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Introduction

• Linear systems of equations are ubiquitous in engineering
• Their solution is often the bottleneck for entire applications
• NxN systems Ax=b arising from physics have special properties:

• Almost always : Sparse - O(N) nonzero entries
• Very often : Symmetric
• Often enough : Positive definite, diagonally dominant, etc.
• Dense matrix complexity ~O(N2.38) does not apply

• For special matrices, solvers with cost as low as O(N) exist
• The “hidden constant” becomes important, and can be 

lowered via parallelism
• Efficient algorithms need to be very frugal with storage
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Example : The 3D Poisson equation
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x = b



Rasmussen et al,  Smoke Simulation for Large Scale Phenomena
(SIGGRAPH 2003)

Applications



Nielsen et al,  Out-Of-Core and Compressed Level Set Methods
(ACM TOG 2007)

Applications



Horvath & Geiger,  Directable, high-resolution simulation of fire on the GPU
(ACM SIGGRAPH 2009)

Applications
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700M equations
40 sec on 16 cores
16GB RAM required
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450M equations
25 sec on 16 cores, 12GB RAM required

Introduction



135M equations
12 sec on 16 cores, 3GB RAM required

Introduction



Introduction

How good (or not) are these runtimes?
• For one of these problems the system Ax=b has

• 700M equations, 700M unknowns

• Storing x (in float precision) requires 2.8GB. Same for b.
• The matrix A has 7-nonzero entries per equation.
• MATLAB requires ~40GB to store it, in its “sparse” format

• Our case study computes the solution
• With ~40sec of runtime (on a 16-core SMP)
• While using <16GB of RAM

         (caveat : it avoids storing A)



Development Plan

Design
• Define your objectives
• Choose a parallel-friendly theoretical formulation 
• Set performance expectations
• Choose a promising algorithm

Implement
• Implement a prototype
• Organize code into reusable kernels

Accelerate
• Reorder/combine/pipeline operations
• Reduce resource utilization (try harder ...)
• Parallelize component kernels



Clarifying objectives

What kind of accuracy do we need?
• Solve Ax=b	
  down to machine precision?

• Ensure that x is correct to k significant digits?

• Ensure that x	
  (initial guess) is improved by k significant digits?

What is the real underlying problem we care about?
• The system Ax=b	
  is rarely the ultimate objective
• Typically, it’s means to an end

• Solve the system to create a simulation
• Solve the system to generate a solution to a physical law

• We have some flexibility to make Ax=b	
  “better” for parallel 
algorithmic solution



−4uij + ui+1,j + ui−1,j + ui,j+1 + ui,j−1

h2
= fij

∆x = b Ax = b

Clarifying objectives



Development Plan

Design
• Define your objectives
• Choose a parallel-friendly theoretical formulation 
• Set performance expectations
• Choose a promising algorithm

Implement
• Implement a prototype
• Organize code into reusable kernels

Accelerate
• Reorder/combine/pipeline operations
• Reduce resource utilization (try harder ...)
• Parallelize component kernels



Speedup vs. Efficiency

“My serial implementation of algorithm X on machine Y ran in Z seconds. 
When I parallelized my code, I got a speedup of 15x on 16 cores ...”

Well-­‐intended	
  evalua-on	
  prac-ces	
  ...

“... when I ported my implementation to CUDA, this numerical solver
ran 200 times faster than my original MATLAB code ...”

...	
  are	
  some-mes	
  abused	
  like	
  this:	
  

So,	
  what	
  is	
  wrong	
  with	
  that	
  premise?



Speedup vs. Efficiency

Watch for warning signs:
• Speedup across platforms grossly exceeding specification ratios

• e.g. NVIDIA GTX580 vs. Intel i7-2600
• Relative (peak) specifications : 

• GPU has about 3x higher (peak) compute capacity
• GPU has about 8x higher (peak) memory bandwidth

• Significantly higher speedups likely indicate:
• Different implementations on the 2 platforms
• Baseline code was not optimal/parallel enough

• “Standard” parallelization yields linear speedups on many cores
• [Reasonable scenario] Implementation is CPU-bound
• [Problematic scenario] Implementation is CPU-wasteful



Speedup vs. Efficiency

“ ... after optimizing my code, the runtime is about 5x slower than the 
best possible performance that I could expect from this machine ...”

A	
  different	
  perspec-ve	
  ...

...	
  i.e.	
  20%	
  of	
  maximum	
  theore-cal	
  efficiency!

Challenge	
  :	
  How	
  can	
  we	
  tell	
  how	
  fast	
  the	
  
best	
  implementa-on	
  could	
  have	
  been?

(without	
  implemen-ng	
  it	
  ...)



Performance bounds and “textbook efficiency”

Example : Solving the quadratic equation ax2 + bx+ c = 0

What is the minimum amount of time needed to solve this?

“We cannot solve this faster than the time
needed to read a,b,c and write x”

Data	
  access	
  cost	
  bound

“We cannot solve this faster than the time
needed evaluate the polynomial, for given 

values of a,b,c and x”
(i.e. 2 ADDs, 2 MULTs plus data access)

Solu-on	
  verifica-on	
  bound

Equivalent	
  opera-on	
  bound “We cannot solve this faster than the time
it takes to compute a square root”



Performance bounds and “textbook efficiency”

What about linear systems of equations?

It is theoretically possible to compute the 
solution to a linear system (with certain 

properties) with a cost comparable to 10x the 
cost of verifying that a given value x is an 

actual solution

“Textbook	
  Efficiency”
(for	
  ellip-c	
  systems)

Ax = b

It is theoretically possible to compute the 
solution to a linear system (with certain 

properties) with a cost comparable to 10x the 
cost of computing the expression r=b-­‐Ax	
  

and verifying that r=0
(i.e.	
  slightly	
  over	
  10x	
  of	
  the	
  cost	
  of	
  a	
  

matrix-­‐vector	
  mul-plica-on)

...	
  or	
  ...



Development Plan

Design
• Define your objectives
• Choose a parallel-friendly theoretical formulation 
• Set performance expectations
• Choose a promising algorithm

Implement
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Sample 2D domain (512x512 resolution)



Exact solution



Conjugate Gradients (w/o preconditioning)



Conjugate Gradients (with a stock preconditioner)



Multigrid

Conjugate Gradients (with parallel multigrid preconditioner)



McAdams et al. / A parallel multigrid Poisson solver for fluids simulation on large grids

cussed in [TOS01]. We will show that this sensitivity to the

boundary treatment is removed when the V-Cycle is used as

a preconditioner.

