their designated tracks; the latter effectively

results in rotation of the mandible about a vertical axis. We formalize these con-

straints by requiring the horizontal axis of rotation to always lie on the plane defined

by the two sliding tracks and restricting the midpoint of the two condyles to positions

on that plane that are equidistant from the two side tracks.

To provide algebraic descriptions for these anatomical constraints, we equip the

jaw with three characteristic normalized vectors defining the geometry of the tem-

peromandibular joint in its rest configuration (fully closed with horizontally aligned

4.8. KINEMATICS AND JAW ARTICULATION 69

dentures). In the reference frame of the cranium, u points from the right to the left

condyle, v is parallel to the sliding tracks of the condyles directed from back to front,

and w = v × u. Labeling the initial location of the midpoint of the two condyles as

m, the algebraic constraints for anatomical validity are

ψ1(Mm, tm) = wTMmu = 0

ψ2(Mm, tm) = wT (Mmm + tm −m) = 0

ψ3(Mm, tm) = uT (Mmm + tm −m) = 0

ψ4(Mm, tm) = vT [Mm (m− (l/2)u) + tm −m] ∈ [0, d]

ψ5(Mm, tm) = vT [Mm (m + (l/2)u) + tm −m] ∈ [0, d]

ψ6(Mm, tm) = wTMmv ∈ [−s, 0]

where l is the distance between the two condyles, d is the length of the sliding tracks,

and s is the sine of the maximum opening angle of the mouth. ψ1 forces the horizontal

rotation axis to be parallel to the plane of the sliding tracks, ψ2 forces the midpoint

to reside on the same plane, and ψ3 forces it to be equidistant from the two sliding

tracks. The additional constraints keep the three remaining degrees of freedom within

their allowable range. ψ4 and ψ5 constrain the left and right condyle on their sliding

tracks, and ψ6 regulates the opening angle. Finally, the kinematic validity penalty

term is

φkin(b) = φrigid(Mc) + φrigid(Mm)

+ψ2
1 + ψ2

2 + ψ2
3 + min {0, ψ4, d− ψ4}2

+ min {0, ψ5, d− ψ5}2 + min {0,−ψ6, s+ ψ6}2

noting that all the piecewise quadratic terms based on ψ1 to ψ6 are convex functions,

and therefore no adjustment of their Hessian is necessary. All the terms in φkin are

included in φp and handled as in section 4.7.

70 CHAPTER 4. FACIAL ANALYSIS

4.9 Examples

We evaluate our system by estimating muscle activations and kinematic parameters

from a set of test motion capture sequences. These include a 33 second long narration

sequence (figure 4.5) and several individual examples of pronounced expressions typ-

ically 2-3 seconds long (figure 4.4), which can be compared with expressions obtained

by manual specification of muscle activation levels (see figure 4.3). Our single mocap

session used 79 markers, and we focused them on mouth and jaw movement as op-

posed to the forehead and eyes. The motion capture input was processed at a frame

rate of 60 frames per second. With the possible exception of the first frame of each

capture sequence, we typically used a single Gauss-Newton step followed by a golden

section line search for estimating the muscle activations and kinematic parameters

at each subsequent frame. The average processing time for our simulation model of

370K tetrahedral elements and 32 transversely isotropic muscles was 8 minutes per

frame on a single Xeon 3.06Ghz CPU, which includes 10 quasistatic solves for the

chosen search depth of the line search with full collision handling in addition to 44

linear solves for the update of the control jacobians by application of equations (4.5)

and (4.6). Using linear interpolation for the initial guess given to the quasistatic

solver during each golden section search refinement and using the transform of the

global frame of reference to precondition the initial guesses for both the quasistatic

positions and their jacobians proved to be the most important performance optimiza-

tions. The cost of computing the Gauss-Newton step itself, once the linearization of

equation (4.3) had been updated, was less than one second per frame.

Between successive frames, the activations can change by as much as 20%-40%

and the kinematics can experience rotations of 3-4 degrees for both the global frame of

reference and that for the jaw. We stress that our approach is trivially parallelizable,

as a result of our quasistatic formulation. At the expense of estimating the first

of a sequence of expressions from a suboptimal guess (which typically requires 3-5

Gauss-Newton iterations), processing a long sequence of motion capture frames can

be partitioned arbitrarily.

An important aspect of our approach is that the search for the optimal match

4.9. EXAMPLES 71

Figure 4.7: Robust handling of noisy motion capture markers.

for the motion capture markers is performed over the space of physically attainable

configurations, as parameterized by the muscle activations. This results in robust

handling of noisy input data or motion outliers as illustrated in figure 4.7, since their

non-physical component is discarded through the optimization process. Free form

deformation and shape based animation schemes do not exhibit this property, and

unfiltered motion outliers incur nonphysical localized deformation.

Once the muscle activations and kinematic parameters for an input sequence have

been computed, we can address a number of post-processing tasks using the extracted,

physically based animation parameters. Interpolation between expressions can be

performed in the muscle activation space with an automatic guarantee that the inter-

polated expressions are physically valid and attainable (figure 4.10). Furthermore, an

expression can be exaggerated or deemphasized by multiplying the muscle activations

by a scaling factor, and clamping the result within the valid activation range [0, 1].

72 CHAPTER 4. FACIAL ANALYSIS

One can also exaggerate an expression (or sequence) beyond the physically attainable

limits. It would be inadvisable to do so by extending the activation values beyond 1,

since the force-length relationship is undefined for such values and heuristic extrapo-

lations can be problematic. Instead, we scale the entire force-length curve effectively

scaling the overall anisotropic behavior of the muscle while still maintaining plausible

behavior as the muscle activation varies over the interval [0, 1] (see figure 4.8). The

same effect would be difficult to achieve using blending techniques as pointed out in

[194].

Figure 4.8: Accentuated expressions created by scaling of the force-length curve.

Our estimation process is based on a quasistatic simulation of the face which

4.10. SUMMARY 73

Figure 4.9: Interaction of the face with an external colliding object.

disregards inertial phenomena. The quasistatic hypothesis is consistent with the em-

pirical fact that humans tend to avoid sudden ballistic motion of their head (e.g.

this is how boxers knock each other out). When we compared our quasistatic sim-

ulation to a fully dynamic one using biologically realistic material parameters and

the estimated activations and kinematic controls, the differences were unnoticeable.

We had to loosen up the material parameters to get noticeable ballistic effects, e.g.

softening the cartilage in the nose (as shown in the accompanying video). Even for

highly dynamic motion such as a person jogging, one could still capture the actor’s

performance quasistatically and add the dynamics as a post process. Finally, external

elements can be introduced into a quasistatic or dynamic simulation that uses the

extracted parameters. For example, figure 4.9 illustrates a quasistatic simulation of

the face interacting with a kinematic sphere.

4.10 Summary

We have presented an anatomically accurate face model controlled by muscle activa-

tions and kinematic bone degrees of freedom. A novel algorithm was developed to

74 CHAPTER 4. FACIAL ANALYSIS

Figure 4.10: Interpolation between two expressions in activation space.

automatically compute control values that track sparse motion capture marker input.

Once the controls are reconstructed, the model can be subjected to interaction with

external objects, used in a dynamic simulation to capture ballistic motion, expres-

sions can be edited in the activation space by combining multiple existing segments

or making manual adjustments, etc. We are currently building an even more accurate

face model from a more powerful MRI scanner and a laser scan of a highly detailed

cast of the face. We are also working to obtain improved motion capture data in-

cluding data for the forehead and eye region, as well as more detailed mouth and lip

tracking (placing markers on the lips as opposed to only around them). An obvious

extension would be to generalize the control estimation framework to accept marker-

less input data. In fact, we are currently undertaking a project that determines the

muscle activations associated with the articulation of phonemes, and this will require

more detailed lip motion and muscle data.

There are many application areas that we can now address including, for exam-

ple, the ability to learn patient-specific muscle activations that can be used to predict

the effect that surgical modifications will have on expression. A natural but highly

promising research direction would be to estimate not just the controls, but also the

model parameters including bone and flesh structure, material constitutive parame-

ters, muscle locations and shapes in the rest state, etc. This would allow us to correct

anatomical modeling errors and make the model more predictive in a data driven fash-

ion. Finally, it would be interesting to analyze a large number of facial expressions,

for example deriving correlations between muscle activations. In this vein, we are

4.10. SUMMARY 75

also working on validating our muscle activation results using electromyography.

Chapter 5

Speech synthesis

We present a physically based system for creating animations of novel words and

phrases from text and audio input based on the analysis of motion captured speech

examples. Leading image based techniques exhibit photo-real quality, yet lack ver-

satility especially with regard to interactions with the environment. Data driven

approaches that use motion capture to deform a three dimensional surface often lack

any anatomical or physically based structure, limiting their accuracy and realism. In

contrast, muscle driven physics-based facial animation systems can trivially integrate

external interacting objects and have the potential to produce very realistic anima-

tions as long as the underlying model and simulation framework are faithful to the

anatomy of the face and the physics of facial tissue deformation. We start with a high

resolution, anatomically accurate flesh and muscle model built for a specific subject.

Then we translate a motion captured training set of speech examples into muscle

activation signals, and subsequently segment those into intervals corresponding to

individual phonemes. Finally, these samples are used to synthesize novel words and

phrases. The versatility of our approach is illustrated by combining this novel speech

content with various facial expressions, as well as interactions with external objects.

76

5.1. INTRODUCTION 77

5.1 Introduction

Photorealistic facial animation is both difficult to achieve and in high demand, as

illustrated by [144], which discussed some of the challenges faced in recent blockbuster

films and high profile research efforts. Many computer graphics practitioners are

interested in animating conversation (see e.g.[36, 37]), and this has led to enormous

interest in the key ingredients of speech and expression. Moreover, as stressed by [47],

visible speech plays a large role in the interpretation of auditory speech.

Along the lines of talking presidents in “Forest Gump,” [28] proposed a method

that used existing video footage to create a new video of a person speaking novel

words. [59] also proposed an image-based approach that relied on the morphing of

the visemes associated with phonemes. These results were further improved using a

multidimensional morphable model in [58] and used for retargeting in [40]. Although

image based techniques produce animations of photo-real quality, they lack the ver-

satility of some other approaches, e.g. it would be difficult to use them when the face

has to interact with elements from the environment.

The idea of driving a three-dimensional character from text and audio (as in voice

puppetry [27]) is quite compelling. Data driven approaches tend to use motion capture

data (see e.g. [189, 76]) to drive a three dimensional surface mesh. [33] took this

approach using independent component analysis to separate speech from expression

(see also [32]). Similarly, [98] used PCA of marker data to determine facial movement

parameters. [46] used a bilinear model that separates expression from speech in order

to drive a three dimensional blend shape animation with video input. In a similar vein,

[53] constructed a speech co-articulation model that can be mixed with keyframing

in a manner that preserves expressiveness. [180] used multilinear models to separate

expressions, visemes and identity in a three dimensional data set, enabling video to

drive a three dimensional textured face model. While these methods have enjoyed

recent popularity, especially for speech and visemes, they lack any anatomical or

physically based structure, limiting their potential for accuracy and realism.

Even though [184] advocated the use of muscles rather than surfaces for speech

animation early on, physically based simulation methods have not enjoyed popularity

78 CHAPTER 5. SPEECH SYNTHESIS

Figure 5.1: A synthesized utterance of the word “algorithm”

for phoneme or viseme research (as pointed out e.g. in [148]). This could be due to

the high computational cost associated with the level of fidelity required to study

speech. Although there is precedent for estimating muscle contraction parameters

from video [171, 172] (see also [56, 57, 115]), [13, 12] avoided the internal anatomy

altogether using only a surface based finite element model while studying lip motion.

In fact, recent work in this area includes [43, 42] which conclude that it might be

better to estimate linear combinations of sculpted basis elements rather than muscle

activations. However, [155] argued that the limiting factor for fidelity was not the

use of simulation per se, but rather the lack of realistic muscles with biomechanical

nonlinearity and anatomical accuracy. Furthermore, they argue that a person’s face

is driven by muscle activations, therefore an anatomically faithful model with the

control granularity of actual human facial muscle exactly spans the space of facial

expression.

Both image-based animation methods and data-driven surface deformation tech-

niques have traditionally been preferred over physics-based approaches for facial an-

imation. Both approaches operate directly on sample data without requiring an

intricate anatomical facial model or the overhead of simulation for either analysis or

synthesis. Yet, interacting with the simulated character in ways that are not spanned

by the recorded training data is recognized as a task that lies beyond the scope of

either approach. Physics-based approaches provide the unique ability to interact with

the character in any way that can be physically prescribed while respecting the funda-

mental characteristics of a performance, namely motion style, expression and verbal

5.2. PREVIOUS WORK 79

content.

Following the approach of chapter 4 we build a high resolution, anatomically and

biomechanically accurate flesh and muscle model of a subject’s face. Then we au-

tomatically determine muscle activations based on three-dimensional sparse motion

capture marker data. In particular, we focus on the capture of speech, constructing a

phoneme database parameterized in muscle activation space. Notably, each phoneme

is stored with temporal extent. We demonstrate that physically based approaches

can be used for speech analysis and synthesis by creating animations of novel words

and phrases from text and audio input. Moreover, we capture muscle activations rep-

resentative of expression and show that these can be mixed with the speech synthesis

to independently drive speech and emotion. Finally, we illustrate the versatility of a

physically driven three dimensional model via interaction with foreign objects.

5.2 Previous Work

Early work on three dimensional facial animation includes [138, 146, 185, 108, 91]

(see also [55]). [179] relate skin deformation of a physics based model to oral tract

deformation while [107, 106] use a physics based model driven by muscle-control sig-

nals acquired by AMG and compare surface deformation against the human subject.

Based on scanned data, [101] constructed an anatomically motivated, biomechanical

facial model featuring a multilayer, deformable skin model with embedded muscle

actuators. [96] used finite elements to predict emotions on a post-surgical face (see

also [95, 149] for finite elements for facial surgery). [51] used variational modeling and

face anthropometry techniques to construct smooth face models, [143, 145] animated

faces based on photographs and video, and [87] worked on automatic segmentation

for blending. The face was also divided into subregions for the facial animation in

[195]. [20] proposed a vector space representation of shapes and textures for animation

transfer [18] and face exchange in images [19]. [88] built a muscle based facial model

and considered morphing to other faces [90] and forensic analysis [89]. [94] used a

parametric muscle model with time varying visemes to extend the coarticulation algo-

rithm of [47]. [31] added expressiveness to the MPEG-4 Facial Animation Parameters.

80 CHAPTER 5. SPEECH SYNTHESIS

A number of authors have worked on facial motion transfer [129, 147, 124, 163]. [38]

used tracking to drive animations from a motion capture database, [183] tracked facial

motion with a multiresolution deformable mesh with the aim of learning expression

style, and [194] proposed a face inverse kinematics system.

5.3 Data Capture

5.3.1 Model Building

We constructed a high-resolution volumetric model of facial flesh and musculature

for both our analysis of speech samples and the synthesis of new utterances. First,

we obtained an MRI scan which provided an approximation of the tissue extent and

the shape of the interface between soft tissue and bone. Then a life-mask cast of the

subject was scanned at a resolution of 100 microns, producing a 10 million triangle

model and a fully registered texture map. The detail from this high resolution surface

scan was integrated into our volumetric flesh model. The facial flesh volume was

discretized into a 1,870,000 element tetrahedral mesh, with 1,080,000 elements in

the frontal facial volume that was used to simulate deformation under action of the

facial muscles. Due to the limited resolution of the MRI scan, much of the internal

tissue structure was manually adjusted to create a muscle set that conforms to the

anatomical prototypes published in the medical literature. Our model includes 39 of

the muscles that are predominantly involved in facial expressions and speech. Muscles

that have no effect or only a subtle effect on facial motion were excluded, as their

behavior would not be reliably captured with our surface motion capture marker set.

5.3.2 Motion capture

We take a data-driven approach to speech synthesis constructing a database of pro-

totypical subject-specific utterances of speech primitives (sample phonemes within a

context of words or phrases). The motion component of these utterances was recorded

with a motion capture system consisting of 8 cameras with 4MP CCD sensors. 250

thin circular patches of retroreflective material with a diameter of 3mm were placed

5.3. DATA CAPTURE 81

on the subject’s face at an average distance of 8-10mm apart. A small subset of

markers were specifically placed on predominantly rigid parts of the head to capture

the rigid head motion. The performance was sampled at 120Hz. See Figure 5.2.

Figure 5.2: Eight camera, 250 marker optical motion capture layout

5.3.3 Inverse activations

Following [155] we model the isotropic response of passive fatty tissue by a hypere-

lastic Mooney-Rivlin constitutive model for the deviatoric component, with an addi-

tional volumetric pressure component for quasi-incompressibility. The parameters of

the Mooney-Rivlin model are spatially adapted to the heterogeneity of the simulated

tissues, yielding different stiffness values for areas occupied by collagen, cartilage,

and tendinous structures. Areas of the flesh that are occupied by contractile mus-

cle tissue are further assigned an anisotropic strain response corresponding to the

passive or active behavior of muscle tissue along the direction of its fiber field. The

inverse activation estimation framework employs the quasistatic simulation method

of chapter 3. This formulation uses fast conjugate gradients solvers to evolve con-

strained deformable objects to an equilibrium state, and provides robust handling of

mesh degeneracies such as element inversion, as well as rigid body and self-collision

82 CHAPTER 5. SPEECH SYNTHESIS

handling. We should point out that this quasistatic assumption is preferred for the

estimation process as it greatly simplifies the inverse control problem. While it can

also be used for the forward simulation of slow speech, a fully dynamic simulation

method is superior for the simulation of faster speech from muscle activation controls.

5.4 Phonemes and Visemes

5.4.1 A Muscle Activation Basis for Speech

The inverse activation framework described in section 5.3.3 allows us to translate

our database of motion captured speech samples into temporal sequences of control

parameters for our deformable face model (i.e. muscle activations and kinematic con-

figuration of the bones). We subsequently use these controls as the parameterization

of facial motion for analysis and synthesis tasks.

A defining property of visual speech synthesis techniques is the choice of the fea-

ture space used to describe facial motion. Common examples found in the literature

(cited above) include image-based descriptions and surface shape bases. Our approach

provides the versatility to edit the animated performance affecting the emotion and

expression of the character, as well as allowing physical interaction of the face with

objects from the environment. In this context, the relevant feature is not the ap-

pearance or the shape of the face per se, but rather the action of speech articulation.

Therefore, we follow the formulation described in chapter 4 using the activation sig-

nals that stimulate the facial muscles as our feature space, an approach that was

pioneered in [171, 172].

Our approach is subject to a number of limitations. The quality of our parame-

terization and the fidelity of the resulting simulations are only as good as the detail

and accuracy of our muscle-driven model as well as the physical consistency of the

simulation method used. This highlights the need for detailed, nonlinear, volumetric

finite element models of the anatomical components of the face. Additionally, our

adoption of a quasistatic simulation scheme for analysis leads to a deviation from the

true dynamic behavior expected of a physical system. However, for our training set

5.4. PHONEMES AND VISEMES 83

Figure 5.3: Estimated muscle activations of expressions.

of short words spoken at a casual pace, inputting the estimated muscle activation

sequences into a forward quasistatic simulation produced a very close match to the

original capture respecting almost all nuances of individual utterances. This sup-

ports our use of quasistatics for the estimation of muscle activations, although a full

dynamic simulation would be superior for synthesis (especially for faster speech).

5.4.2 Primitives of Speech Simulation (Physemes)

We collected a database of motion capture data for the phoneme sets suggested by

[5] and [59] where phonemes are presented within the context of sample words. We

recorded 4-5 distinct captures of each phoneme set and used the inverse activations

estimation process to convert each captured word into a short sequence of muscle

activation signals and mandible articulation parameters. An examination of the sig-

nals corresponding to various phonemes revealed several important patterns. First,

we observed a high degree of correlation between segments of words that contained

the same phoneme, as illustrated in Figure 5.5 for samples of the phonemes p and

w (we adopt the phoneme codes used in [17]). The temporal extent of this correla-

tion varied with the particular phoneme being considered and its phonetic context.

Phonemes with matching context (the phonemes immediately before and after the

one in question) tended to correlate over a much longer time segment. In addition,

84 CHAPTER 5. SPEECH SYNTHESIS

Figure 5.4: Estimated phonemes from motion captured examples.

several phonemes (such as the consonants sh,v, z) typically reached a steady state

in activation space, surrounded by the transitions from the previous and to the next

phoneme. Other phonemes (such as the diphthongs ay, ey) exhibited a characteristic

dynamic pattern over their temporal extent, often marked by a distinctive transition.

In Figure 5.5 we classify p as a dynamic phoneme (we can identify 3 distinct stages

5.4. PHONEMES AND VISEMES 85

of mouth closure, lip retraction and mouth opening) while the static w appears to

achieve a steady state in between transitions. We note that muscles in the oral region

typically exhibited higher degree of correlation across utterances of the same phoneme

than peripheral muscles.

“w”“p”

Mandibular
Joint Angle

Labial Tractor
Lower Right

Labial Tractor
Lower Left

Labial Tractor
Upper Right

Labial Tractor
Upper Left

Orbicularis
Oris Upper

Orbicularis
Oris Lower

Zygomatic
Major Right

Zygomatic
Major Left

Figure 5.5: Comparison of the “p” and “w” physemes.

These observations support the hypothesis that time-varying sequences of muscle

activations capture a large amount of information about phonemes and phoneme

transitions. In particular, by recording the muscle activation signals over a time

86 CHAPTER 5. SPEECH SYNTHESIS

interval that extends beyond the duration of each phoneme and into its neighboring

ones we capture the effect that the utterance of each phoneme has and receives from

its context, formally known as coarticulation. Therefore, we associate each of these

extended intervals of muscle activations and bone kinematics with its corresponding

phoneme and use them as the primitives of our physics-based visual speech synthesis,

labeling them as physemes (in analogy to phonemes and visemes).

To create a database of physemes we use the audio track to identify each phoneme,

using the Festival Speech Synthesis System [17] to segment utterances into individual

phrases and then into individual phonemes. The labelings were not completely accu-

rate and sometimes manual annotation was also required. Once every word had been

partitioned into time segments corresponding to different phonemes, physeme sam-

ples were collected by selecting the estimated muscle activation signals corresponding

to the time range of each phoneme (see Figure 5.6) and padding the signal on each

side of the time segment with enough data from its context in order to capture the

coarticulatory effects.

5.5 Synthesis

5.5.1 Physeme-based Speech Synthesis

Our physeme database captures the motion signatures of phonemes and the transi-

tional effects between them in the physically motivated space of muscle activation.

We present a first approach to using this physeme basis directly for synthesis of visual

speech. The input to our systems consists of an audio recording along with a transcript

of its verbal content. We again use Festival [17] to segment this novel audio track

into time intervals corresponding to distinct phonemes. The result is typically satis-

factory for utterances of individual words or slow speech. However, sometimes with

longer and faster speech passages it was necessary to manually adjust the phoneme

annotation.

After we determine the constituent phonemes of the text to be synthesized, we

assemble a matching temporal arrangement of physemes from our database. Each

5.5. SYNTHESIS 87

physeme contains muscle activation signals that extend beyond the duration of its

associated phoneme, namely it starts with a lead-in from the previous phoneme,

followed by the body corresponding to its base phoneme and a lead-out from the

following phoneme. We place physemes in arrangements with their bodies contiguous

and their lead-in and lead-out overlapping into the body of the adjacent physeme

(see Figure 5.7). Silent intervals are modeled with a special arbitrary length “pause”

physeme, with muscle activations corresponding to the neutral pose of the face. In

general, the length of each phoneme in an audio recording will not match the length

of the corresponding physeme in our database, so the muscle activation signal of the

physeme is time-scaled to the appropriate length. A single, uniform time scaling is

applied to the body as well as the lead-in/out of the physeme.

ch iy zpause pause

Figure 5.6: Segmentation of the word “cheese” into constituent physemes.

88 CHAPTER 5. SPEECH SYNTHESIS

For each physeme inserted in an arrangement we use a blending curve that yields

constant weights equal to unity throughout the body of the physeme and decays

to zero at the outer endpoints of the lead-in and lead-out following a C1 continu-

ous sigmoid curve. We extract a single muscle activation signal from the complete

physeme arrangement by performing weighted averaging of the signals overlapping

at any instance in time using their corresponding blending weights, as illustrated in

Figure 5.7.

g rpause ay n d pause

Figure 5.7: Arrangement of the word “grind” synthesized from computed physemes.

Among the kinematic parameters that are obtained through the inverse activation

estimation process, the parameters that define the overall rigid body motion of the

head (or the frame of reference of the cranium) receive special handling. Interpolat-

ing between different positions and orientations in such short time intervals as those

corresponding to phoneme lengths would most likely incur sudden jumps and violent

accelerations. Thus, instead of interpolating between frames of reference, we use the

estimated rigid body motion for each individual physeme and use it to approximate

the linear and angular velocity of the head at each frame. When blending phonemes

5.5. SYNTHESIS 89

we then proceed to blend linear and angular velocities instead of positions and orien-

tations. The rigid body configuration is then obtained by integrating the linear and

angular velocities forward in time. The resulting signals of muscle activations and

rigid bone kinematics can be fed into a forward quasistatic or dynamic simulator to

produce the final physically driven speech simulation.

5.5.2 Sequence Generation

We employ a semi-automatic interface for the creation of physeme-based simulations

of speech including tools for the creation and refinement of physeme arrangements,

preview of an approximate speech synthesis and final physics-based finite element

simulation. Given the existence of tools such as Festival that simplify the segmen-

tation of an audio speech signal into its constituent phonemes, we focus on the task

of compiling a physeme arrangement to match a given, labeled phoneme sequence.

The low dimensionality of our feature space (39 muscle activations and 3 kinematic

parameters, a few tens of phonemes per sentence) makes optimization algorithms

such as stochastic optimization attractive, i.e. since we avoid the overhead typically

associated with them in higher dimensional spaces.

We adopted the constraints that the labels of the physemes have to match the la-

bels of the phonemes that occupy the same time range in the audio recording, and we

clamped the lead-in and lead-out of each physeme to 20% of the length of the body of

the neighboring phoneme it overlaps with. Under these constraints, our free parame-

ters are the choice of which of the 5-30 physemes from our database for each phoneme

should be used to fill a particular time interval. We formulated a criterion for the

quality of a particular phoneme arrangement and solved it using simulated anneal-

ing, using parameters that yield the global minimum with very high confidence. We

obtain our quality criterion by computing the magnitude of the discrepancy between

the muscle activation vectors for all frames where physeme extents would overlap and

integrating over time. In order to prevent weak muscles or muscles that have little

direct effect in the articulation of speech to dictate the quality of an arrangement,

we scale the activation ai value by the average magnitude of the quasistatic shape

90 CHAPTER 5. SPEECH SYNTHESIS

Jacobian ∂X/∂ai, computed over the entire range of motion captured visemes (as a

by-product of the inverse activation estimation process). This biases the quality crite-

rion towards accounting for muscles whose activation tends to have a more substantial

effect on the shape of the face.

Figure 5.8: Synthesized speech segments blended with expressions.

Our optimization process provided convincing physeme arrangements for simple

examples (such as single, slowly spoken words) requiring little to no manual inter-

vention. However, with more complicated examples or faster speech this result often

required manual adjustment, such as fine-tuning the length of the lead-in/out seg-

ments or the precise placement of phoneme boundaries. We created a graphical

interface that provided us with the functionality to alter all these parameters, as well

as the individual choice of physemes used at each moment in time. As a by-product of

our inverse estimation process, we possess a quasistatic face shape approximation for

each frame in our captured training set. By blending these face shapes with the same

weights used for physeme blending we obtain a fast preview for our edits without

the need for simulation, which is run only when our adjustments are complete. On

average, editing a medium-sized sentence would typically entail 2-3 hours of manual

5.6. SPEECH AND EXPRESSION 91

processing. We note that quasistatic simulation contributed substantially to that

cost, since the lack of damping and inertia made the final result more sensitive to the

muscle activation input signal than it would be with a full dynamic simulation.

5.6 Speech and Expression

The versatility of a physically-based muscle driven face model for speech synthesis is

highlighted by the ability to augment the simulation with elements that are secondary

to the process of speech articulation. Facial expression and emotion are characteristic

examples of such elements. Although there exists a correlation between the emotional

appearance and the verbal content of human speech, a human speaker may adjust

his facial expression independent of the words spoken. We simulate this process

by motion capturing facial expressions and using our inverse activation process to

convert these expressions into characteristic muscle contractions. Subsequently, we

blend these muscle activation values into our synthesized physeme sequences and use

physics-based simulation to obtain the final animation.

As illustrated in Figure 5.8, the integration of expressions such as a frown or

a smile can be performed in a very natural manner, through simulation, without

compromising either the articulatory content or the emotional response elicited by

the expression that was blended in. Such an augmentation is straightforward and

requires no manual adjustment of the physeme arrangement. It should be emphasized

that it is much more challenging and labor intensive to obtain such a result, in regard

to both speech and expression, with a technique based on blending images or face

shapes. The nonlocal effects of pronounced facial expressions, in conjunction with

anatomical phenomena that arise from these expressions (such as bulging of skin,

deepening of facial furrows, or changes in the contact pattern of the lips) become

particularly difficult to capture convincingly without a physically-based approach.

5.7 Speech and Physics

Beyond the task of enriching the facial motion with an expression, the real power

of physics-based approaches is revealed when the face is required to interact with

92 CHAPTER 5. SPEECH SYNTHESIS

Figure 5.9: Synthesized speech segment augmented with external object collision.

the outside world. Physical simulation of a full volumetric facial musculature model

allows us to produce effects that are difficult or impossible using image-based or data-

driven surface deformation techniques. By keeping the muscle activation controls

fixed and modifying the simulation environment, we can effortlessly produce a new

facial deformation. In particular, once a speech database is created, reproducing such

effects does not require additional motion capture data, analysis or modification of

our synthesized physeme sequences. For example, we depict our virtual character

speaking with a lollipop and candycane in his mouth in Figure 5.9, where the muscle

activation signals were synthesized without regard to the object interaction.

5.8 Discussion

Using our quasistatic estimation framework, we processed approximately 10 minutes

of speech at 120Hz in an average of 7 minutes per motion capture frame (including full

analysis with full rigid body and self-collision handling) on a Xeon 3.8 Ghz CPU. The

full processing of approximately 70,000 frames required the equivalent of a CPU year

on clustered computer hardware. Although seemingly high in computational cost,

this once-only process requires no human supervision and all the resulting muscle

activation signals were of adequate quality for use in our database. Notably, our

5.9. SUMMARY 93

simulation model contained 1080K simulation elements, which is at least 3 times

larger than typical high resolution finite element simulations in the computer graphics

literature. Therefore, we expect our model to age much slower than the advance of

computer hardware, making the computation affordable.

Once the facial model has been created and the physeme database has been as-

sembled from the motion captured performance, the main labor-intensive effort is

the manual adjustment of the physeme sequences to fine-tune the synthesized speech

result. Currently at a cost of a few hours per sentence, the bulk of this effort is at-

tributed to correcting mistakes of the speech analysis software (the Festival system)

and adjustment of the transition intervals between successive phonemes. The latter

would be substantially easier if a full dynamic framework was employed for the final

forward simulation, as the physics of facial motion would handle physeme transitions

in a smooth way alleviating issues with blending intervals. While this editing cost

might seem high compared to data-driven methods, especially if one is only concerned

with casual speech, it becomes much more competitive when one requires the added

versatility of the face interacting with its environment. Our method can achieve phys-

ically based environmental interactions with almost no additional cost, whereas the

cost increases substantially for data-driven approaches even though the quality incurs

a significant decrease.

5.9 Summary

We presented a physics-based approach to visual speech synthesis using an anatomi-

cally accurate, muscle actuated finite element model of the human face. We collected

motion capture data for the utterances of words in a training set and converted them

into the time varying muscle activation signals that give rise to the captured face mo-

tion. We segmented these muscle activation signals into time segments corresponding

to different phonemes and assembled them into a database of physemes. We create

sequences of physemes with smooth transitions between them to match the phonemes

of audio recordings of new speech, and use the resulting muscle activation signals to

drive a finite element simulation of facial motion. The animation is readily enriched

94 CHAPTER 5. SPEECH SYNTHESIS

by blending in expressive emotions or by introducing external objects that interact

with the talking face.

Our adoption of a quasistatic simulation scheme was motivated by the tractabil-

ity of the muscle activation estimation framework of chapter 4. When our estimated

activations were used in a quasistatic forward simulation, the results compared well

to the original video visually validating our approach to estimation. However, for the

reanimation of a novel synthesized physeme sequence, quasistatic simulation was only

satisfactory for sequences of slow speech, where ballistic motion and pronounced in-

ertial effects are not significant. When used with muscle activation signals created for

faster speech, quasistatic simulation gave rise to rather abrupt and underdamped mo-

tion that lacked realism. Inertial effects have a profound effect on the motion of a real

human face under such conditions, smoothing out phoneme transitions and smearing

away the dynamics of individual utterances. We believe that a full dynamic simula-

tion is the obvious choice for animations of such synthesized sequences of fast speech

and discourage the use of quasistatics for forward simulation whenever possible. The

practice of using quasistatics for the inverse problem and full dynamics for forward

simulation is also a well established practice in the field of biomechanics, where it is

well understood that even in cases where the estimated actuations are not smooth or

even discontinuous, the simulated deformation using a full dynamic scheme is smooth

and realistic due to the progressive fashion in which muscle activations translate to

tissue deformation.

Our key objective for our future work is the illustration that a fully dynamic

simulation of the synthesized muscle activation signals successfully treats demanding,

fast-paced speech passages. Increased realism could be obtained by improving eyelid,

eyebrow and forehead motion as well as modeling the effect of airflow in the oral

cavity accommodating effects such as cheek puffing and improving the appearance

of closed-mouth phonemes (such as p and b). Improved training sets will enable us

to better capture the dynamics of speech in different contexts than that of short,

slowly spoken phrases. The current work constitutes only a first step in using the

muscle activation basis for speech analysis, and this compact, complete and physically

motivated description provides the potential to improve several analysis techniques

5.9. SUMMARY 95

such as Principal Component Analysis by allowing them to operate in a space that is

much more tightly bound to the physical process of speech articulation rather than

in a space of facial appearances or skin shapes.

Chapter 6

Hybrid solids

Although mesh-based methods are efficient for simulating simple hyperelasticity,

maintaining and adapting a mesh-based representation is less appealing in more com-

plex scenarios, e.g. collision, plasticity and fracture. Thus, meshless or point-based

methods have enjoyed recent popularity due to their added flexibility in dealing with

these situations. Our approach begins with an initial mesh that is either conforming

(as generated by one’s favorite meshing algorithm) or non-conforming (e.g. a BCC

background lattice). We then propose a framework for embedding arbitrary sample

points into this initial mesh allowing for the straightforward handling of collisions,

plasticity and fracture without the need for complex remeshing. A straightforward

consequence of this new framework is the ability to naturally handle T-junctions alle-

viating the requirement for a manifold initial mesh. The arbitrarily added embedded

points are endowed with full simulation capability allowing them to collide, interact

with each other, and interact with the parent geometry in the fashion of a particle-

centric simulation system. We demonstrate how this formulation facilitates tasks such

as arbitrary refinement or resampling for collision processing, the handling of multiple

and possibly conflicting constraints (e.g. when cloth is nonphysically pinched between

two objects), the straightforward treatment of fracture, and sub-element resolution

of elasticity and plasticity.

96

6.1. INTRODUCTION 97

6.1 Introduction

Simulation of deformable models was pioneered in computer graphics by [170, 168,

169]. It has influenced research in areas such as cloth animation [10], muscle sim-

ulation [167], flesh deformation [35], facial motion [155], virtual surgery [160] and

fracture [133].

Mesh-based methods require the generation of an initial simulation mesh, which

can be conforming (e.g. [113, 3]), or non-conforming when used in conjunction with

an embedded simulation technique (e.g. [34, 35, 112, 119, 123]) in which case a simple

cube or BCC background mesh can be used. Generation of a conforming simulation

mesh is typically non-trivial and is best suited to applications that require no changes

to the initial mesh. However, if the mesh needs to be adapted on the fly, e.g. for frac-

ture [133], remeshing can be prohibitively expensive and can introduce poor quality

elements. [112] proposed a partial solution that uses embedded simulation technology

to fracture tessellated objects without continuous remeshing, allowing elements to be

modeled as partially full of material. Limitations, including the restriction that edges

cannot be fractured twice, prevent this method from being completely general. Colli-

sion processing can often require more surface resolution than is present in the initial

simulation mesh. While some have considered adaptive frameworks [49, 74, 35], it

is wasteful to refine the full volumetric mesh in the vicinity of the boundaries solely

for collisions. Although not as efficient as mesh-based methods for the simulation

of elastic deformation, point-based methods provide added flexibility making them

attractive for applications involving fracture, virtual surgery, resampling for collision

handling, etc., see e.g. [121, 140, 161, 187, 120].

Starting with either a conforming or non-conforming mesh, we propose a method

for embedding an arbitrary point in this mesh. We call this a hard binding. To derive

the relationships between physical quantities of the embedded point and the mesh, we

start by considering a hypothetical refinement of the mesh that resolves the embedded

point. We compute internal finite element forces for these hypothetical subelements

and illustrate how to redistribute these forces to the parent mesh. The mass of the

embedded particle is redistributed to the parent mesh as well. This redistribution is

98 CHAPTER 6. HYBRID SOLIDS

Figure 6.1: Parent particles, hard bound target locations and soft bound particles.

shown to be independent of the chosen refinement. Notably, this approach results in

automatic and natural handling of T-junctions, as masses and forces of T-junction

nodes can be redistributed to the parent mesh. This specific handling of T-junctions

is similar to that in [105]. We then generalize this approach to arbitrary embeddings.

Hard bound particles have their mass and any forces or impulses applied to them

redistributed to the parents in a natural fashion while maintaining the notion of an

effective mass so that they can fully participate in various numerical algorithms.

A hard binding constrains an embedded particle to its barycentrically determined

location (a similar heuristic was given in [70, 71]). Thus, hard bound particles are not

particles at all (i.e. they do not possess any degrees of freedom), but merely target

locations that live on the parent mesh. In order to transition to a fully particle-centric

simulation framework, we create the notion of a soft binding. A soft binding is an

abstract connection between a real particle with full degrees of freedom and a hard

binding target location enabling full two-way interaction. Soft bound particles are free

to interact with each other and the parent mesh constituting a fully particle-centric

framework. Soft bindings can be created between any particle and any target location

even duplicating the original degrees of freedom in the mesh itself (see figure 6.1).

The soft binding mechanism is responsible for the two-way interaction between the

particle-based system and the mesh-based framework. Although one could implement

6.1. INTRODUCTION 99

this connection using simple springs, we have designed a more sophisticated soft

binding interface which is notably fully implicit allowing one to stiffen the two-way

interaction to the point where the soft bound particle always lies on its target location

up to numerical precision, without stability issues or additional time step restrictions.

Figure 6.2: Resolution of hard bound particles via refinement of the parent element.

Our work shares the motivation of [70, 71] to incorporate particle constraints in

the simulation of deformable objects, and the function of their geometric constraints

is conceptually analogous to our hard bindings. However, their approach works by

introducing external forces dependent on the integration method used whereas our

hard bindings are enforced through the conjugate operations of force distribution and

velocity interpolation. That is, instead of forcing our constrained degrees of free-

dom toward their target locations, we directly project them out of the equations of

motion. This allows seamless incorporation of such constraints into any time integra-

tion scheme, including globally coupled implicit schemes. Another major difference is

that our framework allows optional drift of particles away from their target locations

through soft bindings.

Novel contributions of our work include the tight integration of hard binding con-

straints and unconditionally stable binding spring forces into the semi-implicit New-

mark time integration scheme, lag-free duplication of degrees of freedom through soft

100 CHAPTER 6. HYBRID SOLIDS

bindings by force transfer from parent particles, and integration of rigid/deformable

coupling into the Newmark scheme and conjugate gradient solver. We present these

contributions as part of a broad hybrid simulation framework building on simple,

physically motivated principles. We demonstrate the features of this framework with

examples that include dynamically adapting the surface sampling density for colli-

sions, duplicating parent mesh particles to resolve conflicting constraints caused by

the nonphysical pinching of cloth, the facilitation of fracture and cutting algorithms,

and an extension of our framework to two-way interactions with rigid bodies.

6.2 Hard Bindings

The simulation mesh is subject to internal forces, from for example finite elements,

as well as external forces from gravity, friction, collisions, etc., and we want these

forces to act on the hard bound particles as well. We motivate our approach for

propagating forces to the parent mesh by considering a refinement that resolves all

the hard bound particles. Figure 6.2 shows three hard bound particles along with

an associated refinement. Although this refinement is not unique, it turns out that

the propagation of physical properties from the hard bound particles to the parent

mesh is independent of the tessellation used and can be performed without explicitly

refining the parent element. Internal forces are defined on the subelements in standard

fashion, but must be remapped to the parent particles since the hard bound particles

are not free to move independently.

Figure 6.3: Hard bindings used to improve surface collision resolution

Conservative forces can be defined in terms of the gradient f = −∂Ψ(x)/∂x of

the potential energy Ψ(x). The potential energy of the parent triangle is Ψ =
∑

Ψi,

6.2. HARD BINDINGS 101

where Ψi is the potential energy of subtriangle ti. Each Ψi is naturally defined in

terms of the positions of the vertices of triangle ti rather than the positions of the

parent particles, although the former are fully determined by the latter through the

binding constraint. Let xi denote the positions of the vertices of triangle ti, e.g. x2 is

composed of the positions of particles {x2, x5, x6} in figure 6.2. The parent triangle

vertices {x1, x2, x3} are represented by x. Using this notation, the three forces on the

parent particles are

f = −
∑
i

∂Ψi

∂x
= −

∑
i

(
∂xi
∂x

)T
∂Ψi

∂xi
=
∑
i

(
∂xi
∂x

)T
fi (6.1)

where fi = −∂Ψi/∂xi are the three vertex forces computed on each subtriangle ti.

The Jacobian ∂xi/∂x is constant for each triangle ti and contains the barycentric

coordinates of xi with respect to the vertices x of the parent triangle. Equation (6.1)

can be extended to the computation of elastic force differentials for use in implicit or

quasistatic time integration via

δf |δx =
∑
i

(
∂xi
∂x

)T
δfi|δxi

(6.2)

Equation (6.2) is obtained by taking the directional derivative of (6.1), assuming that

the Jacobian ∂xi/∂x is constant (i.e. the binding constraint is linear), which is always

the case for the barycentric embeddings used here. Nonlinear binding constraints

would result in additional terms in equation (6.2).