Stagnation: Even when the V-Cycle iteration is stable, on

certain irregular domains the residual reduction rate quickly

degrades towards 1, as opposed to converging to a value

less than 0.5 as typically expected of functional multi-

grid schemes. This complication appears on irregular do-

mains where successive levels of the multigrid hierarchy

may exhibit significant topological differences, as coarse

modes may not be accurately represented. In these cases,

costly eigenanalysis or recombined iterants may prove use-

ful [TOS01]; however, the highly irregular and changing do-

mains common to fluid simulations make these methods im-

practical.

3.3. Multigrid-preconditioned conjugate gradient

The instability and slow convergence issues described in

the previous section can be efficiently ameliorated by using

the multigrid V-Cycle as a preconditioner for an appropri-

ate Krylov method. Our experiments indicated that the ele-

mentary multigrid scheme in section 3.2 can be an extremely

efficient preconditioner, achieving convergence rates compa-

rable or superior to the ideal performance of the V-Cycle on

regular domains, even if the smoothing effort vested in the

multigrid V-Cycle is significantly less than what is necessary

to make it a convergent solver on its own.

We will use the V-Cycle described in Section 3.2 as a pre-

conditioner for the conjugate gradient method. Algorithm

3 provides the pseudocode for our PCG solver. Our algo-

rithm is numerically equivalent to the traditional definition

of PCG, as stated for example in [GvL89], but certain vari-

ables are being reused for economy of storage, and opera-

tions have been rearranged to facilitate optimized execution,

as discussed in Section 4. Preconditioning operates by con-

structing a symmetric, positive definite matrix M which is

easier to invert than L, and such that M−1L is significantly

better conditioned than L.

In our case, we will use the multigrid V-Cycle as the pre-

conditionerM−1
as described in [Tat93]. In particular, if we

define u :=M−1
b, then u is the result of one iteration of the

multigrid V-Cycle for the problem Lu = b with zero initial
guess, and zero boundary conditions. We can easily verify

that under these conditions, the action of the V-Cycle indeed

corresponds to a linear operator; the requirement that M be

symmetric and positive definite, however, is less trivial. We

refer to [Tat93] for a detailed analysis of the conditions for

symmetry and definiteness, and only present here a set of

sufficient conditions instead. The V-Cycle of Algorithm 1

will produce a symmetric and definite preconditioner if:

• The restriction/prolongation operators are the transpose of

one another (up to scaling). This is common practice, and

also the case for the V-Cycle we described.

• The smoother used in the upstroke of the V-Cycle (Algo-

rithm 1, line 11) performs the operations of the smoother

used for the downstroke (line 4) in reverse order. E.g.,

if Gauss-Seidel iteration is used, opposite traversal orders

should be used when descending or ascending the V-Cycle,

respectively. For Jacobi smoothers, no reversal is necessary

as the result is independent of the traversal order.

• The solve at the coarsest level (Algorithm 1, line 8) needs

to either be exact, or the inverse of L(L)
should be approxi-

mated with a symmetric and definite matrix. If the smoother

is iterated to approximate the solution, a number of iterations

should be performed with a given traversal order, followed

by an equal number of iterations with the order reversed.

Algorithm 3 Multigrid-preconditioned conjugate gradient.

Red-colored steps in the algorithm are applicable when
the Poisson problem has a nullspace (i.e., all Neumann
boundary conditions), and should be omitted when Dirichlet
boundaries are present.
(†) u←M−1

b is implemented by calling V-Cycle(u,b)
1: procedure MGPCG(r,x)

2: r← r−Lx, µ← r̄, ν←�r−µ�∞
3: if (ν < νmax) then return

4: r← r−µ, p←M−1
r
(†), ρ← p

T
r

5: for k = 0 to kmax do

6: z← Lp, σ← p
T

z

7: α← ρ/σ
8: r← r−αz, µ← r̄, ν←�r−µ�∞
9: if (ν < νmax or k = kmax) then

10: x← x+αp

11: return

12: end if

13: r← r−µ, z←M−1
r
(†), ρnew ← z

T
r

14: β← ρnew/ρ
15: ρ← ρnew

16: x← x+αp, p← z+βp

17: end for

18: end procedure

Finally, Poisson problems with all-Neumann boundary

conditions (e.g., simulations of smoke flow past objects) are

known to possess a nullspace, as the solution is only known

up to a constant. The algorithm of Algorithm 3 is modified in

this case to project out this nullspace, and the modifications

are highlighted in red in the pseudocode. No modification to

the V-Cycle preconditioner is needed.

4. Implementation and Optimizations

Minimizing boundary cost: The cost of performing 30-40

smoothing sweeps on the boundary to stabilize the V-Cycle

as a solver cannot be neglected, even though the interior

smoothing effort would asymptotically dominate. In prac-

tice, this amount of boundary smoothing would be the most

costly operation of the V-Cycle for a 256
3

grid or smaller,

c� The Eurographics Association 2010.

Preconditioned Conjugate Gradients

Performance
• Converges in O(Nd) with

stock preconditioners
• Converges in O(N) with

multigrid preconditioners
Prerequisites

• Requires a symmetric
system matrix

• Matrix needs to be
positive definite

• (Other variants exist, too)
Benefits

• Low storage overhead
• Simple component kernels

Lx = f
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Preconditioned Conjugate Gradients

Kernels
• Multiply()
• Saxpy()
• Subtract()
• Copy()
• Inner_Product()
• Norm()

Lx = f
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less than 0.5 as typically expected of functional multi-
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mains where successive levels of the multigrid hierarchy
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the previous section can be efficiently ameliorated by using
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rable or superior to the ideal performance of the V-Cycle on

regular domains, even if the smoothing effort vested in the

multigrid V-Cycle is significantly less than what is necessary

to make it a convergent solver on its own.