From equations (6.1) and (6.2) we can write the net force and force differential on

a single parent particle as

fk =
∑
ti

∑
xj∈ti

wjkf
i
j and δfk|δx =

∑
ti

∑
xj∈ti

wjk δf
i
j

∣∣
δxi

(6.3)

where wjk is the barycentric weight of particle j with respect to particle k of the

parent triangle and f ij is the force on particle j from subtriangle ti. In practice we

implement equation (6.3) by accumulating all forces on both parent and hard bound

102 CHAPTER 6. HYBRID SOLIDS

particles from all their incident elements and subsequently redistributing the force

on each hard bound particle to its parents weighted by its barycentric weights. Note

that the final force distribution does not depend on the tessellation used but only on

the barycentric weights of the hard bound particles.

We use equation (6.3) for velocity dependent damping forces as well noting that

it preserves the symmetry and definiteness of the linear damping forces allowing for

our semi-implicit time integration framework. We consider the linear damping model

f̄ = Ḡv̄ where Ḡ is symmetric negative definite, and the force f̄ and velocity v̄ refer

to all particles, including hard bound particles. The velocities of this extended set

of particles are expressed in terms of the velocities of the parent particles, v̄ = Wv.

Using this notation, equation (6.1) reduces to f = WT f̄ = WT ḠWv = Gv where

G = WT ḠW preserves both symmetry and negative definiteness of the original

damping matrix Ḡ. A similar derivation shows that the distribution scheme for force

differentials given in equation (6.3) preserves symmetry and negative definiteness of

the elastic stiffness matrix, which is an important property for schemes that use an

implicit or quasistatic treatment of elastic forces as well.

After forces have been computed and redistributed to the parent particles, ac-

celerations are computed via a = M−1f where M is diagonal in a typical lumped

mass formulation. We store the lumped masses of the parent particles in a vector m,

which is the diagonal of M. In analogy to our force derivation, we write the mass

vector as the gradient of total momentum with respect to velocity, i.e. m = ∂P/∂v.

Let m̄ be the masses of all particles. As is typical, one could compute the initial

mass of hard bound particles by refining the parent mesh as in figure 6.2 and as-

signing one third the mass of each triangle to its vertices, although any scheme for

assigning mass (including uniform mass) is allowed. The total momentum is then

given as P = m̄T v̄, thus m = ∂
∂v
P = ∂

∂v

(
m̄T v̄

)
= ∂

∂v

(
m̄TWv

)
= WTm̄ indicating

that masses of hard bound particles should be redistributed to the parents based on

the barycentric weights, i.e. the same as for force redistribution. More generally in

a non-lumped mass formulation, the mass matrix is computed as the Hessian of the

6.2. HARD BINDINGS 103

kinetic energy

M =
∂2K

∂v2
=

∂2

∂v2

(
1

2
v̄TM̄v̄

)
=

∂2

∂v2

(
1

2
vTWTM̄Wv

)
= WTM̄W

Although hard bound particles have no mass or momentum, an effective mass is

useful for many numerical algorithms. We define the effective mass as the ratio of an

applied force to the resultant acceleration of the hard bound particle, i.e. fe = meae.

Denoting the binding weights by wi, the applied force is distributed to the parent

particles via fi = wife and the acceleration of the bound particle is ae =
∑
wiai.

Combining these equations gives

fe
me

= ae =
∑

wiai =
∑

wi
fi
mi

= fe
∑ w2

i

mi

⇒ 1

me

=
∑ w2

i

mi

(6.4)

The effective mass is used in the determination of stability restrictions for forces

defined on the hard bound particle, e.g. if a hard bound particle is connected to a

spring, the effective mass would be used to compute the harmonic mass.

One often needs to apply impulses to hard bound particles, e.g. for collisions.

An impulse je applied to a hard bound particle is the result of a force fe acting

on the particle for an infinitesimal interval ∆t, i.e. je = fe∆t, and from equation

(6.3) we obtain ji = wije. Furthermore, changes in velocity are governed by ∆vi =

ji/mi = wi(me/mi)∆ve, and displacements follow ∆xi = wi(me/mi)∆xe assuming

that ∆xe = ∆tve.

Figure 6.3 illustrates the utility of hard bindings in processing collisions. A typi-

cal approach to collision processing is to collide the points (possibly only the surface

points) of a deformable object with collision geometry, and we collide each tetra-

hedral mesh node from the sphere’s surface with the ground and the kinematically

controlled red sphere. Although ground collisions are sufficiently resolved, the kine-

matically controlled red sphere passes directly through the deformable object, missing

any potential collisions with surface particles. Although one might adaptively refine

tetrahedra near the colliding red sphere, this increases the total elements that need to

be simulated and the smaller edge lengths lead to a stiffer time step restriction. Our

104 CHAPTER 6. HYBRID SOLIDS

hard binding framework allows us to simply sprinkle particles on the surface of the

sphere at a higher density than the tetrahedral mesh for the sake of collisions. This

can be done statically or even adaptively based on proximity to collision objects.

Figure 6.4: Non-graded red refinement leading to T-junctions.

Figure 6.5: An elastic sheet with T-junctions is stretched with and without bindings.

6.2.1 T-junctions

Figure 6.4 depicts four coarse triangles undergoing up to two levels of non-graded red

refinement leading to a number of T-junctions. Structured adaptive meshing schemes

such as [113] resolve these T-junctions via a combination of red and green refinement.

This produces both more elements increasing computational cost as well as lower

quality green elements which adversely affect the time step restriction. Additional

6.2. HARD BINDINGS 105

savings may be realized by exploiting the regularity of adaptive red-only refinements

where all elements in the mesh are identical up to rotation and scaling requiring only

the storage of a scale factor per element to encode the rest state (see appendix D.2.

For every T-junction, we compute its parents by recursively tracking the endpoints

of refined segments. This leads to the barycentric embedding of hard bound particles

on segments or triangles in two spatial dimensions, and on segments, triangles or

tetrahedra in three spatial dimensions. Figure 6.5 illustrates that the straightforward

simulation of a T-junction mesh leads to gaps in the mesh (top), while treating T-

junction particles as hard bound particles properly constrains them to their incident

edges (bottom). We note that T-junctions have also been treated using hierarchical

bases (see e.g. [74]).

Figure 6.6: Triangulated surface embedded in point cloud.

106 CHAPTER 6. HYBRID SOLIDS

6.2.2 Arbitrary embeddings

Although our framework is described in the context of a parent simulation mesh

outfitted with a number of embedded particles that will be extended into a fully

particle-centric simulation framework (in section 6.3), here we give an example to

illustrate that our framework is actually more general than this. That is, we switch

from the notion of a parent simulation mesh with an embedded particle-centric sim-

ulation system to a parent particle simulation system with an embedded mesh. In

the context of free-form deformations, one might use a nearest neighbor approach

to compute a mesh-free discretization of internal forces on the point cloud, and sub-

sequently move the embedded geometry kinematically. Of course, this can lead to

potentially severe distortions of the embedded geometry, especially since the point

cloud sampling of deformation is very different from that perceived by the embedded

geometry. This can be alleviated by computing the internal forces on the embedded

mesh itself, as we do in the elastic ribbon shown in figure 6.6, and then mapping

the resultant forces to the point cloud. Using these forces, we still time integrate

the point cloud particles and kinematically enslave the embedded geometry, but the

deformation of space is now sampled more adequately for the purpose of simulating

the embedded geometry. Note that the kinematic motion of the ribbon is dictated by

the k closest parent particles of the point cloud.

6.3 Soft Bindings

The hard bound particle framework is limited because the hard bound particles are

kinematically constrained to the parent mesh rather than possessing real degrees of

freedom. Thus, specialized algorithms would be required for collision processing, etc.

We overcome these issues by introducing the notion of a soft binding which couples a

new, fully simulation capable particle with an existing parent particle or hard bound

particle target location as illustrated in figure 6.1. We can then ignore hard bound

particles for the purpose of collisions and apply collision processing uniformly to

parent particles and soft bound particles.

6.3. SOFT BINDINGS 107

Under no external influence such as collisions or soft bound particle intrinsic forces,

soft bound particles should follow their target positions. This is achieved by applying

the force that leads to a matching acceleration between the soft bound particle and its

target, i.e. the soft bound particles inherit elasticity and similar forces from the parent

mesh. If the acceleration of a hard bound particle is ae =
∑
wiai =

∑
wi(fi/mi),

the force that is applied to the soft bound particle in order to match this acceleration

is fs = ms

∑
wi(fi/mi) where ms is the mass of the soft bound particle. Note that

we only use this process to remap elastic forces, since applying it to damping forces

would compromise the symmetry of the coupled damping matrix used in our implicit

time integration scheme.

The mass of each soft bound particle is set to the effective mass of its target (which

is just the mass for parent particles). This duplication of mass does not change the

effective total mass of the object as measured by applied forces because our mapping

of forces from the parent mesh to the soft bound particles properly accelerates those

particles. However, a mass assignment stemming from a consistent physical principle

would be desirable.

The coupling strategy between soft bound particles and their targets depends on

whether short term or long term drift is desired. Therefore we give separate algorithms

for short term and long term drift below.

Figure 6.7: Soft bindings enable subtetrahedron elasticity in response to collision.

108 CHAPTER 6. HYBRID SOLIDS

6.3.1 Synchronized coupling

The most straightforward way to transfer information from the target particle to the

soft bound particle is by directly copying the target state. At first glance, this appears

to nullify the desired properties of soft bound particles effectively reducing them to

hard bound particles. However, in contrast with hard bound particles which are kept

consistent with their target state at all times, soft bound particles are synchronized

to their target state at specific points of the time integration loop allowing drift be-

tween two subsequent synchronizations. For example, if the soft bound particles are

synchronized to the target states just before collision processing and subsequently

allowed to deviate from that state as a result of collisions, we can use the unsyn-

chronized state to obtain a detailed subtetrahedron visualization of the collision, as

shown in figure 6.7. Apart from collision processing, additional forces may also be

used to cause drift in soft bound particles, e.g. a soft bound copy of the surface of a

volumetric object could be endowed with shell elastic forces. We subsequently prop-

agate any drift from their target locations back to their parents, prior to the next

synchronization of soft bindings with their target state.

To propagate drift from a soft bound particle to its target, we compute the dis-

crepancy in position ∆x = x− xe and velocity ∆v = v − ve, where xe and ve are the

position and velocity of the (possibly hard bound) target particle. If the target par-

ticle is part of the parent mesh, its position and velocity are directly updated, while

if it is a hard bound particle we use the formulas derived in section 6.2 to propagate

this displacement and velocity change to the hard bound particle’s parent particles.

6.3.2 Coupling through binding springs

The synchronized coupling scheme only allows for short term drift of the soft bound

particles limiting their added simulation capabilities. If long term drift is desired, we

instead employ a spring-like force between the soft bound particle and its respective

target particle. This binding spring force is

f b = −f be = −k(x− xe)− b(v − ve). (6.5)

6.3. SOFT BINDINGS 109

Figure 6.8: Spheres stitched together using binding springs of varying stiffness.

Note that the binding spring has zero rest length and thus linearizing about the rest

state results in a multidirectional (as opposed to the typical directional) damping

term. We will capitalize on this fact in our time integration scheme. Binding springs

more readily allow for full simulation capabilities in the soft bound particles. One no

longer needs to propagate information from the soft bound particles to the parents

or to synchronize the soft bound particles, but rather the soft bound particles and

parents are now implicitly coupled in a two-way fashion via these binding springs. We

emphasize that the important properties of soft bindings depend on the combination

of binding springs with force mapping, and would not be achieved through springs

alone.

In figure 6.7 a coarse tetrahedralized volume has its surface mesh adaptively and

dynamically refined based on proximity to collision geometry, and the soft bound

particles present at every vertex of the surface mesh provide for subtetrahedron de-

formation.

6.3.3 Time integration

Our time integration scheme is a variant of the semi-implicit modified Newmark

integration scheme of [82]. The deformable object is evolved from time tn to tn+1 as

follows:

110 CHAPTER 6. HYBRID SOLIDS

Figure 6.9: Cloth pinched between two colliding spheres.

1. ṽn+ 1
2 = vn + ∆t

2
a(tn+ 1

2 ,xn, ṽn+ 1
2)

2. x̃n+1 = xn + ∆tṽn+ 1
2

3. Process collisions (x̃n+1,vn)→ (xn+1, ṽn)

4∗. vn+1 = ṽn + ∆t
2

(
a(tn+ 1

2 ,xn+ 1
2 , ṽn) + a(tn+ 1

2 ,xn+ 1
2 ,vn+1)

)
where xn+1/2 = (xn + xn+1)/2. Our scheme deviates from that of [82] in that the

trapezoidal velocity update in step 4∗ uses xn+1/2. This substitution retains second

order accuracy and allows for fully implicit integration of our binding spring forces.

Under the common assumption that the velocity dependent forces are linear, we can

rewrite step 4∗ as

6.3. SOFT BINDINGS 111

4. vn+ 1
2 = ṽn + ∆t

2
a
(
tn+ 1

2 ,xn+ 1
2 ,vn+ 1

2

)
5. vn+1 = 2vn+ 1

2 − ṽn

The version of trapezoidal rule in step 4∗ can suffer from poor numerical conditioning

when the two acceleration terms are rather large but of opposite sign, whereas steps

4 and 5 use a completely robust backward Euler update followed by extrapolation.

That is, in the limit of a large time step the first acceleration term in step 4∗ pushes

a positive coefficient c of an eigenvector toward −∞ while the second acceleration

term brings that value back from −∞ to −c, possibly failing due to loss of precision.

However, in the same large time step limit, step 4 damps c to 0 and step 5 robustly

extrapolates c through 0 to −c.

Figure 6.10: Allowing the hard bound targets to drift enables sub-element plaasticity

The time step restriction imposed by a single binding spring is ∆t < (b+
√
b2 + 4µk)/k

where µ is the reduced mass (proof provided in appendix B). As is typical, this drives

the time step to zero as the spring constant is increased, and thus we propose a fully

implicit treatment of the binding springs leveraging the fact that our binding springs

are fully linear in both position and velocity (which is not the case for non-zero rest

length springs).

Equation (6.5) can be written in matrix form as f b = −Kx−Bv, where the

stiffness and damping matrices K and B are symmetric positive semi-definite. We

112 CHAPTER 6. HYBRID SOLIDS

apply our time integration scheme to this force, with the modification that in step 1

we use the half time step position x̃n+1/2, making this step fully implicit:

ṽn+ 1
2 = vn +

∆t

2
ab(tn+ 1

2 , x̃n+ 1
2 , ṽn+ 1

2) (6.6)

= vn +
∆t

2

(
−M−1Kx̃n+ 1

2 −M−1Bṽn+ 1
2)
)
. (6.7)

Substituting x̃n+1/2 = 1
2
(xn + x̃n+1) = xn + ∆t

2
ṽn+1/2, where the last equality comes

from step 2, gives(
I +

∆t

2
M−1B +

∆t2

4
M−1K

)
ṽn+ 1

2 = vn − ∆t

2
M−1Kxn (6.8)

which is a true backward Euler step implicit in both position and velocity with no

time step restriction. We emphasize that equation (6.6) only replaces step 1 in our

time integration loop, and step 4 still requires the use of xn+1/2. Our modifications

to [82] are crucial for unconditional stability, e.g. using xn+1 instead of xn+1/2 in step

4 leads to a time step restriction of ∆t < (b +
√
b2 + 8µk)/2k. We stress that this

implicit treatment of elastic forces is only used on the binding springs and that all

other elastic forces are treated explicitly in order to more accurately resolve dynamic

motion.

6.4 Examples

We used critical damping for the soft binding springs in our examples. The stiffness

parameters were set experimentally.

Figure 6.8 shows eight deformable spheres stitched together using implicit bind-

ing springs as described in section 6.3.2. On the left the binding springs are made

sufficiently stiff to retain coincidence of the connecting points without incurring addi-

tional time step restrictions. The binding springs are visible on the right where their

stiffness is reduced.

In figure 6.10 we begin with a coarse deformable block. We then create a duplicate

copy of the top surface, which is refined and hard bound to the block. Next, we use

6.4. EXAMPLES 113

binding springs to attach a soft bound duplicate of this refined surface for collision

with a stamp. When collisions stretch these binding springs to a length beyond a

prescribed threshold the hard bound target particles are moved in material space

(and a new barycentric embedding is computed) to bring the length back down to

this threshold, analogous to typical plastic yield. We are careful not to move any

hard bound target particle outside the material.

Using a variant of the virtual node algorithm [112], we cut a coarse cube mesh

consisting of 320 tetrahedra into 289 sticks as shown in figure 6.11. Each stick is

composed of a number of tetrahedra that are only partially filled with material and

the polygonization of the material surface is augmented with soft bindings to resolve

self-collisions and object collisions, see [154] which is enabled by our new hybrid

simulation framework.

Figure 6.9 shows cloth pinched between two kinematically controlled spheres pro-

ducing contradictory collision constraints (see [11]). For each particle in the cloth

mesh that is pinched between the two spheres, we create two duplicate soft bound

particles which each collide with only one of the two spheres. Collisions with the

sphere pull these soft bound particles away from their hard bound target locations on

the cloth surface resulting in binding spring forces that pull the cloth mesh in both

directions equilibrating in a steady state. In the absence of any other forces, the soft

bound particles would slide along the sphere in an attempt to minimize the length of

the underlying binding springs. However, we map the mesh-based constitutive model

forces of the cloth to the soft bound particles making them behave in a fashion similar

to their hard bound counterparts, i.e. resisting stretching. Figure 6.9 (lower right) is

a visualization of the effect of mapping the constitutive model forces from the hard

bound target locations to their soft bound counterparts. That is, it is similar to

creating a mesh which connects all the drifted soft bound particles to each other and

to the parent mesh as depicted schematically by the orange wireframe. In fact, one

could envision this as simulating three distinct meshes: the parent mesh given by the

cloth itself, the orange wireframe mesh, and a second wireframe mesh which agrees

with the bottom half of the orange wireframe but is concave up elsewhere resolving

collisions with the top sphere. However, we do not need to construct these duplicate

114 CHAPTER 6. HYBRID SOLIDS

Figure 6.11: A coarse cube mesh is cut into 289 sticks.

meshes, and instead automatically inherit these properties from the parent simulation

mesh.

Figure 6.12 depicts the dynamic simulation of a muscle-driven facial model for

speech articulation based on [155]. The surface geometry is embedded in a non-

graded adaptive red-only BCC mesh resulting in an 80% reduction in the number of

simulation elements as compared with [156]. Hard bindings are used to simulate the

resulting T-junctions, while soft bound particles are used to model the high resolution

surface and also used for collisions, self-collisions and boundary conditions. Since the

simulation mesh does not conform to the geometry of the cranium and jawbone, we

use soft bound particles on the high-resolution surface to enforce bone attachments

as well. A higher stiffness was used to attach the embedded free skin surface to its

6.5. EXTENSIONS TO RIGID BODY COUPLING 115

Figure 6.12: An adaptive red-only BCC mesh for an embedded face simulation.

hard bound counterpart, and a lower stiffness was used for the connections between

soft-bound bone attachments and their hard bound targets.

6.5 Extensions to Rigid Body Coupling

Various authors have considered the two-way coupling of rigid and deformable bodies

using a variety of schemes, see e.g. [9, 134, 85, 102]. We present preliminary results

showing that our hybrid framework can be applied to these types of problems as well.

We consider the rigid body frame (xc, q), twist (vc, ω) and inertia tensor I(q) =

R(q)I0R(q)T , where I0 is a diagonal inertia tensor and R(q) is the rotation matrix

116 CHAPTER 6. HYBRID SOLIDS

Figure 6.13: Binding springs enforcing articulation constraints.

associated with the current orientation. To facilitate our hybrid formulation, we

define a rigid body particle with the same state as a rigid body. A rigid body hard

binding is defined by embedding a particle onto a fixed object space location r0.

Consequently, the kinematic state of the bound particle is given as xe = xc + r(q)

and ve = vc + ω × r(q) where r(q) = R(q)r0 is the world space displacement of

the embedded particle from the center of mass of the rigid body. We can write

ve = W (q)(vc, ω) with the aid of the interpolation matrix W (q) = (I r(q)∗T) where I
is the 3×3 identity matrix and r(q)∗ is the cross product matrix. Although xe cannot

be written in similar form, a linearized change in the frame of the rigid body particle

admits a similar mapping, i.e. ∆xe = W (q)(∆xc,∆q), where ∆xc is the displacement

of the center of mass and ∆q is the vector whose cross product matrix is the linearized

rotation satisfying R(q(t+ ∆t)) = R(q(t)) + ∆q∗ +O(∆t2).

Applying a force fe to the hard bound particle results in a wrench (fc, τ) =

W (q)Tfe where fc = fe is applied to the center of mass and τ = r(q) × fe is the

torque. Next consider a velocity-dependent damping force fe = Geve on a hard

bound particle, which results in (fc, τ) = W (q)TGeW (q)(vc, ω) = G(vc, ω) where

G = W (q)TGeW (q) maps twists to wrenches directly and retains the symmetry and

definiteness of the damping matrix Ge. Similarly elastic wrench differentials are given

by (∆fc,∆τ) = W (q)TKeW (q)(∆xc,∆q) = K(∆xc,∆q) where K = W (q)TKeW (q)

6.5. EXTENSIONS TO RIGID BODY COUPLING 117

is the stiffness matrix expressed in terms of the rigid body particle and Ke = ∂fe/∂xe

is the stiffness matrix expressed in terms of the hard bound particle. We use these

results to treat rigid body particles in the same fashion as other parent particles in

our time integration scheme. Note that the definition of the global damping matrix

G = WT ḠW and global stiffness matrix K = WT K̄W trivially extends to the case

of rigid body bindings, by incorporating the interpolation matrix W (q) into the global

matrix W used in these equations. Finally, the global mass matrix M is augmented

with the diagonal entry diag(mI, I) for each rigid body particle.

Figure 6.14: Rigid plates coupled with cloth sheets.

We preliminarily couple our hybrid simulation of rigid body particles to a state-

of-the-art rigid body simulation scheme as follows:

1. Copy the state of the rigid bodies to the rigid body particles

118 CHAPTER 6. HYBRID SOLIDS

2. Compute ṽn+ 1
2 as in section 6.3.3

3. Compute x̃n+1 using x̃n+1
c = xnc + ∆tṽ

n+ 1
2

c and q̃n+1 = q(∆tωn+ 1
2)qn

4. Process collisions for deformable objects only

5. Compute vn+1 using steps 4 and 5 from section 6.3.3

6. Copy momentum only from the rigid body particles to the rigid bodies

7. Separately, time integrate and collide the rigid bodies

This last step evolves the rigid bodies forward in time using a standard scheme as in

[75], and the two-way coupling is integrated into the standard rigid body solver using

steps 1 through 6 where only the effects of momentum are preserved. Although it

may be possible to extend the rigid body particles to include more advanced contact,

collision, friction, stacking and complex articulation, it is not yet clear how this could

be done and we defer it to future work. Figure 6.13 shows the use of implicitly

integrated binding springs to enforce a simple point joint articulation between rigid

body hard bound particles. Figures 6.14 and 6.15 illustrate two-way coupling between

cloth and rigid bodies.

6.6 Summary

We proposed a novel method for augmenting a mesh-based approach to deformable

solids simulation with point-based simulation technology. Although we have only

shown a few illustrative examples, we believe that this framework will have widespread

use, especially on problems where the mesh-based framework is too restrictive. As

future work, we would like to improve the formulation of soft bound particles by de-

riving the assignment of masses from an underlying physical principle and extending

the force mapping algorithm to include damping forces. We will also focus on ex-

tending our preliminary algorithm for coupling deformable and rigid bodies to more

complex rigid body scenarios, including contact, collision, stacking, friction and more

complex articulation.

6.6. SUMMARY 119

Figure 6.15: Simulation of a cloth curtain bound to rigid rings.

Chapter 7

Cutting and virtual surgery

We propose a flexible geometric algorithm for placing arbitrary cracks and incisions on

tetrahedralized deformable objects. Although techniques based on remeshing can also

accommodate arbitrary fracture patterns, this flexibility comes at the risk of creating

sliver elements leading to models that are inappropriate for subsequent simulation.

Furthermore, interactive applications such as virtual surgery simulation require both

a relatively low resolution mesh for efficient simulation of elastic deformation and

highly detailed surface geometry to facilitate accurate manipulation and cut place-

ment. Thus, we embed a high resolution material boundary mesh into a coarser

tetrahedral mesh using our cutting algorithm as a meshing tool, obtaining meshes

that can be efficiently simulated while preserving surface detail. Our algorithm is

similar to the virtual node algorithm in that we avoid sliver elements and their asso-

ciated stringent timestep restrictions, but it is significantly more general allowing for

the arbitrary cutting of existing cuts, sub-tetrahedron resolution (e.g. we cut a single

tetrahedron into over a thousand pieces), progressive introduction of cuts while the

object is deforming, and moreover the ability to accurately cut the high resolution

embedded mesh.

120

7.1. INTRODUCTION 121

7.1 Introduction

Methods for modeling and animating cracks and incisions on rigid or deformable

solids have received significant attention in computer graphics, some dating back

to the early days of deformable models [168, 169]. One class of applications dealt

with modeling the phenomena of material failure and fracture (see e.g. [133, 131])

while other methods focused on incisions that are explicitly placed on a deformable

model, for example in the context of a surgical manipulation in a virtual simulation

environment.

Virtual surgery in particular has spawned a very active thread of research due to

the high visibility and impact of such applications as well as the unique algorithmic

requirements it entails. Interactivity in a virtual surgery application mandates the

use of a relatively coarse simulation mesh to obtain high frame rates. At the same

time, a substantially higher resolution is required on the surface geometry to prevent

distorting features that are essential in planning incisions and manipulating the flesh.

These requirements place severe limitations on the design of a cutting algorithm. For

example, methods that decompose tetrahedra into subelements in order to cut the

mesh (e.g. [16, 14]) create many more tetrahedra (essentially making a fine resolution

mesh near the cuts) and create ill-conditioned tetrahedra that impose severe time

step restrictions (see e.g. [114, 15]) making the simulation impractical even on the

low resolution base mesh. Thus, some authors have avoided element decomposition

resorting instead to other techniques such as deleting any element touched by the

blade [62], or restricting cutting to mesh element boundaries [127]. Whereas the

second option can produce a jagged surface, subsequent snapping of nodes can smooth

the cut surface [128, 152]. Of course, this also tends to produce sliver elements, and

some authors have proposed the use of meshing algorithms such as edge collapse to

remove degenerate tetrahedra [64, 160].

Although first proposed in the context of fracture, the virtual node algorithm

[112] alleviates many of the aforementioned difficulties. By duplicating elements to

obtain new degrees of freedom necessary for modeling the topological change, it pre-

serves the conditioning of the initial mesh while creating a minimal number of new

122 CHAPTER 7. CUTTING AND VIRTUAL SURGERY

elements. Thus one obtains the goal of a low number of well-conditioned elements. A

limitation of the virtual node algorithm is that if the mesh were completely fractured,

the smallest possible units would be individual nodes surrounded by their incident

material. A tetrahedron can be cut at most once along each edge and can only be

fractured into four pieces. Thus, the resolution of the simulation mesh effectively

limits the resolution of the cutting surface. For a virtual surgery application, where

a coarser mesh and precise cuts are required, such restrictions could be detrimental.

For example, even a simple V-shaped cut would have to be heavily distorted so that

the cutting surface only “turns” along element boundaries. More elaborate cuts, such

as T-shaped incisions, would incur even more serious distortion or could even lead to

spurious material connections. For fracture on the other hand, where finer meshes

are typically used and jagged cracks are acceptable, these restrictions are not as se-

vere. An improved version of the virtual node algorithm was proposed in [167] for

embedding a high resolution tetrahedral muscle geometry into a coarser resolution

tetrahedral simulation mesh. They diagrammatically showed that the virtual node

concept could be extended to split a tetrahedron into as many pieces as required to

embed arbitrary geometry, and used the high resolution tetrahedral muscle geometry

mesh to prescribe the connectivity of the coarse embedding mesh. An important

limitation of their method, however, is the requirement for a full tetrahedralization of

the embedded geometry (rather than a description of its boundary surface), rendering

it inapplicable to virtual surgery applications which define a cutting surface without

any predetermined notion of volumetric connectivity.

[161] proposed a meshless method for simulating a finite element constitutive

model similar to the fracture work in [140] (see also [187]). However, they stress that

the crack itself is better modeled with explicit triangulated geometry rather than

with the meshless method. This decoupling of the cutting surface from the simula-

tion geometry (i.e. an explicit triangulated cutting surface combined with a meshless

discretization of the simulation geometry) is similar in spirit to the fracture work of

[123, 112] both of which embedded a triangulated surface into a background simu-

lation mesh. Stressing that this explicit triangulation of the cutting surface permits

geometric operations such as subdivision and self-intersection resolution, we devise

7.1. INTRODUCTION 123

Figure 7.1: A spiral cut applied to a piece of cloth creates a long ribbon.

a novel algorithm that allows for a direct implementation of the conceptual diagram

from [167] without requiring any predetermined notion of volumetric connectivity (as

they do). Thus, our algorithm can also be used as an embedded meshing tool which,

using only the boundary surface of an input object, will embed it in an arbitrary

simulation mesh duplicating the degrees of freedom of the embedding mesh as needed

to resolve the topology and connectivity of the original embedded object. This fea-

ture is demonstrated in figure 7.11 where a high-resolution triangulated surface of a

face is used to carve an embedded flesh volume out of a coarser embedding mesh.

In this example, embedding tetrahedra touching both the upper and the lower lip

are automatically duplicated to allow opening of the mouth. Finally, such embedded

models may be further cut if desired, as shown in figure 7.11.

Our main contribution is a cutting algorithm that yields efficient simulation mod-

els while imposing no restriction on the geometry of the cuts. In this aspect it com-

bines the favorable traits of other methods in the literature while alleviating most of

their limitations. For example, it provides the versatility of remeshing-based or point-

based methods in accommodating arbitrary cuts, while maintaining the simplicity and

efficiency of an underlying tetrahedral representation (unlike point-based methods)

and preventing stringent timestep restrictions due to ill-conditioned sliver elements

(unlike methods based on remeshing). Similar to the virtual node algorithm it creates

new degrees of freedom to reflect the topological changes incurred by the cuts while

124 CHAPTER 7. CUTTING AND VIRTUAL SURGERY

preserving the good conditioning of the initial mesh, but avoids the restrictions on

the geometry of the cutting surface imposed by the formulation of [112]. When used

as an embedded meshing tool, it provides the freedom to embed an arbitrary high

resolution geometry on a coarser simulation mesh in the fashion of [167] but only

requires a surface representation of the embedded geometry as contrasted to the full

volumetric representation required by their approach. Finally, our method supports

incremental introduction of cuts as well as cutting an object while it deforms.

Figure 7.2: A single tetrahedron sliced into over a thousand pieces

7.2 Previous Work

Early fracture work includes [168, 169]. See also [130, 81, 110, 159] where connections

between elements are broken under high stress, [125] who addressed blast waves,

[119, 123] who considered fracture along element boundaries in an FFD framework,

[133, 191, 131] who handled fracture events using continuous remeshing, and [122] who

treated fragments as rigid bodies in between collisions. The virtual node algorithm

has also been used for melting and burning solids [104]. [69, 78] treated the fracture

of thin shells, and [8] addressed the fracture of rigid materials. Modeling of cuts

has also been addressed in the context of virtual surgery, especially on facial models

[95, 142, 93] (see also [116]) where the cut surface is the result of an explicit surgical

7.3. CUTTING ALGORITHM 125

Figure 7.3: A single tetrahedron is progressively cut while being simulated.

manipulation, rather than a physical Rankine condition for fracture.

7.3 Cutting Algorithm

In our approach there are two simulation primitives, a background tetrahedral sim-

ulation mesh and a triangulated cutting surface. When embedding a high resolution

material surface mesh into the background tetrahedral mesh, the high resolution sur-

face is considered part of the cutting surface and in fact our cutting algorithm is used

to generate this embedded geometry (see Figure 7.11). Virtual surgery applications

progressively add triangles to the cutting surface along the blade’s swept front, while

fracture applications add triangles based on stress criteria.

126 CHAPTER 7. CUTTING AND VIRTUAL SURGERY

7.3.1 The Cutting Surface

Triangles in the cutting surface may be initially intersecting, e.g. T-cuts are common

to many surgical procedures. Leveraging our explicit description of the cutting sur-

face, we resolve self-intersections through subdivision of the cutting triangles. One

approach is to compute intersections among all triangles in the cutting surface and

then to retriangulate into an intersection-free surface, but we have found that using a

polygonal subdivision is more robust and efficient. In particular, one could triangulate

our polygonal elements, but subsequent cuts that yield intersections would force fur-

ther subdivision of these triangles unnecessarily creating more elements and possibly

poorly conditioned elements. Given a soup of cutting triangles, the polygonal subdi-

vision is unique and can be updated incrementally preserving uniqueness whereas the

triangulation is not unique, based on heuristics, and may be found suboptimal when

further cutting triangles are added. This means that one would be forced to undo

previous triangulations in order to avoid degeneracies and poor conditioning due to

newly introduced cuts, injuring the incremental nature of the algorithm.

Our approach is to resolve the cutting triangles into an intersection-free, nonman-

ifold polygon mesh. Each cutting triangle is subdivided into a number of polygons,

whose edges are line segments that result from the pairwise intersection of this cutting

triangle with all other cutting triangles. When adding new cuts incrementally, these

new triangles are resolved with the existing polygons obviating the need to reexamine

all past cuts. We will of course eventually triangulate these polygons for collisions

and visualization, but the potentially-resulting sliver elements are not used by our

cutting algorithm and thus do not impact its conditioning.

We compute the polygonization of any triangle in the triangle soup as follows. A

node of the polygon mesh is defined in one of three possible ways: a vertex of a triangle

in the soup, an intersection between a triangle edge and a face at a point interior to

the face, or an intersection of three triangles that occurs at a point interior to all

three (see Figure 7.6). Each triangle is then subdivided into polygons by connecting

incident nodes with segments. We place segments between any two incident nodes

that are also on a given second triangle. That is, if node 1 and node 2 are both incident

on triangle 1 and triangle 2, then a segment is added between them. We also add

7.3. CUTTING ALGORITHM 127

Figure 7.4: 32 intersecting planes slice a tetrahedral mesh into 289 sticks.

segments between any two nodes that lie on the same edge of a triangle from the soup.

This definition results in overlapping segments when multiple nodes are collinear,

and thus we only construct the minimal set of non-overlapping segments. Finally, the

triangle is projected into two spatial dimensions where a boundary tracking algorithm

is used to identify each closed polygon (also see Figure 7.6).

128 CHAPTER 7. CUTTING AND VIRTUAL SURGERY

Figure 7.5: A cookie cutter surface is used to cut into a tetrahedral mesh.

7.3.2 Clipping to the Simulation Mesh

Besides resolving the cutting surface into non-intersecting polygons rather than tri-

angles, a second key to our approach is to further subdivide the cutting surface in a

manner that removes intersections with the faces of the tetrahedral simulation mesh.

This allows for a tetrahedron-centric approach to the algorithm facilitating subsequent

topological processing. This also preserves the incremental nature of the algorithm,

since adding a new cut only affects the intersected tetrahedra. Thus, most impor-

tantly, we treat both cutting triangles and tetrahedron faces as elements of a large

triangle soup and we resolve all of these triangles simultaneously into an intersection-

free polygon mesh. As mentioned in the previous subsection, incrementally-added

7.3. CUTTING ALGORITHM 129

cutting triangles are resolved with the the existing polygon mesh where our notion of

a polygon mesh now includes polygons on tetrahedron faces as well.

Figure 7.6: A triangle in the triangle soup intersecting other triangles

Figure 7.7: Clipping cutting elements in the 2D cutting algorithm.

In practice, our tetrahedron-centric algorithm is carried out as follows. First,

a tetrahedron intersected by a cutting triangle is assigned a copy of that triangle

for independent processing, where the triangle is projected into the tetrahedron’s

barycentric space. When polygonizing that triangle copy, we do so using a pool

of segments collected only from the faces of this tetrahedron and any other cutting

triangles that intersect this tetrahedron. The resulting polygons can be independently

130 CHAPTER 7. CUTTING AND VIRTUAL SURGERY

Figure 7.8: Progressive carving of a deforming slinky.

generated per tetrahedron. Since the faces of the tetrahedron are also in the triangle

soup, no polygon segment crosses a tetrahedron boundary, allowing us to trivially

prune away polygons that are not on or within the tetrahedron. Note that neighboring

tetrahedra that share a face will find the exact same polygons on that common face.

See Figure 7.7, which illustrates a two-dimensional version of our algorithm, where a

cutting segment spans three triangles from the background mesh. Since each triangle

owns a copy of this cutting segment stored in barycentric coordinates, subsequent

deformation of the mesh leads to three non-coincident copies of this cutting segment

that only agree at element boundaries.

7.3.3 Per-Tetrahedron Subdivision

After each tetrahedron has generated its subset of the polygon mesh, we determine

the volumetric connected components of material within each tetrahedron. Each

connected component is a polyhedron that we compute using boundary tracking on

the polygons in the tetrahedron. Then each connected component is embedded in

a duplicate copy of the original tetrahedron. Unlike the virtual node algorithm,

connected components may be completely interior to a tetrahedron and need not be

incident on a node or a face (see Figure 7.2). When constructing the polygon mesh,

tetrahedra that are only partially filled with material require special consideration.

They are handled by constructing only the subset of the polygon mesh that is on or

within actual material. This is straightforward since the material boundary is already

a subset of the previously generated polygon mesh.

7.4. EXAMPLES 131

Figure 7.9: Comparison of Z-plasty procedures at different angles.

7.3.4 Determining Material Connectivity

Once each tetrahedron has been partitioned into its connected components, we iden-

tify pairs of connected components across adjacent tetrahedra as materially contigu-

ous. We do so by examining each pair of tetrahedra that share a common face. Each

tetrahedron has been duplicated into identical copies, each containing a single con-

nected component of material embedded within it. The goal is to determine if a

copy of tetrahedron A contains material contiguous to material in some copy of tetra-

hedron B, which we do by individually examining each possible pair of tetrahedron

copies. We denote the copies as contiguous if their shared face contains a common

polygon (see Figure 7.10). Finally, we collapse nodes on common faces of materially

contiguous tetrahedra to obtain the final simulation mesh.

7.4 Examples

After cutting, we triangulate the resulting material surface for collisions, self-collisions,

and rendering. We determine the material surface simply by keeping only the polygons

incident on exactly one tetrahedron, removing those from the material’s interior. The

boundary polygons that remain are triangulated with a greedy ear-removal scheme.

We employ the hybrid framework of [157] to simulate the embedded material geome-

try, allowing us to use an arbitrary finite element constitutive model while resolving

object collisions and self-collisions on a soft constrained copy of the material surface.

132 CHAPTER 7. CUTTING AND VIRTUAL SURGERY

Figure 7.10: Topology and node duplication resulting from two cuts

Figure 7.1 shows a two-dimensional version of our algorithm used to make a spiral-

shaped cut into a suspended piece of cloth. Figure 7.3 illustrates that we can progres-

sively cut a single tetrahedron into multiple pieces as it deforms. Figure 7.2 shows a

single tetrahedron cut into over a thousand pieces by fifty cutting triangles, many of

which only partially intersect the tetrahedron rather than slicing completely through

it. Figure 7.4 shows 32 intersecting planes cutting a cube into 289 sticks. In addition,

our cutting algorithm can be used to sculpt objects with high surface detail embedded

within coarse simulation geometry. In Figure 7.5, we apply the same cutting stencil

normal to each face of a cube. In Figure 7.8, we progressively sculpt a slinky out of

a block. Figure 7.11 (top) shows our algorithm used as a meshing tool to embed a

250k triangle scan of the human face into an 850k tetrahedral simulation mesh. The

resulting face model itself can then be further cut, as shown in Figure 7.11 (middle).

7.5 Clinical Applications

Today we train surgeons on the backs of the poor through free clinics and low-income

care. In the absence of computerized training tools for predicting surgical outcomes,

practitioners often have to learn through their own mistakes limiting the quality

of care they can provide to their patients. A virtual surgery environment helps to

7.5. CLINICAL APPLICATIONS 133

Figure 7.11: The cutting algorithm used as an embedded meshing tool

alleviate this by providing scenarios for most known accidents and complications that

could arise during a surgery. Moreover, it allows one to confront never-before-seen

situations as well. The essence of surgery is topological change and therefore one

needs a very robust and flexible cutting algorithm in any surgical simulator.

Plastic surgery has wide-ranging techniques of various complexity, but there are

certain fundamental maneuvers common to many procedures. Z-plasty is such a pro-

cedure and is used in at least 25% of reconstructions. A surgeon performs thousands

134 CHAPTER 7. CUTTING AND VIRTUAL SURGERY

Figure 7.12: A Z-plasty procedure is used to alleviate a scar contracture.

Figure 7.13: Simulation of a reduction mammoplasty.

of them over the course of a career. The Z-plasty is used to elongate scar contracture,

to redirect existing scars into natural tissue creases, and for general scar revision.

Often a wound or an old scar is contracted and a Z-plasty procedure can alleviate

7.5. CLINICAL APPLICATIONS 135

the contracture by elongating the tissue in a desired direction. For example a se-

vere burn victim may experience scar contracture serious enough to constrain normal

movement. Being able to elongate such a scar is essential for the rehabilitation of

the patient. A Z-plasty elongates tissue in the desired direction by shortening the

tissue in the perpendicular direction through transposition of wedge-like flaps created

from a Z-shaped incision. Though seemingly simple, there are mistakes to be made

in the Z-plasty. Angles other than 60 degrees between incisions makes the directions

of elongation and contraction non-perpendicular, and yields lower length gains (see

figure 7.9).

Figure 7.12 illustrates a typical Z-plasty, where the scar is shown in red and the Z-

shaped incision is depicted in blue. Incisions at 60 degrees produce optimal elongation.

The middle figure shows how the two flaps (each with two edges) resulting from the

cut are manipulated so that previously adjacent edges (along the scar) are swapped

with their non-adjacent edges. The hooks around the exterior of the skin patch are

used to illustrate constraints applied to our finite element mesh used to make the

behavior of the skin near the flaps more realistic without simulating the surrounding

body. As shown in blue in the second figure, a stitch is added partway through the

procedure in order to facilitate the swapping of the adjacent flap edges. Stitching is

crucial for realism in the surgery, and we also give an indication of the final stitching

in the third figure. Note (especially in the video) how important stretching is to

the realism of the surgical procedure, highlighting our statements about an accurate

finite element model’s impact on the proper prediction of surgical outcomes. The

bottom three images in the figure are the same except with a superimposed grid used

to illustrate patterns of tissue strain after the procedure.