We will use the V-Cycle described in Section 3.2 as a pre-

conditioner for the conjugate gradient method. Algorithm

3 provides the pseudocode for our PCG solver. Our algo-

rithm is numerically equivalent to the traditional definition

of PCG, as stated for example in [GvL89], but certain vari-

ables are being reused for economy of storage, and opera-

tions have been rearranged to facilitate optimized execution,

as discussed in Section 4. Preconditioning operates by con-

structing a symmetric, positive definite matrix M which is

easier to invert than L, and such that M−1L is significantly

better conditioned than L.

In our case, we will use the multigrid V-Cycle as the pre-

conditionerM−1
as described in [Tat93]. In particular, if we

define u :=M−1
b, then u is the result of one iteration of the

multigrid V-Cycle for the problem Lu = b with zero initial
guess, and zero boundary conditions. We can easily verify

that under these conditions, the action of the V-Cycle indeed

corresponds to a linear operator; the requirement that M be

symmetric and positive definite, however, is less trivial. We

refer to [Tat93] for a detailed analysis of the conditions for

symmetry and definiteness, and only present here a set of

sufficient conditions instead. The V-Cycle of Algorithm 1

will produce a symmetric and definite preconditioner if:

• The restriction/prolongation operators are the transpose of

one another (up to scaling). This is common practice, and

also the case for the V-Cycle we described.

• The smoother used in the upstroke of the V-Cycle (Algo-

rithm 1, line 11) performs the operations of the smoother

used for the downstroke (line 4) in reverse order. E.g.,

if Gauss-Seidel iteration is used, opposite traversal orders

should be used when descending or ascending the V-Cycle,

respectively. For Jacobi smoothers, no reversal is necessary

as the result is independent of the traversal order.

• The solve at the coarsest level (Algorithm 1, line 8) needs

to either be exact, or the inverse of L(L)
should be approxi-

mated with a symmetric and definite matrix. If the smoother

is iterated to approximate the solution, a number of iterations

should be performed with a given traversal order, followed

by an equal number of iterations with the order reversed.

Algorithm 3 Multigrid-preconditioned conjugate gradient.

Red-colored steps in the algorithm are applicable when
the Poisson problem has a nullspace (i.e., all Neumann
boundary conditions), and should be omitted when Dirichlet
boundaries are present.
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4: r← r−µ, p←M−1
r
(†), ρ← p

T
r

5: for k = 0 to kmax do

6: z← Lp, σ← p
T

z

7: α← ρ/σ
8: r← r−αz, µ← r̄, ν←�r−µ�∞
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conditions (e.g., simulations of smoke flow past objects) are

known to possess a nullspace, as the solution is only known

up to a constant. The algorithm of Algorithm 3 is modified in

this case to project out this nullspace, and the modifications

are highlighted in red in the pseudocode. No modification to

the V-Cycle preconditioner is needed.

4. Implementation and Optimizations

Minimizing boundary cost: The cost of performing 30-40

smoothing sweeps on the boundary to stabilize the V-Cycle

as a solver cannot be neglected, even though the interior

smoothing effort would asymptotically dominate. In prac-

tice, this amount of boundary smoothing would be the most

costly operation of the V-Cycle for a 256
3

grid or smaller,

c� The Eurographics Association 2010.

Preconditioned Conjugate Gradients
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Lx = f
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cussed in [TOS01]. We will show that this sensitivity to the

boundary treatment is removed when the V-Cycle is used as

a preconditioner.

Stagnation: Even when the V-Cycle iteration is stable, on

certain irregular domains the residual reduction rate quickly

degrades towards 1, as opposed to converging to a value

less than 0.5 as typically expected of functional multi-

grid schemes. This complication appears on irregular do-

mains where successive levels of the multigrid hierarchy

may exhibit significant topological differences, as coarse

modes may not be accurately represented. In these cases,

costly eigenanalysis or recombined iterants may prove use-

ful [TOS01]; however, the highly irregular and changing do-

mains common to fluid simulations make these methods im-

practical.

3.3. Multigrid-preconditioned conjugate gradient

The instability and slow convergence issues described in

the previous section can be efficiently ameliorated by using

the multigrid V-Cycle as a preconditioner for an appropri-

ate Krylov method. Our experiments indicated that the ele-

mentary multigrid scheme in section 3.2 can be an extremely

efficient preconditioner, achieving convergence rates compa-

rable or superior to the ideal performance of the V-Cycle on

regular domains, even if the smoothing effort vested in the

multigrid V-Cycle is significantly less than what is necessary

to make it a convergent solver on its own.

We will use the V-Cycle described in Section 3.2 as a pre-

conditioner for the conjugate gradient method. Algorithm

3 provides the pseudocode for our PCG solver. Our algo-

rithm is numerically equivalent to the traditional definition

of PCG, as stated for example in [GvL89], but certain vari-

ables are being reused for economy of storage, and opera-

tions have been rearranged to facilitate optimized execution,

as discussed in Section 4. Preconditioning operates by con-

structing a symmetric, positive definite matrix M which is

easier to invert than L, and such that M−1L is significantly

better conditioned than L.

In our case, we will use the multigrid V-Cycle as the pre-

conditionerM−1
as described in [Tat93]. In particular, if we

define u :=M−1
b, then u is the result of one iteration of the

multigrid V-Cycle for the problem Lu = b with zero initial
guess, and zero boundary conditions. We can easily verify

that under these conditions, the action of the V-Cycle indeed

corresponds to a linear operator; the requirement that M be

symmetric and positive definite, however, is less trivial. We

refer to [Tat93] for a detailed analysis of the conditions for

symmetry and definiteness, and only present here a set of

sufficient conditions instead. The V-Cycle of Algorithm 1

will produce a symmetric and definite preconditioner if:

• The restriction/prolongation operators are the transpose of

one another (up to scaling). This is common practice, and

also the case for the V-Cycle we described.

• The smoother used in the upstroke of the V-Cycle (Algo-

rithm 1, line 11) performs the operations of the smoother

used for the downstroke (line 4) in reverse order. E.g.,

if Gauss-Seidel iteration is used, opposite traversal orders

should be used when descending or ascending the V-Cycle,

respectively. For Jacobi smoothers, no reversal is necessary

as the result is independent of the traversal order.

• The solve at the coarsest level (Algorithm 1, line 8) needs

to either be exact, or the inverse of L(L)
should be approxi-

mated with a symmetric and definite matrix. If the smoother

is iterated to approximate the solution, a number of iterations

should be performed with a given traversal order, followed

by an equal number of iterations with the order reversed.