Another common surgical procedure is the removal of a defect such as a malignant

melanoma. Treatment for this deadly disease requires the removal of a region of

skin around the growth. This produces a consistent defect on the patient’s body.

Covering this with local flap tissue while minimizing strain on surrounding tissues

then becomes a recurring challenge for the surgeon. A Rhomboid flap is a simple

technique for such a removal and subsequent covering. Often the surgeon starts with

an original approach such as a Rhomboid flap but realizes that the skin did not stretch

136 CHAPTER 7. CUTTING AND VIRTUAL SURGERY

as easily as intended. The surgeon might then decide to complement the procedure

with a Z-plasty to relieve the tension. This common occurrence demonstrates the

importance of the ability to add progressive incisions in the deformed configuration

(as we previously illustrated in Figure 7.3).

Figure 7.14 illustrates the use of our cutting algorithm in a Rhomboid flap pro-

cedure. The malignant melanoma being removed is depicted in red and our cut is

depicted in blue. Removing the patch of skin containing the defect and opening

the flaps (top middle). The final result after transposing the flaps and stitching

(top right). Grid lines illustrate patterns of tissue strain (bottom). Each of the six

incisions is made in practice by a different sweep of the scalpel, and will thus cause in-

tersecting cuts. Even in the Z-plasty, the impreciseness of the three separate scalpel

cuts will cause self-intersections of the cutting triangle mesh at the two corners of

the Z. Moreover even for the most accurate surgeon, numerical errors lead to self-

intersection. After making the cuts the patch of skin containing the melanoma is

completely removed, and the remaining three-sided flap is lifted and moved to fill the

missing patch of skin. Four pairs of edges need to be sewn together. For three of these

pairs, one of their edges comes from the set of four edges exposed when the piece of

skin is removed. The fourth pair of edges was formed by the two cuts that freed the

flap of skin that is transposed. The stitches are depicted in blue and one can see the

importance of the ability to stitch in order to carry out the surgery. Moreover, the

effect of skin stretching and its importance on the surgical outcome are obvious (also

see the video). Finally, we once again show a grid to illustrate the patterns of tissue

strain after the procedure.

Interactivity in virtual surgery is crucial, thus a low resolution simulation mesh is

required. This is not a problem for a simple tissue slab, but many procedures such

as cleft lip and palate repair, breast reductions, etc. require more complex anatom-

ical geometry that can be difficult to represent with a low number of tetrahedron.

Conversely, the results of the simulated surgery need to be as reliable as possible

and such results can only be confirmed under mesh refinement. Fortunately, the pro-

posed cutting algorithm, when used as a mesh generator, allows for such scalability

of detail in a nearly automatic fashion. A surgeon can block out a surgery with a

7.5. CLINICAL APPLICATIONS 137

Figure 7.14: Rhomboid flap repair following the removal of a skin cancer.

coarse tetrahedral model (determined by the anatomical geometry’s embedding in

a low resolution background tetrahedron mesh) and then re-simulate the procedure

with the same steps in an off-line high resolution simulation to confirm the results.

The high and low resolution meshes are created by simply varying the resolution of

the embedding tetrahedron mesh.

In Figure 7.13 our cutting algorithm is used to sketch out and simulate a breast

reduction surgery. The patient’s macromastia leads to problems such as neck, shoul-

der, and back pain and hinders physical activity and exercise. The reduction surgery

removes excess breast tissue and skin resulting in breasts that are higher on the

chest wall and have a more aesthetic appearance. The surgery is blocked out inter-

actively on a low resolution model (without self-collision). The results are confirmed

by repeating the simulation at higher resolution off-line with self-collision handling

enabled. Accurate prediction of the surgical result requires modeling the nonlinear

constitutive properties of breast skin, as well as the internal breast tissue which ex-

hibits different material behavior, highlighting the need for a high resolution finite

element model. In our simulated reduction operation a scanned triangulated surface

138 CHAPTER 7. CUTTING AND VIRTUAL SURGERY

of the patient’s chest is used to carve an embedded material geometry out of a back-

ground BCC mesh using our cutting algorithm. Additional incisions subsequently

remove the excess skin and breast tissue followed by the manipulation and closure of

the retained tissue.

7.6 Discussion and Limitations

Despite the versatility of our cutting algorithm, a number of notable limitations ex-

ist. Our formulation assumes that cuts are introduced in the form of triangulated

surfaces. Although this accommodates processes such as material fracture or explicit

cutting (e.g. surgical incisions) by discretizing the cracks or incisions into a triangu-

lated surface, there may be certain cases (e.g. elaborate scalpel models, embeddeding

of geometries represented by spline or subdivision surfaces) where this additional tri-

angulation is rather inconvenient. We note however that, with adequate refinement,

a triangulated surface can represent any cut and even an increased triangle count on

the cutting surface will not have a negative impact on the complexity or conditioning

of the embedding simulation mesh.

Embedding the high resolution material surface in a coarser simulation mesh pre-

vents CFL restrictions associated with small or sliver elements. Nevertheless, our

framework may still create small or ill-conditioned triangles on the material surface

which can still have a negative effect on collision handling. This is less of a problem

for object collisions and more important for self-collisions, highlighting the need for

robust collision handling schemes. Finally, although our algorithm can process any

arbitrary cutting surface, a cut that partially intersects a tetrahedron without sepa-

rating it into disconnected fragments will not allow the material to separate within

that embedding tetrahedron. However, subsequent cuts can extend this cut to one

that fully slices through the tetrahedron. Additionally, such partial cuts are geomet-

rically resolved by our algorithm even if the embedding constraint does not allow

separation of the material surface on either side of the cut. A subelement elasticity

model (such as the soft binding formulation of [157]) could enable separation of these

two surfaces, if such behavior were required.

7.7. SUMMARY 139

7.7 Summary

We proposed a new cutting algorithm that allows for arbitrary cutting of tetrahedral

meshes including those that possess a higher-resolution embedded material surface.

We illustrated the efficacy of our algorithm on a number of examples ranging from

cutting a single tetrahedron into over a thousand pieces to modeling and cutting a

high-resolution face models embedded in a BCC simulation mesh.

Appendix A

Quasistatic treatment of muscle

forces

Two muscle models are analyzed below. The first approach models the bulk behavior

of flesh as an isotropic Mooney-Rivlin rubber, which is augmented with a directional

component along the fiber direction. The second model is derived from [22], is in-

herently anisotropic and addresses along-fiber stretch, cross-fiber shear and volume

change explicitly and independently. The following derivations yield the constitutive

properties that will be needed in the definiteness-corrected quasistatic solver of [166].

A.1 Simplified muscle model

We only address the isotropic component of the strain energy below; the anisotropic

component is addressed in section A.2.3. The energy for the isotropic response is

given by a Mooney-Rivlin constitutive model for the deviatoric component of the

deformation plus a pressure term as follows

Ψ(C) = µ10(trĈ− 3) +
1

2
µ01[(trĈ)2 − Ĉ : Ĉ− 6] +

1

2
κ log2 J

= µ10ICIII
−1/3
C +

µ01

2
(I2
C − IIC)III

−2/3
C +

κ

8
log2 IIIC + const

140

A.1. SIMPLIFIED MUSCLE MODEL 141

The first derivatives of this energy with respect to the invariants are

ΨI = µ10III
−1/3
C + µ01ICIII

−2/3
C

ΨII = −µ01

2
III

−2/3
C

ΨIII = −µ10

3
ICIII

−4/3
C − µ01

3
(I2
C − IIC)III

−5/3
C +

κ

4

log IIIC
IIIC

The resulting isotropic stress is therefore

P = 2ΨIF + 4ΨIIFF
TF + 2J2ΨIIIF

−T

= (2µ10III
−1/3
C + 2µ01ICIII

−2/3
C)F

−2µ01III
−2/3
C FF TF

+

(
−2µ10

3
ICIII

−1/3
C − 2µ01

3
(I2
C − IIC)III

−2/3
C +

κ

2
log IIIC

)
F−T

= (2µ10J
−2/3 + 2µ01ICJ

−4/3)F − 2µ01J
−4/3FF TF

+

(
−2µ10

3
ICJ

−2/3 − 2µ01

3
(I2
C − IIC)J−4/3 + κ log J

)
F−T

For the second derivatives of the energy we have

ΨI,I = µ01III
−2/3
C

ΨI,II = 0

ΨI,III = −µ10

3
III

−4/3
C − 2µ01

3
ICIII

−5/3
C

ΨII,II = 0

ΨII,III =
µ01

3
III

−5/3
C

ΨIII,III =
4µ10

9
ICIII

−7/3
C +

5µ01

9
(I2
C − IIC)III

−8/3
C +

κ

4

1− log IIIC
III2

C

The elements of the diagonalized stress derivative T are given as functions of the

parameters αij, βij, γij where

αij = 2ΨI + 4ΨII(σ
2
i + σ2

j)

= 2µ10III
−1/3
C + 2µ01ICIII

−2/3
C − 2µ01III

−2/3
C (σ2

i + σ2
j)

142 APPENDIX A. QUASISTATIC TREATMENT OF MUSCLE FORCES

βij = 4ΨIIσiσj − 2IIICΨIII
1

σiσj

= −2µ01III
−2/3
C σiσj

+

(
2µ10

3
ICIII

−1/3
C +

2µ01

3
(I2
C − IIC)III

−2/3
C − κ

2
log IIIC

)
1

σiσj

γij =
(

2σi 4σ3
i 2IIIC

1
σi

) ∂2Ψ

∂ (IC , IIC , IIIC)2

2σj

4σ3
j

2IIIC
1
σj

+4IIICΨIII

1

σiσj

=
(
σi σ3

i σ−1
i

)
H

σj

σ3
j

σ−1
j

where

H =

4ΨI,I 8ΨI,II 4IIICΨI,III

8ΨI,II 16ΨII,II 8IIICΨII,III

4IIICΨI,III 8IIICΨII,III 4III2
CΨIII,III + 4IIICΨIII

Thus for our constitutive model

η11 = 4µ01III
−2/3
C

η21 = 0

η31 = −4µ10

3
III

−1/3
C − 8µ01

3
ICIII

−2/3
C

η22 = 0

η32 =
8µ01

3
III

−2/3
C

η33 =
16µ10

9
ICIII

−1/3
C +

20µ01

9
(I2
C − IIC)III

−2/3
C + κ(1− log IIIC)

−4µ10

3
ICIII

−1/3
C − 4µ01

3
(I2
C − IIC)III

−2/3
C + κ log IIIC

A.2. FULL MUSCLE MODEL 143

=
4µ10

9
ICIII

−1/3
C +

8µ01

9
(I2
C − IIC)III

−2/3
C + κ

A.2 Full muscle model

We give the expressions for the required derivatives of the constitutive model in [23].

The strain energy is the sum of the four components W1, W2, W3, Ψvol analyzed

below.

A.2.1 Along-fiber shear

W1 = G1

(
Ĩ5

Ĩ2
4

− 1

)
= G1

(
I
−2/3
3 I5

I
−2/3
3 I2

4

− 1

)
= G1

(
I5

I2
4

− 1

)

∂W1

∂I4

= −2G1I5

I3
4

∂W1

∂I5

=
G1

I2
4

∂2W1

∂I2
4

=
6G1I5

I4
4

∂2W1

∂I5∂I4

= −2G1

I3
4

A.2.2 Cross-fiber shear

W2 = W2(ω)

ω =
Ĩ1Ĩ4 − Ĩ5

2
√
Ĩ4

=
I
−2/3
3 (I1I4 − I5)

2I
−1/6
3

√
I4

=
I1I4 − I5

2
√
I3I4

∂W2

∂Ik
= W ′

2(ω)
∂ω

∂Ik
∂2W2

∂Ik∂Il
= W ′′

2 (ω)
∂ω

∂Ik

∂ω

∂Il
+W ′

2(ω)
∂2ω

∂Ik∂Il

144 APPENDIX A. QUASISTATIC TREATMENT OF MUSCLE FORCES

∂ω

∂I1

=
1

2

√
I4

I3

∂ω

∂I3

= −I1I4 − I5

4
√
I3

3I4

= − ω

2I3

∂ω

∂I4

=
I1

4
√
I3I4

+
I5

4
√
I3I3

4

=
I1I4 + I5

4
√
I3I3

4

∂ω

∂I5

= − 1

2
√
I3I4

∂2ω

∂I3∂I1

= −1

4

√
I4

I3
3

∂2ω

∂I4∂I1

=
1

4
√
I3I4

∂2ω

∂I3∂I3

=
3 (I1I4 − I5)

8
√
I5

3I4

=
3ω

4I2
3

∂2ω

∂I4∂I3

= −I1I4 + I5

8
√
I3

3I
3
4

∂2ω

∂I5∂I3

=
1

4
√
I3

3I4

∂2ω

∂I4∂I4

= − I1

8
√
I3I3

4

− 3I5

8
√
I3I5

4

= −I1I4 + 3I5

8
√
I3I5

4

∂2ω

∂I5∂I4

=
1

4
√
I3I3

4

W2(ω) = G2

(
cosh−1ω

)2

W ′
2(ω) = 2G2

cosh−1ω√
ω2 − 1

lim
ω→1

W ′
2(ω) = 2G2 lim

ω→1

cosh−1ω√
ω2 − 1

= 2G2 lim
ω→1

1√
ω2−1
ω√
ω2−1

= 2G2 lim
ω→1

1

ω
= 2G2

W ′′
2 (ω) = 2G2

1√
ω2−1

√
ω2 − 1− cosh−1ω ω√

ω2−1

ω2 − 1
=

2G2 − ωW ′
2(ω)

ω2 − 1

A.2. FULL MUSCLE MODEL 145

lim
ω→1

W ′′
2 (ω) = lim

ω→1

2G2 − ωW ′
2(ω)

ω2 − 1
= − lim

ω→1

W ′
2(ω) + ωW ′′

2 (ω)

2ω
⇒

⇒ lim
ω→1

W ′′
2 (ω) = −2G2 + limω→1W

′′
2 (ω)

2
⇒ lim

ω→1
W ′′

2 (ω) = −2G2

3

A.2.3 Fiber stretch

W3 = W2(λ)

λ =

√
Ĩ4 = I

−1/6
3

√
I4

∂W3

∂Ik
= W ′

3(λ)
∂λ

∂Ik
= T (λ)

∂λ

∂Ik
∂2W3

∂Ik∂Il
= W ′′

3 (λ)
∂λ

∂Ik

∂λ

∂Il
+W ′

3(λ)
∂2λ

∂Ik∂Il
= T ′(λ)

∂λ

∂Ik

∂λ

∂Il
+ T (λ)

∂2λ

∂Ik∂Il

T (λ) =
σmax

λofl
ftotal

where ftotal is the normalized force-length function for the passive and active

component (when present).

∂λ

∂I3

= −1

6
I
−7/6
3

√
I4 = − λ

6I3

∂λ

∂I4

=
I
−1/6
3

2
√
I4

=
λ

2I4

∂2λ

∂I2
3

=
7

36
I
−13/6
3

√
I4 =

7λ

36I2
3

∂2λ

∂I4∂I3

= − I
−7/6
3

12
√
I4

= − λ

12I3I4

∂2λ

∂I2
4

= − I
−1/6
3

4
√
I3

4

= − λ

4I2
4

146 APPENDIX A. QUASISTATIC TREATMENT OF MUSCLE FORCES

A.2.4 Volume change

Ψvol =
k

2
(log J)2 =

k

8
(log I3)2

∂Ψvol

∂I3

=
k log I3

4I3

∂2Ψvol

∂I2
3

=
k(1− log I3)

4I2
3

A.3 Enforcing definiteness in general anisotropy

A note on differentiation Sometimes we need to take the partial derivative

∂Y(X)/∂X where the vector quantity X is restricted to a linear subspace of its

ambient space. For example, the second Piola-Kirchhoff stress is defined as S =

2∂Ψ(C)/∂C, where C = FTF is restricted to the linear subspace of symmetric ma-

trices. To prevent any inconsistency in the definition of the derivative, we define it

in such a way that it has the proper action δX = ∂X/∂Y : δY on any increment

δY that belongs in the proper subspace of Y and annihilates any matrix M in the

complement of that linear subspace, that is ∂X/∂Y : M = 0. Therefore, S is defined

to annihilate any antisymmetric matrices (S : A = 0), which implies that it has to be

symmetric itself. The same holds for higher order derivatives, i.e. ∂kX/∂Yk : Z = 0

for any argument Z in the orthogonal complement of the allowable space for X.

Rotated stress We have

P = FS

= 2F
∂Ψ

∂C

= 2F
∑
m

∂Ψ

∂Im

∂Im
∂C

= 2F
∑
m

ΨmJm

= 2U

[
Σ
∑
m

ΨmĴm

]
VT

A.3. ENFORCING DEFINITENESS IN GENERAL ANISOTROPY 147

= UΣŜV
T

where

Jm = ∂Im/∂C

Ĵm = VTJmV

Ψm = ∂Ψ/∂Im

S = 2∂Ψ/∂C = 2
∑
m

ΨmJm

Ŝ = VTSV = 2
∑
m

ΨmĴm

Rotated stress differentials The linearized stress is given by

δP = δ(FS)

= δFS + FδS

= U
[(

UT δFV
) (

VTSV
)

+ ΣVT (δS) V
]
VT

= U

[(
δF̂
)

Ŝ + ΣVT

(
∂S

∂C
: δC

)
V

]
VT

= U

[(
δF̂
)

Ŝ + 2ΣVT

{
∂2Ψ

∂C2
: VδCVT

}
V

]
VT

= U
[(
δF̂
)

Ŝ + Σ
{
T̂ : δC

}]
VT

where

δF̂ = UT δFV

Hm = ∂2Im/∂C2

Ĥm : δC = VT
(
Hm : VδCVT

)
V

Ψmn = ∂2Ψ/∂Im∂In

148 APPENDIX A. QUASISTATIC TREATMENT OF MUSCLE FORCES

T = 2∂2Ψ/∂C2 = 2
∑
m,n

ΨmnJm ⊗ Jn + 2
∑
m

ΨmHm

T̂ : δC = VT
(
T : VδCVT

)
V

T̂ = 2
∑
m,n

ΨmnĴm ⊗ Ĵn + 2
∑
m

ΨmĤm

A sufficient condition for positive definiteness of the stress differential is the pos-

itive definiteness of the tensors Ŝ and T̂
Define the 5 transversely isotropic invariants by

I1 = trC, I2 = C : C, I3 = det C, I4 = vTCv, I5 = vTC2v

The corresponding gradients and Hessians are

J1 =
∂I1

∂C
= I

J2 =
∂I2

∂C
= 2C

J3 =
∂I3

∂C
= I3C

−1

J4 =
∂I4

∂C
= vvT

J5 =
∂I5

∂C
= CvvT + vvTC

and

H1 : δC = δ
∂I1

∂C
= 0

H2 : δC = δ
∂I2

∂C
= 2δC

H3 : δC = δ
∂I3

∂C
= −I3C

−1 (δC) C−1 + I3

(
C−1 : δC

)
C−1

H4 : δC = δ
∂I4

∂C
= 0

H5 : δC = δ
∂I5

∂C
= δCvvT + vvT δC

A.3. ENFORCING DEFINITENESS IN GENERAL ANISOTROPY 149

And their rotated versions are

Ĵ1 = I

Ĵ2 = 2Σ2

Ĵ3 = I3Σ
−2

Ĵ4 = wwT

Ĵ5 = Σ2wwT + wwTΣ2

and

Ĥ1 : δC = 0

Ĥ2 : δC = 2δC

Ĥ3 : δC = −I3Σ
−2 (δC) Σ−2 + I3

(
Σ−2 : δC

)
Σ−2

Ĥ4 : δC = 0

Ĥ5 : δC = δCwwT + wwT δC

where w = VTv.

Consider the following parameterization of δC

δC =
∑
i

dieie
T
i +

∑
i<j

sij
1√
2

(
eie

T
j + eje

T
i

)

The mapping from δC to δc =
(
d1 d2 d3 s12 s13 s23

)T
is linear and orthogo-

nal. The action of T̂ on δC can be written in matrix form as

T̂ : δC ∼ T̂δc =

M L

LT N

d1

d2

d3

s12

s13

s23

150 APPENDIX A. QUASISTATIC TREATMENT OF MUSCLE FORCES

where M,N,L are 3× 3 matrices.

We can also write

T̂ = 4
∑
m,n

ΨmnjmjTn + 4
∑
m

ΨmHm

where

j1 =

1

1

1

0

0

0

j2 =

2σ2
1

2σ2
2

2σ2
3

0

0

0

j3 =

I3σ
−2
1

I3σ
−2
2

I3σ
−2
3

0

0

0

j4 =

w2
1

w2
2

w2
3√

2w1w2√
2w1w3√
2w2w3

j5 =

2σ2
1w

2
1

2σ2
1w

2
2

2σ2
3w

2
3√

2(σ2
1 + σ2

2)w1w2√
2(σ2

1 + σ2
3)w1w3√

2(σ2
2 + σ2

3)w2w3

and

H1 = H4 = 0, H2 = 2I

H3 = I3

0 σ−2
1 σ−2

2 σ−2
1 σ−2

3

σ−2
1 σ−2

2 0 σ−2
2 σ−2

3

σ−2
1 σ−2

3 σ−2
2 σ−2

3 0

−σ−2
1 σ−2

2

−σ−2
1 σ−2

3

−σ−2
2 σ−2

3

H5 =

2w2
1

√
2w1w2

√
2w1w3

2w2
2

√
2w1w2

√
2w2w3

2w2
3

√
2w1w3

√
2w2w3√

2w1w2

√
2w1w2 w2

1 + w2
2 w2w3 w1w3√

2w1w3

√
2w1w3 w2w3 w2

1 + w2
3 w1w2√

2w2w3

√
2w2w3 w1w3 w1w2 w2

2 + w2
3

Appendix B

Implicit springs stability

B.1 Stability conditions for 2× 2 ODE systems

Consider the integration scheme

A

(
x

v

)n+1

= B

(
x

v

)n

where A,B are real-valued 2 × 2 matrices. The eigenvalues of the iteration matrix

A−1B are roots of the quadratic f(λ) = det(λA−B) = aλ2 + bλ + c. Without loss

of generality, we can assume that a > 0 (if that is not originally the case, we can just

flip the signs in one of the equations of the original system). Explicitly forming the

solution of f(λ) = 0 and requiring ‖λ‖ < 1 can be particularly difficult since, at first

glance, it yields a high order constraint on the coefficients a, b, c. However, we can

show that {
|c| < a

|b| < a+ c

}
are the necessary and sufficient conditions for stability without explicitly solving

f(λ) = 0.

Let λ1, λ2 be the roots of f and consider the 2 cases

151

152 APPENDIX B. IMPLICIT SPRINGS STABILITY

A. λ1, λ2 /∈ R . In this case ‖λ1‖ = ‖λ2‖ = λ1λ2 = c/a. If we have nonreal

roots then we must have c > 0, therefore |c| = c and stability is equivalent to

c/a < 1 ⇔ |c| < a. This is the necessary and sufficient condition for this case. We

will show that |b| < a + c is also necessary. Since we have nonreal roots, we must

have b2 < 4ac < (a+ c)2 ⇒ |b| < |a+ c| = a+ c, where the last equality hold because

of |c| < a.

A. λ1, λ2 ∈ R . Stability requires |λ1| < 1
∧
|λ2| < 1 ⇒ |λ1λ2| < 1 ⇒ |c/a| <

1 ⇒ |c| < a, which is a necessary condition. In this case |b| < a + c is the sufficient

condition. For the case of real roots, we can restate the condition −1 < λ1, λ2 < 1 as

f(1) > 0
∧
f(−1) > 0

∧
f ′(1) > 0

∧
f ′(−1) < 0 (f is a convex quadratic with roots

between −1 and 1). These inequalities are written
a+ b+ c > 0

a− b+ c > 0

2a+ b > 0

−2a+ b >< 0

⇒
{
|b| < a+ c

|b| < 2a

}
. (B.1)

Given the condition |c| < a the second inequality |b| < 2a becomes redundant. There-

fore, in this case, too,

{
|c| < a

|b| < a+ c

}
are the necessary and sufficient conditions.

B.2 Stability of modified Newmark

Consider the ODE

ẍ+ bẋ+ kx = 0⇔

(
x

v

)
t

=

(
0 1

−k −b

)(
x

v

)

for the motion of a simple 1D oscillator (we incorporate the mass of the oscillator into

the constants k and b). We wish to derive the stability restriction for the following

B.2. STABILITY OF MODIFIED NEWMARK 153

modified Newmark integration scheme

xn+1 = xn + ∆tvn+1/2 (B.2)

xn+1/2 = xn +
∆t

2
vn+1/2 (B.3)

vn+1/2 = vn +
∆t

2

(
−kxn+1/2 − bvn+1/2

)
(B.4)

v̂n+1/2 = vn +
∆t

2

(
−kx̂n+1/2 − bv̂n+1/2

)
(B.5)

vn+1 = 2v̂n+1/2 − vn (B.6)

In the previous scheme, x̂n+1/2 is a position variable used as a placeholder for

different approaches, each of which will be subsequently analyzed.

B.2.1 Stability of the step (xn, vn)→
(
xn+1/2, vn+1/2

)
Using equations (B.3,B.4) we have(

1 −∆t/2

k∆t/2 1 + b∆t/2

)(
xn+1/2

vn+1/2

)
=

(
xn

vn

)

The characteristic polynomial for this system is

f(λ) = det(λA−B) =

(
1 +

b∆t

2
+
k∆t2

4

)
λ2 +

(
−2− b∆t

2

)
λ+ 1

Thus, the conditions (B.1) become

1 < 1 +
b∆t

2
+
k∆t2

4

2 +
b∆t

2
< 2 +

b∆t

2
+
k∆t2

4

which unconditionally hold for any positive ∆t.

154 APPENDIX B. IMPLICIT SPRINGS STABILITY

B.2.2 Stability of the step (xn, vn)→
(
xn+1, vn+1/2

)
This is a somewhat particular formulation, since it timesteps position and velocity to

different points in time. However, we consider it as an upper bound to evaluate the

growth in xn, after a full step ∆t. The iteration system, using equations (B.2,B.3,B.4)

becomes (
1 −∆t/2

k∆t/4 1 + b∆t/2

)(
xn+1

vn+1/2

)
=

(
1 0

−k∆t/4 1

)(
xn

vn

)

The characteristic polynomial for this system is

f(λ) = det(λA−B) =

(
1 +

b∆t

2
+
k∆t2

8

)
λ2 +

(
−2− b∆t

2
+
k∆t2

8

)
λ+ 1

Thus, the conditions (B.1) become

1 < 1 +
b∆t

2
+
k∆t2

8∣∣∣∣2 +
b∆t

2
− k∆t2

8

∣∣∣∣ < 2 +
b∆t

2
+
k∆t2

8

which unconditionally hold for any positive ∆t.

B.2.3 Stability of the step (xn, vn)→ (xn+1, vn+1)

Here we investigate several different definitions for the position x̂n+1/2

Assumption: x̂n+1/2 = xn+1/2

The assumption, combined with equations (B.3,B.4,B.5,B.6) gives the system(
1 −∆t/2

k∆t/4 1/2 + b∆t/4

)(
xn+1

vn+1

)
=

(
1 ∆t/2

−k∆t/4 1/2− b∆t/4

)(
xn

vn

)

B.2. STABILITY OF MODIFIED NEWMARK 155

The characteristic polynomial for this system is

f(λ) = det(λA−B) =

(
1

2
+
b∆t

4
+
k∆t2

8

)
λ2+

(
−1 +

k∆t2

4

)
λ+

(
1

2
− b∆t

4
+
k∆t2

8

)
Thus, the conditions (B.1) become∣∣∣∣12 − b∆t

4
+
k∆t2

8

∣∣∣∣ <
1

2
+
b∆t

4
+
k∆t2

8∣∣∣∣1− k∆t2

4

∣∣∣∣ < 1 +
k∆t2

4

which unconditionally hold for any positive ∆t.

Assumption: x̂n+1/2 = xn+1

After eliminating vn+1/2 from equations (B.2,B.3,B.4) we have(
1 +

b∆t

2
+
k∆t2

4

)
xn+1 =

(
1 +

b∆t

2
− k∆t2

4

)
xn + ∆tvn

Also, equations (B.5,B.6) give

k∆t

2
xn+1 +

(
1

2
+
b∆t

4

)
vn+1 =

(
1

2
− b∆t

4

)
vn

The combined system is(
1 + b∆t

2
+ k∆t2

4
0

k∆t
2

1
2

+ b∆t
4

)(
xn+1

vn+1

)
=

(
1 + b∆t

2
− k∆t2

4
∆t

0 1
2
− b∆t

4

)(
xn

vn

)

The characteristic polynomial for this system is

f(λ) = det(λA−B)

=

(
1

2
+
b∆t

2
+

(b2 + k)∆t2

8
+
kb∆t3

16

)
λ2 +

(
−1− b∆t

2
+
kb∆t3

8
+
k∆t2

2

)
λ

+

(
1

2
− (b2 + k)∆t2

8
+
kb∆t3

16

)

156 APPENDIX B. IMPLICIT SPRINGS STABILITY

Thus, the conditions (B.1) become∣∣∣∣12 − (b2 + k)∆t2

8
+
kb∆t3

16

∣∣∣∣ <
1

2
+
b∆t

2
+

(b2 + k)∆t2

8
+
kb∆t3

16∣∣∣∣−1− b∆t

2
+
kb∆t3

8
+
k∆t2

2

∣∣∣∣ < 1 +
b∆t

2
+
kb∆t3

8

The first condition is always true, while the second one gives

1 +
b∆t

2
− k∆t2

4
> 0⇒ ∆t <

b+
√
b2 + 4k

k

Assumption: x̂n+1/2 = xn+1 − ∆t
2
vn

After eliminating vn+1/2 from equations (B.2,B.3,B.4) we have(
1 +

b∆t

2
+
k∆t2

4

)
xn+1 =

(
1 +

b∆t

2
− k∆t2

4

)
xn + ∆tvn

Also, equations (B.5,B.6) give

k∆t

2
xn+1 +

(
1

2
+
b∆t

4

)
vn+1 =

(
1

2
− b∆t

4
+
k∆t2

4

)
vn

The combined system is(
1 + b∆t

2
+ k∆t2

4
0

k∆t
2

1
2

+ b∆t
4

)(
xn+1

vn+1

)
=

(
1 + b∆t

2
− k∆t2

4
∆t

0 1
2
− b∆t

4
+ k∆t2

4

)(
xn

vn

)

The characteristic polynomial for this system is

f(λ) = det(λA−B)

=

(
1

2
+
b∆t

2
+
b2∆t2

8
+
k∆t2

8
+
kb∆t3

16

)
λ2

+

(
−1− b∆t

2
+
k∆t2

4
− k2∆t4

16

)
λ

+

(
1

2
− b2∆t2

8
+
k∆t2

8
+

3kb∆t3

16
− k2∆t4

16

)

B.2. STABILITY OF MODIFIED NEWMARK 157

Thus, the conditions (B.1) become∣∣∣∣12 − b2∆t2

8
+
k∆t2

8
+

3kb∆t3

16
− k2∆t4

16

∣∣∣∣ <
1

2
+
b∆t

2
+
b2∆t2

8
+
k∆t2

8
+
kb∆t3

16∣∣∣∣−1− b∆t

2
+
k∆t2

4
− k2∆t4

16

∣∣∣∣ < 1 +
b∆t

2
+
k∆t2

4
+
kb∆t3

4
− k2∆t4

16

As ∆t → ∞ the ∆t4 term dominates in the first inequality, which eventually

becomes false. Therefore there is a finite timestep restriction.

B.2.4 Stability of Newmark with explicit positions

We use the equations

vn+1/2 = vn +
∆t

2

(
−kxn − bvn+1/2

)
xn+1 = xn + ∆tvn+1/2

v̂n+1/2 = vn +
∆t

2

(
−kx̂− bv̂n+1/2

)
vn+1 = 2v̂n+1/2 − vn

The first two equations yield(
1 +

b∆t

2

)
xn+1 =

(
1 +

b∆t

2
− k∆t2

2

)
xn + ∆tvn (B.7)

Assumption: x̂ = xn+1

The last two equations of the Newmark scheme yield

k∆t

2
xn+1 +

(
1

2
+
b∆t

4

)
vn+1 =

(
1

2
− b∆t

4

)
vn+1

The combined system is

(
1 + b∆t

2
0

k∆t
2

1
2

+ b∆t
4

)(
xn+1

vn+1

)
=

(
1 + b∆t

2
− k∆t2

2
∆t

0 1
2
− b∆t

4

)(
xn

vn

)

158 APPENDIX B. IMPLICIT SPRINGS STABILITY

The characteristic polynomial for this system is

f(λ) = det(λA−B)

=

(
1

2
+
b∆t

2
+
b2∆t2

8

)
λ2 +

(
−1− b∆t

2
+

3k∆t2

4
+
kb∆t3

8

)
λ

+

(
1

2
− b2∆t2

8
− k∆t2

4
+
kb∆t3

8

)
The conditions (B.1) become∣∣∣∣12 − b2∆t2

8
− k∆t2

4
+
kb∆t3

8

∣∣∣∣ <
1

2
+
b∆t

2
+
b2∆t2

8∣∣∣∣−1− b∆t

2
+

3k∆t2

4
+
kb∆t3

8

∣∣∣∣ < 1 +
b∆t

2
− k∆t2

4
+
kb∆t3

8

For positive ∆t these conditions reduce to

k∆t2 − b∆t− 2 < 0⇒ ∆t <
b+
√
b2 + 8k

2k

Assumption: x̂ = xn+1/2 = xn+xn+1

2

The last two equations of the Newmark scheme yield

k∆t

4
xn+1 +

(
1

2
+
b∆t

4

)
vn+1 = −k∆t

4
xn +

(
1

2
− b∆t

4

)
vn

The combined system is

(
1 + b∆t

2
0

k∆t
4

1
2

+ b∆t
4

)(
xn+1

vn+1

)
=

(
1 + b∆t

2
− k∆t2

2
∆t

−k∆t
4

1
2
− b∆t

4

)(
xn

vn

)

The characteristic polynomial for this system is

f(λ) = det(λA−B)

=

(
1

2
+
b∆t

2
+
b2∆t2

8

)
λ2 +

(
−1− b∆t

2
+
k∆t2

2
+
kb∆t3

8

)
λ

B.2. STABILITY OF MODIFIED NEWMARK 159

+

(
1

2
− b2∆t2

8
+
kb∆t3

8

)

The conditions (B.1) become∣∣∣∣12 − b2∆t2

8
+
kb∆t3

8

∣∣∣∣ <
1

2
+
b∆t

2
+
b2∆t2

8∣∣∣∣−1− b∆t

2
+
k∆t2

2
+
kb∆t3

8

∣∣∣∣ < 1 +
b∆t

2
+
kb∆t3

8

For positive ∆t these conditions reduce to

k∆t2 − 2b∆t− 4 < 0⇒ ∆t <
b+
√
b2 + 4k

k

Modification: Use Backward Euler instead of Trapezoidal rule

We replace the last two equations of the Newmark scheme with

vn+1 = vn + ∆t (−kxn+1 − bvn+1)

The combined system is

(
1 + b∆t

2
0

k∆t 1 + b∆t

)(
xn+1

vn+1

)
=

(
1 + b∆t

2
− k∆t2

2
∆t

0 1

)(
xn

vn

)

The characteristic polynomial for this system is

f(λ) = det(λA−B)

=

(
1 +

3b∆t

2
+
b2∆t2

2

)
λ2 +

(
−2− 2b∆t− b2∆t2

2
+

3k∆t2

2
+
kb∆t3

2

)
λ

+

(
1 +

b∆t

2
− k∆t2

2

)

160 APPENDIX B. IMPLICIT SPRINGS STABILITY

The conditions (B.1) become∣∣∣∣1 +
b∆t

2
− k∆t2

2

∣∣∣∣ < 1 +
3b∆t

2
+
b2∆t2

2∣∣∣∣−2− 2b∆t− b2∆t2

2
+

3k∆t2

2
+
kb∆t3

2

∣∣∣∣ < 2 + 2b∆t− k∆t2

2
+
b2∆t2

2

For positive ∆t these conditions reduce to

kb∆t3

2
+
(
2k − b2

)
∆t2 − 4b∆t− 4 < 0

For critical damping (b2 = 4k) this gives ∆t < 2.08b/k (compare with ∆t <

2.41b/k for the formulation in B.2.4 and ∆t < 1.37b/k for the formulation in B.2.4)

Appendix C

Implementing the cutting

algorithm

In section 7.3 we defined our geometrical algorithm without descending into the im-

plementation details of each geometric operation. This appendix provides specific

details on the data structures and code organization in our implementation.

Our principle data structures are:

Per-tetrahedron Triangle List Each embedding tetrahedron stores all triangles

that border the material contained inside it. Prior to any cuts, each tetrahedron’s

triangle list contains just its four faces. After subsequent cutting, the triangles list will

also contain triangles of the cutting surface. Barycentric coordinates of the triangle

vertices with respect to the tetrahedron are also stored.

Per-tetrahedron Polygon Mesh Each tetrahedron stores the polygonized bound-

ary of its embedded material.

Intersection Registry As mentioned in section 7.3.1 the points referenced by our

algorithm are either vertices of the polygon soup, intersection of an edge and a tri-

angle, or intersection of three triangles. In fact, we represent all such points as the

intersection of three triangles, using the following process: If a segment pq is common

to triangles pqr and pqs, then the intersection between pq and a different triangle xyz

161

162 APPENDIX C. IMPLEMENTING THE CUTTING ALGORITHM

is encoded as the intersection of the three triangles pqr,pqs, and xyz. If pqr is the

only triangle incident on pq, we introduce a virtual triangle pqø (where ø denotes an

unspecified auxiliary point) such that the same point is encoded as the intersection

of pqr, pqø, and xyz. Similarly, a vertex p of the triangle soup is represented as the

common point of three triangles pqr,pst, and puv. If no such three triangles exist, e.g.

if p only appears on pqr, the point may be described as the intersection of pqr,pqø,

and prø, where the last two virtual triangles have been introduced accordingly. The

intersection registry stores which triangles intersect at each polygon point (which may

be more than three) and determines whether the intersection of three given triangles

has already been registered (possibly as the intersection of three different triangles).

Additionally, we store the barycentric coordinates of each intersection point with re-

spect to each of the triangles defining the intersection. Note that virtual triangles

pose no problem as the barycentric weight of the virtual vertex will be identically

zero.

An uncut tetrahedralized volume is initialized with the triangle list containing the

faces of each tetrahedron, the polygon mesh containing the same faces as the polygonal

boundaries of each uncut tetrahedron, and the intersection registry containing only

the vertices of the uncut volume, as the intersection of all embedding faces incident

on each of them.

Each new cutting triangle Tnew added to the triangle soup is processed according

to the following steps:

• Intersection with embedding volume. Tnew is assigned a unique index.

We compute the set of embedding tetrahedra that intersect Tnew (in world

space, the embedding volume may have deformed) and we create a copy T knew

for each of them, assigning each copy a unique index. Each T knew is appended

to the triangle list for its corresponding tetrahedron, converted to barycentric

coordinates with respect to it, and keeps a record of the unique index of its

parent Tnew.

• Computation of new intersections. Each new triangle T knew is intersected

against all possible pairs of old triangles in the list of its respective tetrahedron.

163

If the intersection already exists, the intersection registry is updated to include

T knew as a triangle incident on this intersection. Otherwise, a new intersection

is registered and a unique index is assigned.

• Update of old polygons. Any old polygon edge in the polygon mesh for a

tetrahedron intersected by Tnew that contains a newly introduced intersection

point is bisected into two collinear edges, and the polygon mesh is updated ac-

cordingly. Additionally, any newly created segments on the plane of an existing

polygon are tested for intersection against that polygon. If they are found to

be intersecting, the old polygons are split to include the new segment.

• Creation of new polygons. Each triangle T knew is clipped to the material

contained in the embedding tetrahedron to yield a new polygon, which is added

to the polygon mesh.

• Computation of connected components. The polygon mesh for each tetra-

hedron is used to compute the new connected components of material, as in

section 7.3.3. Each component is defined as a polyhedral volume and the tetra-

hedron is split into as many copies as distinct material fragments.

• Topology update based on connectivity. The process of section 7.3.4 is

used to rebuild the topology of the embedding volume. All of our data structures

are updated to reflect the topological changes.

This process may be iterated for each new triangle added to the cutting surface.

In practice, we have generalized the previous steps to accommodate the introduction

of any number of new cutting triangles at once.

Appendix D

Finite Element Damping

D.1 Linear Damping

In our work we use a simplified Rayleigh damping model, in an effort to adapt the

damping behavior as much as possible to the elastic constitutive model used. Using

a true Rayleigh damping model (where ∂fd/∂v = γ∂fe/∂x and γ is the Rayleigh

coefficient) would require continuous re-evaluation of the stiffness matrix ∂fe/∂x dur-

ing simulation. Instead, we use a constant coefficient linear damping model which is

identical to Rayleigh damping around the rest state

fd = γ

(
∂fe
∂x

∣∣∣∣
x=x0

)
v

We can show that for isotropic constitutive models the damping stress Pd for each

element reduces to

Pd = β
(
Ḟ + ḞT

)
+ αtrḞ · I (D.1)

for appropriate constants α and β. To prove equation (D.1) we need to show the

general form of the rest state stiffness matrix ∂fe/∂x|x=x0
.

Using equation (2.8) we have that in the rest state of the element

2 ΨI1|F=I + 4 ΨI2|F=I + 2 ΨI3 |F=I = 0 (D.2)

164

D.2. OPTIMIZATION FOR BCC MESHES 165

since the rest state incurs no stress. Differentiating equation (2.8) around the rest

state and with the help of equation (D.2) we get

δP|F=I = (4 ΨI2|F=I − 2 ΨI3|F=I)
(
δF + δFT

)
+

(

2 4 2
) ∂2Ψ

∂ (I1, I2, I3)2

∣∣∣∣
F=I

2

4

2

+ 4 ΨI3|F=I

 tr (δF) I

Consequently, the damping coefficients α and β in equation (D.1) are given as

α = γλ = γ

(

2 4 2
) ∂2Ψ

∂ (I1, I2, I3)2

∣∣∣∣
F=I

2

4

2

+ 4 ΨI3|F=I

β = γµ = γ (4 ΨI2|F=I − 2 ΨI3|F=I)

where γ is the Rayleigh coefficient and λ, µ are the effective Lamé coefficients of the

material around its rest state.

For anisotropic material models, when the strain energy is clearly separated into

an isotropic and a directional component, we use the isotropic part of the energy

to determine the damping coefficients. We note that due to this simplification, our

damping model need not coincide with Rayleigh damping even around the rest state.

When no clear separation of the strain energy into isotropic and directional terms

exists, the parameters of the linear damping model are specified experimentally.