Algorithm 3 Multigrid-preconditioned conjugate gradient.

Red-colored steps in the algorithm are applicable when
the Poisson problem has a nullspace (i.e., all Neumann
boundary conditions), and should be omitted when Dirichlet
boundaries are present.
(†) u←M−1

b is implemented by calling V-Cycle(u,b)
1: procedure MGPCG(r,x)

2: r← r−Lx, µ← r̄, ν←�r−µ�∞
3: if (ν < νmax) then return

4: r← r−µ, p←M−1
r
(†), ρ← p

T
r

5: for k = 0 to kmax do

6: z← Lp, σ← p
T

z

7: α← ρ/σ
8: r← r−αz, µ← r̄, ν←�r−µ�∞
9: if (ν < νmax or k = kmax) then

10: x← x+αp

11: return

12: end if

13: r← r−µ, z←M−1
r
(†), ρnew ← z

T
r

14: β← ρnew/ρ
15: ρ← ρnew

16: x← x+αp, p← z+βp

17: end for

18: end procedure

Finally, Poisson problems with all-Neumann boundary

conditions (e.g., simulations of smoke flow past objects) are

known to possess a nullspace, as the solution is only known

up to a constant. The algorithm of Algorithm 3 is modified in

this case to project out this nullspace, and the modifications

are highlighted in red in the pseudocode. No modification to

the V-Cycle preconditioner is needed.

4. Implementation and Optimizations

Minimizing boundary cost: The cost of performing 30-40

smoothing sweeps on the boundary to stabilize the V-Cycle

as a solver cannot be neglected, even though the interior

smoothing effort would asymptotically dominate. In prac-

tice, this amount of boundary smoothing would be the most

costly operation of the V-Cycle for a 256
3

grid or smaller,
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cussed in [TOS01]. We will show that this sensitivity to the

boundary treatment is removed when the V-Cycle is used as

a preconditioner.

Stagnation: Even when the V-Cycle iteration is stable, on

certain irregular domains the residual reduction rate quickly

degrades towards 1, as opposed to converging to a value

less than 0.5 as typically expected of functional multi-

grid schemes. This complication appears on irregular do-

mains where successive levels of the multigrid hierarchy

may exhibit significant topological differences, as coarse

modes may not be accurately represented. In these cases,

costly eigenanalysis or recombined iterants may prove use-

ful [TOS01]; however, the highly irregular and changing do-

mains common to fluid simulations make these methods im-

practical.

3.3. Multigrid-preconditioned conjugate gradient

The instability and slow convergence issues described in

the previous section can be efficiently ameliorated by using

the multigrid V-Cycle as a preconditioner for an appropri-

ate Krylov method. Our experiments indicated that the ele-

mentary multigrid scheme in section 3.2 can be an extremely

efficient preconditioner, achieving convergence rates compa-

rable or superior to the ideal performance of the V-Cycle on

regular domains, even if the smoothing effort vested in the

multigrid V-Cycle is significantly less than what is necessary

to make it a convergent solver on its own.

We will use the V-Cycle described in Section 3.2 as a pre-

conditioner for the conjugate gradient method. Algorithm

3 provides the pseudocode for our PCG solver. Our algo-

rithm is numerically equivalent to the traditional definition

of PCG, as stated for example in [GvL89], but certain vari-

ables are being reused for economy of storage, and opera-

tions have been rearranged to facilitate optimized execution,

as discussed in Section 4. Preconditioning operates by con-

structing a symmetric, positive definite matrix M which is

easier to invert than L, and such that M−1L is significantly

better conditioned than L.

In our case, we will use the multigrid V-Cycle as the pre-

conditionerM−1
as described in [Tat93]. In particular, if we

define u :=M−1
b, then u is the result of one iteration of the

multigrid V-Cycle for the problem Lu = b with zero initial
guess, and zero boundary conditions. We can easily verify

that under these conditions, the action of the V-Cycle indeed

corresponds to a linear operator; the requirement that M be

symmetric and positive definite, however, is less trivial. We

refer to [Tat93] for a detailed analysis of the conditions for

symmetry and definiteness, and only present here a set of

sufficient conditions instead. The V-Cycle of Algorithm 1

will produce a symmetric and definite preconditioner if:

• The restriction/prolongation operators are the transpose of

one another (up to scaling). This is common practice, and

also the case for the V-Cycle we described.

• The smoother used in the upstroke of the V-Cycle (Algo-

rithm 1, line 11) performs the operations of the smoother

used for the downstroke (line 4) in reverse order. E.g.,

if Gauss-Seidel iteration is used, opposite traversal orders

should be used when descending or ascending the V-Cycle,

respectively. For Jacobi smoothers, no reversal is necessary

as the result is independent of the traversal order.

• The solve at the coarsest level (Algorithm 1, line 8) needs

to either be exact, or the inverse of L(L)
should be approxi-

mated with a symmetric and definite matrix. If the smoother

is iterated to approximate the solution, a number of iterations

should be performed with a given traversal order, followed

by an equal number of iterations with the order reversed.

Algorithm 3 Multigrid-preconditioned conjugate gradient.

Red-colored steps in the algorithm are applicable when
the Poisson problem has a nullspace (i.e., all Neumann
boundary conditions), and should be omitted when Dirichlet
boundaries are present.
(†) u←M−1

b is implemented by calling V-Cycle(u,b)
1: procedure MGPCG(r,x)

2: r← r−Lx, µ← r̄, ν←�r−µ�∞
3: if (ν < νmax) then return

4: r← r−µ, p←M−1
r
(†), ρ← p

T
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5: for k = 0 to kmax do

6: z← Lp, σ← p
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z

7: α← ρ/σ
8: r← r−αz, µ← r̄, ν←�r−µ�∞
9: if (ν < νmax or k = kmax) then

10: x← x+αp

11: return

12: end if

13: r← r−µ, z←M−1
r
(†), ρnew ← z

T
r

14: β← ρnew/ρ
15: ρ← ρnew

16: x← x+αp, p← z+βp

17: end for

18: end procedure

Finally, Poisson problems with all-Neumann boundary

conditions (e.g., simulations of smoke flow past objects) are

known to possess a nullspace, as the solution is only known

up to a constant. The algorithm of Algorithm 3 is modified in

this case to project out this nullspace, and the modifications

are highlighted in red in the pseudocode. No modification to

the V-Cycle preconditioner is needed.

4. Implementation and Optimizations

Minimizing boundary cost: The cost of performing 30-40

smoothing sweeps on the boundary to stabilize the V-Cycle

as a solver cannot be neglected, even though the interior

smoothing effort would asymptotically dominate. In prac-

tice, this amount of boundary smoothing would be the most

costly operation of the V-Cycle for a 256
3

grid or smaller,
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cussed in [TOS01]. We will show that this sensitivity to the

boundary treatment is removed when the V-Cycle is used as

a preconditioner.

Stagnation: Even when the V-Cycle iteration is stable, on

certain irregular domains the residual reduction rate quickly

degrades towards 1, as opposed to converging to a value

less than 0.5 as typically expected of functional multi-

grid schemes. This complication appears on irregular do-

mains where successive levels of the multigrid hierarchy

may exhibit significant topological differences, as coarse

modes may not be accurately represented. In these cases,

costly eigenanalysis or recombined iterants may prove use-

ful [TOS01]; however, the highly irregular and changing do-

mains common to fluid simulations make these methods im-

practical.

3.3. Multigrid-preconditioned conjugate gradient

The instability and slow convergence issues described in

the previous section can be efficiently ameliorated by using

the multigrid V-Cycle as a preconditioner for an appropri-

ate Krylov method. Our experiments indicated that the ele-

mentary multigrid scheme in section 3.2 can be an extremely

efficient preconditioner, achieving convergence rates compa-

rable or superior to the ideal performance of the V-Cycle on

regular domains, even if the smoothing effort vested in the

multigrid V-Cycle is significantly less than what is necessary

to make it a convergent solver on its own.

We will use the V-Cycle described in Section 3.2 as a pre-

conditioner for the conjugate gradient method. Algorithm

3 provides the pseudocode for our PCG solver. Our algo-

rithm is numerically equivalent to the traditional definition

of PCG, as stated for example in [GvL89], but certain vari-

ables are being reused for economy of storage, and opera-

tions have been rearranged to facilitate optimized execution,

as discussed in Section 4. Preconditioning operates by con-

structing a symmetric, positive definite matrix M which is

easier to invert than L, and such that M−1L is significantly

better conditioned than L.

In our case, we will use the multigrid V-Cycle as the pre-

conditionerM−1
as described in [Tat93]. In particular, if we

define u :=M−1
b, then u is the result of one iteration of the

multigrid V-Cycle for the problem Lu = b with zero initial
guess, and zero boundary conditions. We can easily verify

that under these conditions, the action of the V-Cycle indeed

corresponds to a linear operator; the requirement that M be

symmetric and positive definite, however, is less trivial. We

refer to [Tat93] for a detailed analysis of the conditions for

symmetry and definiteness, and only present here a set of

sufficient conditions instead. The V-Cycle of Algorithm 1

will produce a symmetric and definite preconditioner if:

• The restriction/prolongation operators are the transpose of

one another (up to scaling). This is common practice, and

also the case for the V-Cycle we described.

• The smoother used in the upstroke of the V-Cycle (Algo-

rithm 1, line 11) performs the operations of the smoother

used for the downstroke (line 4) in reverse order. E.g.,

if Gauss-Seidel iteration is used, opposite traversal orders

should be used when descending or ascending the V-Cycle,

respectively. For Jacobi smoothers, no reversal is necessary

as the result is independent of the traversal order.

• The solve at the coarsest level (Algorithm 1, line 8) needs

to either be exact, or the inverse of L(L)
should be approxi-

mated with a symmetric and definite matrix. If the smoother

is iterated to approximate the solution, a number of iterations

should be performed with a given traversal order, followed

by an equal number of iterations with the order reversed.

Algorithm 3 Multigrid-preconditioned conjugate gradient.

Red-colored steps in the algorithm are applicable when
the Poisson problem has a nullspace (i.e., all Neumann
boundary conditions), and should be omitted when Dirichlet
boundaries are present.
(†) u←M−1

b is implemented by calling V-Cycle(u,b)
1: procedure MGPCG(r,x)

2: r← r−Lx, µ← r̄, ν←�r−µ�∞
3: if (ν < νmax) then return

4: r← r−µ, p←M−1
r
(†), ρ← p

T
r

5: for k = 0 to kmax do

6: z← Lp, σ← p
T

z

7: α← ρ/σ
8: r← r−αz, µ← r̄, ν←�r−µ�∞
9: if (ν < νmax or k = kmax) then

10: x← x+αp

11: return

12: end if

13: r← r−µ, z←M−1
r
(†), ρnew ← z

T
r

14: β← ρnew/ρ
15: ρ← ρnew

16: x← x+αp, p← z+βp

17: end for

18: end procedure

Finally, Poisson problems with all-Neumann boundary

conditions (e.g., simulations of smoke flow past objects) are

known to possess a nullspace, as the solution is only known

up to a constant. The algorithm of Algorithm 3 is modified in

this case to project out this nullspace, and the modifications

are highlighted in red in the pseudocode. No modification to

the V-Cycle preconditioner is needed.

4. Implementation and Optimizations

Minimizing boundary cost: The cost of performing 30-40

smoothing sweeps on the boundary to stabilize the V-Cycle

as a solver cannot be neglected, even though the interior

smoothing effort would asymptotically dominate. In prac-

tice, this amount of boundary smoothing would be the most

costly operation of the V-Cycle for a 256
3

grid or smaller,
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cussed in [TOS01]. We will show that this sensitivity to the

boundary treatment is removed when the V-Cycle is used as

a preconditioner.

Stagnation: Even when the V-Cycle iteration is stable, on

certain irregular domains the residual reduction rate quickly

degrades towards 1, as opposed to converging to a value

less than 0.5 as typically expected of functional multi-

grid schemes. This complication appears on irregular do-

mains where successive levels of the multigrid hierarchy

may exhibit significant topological differences, as coarse

modes may not be accurately represented. In these cases,

costly eigenanalysis or recombined iterants may prove use-

ful [TOS01]; however, the highly irregular and changing do-

mains common to fluid simulations make these methods im-

practical.