D.2 Optimization for BCC meshes

The formulation of chapter 6 enables the use of adaptive, possibly non-manifold tetra-

hedral meshes consisting purely of BCC tetrahedra. We show here how this uniform

shape of the simulation elements can be used to optimize the computation of finite

element damping forces. Notably, the same result applies to any linear force (e.g.

166 APPENDIX D. FINITE ELEMENT DAMPING

linear elasticity) although the following discussion focuses on linear damping forces.

In the diagonalized framework of [82] equation (D.1) is reformulated as

Pd = UP̂dV
T

P̂d = β

(
ˆ̇F + ˆ̇F

T
)

+ αtrˆ̇F · I

ˆ̇F = UT ḊsD
−1
m V

Any BCC tetrahedron results from the scaling and rotation of the canonical tetrahe-

dron with vertices X0(0, 0, 0), X1(1, 0, 0), X2(.5, .5,−.5) and X3(.5, .5, .5). Thus, the

rest shape matrix Dm is given as a function of the shape matrix D̂m as

Dm = γQD̂m (D.3)

where γ is a scaling factor, Q is a rotation and the following are true about D̂m

D̂m =

1 .5 .5

0 .5 .5

0 −.5 .5

 , D̂−1
m =

1 −1 0

0 1 −1

0 1 1

 , D̂−Tm =

1 0 0

−1 1 1

0 −1 1

Since D̂−1

m and D̂−Tm contain only the values {0, 1,−1}, multiplication with these ma-

trices can be performed only using addition and subtraction. Taking the determinants

of the two sides of equation (D.3) yields γ = 3
√

2 det Dm.

The diagonalized Piola-Kirchhoff stress can be written as

P̂d = β

(
ˆ̇F + ˆ̇F

T
)

+ αtrˆ̇F · I

= βUT ḊsD
−1
m V + βVTD−Tm ḊT

s U + αtr
(
UT ḊsD

−1
m V

)
I

= γ−1βUT ḊsD̂
−1
m QTV + γ−1βVTQD̂−Tm ḊT

s U + γ−1αtr
(
UT ḊsD̂

−1
m QTV

)
I

= γ−1UT
{
βḊsD̂

−1
m + βRD̂−Tm ḊT

s R + αtr
(
RD̂−Tm ḊT

s

)
R
}

QTV

where R = UVTQ is a precomputed rotation matrix. Additionally the damping force

D.2. OPTIMIZATION FOR BCC MESHES 167

matrix for this element is

Gd = sPdD
−T
m

= sUP̂dV
TD−Tm

= γ−1sUP̂dV
TQD̂−Tm

= sγ−2
{
βḊsD̂

−1
m + βRD̂−Tm ḊT

s R + αtr
(
RD̂−Tm ḊT

s

)
R
}

D̂−Tm

where s = (1/6) det Dm is the volume of the undeformed tetrahedron. Let α̂ = sγ−2α,

β̂ = sγ−2β and ˜̇F = ḊsD̂
−1
m = (v1 − v0|v2 + v3 − v0 − v1|v3 − v2). We have

Gd =

{
β̂

(
˜̇F + R˜̇F

T

R

)
+ α̂tr

(
R˜̇F

T
)

R

}
D̂−Tm

= R
{

2β̂ · Sym
[
RT ˜̇F

]
+ α̂ · tr Sym

[
RT ˜̇F

]
· I
}

D̂−Tm

where Sym[·] is the symmetric part operator. Once again, the final multiplication

with D̂−Tm can be computed with additions and subtractions only.

Finally, we note that using the aforementioned optimizations, every element needs

to store only the rotation Q and the values α̂, β̂, a total of five scalars, for the

computation of damping forces. If the damping coefficients are constant throughout

the tetrahedralized object only the rotation Q and the factor sγ−2 need to be stored

per element.

Bibliography

[1] I. Albrecht, J. Haber, and H.-P. Seidel. Construction and animation of

anatomically based human hand models. In Proc. of the 2003 ACM SIG-

GRAPH/Eurographics Symp. on Comput. Anim., pages 98–109, 2003.

[2] B. Allen, B. Curless, and Z. Popovic. Articulated body deformation from range

scan data. In Proc. of ACM SIGGRAPH 2002, pages 612–619, 2002.

[3] P. Alliez, D. Cohen-Steiner, M. Yvinec, and M. Desbrun. Variational tetrahedral

meshing. ACM Trans. Graph. (SIGGRAPH Proc.), 24(3):617–625, 2005.

[4] L. Ambrosio and H. M. Soner. Level set approach to mean curvature flow in

arbitrary codimension. J. Differential Geometry, 43:693–737, 1996.

[5] Annosoft, LLC. Basic phoneset, 2006. Available at

http://www.annosoft.com/phoneset.htm.

[6] A. Arnold, S. Blemker, and S. Delp. Evaluation of a deformable musculoskeletal

model for estimating muscle-tendon lengths during crouch gait. Comput. Aided

Surg., 29:263–274, 2001.

[7] A. Arnold and S. Delp. Rotational moment arms of the medial hamstrings and

adductors vary with femoral geometry and limb position: Implications for the

treatment of internally rotated gait. J. Biomech., 34:437–447, 2001.

[8] Z. Bao, J.M. Hong, J. Teran, and R. Fedkiw. Fracturing rigid materials. IEEE

Trans. Viz. Comput. Graph., 2006. (in press).

168

BIBLIOGRAPHY 169

[9] D. Baraff and A. Witkin. Partitioned dynamics. Technical report, Carnegie

Mellon University, 1997.

[10] D. Baraff and A. Witkin. Large steps in cloth simulation. In Proc. SIGGRAPH

98, pages 43–54, 1998.

[11] D. Baraff, A. Witkin, and M. Kass. Untangling cloth. ACM Trans. Graph.

(SIGGRAPH Proc.), 22:862–870, 2003.

[12] S. Basu, N. Oliver, and A. Pentland. 3D lip shapes from video: a combined

physical-statistical model. Speech Communication, 26:131–148, october 1998.

[13] S. Basu, N. Oliver, and A. Pentland. 3D modeling and tracking of human lip

motions. pages 337–343. IEEE Comput. Society, 1998.

[14] D. Bielser, P. Glardon, M. Teschner, and M. Gross. A state machine for real-

time cutting of tetrahedral meshes. In Pacific Graph., pages 377–386, 2003.

[15] D. Bielser and M. Gross. Interactive simulation of surgical cuts. In Pacific

Graph., pages 116–125, 2000.

[16] D. Bielser, V. A. Maiwald, and M. H. Gross. Interactive cuts through 3-

dimensional soft tissue. In Eurographics, 1999.

[17] A.W. Black, P. Taylor, and R. Caley. The festival speech synthesis system.

1999.

[18] V. Blanz, C. Basso, T. Poggio, and T. Vetter. Reanimating faces in images and

video. In Proc. of Eurographics, volume 22, 2003.

[19] V. Blanz, K. Scherbaum, T. Vetter, and H.-P. Seidel. Exchanging faces in

images. In Proc. of Eurographics, volume 23, 2004.

[20] V. Blanz and T. Vetter. A morphable model for the synthesis of 3D faces. In

Proc. of ACM SIGGRAPH, pages 187–194. ACM Press, 1999.

170 BIBLIOGRAPHY

[21] V. Blanz and T. Vetter. Face recognition based on fitting a 3D morphable model.

IEEE Trans. on Pattern Analysis and Machine Intelligence, 29(9):1063–1074,

2003.

[22] S. Blemker. 3D Modeling of Complex Muscle Architecture and Geometry. PhD

thesis, Stanford University, June 2004.

[23] S. Blemker, P. Pinsky, and S. Delp. A 3d model of muscle reveals the causes of

nonuniform strains in the biceps brachii. J. Biomech., In Press., 2004.

[24] S. Blemker, J. Teran, E. Sifakis, R. Fedkiw, and S. Delp. Fast 3d muscle

simulations using a new quasistatic invertible finite-element algorithm. In 10th

International Symp. on Comput. Simulation in Biomechanics, July 2005.

[25] J. Bonet and R. Wood. Nonlinear continuum mechanics for finite element

analysis. Cambridge University Press, Cambridge, 1997.

[26] G. Borshukov, D. Piponi, O. Larsen, J. P. Lewis, and C. Tempelaar-Lietz.

Universal Capture – image-based facial animation for “The Matrix Reloaded”.

In ACM SIGGRAPH 2003 Sketches & Applications, pages 1–1. ACM Press,

2003.

[27] M. Brand. Voice puppetry. In Proc. of ACM SIGGRAPH, pages 21–28, 1999.

[28] C. Bregler, M. Covell, and M. Slaney. Video Rewrite: driving visual speech

with audio. In Proc. of ACM SIGGRAPH, pages 353–360, 1997.

[29] R. Bridson, R. Fedkiw, and J. Anderson. Robust treatment of collisions, contact

and friction for cloth animation. ACM Trans. Graph. (SIGGRAPH Proc.),

21:594–603, 2002.

[30] R. Bridson, S. Marino, and R. Fedkiw. Simulation of clothing with folds and

wrinkles. In Proc. of the 2003 ACM SIGGRAPH/Eurographics Symp. on Com-

put. Anim., pages 28–36, 2003.

BIBLIOGRAPHY 171

[31] M. Byun and N. I. Badler. FacEMOTE: Qualitative parametric modifiers for fa-

cial animations. In Proc. of ACM SIGGRAPH/Eurographics Symp. on Comput.

Anim., pages 65–71. ACM Press, 2002.

[32] Y. Cao, P. Faloutsos, E. Kohler, and F. Pighin. Real-time speech motion syn-

thesis from recorded motions. In Proc. of 2003 ACM SIGGRAPH/Eurographics

Symp. on Comput. Anim., pages 347–355, 2004.

[33] Y. Cao, P. Faloutsos, and F. Pighin. Unsupervised learning for speech motion

editing. In Proc. of the ACM SIGGRAPH/Eurographics Symp. on Comput.

Anim., pages 225–231, 2003.

[34] S. Capell, S. Green, B. Curless, T. Duchamp, and Z. Popović. Interac-

tive skeleton-driven dynamic deformations. ACM Trans. Graph. (SIGGRAPH

Proc.), 21:586–593, 2002.

[35] S. Capell, S. Green, B. Curless, T. Duchamp, and Z. Popović. A multiresolution

framework for dynamic deformations. In ACM SIGGRAPH Symp. on Comput.

Anim., pages 41–48. ACM Press, 2002.

[36] J. Cassell, C. Pelachaud, N. Badler, M. Steedman, B. Achorn, T. Becket,

B. Doubille, S. Prevost, and M. Stone. Animated conversation: Rule-based

generation of facial expression, gesture and spoken intonation for multiple con-

versational agents. In Proc. of ACM SIGGRAPH, pages 413–420. ACM Press,

1994.

[37] J. Cassell, H. H. Vilhjálmsson, and T. Bickmore. BEAT: the Behavior Expres-

sion Animation Toolkit. In Proc. of ACM SIGGRAPH, pages 477–486, 2001.

[38] J. Chai, J. Xiao, and J. Hodgins. Vision-based control of 3D facial animation.

In Proc. of ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., pages

193–206, 2003.

[39] J. T. Chang, J. Jin, and Y. Yu. A practical model for hair mutual interactions.

In Proc. ACM SIGGRAPH Symp. on Comput. Anim., pages 77–80, 2002.

172 BIBLIOGRAPHY

[40] Y. Chang and T. Ezzat. Transferable videorealistic speech animation. Euro-

graphics/ACM SIGGRAPH Symp. on Comput. Anim., 2005.

[41] D. Chen and D. Zeltzer. Pump it up: Computer animation of a biomechani-

cally based model of muscle using the finite element method. Comput. Graph.

(SIGGRAPH Proc.), pages 89–98, 1992.

[42] B. Choe and H.-S. Ko. Analysis and synthesis of facial expressions with hand-

generated muscle actuation basis. In Proc. of Comput. Anim., pages 12–19,

2001.

[43] B. Choe, H. Lee, and H.-S. Ko. Performance-driven muscle-based facial anima-

tion. J. Vis. and Comput. Anim., 12:67–79, 2001.

[44] K.-J. Choi and H.-S. Ko. Stable but responsive cloth. ACM Trans. Graph.

(SIGGRAPH Proc.), 21:604–611, 2002.

[45] M. G. Choi and H.-S. Ko. Modal warping: Realtime simulation of large ro-

tational deformation and manipulation. IEEE Trans. Viz. Comput. Graph.,

11:91–101, 2005.

[46] E. Chuang and C. Bregler. Mood swings: expressive speech animation. ACM

Trans. Graph., 24(2):331–347, 2005.

[47] M. Cohen and D. Massaro. Modeling coarticulation in synthetic visual speech.

Models and Techniques in Comput. Anim., 1993.

[48] G. Debunne, M. Desbrun, A. Barr, and M-P. Cani. Interactive multiresolu-

tion animation of deformable models. In Proc. of the Eurographics Wrkshp on

Comput. Anim. and Sim. 1999. Springer Verlag, 1999.

[49] G. Debunne, M. Desbrun, M. Cani, and A. Barr. Dynamic real-time defor-

mations using space & time adaptive sampling. In Proc. SIGGRAPH 2001,

volume 20, pages 31–36, 2001.

BIBLIOGRAPHY 173

[50] G. Debunne, M. Desbrun, M.-P. Cani, and A. Barr. Adaptive simulation of

soft bodies in real-time. In Comput. Anim. 2000, Philadelphia, USA, pages

133–144, May 2000.

[51] D. DeCarlo, D. Metaxas, and M. Stone. An anthropometric face model using

variational techniques. In Proc. of ACM SIGGRAPH, pages 67–74. ACM Press,

1998.

[52] S. Delp and J. Loan. A computational framework for simulating and analyzing

human and animal movement. IEEE Computing In Science And Eng., 2(5):46–

55, 2000.

[53] Z. Deng, J. Lewis, and U. Neumann. Synthesizing speech animation by learning

compact speech co-articulation models. Comput. Graph. Int., pages 19–25, 2005.

[54] F. Dong, G. Clapworthy, M. Krokos, and J. Yao. An anatomy-based approach to

human muscle modeling and deformation. IEEE Trans. Vis. Comput. Graph.,

8(2), 2002.

[55] P. Ekman and W. V. Friesen. Facial Action Coding System. Consulting Psy-

chologist Press, Palo Alto, 1978.

[56] I. Essa, S. Basu, T. Darrell, and A. Pentland. Modeling, tracking and interactive

animation of faces and heads using input from video. In Proc. of Comput. Anim.,

pages 68–79. IEEE Comput. Society, 1996.

[57] I. Essa and A. Pentland. Coding, analysis, interpretation, and recognition of

facial expressions. IEEE Trans. on Pattern Analysis and Machine Intelligence,

19(7):757–763, july 1997.

[58] T. Ezzat, G. Geiger, and T. Poggio. Trainable videorealistic speech animation.

In ACM Trans. Graph., volume 21, pages 388–398. ACM Press, 2002.

[59] T. Ezzat and T. Poggio. Visual speech synthesis by morphing visemes. In Int.

J. Comp. Vision, volume 38, pages 45–37, 2000.

174 BIBLIOGRAPHY

[60] J. Fernandez, F. Mithraratne, S. Thrupp, M. Tawhai, and P. Hunter. Anatomi-

cally based geometric modeling of the musculo-skeletal system and other organs.

Biomech Mod. Mechanobio., 3, 2003.

[61] S. Fisher and M. C. Lin. Deformed distance fields for simulation of non-

penetrating flexible bodies. In Comput. Anim. and Sim. ’01, Proc. Eurographics

Wrkshp., pages 99–111, 2001.

[62] C. Forest, H. Delingette, and N. Ayache. Removing tetrahedra from a manifold

mesh. In Comput. Anim., pages 225–229, 2002.

[63] T. Fukunaga, Y. Kawakami, S. Kuno, K. Funato, and S. Fukashiro. Muscle

architecture and function in humans. J. Biomech., 30, 1997.

[64] F. Ganovelli and C. O’Sullivan. Animating cuts with on-the-fly re-meshing. In

Eurographics 2001, Short Presentations Programme, 2001.

[65] B. Garner and M. Pandy. A kinematic model of the upper limb based on the

visible human project (vhp) image dataset. Comput. Meth. Biomech. Biomed.

Eng., 2:107–124, 1999.

[66] B. Garner and M. Pandy. Musculoskeletal model of the upper limb based on the

visible human male dataset. Comput. Meth. Biomech. Biomed. Eng., 4:93–126,

2001.

[67] A.J.W. Gielen, P.H.M. Bovendeerd, and J.D. Janssen. A three dimensional

continuum model of skeletal muscle. Comput. Meth. in Biomech. and Biomed.

Eng., 3:231–244, 2000.

[68] P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic

Press, San Diego, USA, 1981.

[69] Y. Gingold, A. Secord, J. Han, E. Grinspun, and D. Zorin. A discrete model for

inelastic deformations of thin shells. In Poster, Eurographics/ACM SIGGRAPH

Symp. on Comput. Anima., 2005.

BIBLIOGRAPHY 175

[70] M. Gissler, M. Becker, and M. Teschner. Local constraint methods for de-

formable objects. In Proc. of the 3rd Workshop in VR Interactions and Physical

Simulation (VRIPHYS), pages 1–8, 2006.

[71] M. Gissler, M. Becker, and M. Teschner. Local constraint methods for de-

formable objects. In Poster, Eurographics/ACM SIGGRAPH Symp. on Com-

put. Animation, 2006.

[72] J.-P. Gourret, N. Magnenat-Thalmann, and D. Thalmann. Simulation of object

and human skin deformations in a grasping task. Comput. Graph. (SIGGRAPH

Proc.), pages 21–30, 1989.

[73] E. Grinspun, A. Hirani, M. Desbrun, and P. Schröder. Discrete shells. In Proc.

of the 2003 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., pages

62–67, 2003.

[74] E. Grinspun, P. Krysl, and P. Schröder. CHARMS: A simple framework for

adaptive simulation. ACM Trans. Graph. (SIGGRAPH Proc.), 21:281–290,

2002.

[75] E. Guendelman, R. Bridson, and R. Fedkiw. Nonconvex rigid bodies with

stacking. ACM Trans. Graph. (SIGGRAPH Proc.), 22(3):871–878, 2003.

[76] B. Guenter, C. Grimm, D. Wood, H. Malvar, and F. Pighin. Making faces. In

Proc. ACM SIGGRAPH, pages 55–66. ACM Press, 1998.

[77] J. Guilkey and J. Weiss. Implicit time integration for the material point method:

Quantitative and algorithmic comparisons with the finite element method. Int.

J. Num. Meth. Eng., 57:1323–1338, 2003.

[78] X. Guo, X. Li, Y. Bao, X. Gu, and H. Qin. Meshless thin-shell simulation

based on global conformal parameterization. IEEE Trans. on Vis. and Comput.

Graph., 12(3):375–385, 2006.

176 BIBLIOGRAPHY

[79] B. Heidelberger, M. Teschner, R. Keiser, M. Müller, and M. Gross. Consistent

penetration depth estimation for deformable collision response. In Proc. of

Vision, Model., Vis. (VMV), pages 339–346, Stanford, USA, 2004.

[80] G. Hirota, S. Fisher, A. State, C. Lee, and H. Fuchs. An implicit finite element

method for elastic solids in contact. In Proc. of Comput. Anim., pages 136–146,

2001.

[81] K. Hirota, Y. Tanoue, and T. Kaneko. Generation of crack patterns with a

physical model. The Vis. Comput., 14:126–187, 1998.

[82] G. Irving, J. Teran, and R. Fedkiw. Invertible finite elements for robust sim-

ulation of large deformation. In Proc. of the ACM SIGGRAPH/Eurographics

Symp. on Comput. Anim., pages 131–140, 2004.

[83] D. James and K. Fatahalian. Precomputing interactive dynamic deformable

scenes. ACM Trans. Graph. (SIGGRAPH Proc.), 22:879–887, 2003.

[84] D. James and D. Pai. DyRT: Dynamic response textures for real time defor-

mation simulation with graphics hardware. ACM Trans. Graph. (SIGGRAPH

Proc.), 21:582–585, 2002.

[85] J. Jansson and J.S.M. Vergeest. Combining deformable and rigid body mechan-

ics simulation. The Vis. Comput. J., 2003.

[86] S. Jimenez and A. Luciani. Animation of interacting objects with collisions

and prolonged contacts. In B. Falcidieno and T. L. Kunii, editors, Modeling

in computer graphics—methods and applications, Proc. of the IFIP WG 5.10

Working Conf., pages 129–141. Springer-Verlag, 1993.

[87] P. Joshi, W. C. Tien, M. Desbrun, and F. Pighin. Learning controls for blend

shape based realistic facial animation. In Proc. ACM SIGGRAPH/Eurographics

Symp. on Comput. Anim., pages 365–373, 2003.

[88] K. Kahler, J. Haber, and H.-P. Seidel. Geometry-based muscle modeling for

facial animation. In Proc. of Graph. Interface, pages 37–46, 2001.

BIBLIOGRAPHY 177

[89] K. Kahler, J. Haber, and H.-P. Seidel. Reanimating the dead: Reconstruction

of expressive faces from skull data. In ACM Trans. Graph., volume 22, pages

554–561, 2003.

[90] K. Kahler, J. Haber, H. Yamauchi, and H.-P. Seidel. Head shop: Generat-

ing animated head models with anatomical structure. In Proc. of ACM SIG-

GRAPH/Eurographics Symp. on Comput. Anim., pages 55–63, 2002.