3.3. Multigrid-preconditioned conjugate gradient

The instability and slow convergence issues described in

the previous section can be efficiently ameliorated by using

the multigrid V-Cycle as a preconditioner for an appropri-

ate Krylov method. Our experiments indicated that the ele-

mentary multigrid scheme in section 3.2 can be an extremely

efficient preconditioner, achieving convergence rates compa-

rable or superior to the ideal performance of the V-Cycle on

regular domains, even if the smoothing effort vested in the

multigrid V-Cycle is significantly less than what is necessary

to make it a convergent solver on its own.

We will use the V-Cycle described in Section 3.2 as a pre-

conditioner for the conjugate gradient method. Algorithm

3 provides the pseudocode for our PCG solver. Our algo-

rithm is numerically equivalent to the traditional definition

of PCG, as stated for example in [GvL89], but certain vari-

ables are being reused for economy of storage, and opera-

tions have been rearranged to facilitate optimized execution,

as discussed in Section 4. Preconditioning operates by con-

structing a symmetric, positive definite matrix M which is

easier to invert than L, and such that M−1L is significantly

better conditioned than L.

In our case, we will use the multigrid V-Cycle as the pre-

conditionerM−1
as described in [Tat93]. In particular, if we

define u :=M−1
b, then u is the result of one iteration of the

multigrid V-Cycle for the problem Lu = b with zero initial
guess, and zero boundary conditions. We can easily verify

that under these conditions, the action of the V-Cycle indeed

corresponds to a linear operator; the requirement that M be

symmetric and positive definite, however, is less trivial. We

refer to [Tat93] for a detailed analysis of the conditions for

symmetry and definiteness, and only present here a set of

sufficient conditions instead. The V-Cycle of Algorithm 1

will produce a symmetric and definite preconditioner if:

• The restriction/prolongation operators are the transpose of

one another (up to scaling). This is common practice, and

also the case for the V-Cycle we described.

• The smoother used in the upstroke of the V-Cycle (Algo-

rithm 1, line 11) performs the operations of the smoother

used for the downstroke (line 4) in reverse order. E.g.,

if Gauss-Seidel iteration is used, opposite traversal orders

should be used when descending or ascending the V-Cycle,

respectively. For Jacobi smoothers, no reversal is necessary

as the result is independent of the traversal order.

• The solve at the coarsest level (Algorithm 1, line 8) needs

to either be exact, or the inverse of L(L)
should be approxi-

mated with a symmetric and definite matrix. If the smoother

is iterated to approximate the solution, a number of iterations

should be performed with a given traversal order, followed

by an equal number of iterations with the order reversed.

Algorithm 3 Multigrid-preconditioned conjugate gradient.

Red-colored steps in the algorithm are applicable when
the Poisson problem has a nullspace (i.e., all Neumann
boundary conditions), and should be omitted when Dirichlet
boundaries are present.
(†) u←M−1

b is implemented by calling V-Cycle(u,b)
1: procedure MGPCG(r,x)

2: r← r−Lx, µ← r̄, ν←�r−µ�∞
3: if (ν < νmax) then return

4: r← r−µ, p←M−1
r
(†), ρ← p

T
r

5: for k = 0 to kmax do

6: z← Lp, σ← p
T

z

7: α← ρ/σ
8: r← r−αz, µ← r̄, ν←�r−µ�∞
9: if (ν < νmax or k = kmax) then

10: x← x+αp

11: return

12: end if

13: r← r−µ, z←M−1
r
(†), ρnew ← z

T
r

14: β← ρnew/ρ
15: ρ← ρnew

16: x← x+αp, p← z+βp

17: end for

18: end procedure

Finally, Poisson problems with all-Neumann boundary

conditions (e.g., simulations of smoke flow past objects) are

known to possess a nullspace, as the solution is only known

up to a constant. The algorithm of Algorithm 3 is modified in

this case to project out this nullspace, and the modifications

are highlighted in red in the pseudocode. No modification to

the V-Cycle preconditioner is needed.

4. Implementation and Optimizations

Minimizing boundary cost: The cost of performing 30-40

smoothing sweeps on the boundary to stabilize the V-Cycle

as a solver cannot be neglected, even though the interior

smoothing effort would asymptotically dominate. In prac-

tice, this amount of boundary smoothing would be the most

costly operation of the V-Cycle for a 256
3

grid or smaller,
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cussed in [TOS01]. We will show that this sensitivity to the

boundary treatment is removed when the V-Cycle is used as

a preconditioner.

Stagnation: Even when the V-Cycle iteration is stable, on

certain irregular domains the residual reduction rate quickly

degrades towards 1, as opposed to converging to a value

less than 0.5 as typically expected of functional multi-

grid schemes. This complication appears on irregular do-

mains where successive levels of the multigrid hierarchy

may exhibit significant topological differences, as coarse

modes may not be accurately represented. In these cases,

costly eigenanalysis or recombined iterants may prove use-

ful [TOS01]; however, the highly irregular and changing do-

mains common to fluid simulations make these methods im-

practical.

3.3. Multigrid-preconditioned conjugate gradient

The instability and slow convergence issues described in

the previous section can be efficiently ameliorated by using

the multigrid V-Cycle as a preconditioner for an appropri-

ate Krylov method. Our experiments indicated that the ele-

mentary multigrid scheme in section 3.2 can be an extremely

efficient preconditioner, achieving convergence rates compa-

rable or superior to the ideal performance of the V-Cycle on

regular domains, even if the smoothing effort vested in the

multigrid V-Cycle is significantly less than what is necessary

to make it a convergent solver on its own.

We will use the V-Cycle described in Section 3.2 as a pre-

conditioner for the conjugate gradient method. Algorithm

3 provides the pseudocode for our PCG solver. Our algo-

rithm is numerically equivalent to the traditional definition

of PCG, as stated for example in [GvL89], but certain vari-

ables are being reused for economy of storage, and opera-

tions have been rearranged to facilitate optimized execution,

as discussed in Section 4. Preconditioning operates by con-

structing a symmetric, positive definite matrix M which is

easier to invert than L, and such that M−1L is significantly

better conditioned than L.