[91] P. Kalra, A. Mangili, N. Magnetat-Thalmann, and D. Thalmann. Simulation

of facial muscle actions based on rational free form deformations. In Proc. of

Eurographics, pages 59–69, 1992.

[92] R. Kautzman, A. Maiolo, D. Griffin, and A. Bueker. Jiggly bits and motion

retargetting: Bringing the motion of Hyde to life in Van Helsing with dynamics.

In SIGGRAPH 2004 Sketches & Applications. ACM Press, 2004.

[93] E. Keeve, S. Girod, P. Pfeifle, and B. Girod. Anatomy-based facial tissue

modeling using the finite element method. In Proc. of Visualization, pages

21–28, 1996.

[94] S. King and R. Parent. Creating speech-synchronized animation. IEEE Trans.

on Vis. and Comput. Graph., 11(3):341–352, 2005.

[95] R. M. Koch, M. H. Gross, F. R. Carls, D. F. von Buren, G. Fankhauser, and

Y. I. H. Parish. Simulating facial surgery using finite element models. Comput.

Graph., 30(Annual Conf. Series):421–428, 1996.

[96] Rolf Koch, Markus Gross, and Albert Bosshard. Emotion editing using finite

elements. Proc. of Eurographics 1998, 17(3), 1998.

[97] P. G. Kry, D. L. James, and D. K. Pai. Eigenskin: real time large deformation

character skinning in hardware. In Proc. of the ACM SIGGRAPH Symp. on

Comput. Anim., pages 153–159. ACM Press, 2002.

[98] S. Kshirsagar and N. Magnenat-Thalmann. Visyllable based speech animation.

In Proc. of Eurographics, volume 22, 2003.

178 BIBLIOGRAPHY

[99] T. Kurihara and N. Miyata. Modeling deformable human hands from med-

ical images. In Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on

Comput. Anim., pages 365–373, 2004.

[100] S. P. Lee, J. B. Badler, and N. I. Badler. Eyes alive. In Proc. of ACM SIG-

GRAPH, pages 637–644. ACM Press, 2002.

[101] Yuencheng Lee, Demetri Terzopoulos, and Keith Waters. Realistic modeling

for facial animation. Comput. Graph. (SIGGRAPH Proc.), pages 55–62, 1995.

[102] J. Lenoir and S. Fonteneau. Mixing deformable and rigid-body mechanics sim-

ulation. In Comput. Graph. Int., pages 327–334, june 16-19 2004.

[103] J. Lewis, M. Cordner, and N. Fong. Pose space deformations: A unified

approach to shape interpolation a nd skeleton-driven deformation. Comput.

Graph. (SIGGRAPH Proc.), pages 165–172, 2000.

[104] F. Losasso, G. Irving, E. Guendelman, and R. Fedkiw. Melting and burn-

ing solids into liquids and gases. IEEE Trans. on Vis. and Comput. Graph.,

12(3):343–352, 2006.

[105] R. Loubère and E. J. Caramana. The force/work differencing of exceptional

points in the discrete, compatible formulation of lagrangian hydrodynamics. J.

Comput. Phys., 216:1–18, 2006.

[106] J.C. Lucero and K.G. Munhall. A model of facial biomechanics for speech

production. J. of the Accoustical Society of America, 106(5):2834–2842, 1999.

[107] J.C. Lucero, K.G. Munhall, E. Vatikiotis-Bateson, V.L. Gracco, and D. Ter-

zopoulos. Muscle-based modeling of facial dynamics during speech production.

J. of the Acoustical Society of America, 101(5):3175–3176, May 1997.

[108] N. Magnenat-Thalmann, E. Primeau, and D. Thalmann. Abstract muscle action

procedures for human face animation. The Vis. Comput., 3(5):290–297, 1988.

BIBLIOGRAPHY 179

[109] D. Marchal, F. Aubert, and C. Chaillou. Collision between deformable objects

using fast-marching on tetrahedral models. In Proc. of the ACM SIGGRAPH

Symp. on Comput. Anim. ACM Press, 2004.

[110] O Mazarak, C. Martins, and J. Amanatides. Animating exploding objects. In

Proc. of Graph. Interface 1999, pages 211–218, 1999.

[111] Alex Mohr and Michael Gleicher. Building efficient, accurate character skins

from examples. ACM Trans. Graph., 22(3):562–568, 2003.

[112] N. Molino, Z. Bao, and R. Fedkiw. A virtual node algorithm for changing

mesh topology during simulation. ACM Trans. Graph. (SIGGRAPH Proc.),

23:385–392, 2004.

[113] N. Molino, R. Bridson, J. Teran, and R. Fedkiw. A crystalline, red green

strategy for meshing highly deformable objects with tetrahedra. In 12th Int.

Meshing Roundtable, pages 103–114, 2003.

[114] A. Mor and T. Kanade. Modifying soft tissue models: progressive cutting with

minimal new element creation. In MICCAI, pages 598–607, 2000.

[115] S. Morishima, T. Ishikawa, and D. Terzopoulos. Facial muscle parameter deci-

sion from 2D frontal image. In Proc. of the Int. Conf. on Pattern Recognition,

volume 1, pages 160–162, 1998.

[116] J. Mosegaard and T. S. Sørensen. Technical aspects of the gpu accelerated

surgical simulator. In SIGGRAPH 2006 Sketches & Applications. ACM Press,

2006.

[117] Moving Picture Experts Group. Information technology - coding of audio-

visual objects part 2: Visual. Final draft of international standard ISO/IEC

JTC1/SC29/WG11 N2501 14496-2, 1998.

[118] M. Müller, J. Dorsey, L. McMillan, R. Jagnow, and B. Cutler. Stable real-time

deformations. In ACM SIGGRAPH Symp. on Comput. Anim., pages 49–54,

2002.

180 BIBLIOGRAPHY

[119] M. Müller and M. Gross. Interactive virtual materials. In Graph. Interface,

pages 239–246, May 2004.

[120] M. Müller, B. Heidelberger, M. Teschner, and M. Gross. Meshless deformations

based on shape matching. ACM Trans. Graph. (SIGGRAPH Proc.), pages

471–478, 2005.

[121] M. Müller, R. Keiser, A. Nealen, M. Pauly, M. Gross, and M. Alexa. Point based

animation of elastic, plastic and melting objects. In Proc. of the 2004 ACM

SIGGRAPH/Eurographics Symp. on Comput. Anim., pages 141–151, 2004.

[122] M. Müller, L. McMillan, J. Dorsey, and R. Jagnow. Real-time simulation of

deformation and fracture of stiff materials. In Comput. Anim. and Sim. ’01,

Proc. Eurographics Wrkshp., pages 99–111. Eurographics Assoc., 2001.

[123] M. Müller, M. Teschner, and M. Gross. Physically-based simulation of objects

represented by surface meshes. In Proc. Comput. Graph. Int., pages 156–165,

June 2004.

[124] K. Na and M. Jung. Hierarchical retargetting of fine facial motions. In Proc.

of Eurographics, volume 23, 2004.

[125] M. Neff and E. Fiume. A visual model for blast waves and fracture. In Proc.

of Graph. Interface 1999, pages 193–202, 1999.

[126] V. Ng-Thow-Hing and E. Fiume. Application-specific muscle representations.

In W. Sturzlinger and M. McCool, editors, Proc. of Gr. Inter. 2002, pages

107–115. Canadian Information Processing Society, 2002.

[127] H.-W. Nienhuys and A. F. van der Stappen. Combining finite element de-

formation with cutting for surgery simulations. In Eurographics 2000, Short

Presentations Programme, 2000.

[128] H.-W. Nienhuys and A. F. van der Stappen. Supporting cuts and finite ele-

ment deformation in interactive surgery simulation. Technical report, Utrecht

University, Institute for Information and Computing Sciences, 2001.

BIBLIOGRAPHY 181

[129] J. Noh and U. Neumann. Expression cloning. In Eugene Fiume, editor, Proc.

of ACM SIGGRAPH, pages 277–288. ACM Press, 2001.

[130] A. Norton, G. Turk, B. Bacon, J. Gerth, and P. Sweeney. Animation of fracture

by physical modeling. Vis. Comput., 7(4):210–219, 1991.

[131] J. O’Brien, A. Bargteil, and J. Hodgins. Graphical modeling of ductile fracture.

ACM Trans. Graph. (SIGGRAPH Proc.), 21:291–294, 2002.

[132] J. O’Brien and J. Hodgins. Graphical modeling and animation of brittle frac-

ture. In Proc. SIGGRAPH 99, volume 18, pages 137–146, 1999.

[133] J. O’Brien and J. Hodgins. Graphical modeling and animation of brittle frac-

ture. In Proc. of SIGGRAPH 1999, pages 137–146, 1999.

[134] J. F. O’Brien, V. B. Zordan, and J. K. Hodgins. Combining active and passive

simulations for secondary motion. IEEE Comput. Graph. Appl., 20, 2000.

[135] S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces.

Springer-Verlag, 2002. New York, NY.

[136] M. Pandy. Moment arm of a muscle force. Ex. Sprt. Sci. Rev., 27, 1999.

[137] G. Pappas, D. Asakawa, S. Delp, F. Zajac, and J. Drace. Nonuniform shortening

in the biceps brachii during elbow flexion. J. Appl. Physio., 92(6), 2002.

[138] F. I. Parke. Computer generated animation of faces. In Proc. of ACM Conf.,

pages 451–457. ACM Press, 1972.

[139] F. I. Parke and K. Waters. Computer Facial Animation. AK Peters, Ltd., 1996.

[140] M. Pauly, R. Keiser, B. Adams, P. Dutré, M. Gross, and L. Guibas. Mesh-

less animation of fracturing solids. ACM Trans. Graph. (SIGGRAPH Proc.),

24(3):957–964, 2005.

[141] G. Picinbono, H. Delingette, and N. Ayache. Non-linear and anisotropic elas-

tic soft tissue models for medical simulation. In IEEE Int. Conf. Robot. and

Automation, 2001.

182 BIBLIOGRAPHY

[142] S. Pieper, J. Rosen, and D. Zeltzer. Interactive graphics for plastic surgery: A

task-level analysis and implementation. In Proc. of Symp. on Int. 3D Graph.,

pages 127–134. ACM Press, 1992.

[143] F. Pighin, J. Hecker, D. Lischinski, R. Szeliski, and D. H. Salesin. Synthesizing

realistic facial expressions from photographs. In Proc. of ACM SIGGRAPH,

pages 75–84. ACM Press, 1998.

[144] F Pighin, J Lewis, G Borshukov, D Bennett, P Debevec, C Hery, S Sullivan,

L Williams, and L Zhang. Digital face cloning. In SIGGRAPH Course Notes.

ACM, 2005.

[145] F. Pighin, R. Szeliski, and D. Salesin. Resynthesizing facial animation through

3D model-based tracking. In Proc. of Int. Conf. on Comput. Vision, pages

143–150, 1999.

[146] Stephen M. Platt and Norman I. Badler. Animating facial expressions. Comput.

Graph. (SIGGRAPH Proc.), pages 245–252, 1981.

[147] H. Pyun, Y. Kim, W. Chae, H. W. Kang, and S. Y. Shin. An example-based ap-

proach for facial expression cloning. In Proc. of ACM SIGGRAPH/Eurographics

Symp. on Comput. Anim., pages 167–176, 2003.

[148] L. Reveret and I. Essa. Visual coding and tracking of speech related facial

motion. In Proc. of IEEE CVPR Int. Wrkshp. on Cues in Communication,

december 2001.

[149] S. H. Roth, M. Gross, M. H. Turello, and S. Carls. A Bernstein-Bézier based ap-

proach to soft tissue simulation. Comput. Graph. Forum (Proc. Eurographics),

17(3):285–294, 1998.

[150] R. Schachar, W. Herzog, and T. Leonard. Force enhancement above the ini-

tial isometric force on the descending limb of the force/length relationship. J.

Biomech., 35, 2002.

BIBLIOGRAPHY 183

[151] F. Scheepers, R. Parent, W. Carlson, and S. May. Anatomy-based modeling of

the human musculature. Comput. Graph. (SIGGRAPH Proc.), pages 163–172,

1997.

[152] D. Serby, M. Harders, and G. Székely. A new approach to cutting into finite

element models. In MICCAI, pages 425–433, 2001.

[153] J. Sethian. A fast marching level set method for monotonically advancing fronts.

Proc. Natl. Acad. Sci., 93:1591–1595, 1996.

[154] E. Sifakis, K. Der, and R. Fedkiw. Arbitrary cutting of deformable tetrahedral-

ized objects. In Proc. of ACM SIGGRAPH/Eurographics Symp. on Comput.

Anim. (in press), 2007.

[155] E. Sifakis, I. Neverov, and R. Fedkiw. Automatic determination of facial mus-

cle activations from sparse motion capture marker data. ACM Trans. Graph.

(SIGGRAPH Proc.), 2005.

[156] E. Sifakis, A. Selle, A. Robinson-Mosher, and R. Fedkiw. Simulating speech with

a physics-based facial muscle model. ACM SIGGRAPH/Eurographics Symp. on

Comput. Anim., pages 261–270, 2006.

[157] E. Sifakis, T. Shinar, G. Irving, and R. Fedkiw. Hybrid simulation of deformable

solids. In Proc. of ACM SIGGRAPH/Eurographics Symp. on Comput. Anim.

(in press), 2007.

[158] P. Sloan, C. Rose, and M. Cohen. Shape by example. In Proc. of 2001 Symp.

Int. 3D Graph., pages 135–143, 2001.

[159] J. Smith, A. Witkin, and D. Baraff. Fast and controllable simulation of the

shattering of brittle objects. In D. Duke and R. Scopigno, editors, Comput.

Graph. Forum, volume 20(2), pages 81–91. Blackwell Publishing, 2001.

[160] D. Steinemann, M. Harders, M. Gross, and G. Szekely. Hybrid cutting of

deformable solids. In Proc. of the IEEE Virtual Reality Conference, pages 35–

42, 2006.

184 BIBLIOGRAPHY

[161] D. Steinemann, M. A. Otaduy, and M. Gross. Fast arbitrary splitting of deform-

ing objects. In Proc. of the ACM SIGGRAPH/Eurographics Symp. on Comput.

Anim., pages 63–72, 2006.

[162] W. Stinson and P. Thuriot. Bulging muscle and sliding skin: Deformation

systems for Hellboy. In SIGGRAPH 2004 Sketches & Applications. ACM Press,

2004.

[163] R. Sumner and J. Popović. Deformation transfer for triangle meshes. In ACM

Trans. on Graph. (Proc. ACM SIGGRAPH), volume 23, pages 399 – 405, 2004.

[164] R. Taylor, E. Wilson, and S. Sacket. Direct solution of equations by frontal

and variable band active column methods. In Europe-U.S. Wrkshp.: Nonlinear

Finite Element Analysis in Structural Mechanics. Springer-Verlag, 1980.

[165] J. Teran, S. Blemker, V. Ng, and R. Fedkiw. Finite volume methods for the sim-

ulation of skeletal muscle. In Proc. of the 2003 ACM SIGGRAPH/Eurographics

Symp. on Comput. Anim., pages 68–74, 2003.

[166] J. Teran, E. Sifakis, G. Irving, and R. Fedkiw. Robust quasistatic finite elements

and flesh simulation. Proc. of the 2005 ACM SIGGRAPH/Eurographics Symp.

on Comput. Anim., 2005.

[167] J. Teran, E. Sifakis, S. Salinas-Blemker, V. Ng-Thow-Hing, C. Lau, and R. Fed-

kiw. Creating and simulating skeletal muscle from the visible human data set.

IEEE Trans. on Vis. and Comput. Graph., 11(3):317–328, 2005.

[168] D. Terzopoulos and K. Fleischer. Deformable models. The Vis. Comput.,

4(6):306–331, 1988.

[169] D. Terzopoulos and K. Fleischer. Modeling inelastic deformation: viscoelastic-

ity, plasticity, fracture. Comput. Graph. (SIGGRAPH Proc.), pages 269–278,

1988.

[170] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer. Elastically deformable

models. Comput. Graph. (Proc. SIGGRAPH 87), 21(4):205–214, 1987.

BIBLIOGRAPHY 185

[171] D. Terzopoulos and K. Waters. Physically-based facial modeling, analysis, and

animation. J. Vis. and Comput. Anim., 1:73–80, december 1990.

[172] D. Terzopoulos and K. Waters. Analysis and synthesis of facial image sequences

using physical and anatomical models. IEEE Trans. on Pattern Analysis and

Machine Intelligence, 15(6), june 1993.

[173] D. Terzopoulos and A. Witkin. Physically based models with rigid and de-

formable components. In Graph. Interface, pages 146–154, 1988.

[174] M. Teschner, S. Girod, and B. Girod. Direct computation of nonlinear soft-tissue

deformation. In Proc. of Vision, Modeling, and Visualization, pages 383–390,

november 2000.

[175] M. Teschner, B. Heidelberger, M. Müller, and M. Gross. A versatile and robust

model for geometrically complex deformable solids. In Proc. Comput. Graph.

Int., pages 312–319, 2004.

[176] M. Teschner, B. Heidelberger, M. Müller, D. Pomeranets, and M. Gross. Opti-

mized spatial hashing for collision detection of deformable objects. In Proc. of

Vision, Modeling, Visualization (VMV), pages 47–54, Munich, Germany, 2003.

[177] J. Tsitsiklis. Efficient algorithms for globally optimal trajectories. IEEE Trans.

on Automatic Control, 40:1528–1538, 1995.

[178] U.S. National Library of Medicine. The visible human project, 1994.

http://www.nlm.nih.gov/research/visible/.

[179] E. Vatikiotis-Bateson, K.G. Munhall, M. Hirayama, Y. Lee, and D. Terzopoulos.

Dynamics of facial motion in speech: Kinematic and electromyographic studies

of orofacial structures. In Speechreading by Humans and Machines, volume

150 of NATO ASI Series on Computer and System Sciences, chapter 16, pages

231–232. Springer-Verlag, March 1996.

186 BIBLIOGRAPHY

[180] D. Vlasic, M. Brand, H. Pfister, and J. Popović. Face transfer with multilinear

models. In ACM Trans. Graph. (Proc. ACM SIGGRAPH), volume 24, pages

426–433, 2005.

[181] P. Volino and N. Thalman. Implementing fast cloth simulation with collision re-

sponse. In Proc. of the Int. Conf. on Comput. Graph., page 257. IEEE Comput.

Society, 2000.

[182] X. C. Wang and C. Phillips. Multi-weight enveloping: Least-squares approx-

imation techniques for skin animation. In Proc. ACM SIGGRAPH Symp. on

Comput. Anim., pages 129–138, 2002.

[183] Y. Wang, X. Huang, C. S. Lee, S. Zhang, Z. Li, D. Samaras, D. Metaxas,

A. Elgammal, and P. Huang. High resolution acquisition, learning and transfer

of dynamic 3-D facial expressions. In Proc. of Eurographics, pages 677–686,

september 2004.

[184] K. Waters and J. Frisbie. A coordinated muscle model for speech animation.

In Proc. of Graph. Interface, pages 163–170, may 1995.

[185] Keith Waters. A muscle model for animating three-dimensional facial expres-

sions. Comput. Graph. (SIGGRAPH Proc.), pages 17–24, 1987.

[186] J. Weiss, B. Maker, and S. Govindjee. Finite-element implementation of incom-

pressible, transversely isotropic hyperelasticity. Comput. Meth. in Appl. Mech.

and Eng., 135:107–128, 1996.

[187] M. Wicke, D. Steinemann, and M. Gross. Efficient animation of point-sampled

thin shells. In Proc. of Eurographics, volume 24, 2005.

[188] J. Wilhelms and A. Van Gelder. Anatomically based modeling. Comput. Graph.

(SIGGRAPH Proc.), pages 173–180, 1997.

[189] L. Williams. Performance-driven facial animation. In Comput. Graph. (Proc.

of Int. Conf. on Comput. Graph. and Int. Techniques), pages 235–242. ACM

Press, 1990.

BIBLIOGRAPHY 187

[190] Y. Wu, P. Kalra, N. Magnenat-Thalmann, and D. Thalmann. Simulating wrin-

kles and skin aging. The Vis. Comput., 15(4):183–198, 1999.

[191] Gary D. Yngve, James F. O’Brien, and Jessica K. Hodgins. Animating explo-

sions. In Proc. of ACM SIGGRAPH 2000, pages 29–36, 2000.

[192] C. A. Yucesoy, B. H. Koopman, P. A. Huijing, and H. J. Grootenboer. Three-

dimensional finite element modeling of skeletal muscle using a two-domain ap-

proach: Linked fiber-matrix mesh model. J. Biomech., 35:1253–1262, 2002.

[193] F. Zajac. Muscle and tendon: Properties, models, scaling, and application to

biomechanics and motor control. Critical Reviews in Biomed. Eng., 17(4):359–

411, 1989.

[194] L. Zhang, N. Snavely, B. Curless, and S. Seitz. Spacetime faces: High resolu-

tion capture for modeling and animation. In ACM Trans. Graph. (Proc. ACM

SIGGRAPH), volume 23, pages 548–558. ACM Press, 2004.

[195] Q. Zhang, Z. Liu, B. Guo, and H. Shum. Geometry-driven photorealistic facial

expression synthesis. In Proc. of ACM SIGGRAPH/Eurographics Symp. on

Comput. Anim., pages 16–22. ACM Press, 2003.

[196] Q. Zhu, Y. Chen, and A. Kaufman. Real-time biomechanically-based muscle

volume deformation using FEM. Comput. Graph. Forum, 190(3):275–284, 1998.