In our case, we will use the multigrid V-Cycle as the pre-

conditionerM−1
as described in [Tat93]. In particular, if we

define u :=M−1
b, then u is the result of one iteration of the

multigrid V-Cycle for the problem Lu = b with zero initial
guess, and zero boundary conditions. We can easily verify

that under these conditions, the action of the V-Cycle indeed

corresponds to a linear operator; the requirement that M be

symmetric and positive definite, however, is less trivial. We

refer to [Tat93] for a detailed analysis of the conditions for

symmetry and definiteness, and only present here a set of

sufficient conditions instead. The V-Cycle of Algorithm 1

will produce a symmetric and definite preconditioner if:

• The restriction/prolongation operators are the transpose of

one another (up to scaling). This is common practice, and

also the case for the V-Cycle we described.

• The smoother used in the upstroke of the V-Cycle (Algo-

rithm 1, line 11) performs the operations of the smoother

used for the downstroke (line 4) in reverse order. E.g.,

if Gauss-Seidel iteration is used, opposite traversal orders

should be used when descending or ascending the V-Cycle,

respectively. For Jacobi smoothers, no reversal is necessary

as the result is independent of the traversal order.

• The solve at the coarsest level (Algorithm 1, line 8) needs

to either be exact, or the inverse of L(L)
should be approxi-

mated with a symmetric and definite matrix. If the smoother

is iterated to approximate the solution, a number of iterations

should be performed with a given traversal order, followed

by an equal number of iterations with the order reversed.

Algorithm 3 Multigrid-preconditioned conjugate gradient.

Red-colored steps in the algorithm are applicable when
the Poisson problem has a nullspace (i.e., all Neumann
boundary conditions), and should be omitted when Dirichlet
boundaries are present.
(†) u←M−1

b is implemented by calling V-Cycle(u,b)
1: procedure MGPCG(r,x)

2: r← r−Lx, µ← r̄, ν←�r−µ�∞
3: if (ν < νmax) then return

4: r← r−µ, p←M−1
r
(†), ρ← p

T
r

5: for k = 0 to kmax do

6: z← Lp, σ← p
T

z

7: α← ρ/σ
8: r← r−αz, µ← r̄, ν←�r−µ�∞
9: if (ν < νmax or k = kmax) then

10: x← x+αp

11: return

12: end if

13: r← r−µ, z←M−1
r
(†), ρnew ← z

T
r

14: β← ρnew/ρ
15: ρ← ρnew

16: x← x+αp, p← z+βp

17: end for

18: end procedure

Finally, Poisson problems with all-Neumann boundary

conditions (e.g., simulations of smoke flow past objects) are

known to possess a nullspace, as the solution is only known

up to a constant. The algorithm of Algorithm 3 is modified in

this case to project out this nullspace, and the modifications

are highlighted in red in the pseudocode. No modification to

the V-Cycle preconditioner is needed.

4. Implementation and Optimizations

Minimizing boundary cost: The cost of performing 30-40

smoothing sweeps on the boundary to stabilize the V-Cycle

as a solver cannot be neglected, even though the interior

smoothing effort would asymptotically dominate. In prac-

tice, this amount of boundary smoothing would be the most

costly operation of the V-Cycle for a 256
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grid or smaller,
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cussed in [TOS01]. We will show that this sensitivity to the

boundary treatment is removed when the V-Cycle is used as

a preconditioner.

Stagnation: Even when the V-Cycle iteration is stable, on

certain irregular domains the residual reduction rate quickly

degrades towards 1, as opposed to converging to a value

less than 0.5 as typically expected of functional multi-

grid schemes. This complication appears on irregular do-

mains where successive levels of the multigrid hierarchy

may exhibit significant topological differences, as coarse

modes may not be accurately represented. In these cases,

costly eigenanalysis or recombined iterants may prove use-

ful [TOS01]; however, the highly irregular and changing do-

mains common to fluid simulations make these methods im-

practical.

3.3. Multigrid-preconditioned conjugate gradient

The instability and slow convergence issues described in

the previous section can be efficiently ameliorated by using

the multigrid V-Cycle as a preconditioner for an appropri-

ate Krylov method. Our experiments indicated that the ele-

mentary multigrid scheme in section 3.2 can be an extremely

efficient preconditioner, achieving convergence rates compa-

rable or superior to the ideal performance of the V-Cycle on

regular domains, even if the smoothing effort vested in the

multigrid V-Cycle is significantly less than what is necessary

to make it a convergent solver on its own.

We will use the V-Cycle described in Section 3.2 as a pre-

conditioner for the conjugate gradient method. Algorithm

3 provides the pseudocode for our PCG solver. Our algo-

rithm is numerically equivalent to the traditional definition

of PCG, as stated for example in [GvL89], but certain vari-

ables are being reused for economy of storage, and opera-

tions have been rearranged to facilitate optimized execution,

as discussed in Section 4. Preconditioning operates by con-

structing a symmetric, positive definite matrix M which is

easier to invert than L, and such that M−1L is significantly

better conditioned than L.

In our case, we will use the multigrid V-Cycle as the pre-

conditionerM−1
as described in [Tat93]. In particular, if we

define u :=M−1
b, then u is the result of one iteration of the

multigrid V-Cycle for the problem Lu = b with zero initial
guess, and zero boundary conditions. We can easily verify

that under these conditions, the action of the V-Cycle indeed

corresponds to a linear operator; the requirement that M be

symmetric and positive definite, however, is less trivial. We

refer to [Tat93] for a detailed analysis of the conditions for

symmetry and definiteness, and only present here a set of

sufficient conditions instead. The V-Cycle of Algorithm 1

will produce a symmetric and definite preconditioner if:

• The restriction/prolongation operators are the transpose of

one another (up to scaling). This is common practice, and

also the case for the V-Cycle we described.

• The smoother used in the upstroke of the V-Cycle (Algo-

rithm 1, line 11) performs the operations of the smoother

used for the downstroke (line 4) in reverse order. E.g.,

if Gauss-Seidel iteration is used, opposite traversal orders

should be used when descending or ascending the V-Cycle,

respectively. For Jacobi smoothers, no reversal is necessary

as the result is independent of the traversal order.

• The solve at the coarsest level (Algorithm 1, line 8) needs

to either be exact, or the inverse of L(L)
should be approxi-

mated with a symmetric and definite matrix. If the smoother

is iterated to approximate the solution, a number of iterations

should be performed with a given traversal order, followed

by an equal number of iterations with the order reversed.

Algorithm 3 Multigrid-preconditioned conjugate gradient.

Red-colored steps in the algorithm are applicable when
the Poisson problem has a nullspace (i.e., all Neumann
boundary conditions), and should be omitted when Dirichlet
boundaries are present.
(†) u←M−1

b is implemented by calling V-Cycle(u,b)
1: procedure MGPCG(r,x)

2: r← r−Lx, µ← r̄, ν←�r−µ�∞
3: if (ν < νmax) then return

4: r← r−µ, p←M−1
r
(†), ρ← p

T
r

5: for k = 0 to kmax do

6: z← Lp, σ← p
T
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7: α← ρ/σ
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(†), ρnew ← z

T
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14: β← ρnew/ρ
15: ρ← ρnew

16: x← x+αp, p← z+βp

17: end for

18: end procedure

Finally, Poisson problems with all-Neumann boundary

conditions (e.g., simulations of smoke flow past objects) are

known to possess a nullspace, as the solution is only known

up to a constant. The algorithm of Algorithm 3 is modified in

this case to project out this nullspace, and the modifications

are highlighted in red in the pseudocode. No modification to

the V-Cycle preconditioner is needed.

4. Implementation and Optimizations

Minimizing boundary cost: The cost of performing 30-40

smoothing sweeps on the boundary to stabilize the V-Cycle

as a solver cannot be neglected, even though the interior

smoothing effort would asymptotically dominate. In prac-

tice, this amount of boundary smoothing would be the most

costly operation of the V-Cycle for a 256
3

grid or smaller,
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cussed in [TOS01]. We will show that this sensitivity to the

boundary treatment is removed when the V-Cycle is used as

a preconditioner.

Stagnation: Even when the V-Cycle iteration is stable, on

certain irregular domains the residual reduction rate quickly

degrades towards 1, as opposed to converging to a value

less than 0.5 as typically expected of functional multi-

grid schemes. This complication appears on irregular do-

mains where successive levels of the multigrid hierarchy

may exhibit significant topological differences, as coarse

modes may not be accurately represented. In these cases,

costly eigenanalysis or recombined iterants may prove use-

ful [TOS01]; however, the highly irregular and changing do-

mains common to fluid simulations make these methods im-

practical.

3.3. Multigrid-preconditioned conjugate gradient

The instability and slow convergence issues described in

the previous section can be efficiently ameliorated by using

the multigrid V-Cycle as a preconditioner for an appropri-

ate Krylov method. Our experiments indicated that the ele-

mentary multigrid scheme in section 3.2 can be an extremely

efficient preconditioner, achieving convergence rates compa-

rable or superior to the ideal performance of the V-Cycle on

regular domains, even if the smoothing effort vested in the

multigrid V-Cycle is significantly less than what is necessary

to make it a convergent solver on its own.

We will use the V-Cycle described in Section 3.2 as a pre-

conditioner for the conjugate gradient method. Algorithm

3 provides the pseudocode for our PCG solver. Our algo-

rithm is numerically equivalent to the traditional definition

of PCG, as stated for example in [GvL89], but certain vari-

ables are being reused for economy of storage, and opera-

tions have been rearranged to facilitate optimized execution,

as discussed in Section 4. Preconditioning operates by con-

structing a symmetric, positive definite matrix M which is

easier to invert than L, and such that M−1L is significantly

better conditioned than L.

In our case, we will use the multigrid V-Cycle as the pre-

conditionerM−1
as described in [Tat93]. In particular, if we

define u :=M−1
b, then u is the result of one iteration of the

multigrid V-Cycle for the problem Lu = b with zero initial
guess, and zero boundary conditions. We can easily verify

that under these conditions, the action of the V-Cycle indeed

corresponds to a linear operator; the requirement that M be

symmetric and positive definite, however, is less trivial. We

refer to [Tat93] for a detailed analysis of the conditions for

symmetry and definiteness, and only present here a set of

sufficient conditions instead. The V-Cycle of Algorithm 1

will produce a symmetric and definite preconditioner if:

• The restriction/prolongation operators are the transpose of

one another (up to scaling). This is common practice, and

also the case for the V-Cycle we described.

• The smoother used in the upstroke of the V-Cycle (Algo-

rithm 1, line 11) performs the operations of the smoother

used for the downstroke (line 4) in reverse order. E.g.,

if Gauss-Seidel iteration is used, opposite traversal orders

should be used when descending or ascending the V-Cycle,

respectively. For Jacobi smoothers, no reversal is necessary

as the result is independent of the traversal order.

• The solve at the coarsest level (Algorithm 1, line 8) needs

to either be exact, or the inverse of L(L)
should be approxi-

mated with a symmetric and definite matrix. If the smoother

is iterated to approximate the solution, a number of iterations

should be performed with a given traversal order, followed

by an equal number of iterations with the order reversed.

Algorithm 3 Multigrid-preconditioned conjugate gradient.

Red-colored steps in the algorithm are applicable when
the Poisson problem has a nullspace (i.e., all Neumann
boundary conditions), and should be omitted when Dirichlet
boundaries are present.
(†) u←M−1

b is implemented by calling V-Cycle(u,b)
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16: x← x+αp, p← z+βp
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Finally, Poisson problems with all-Neumann boundary

conditions (e.g., simulations of smoke flow past objects) are

known to possess a nullspace, as the solution is only known

up to a constant. The algorithm of Algorithm 3 is modified in

this case to project out this nullspace, and the modifications

are highlighted in red in the pseudocode. No modification to

the V-Cycle preconditioner is needed.

4. Implementation and Optimizations

Minimizing boundary cost: The cost of performing 30-40

smoothing sweeps on the boundary to stabilize the V-Cycle

as a solver cannot be neglected, even though the interior

smoothing effort would asymptotically dominate. In prac-

tice, this amount of boundary smoothing would be the most

costly operation of the V-Cycle for a 256
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cussed in [TOS01]. We will show that this sensitivity to the

boundary treatment is removed when the V-Cycle is used as

a preconditioner.

Stagnation: Even when the V-Cycle iteration is stable, on

certain irregular domains the residual reduction rate quickly

degrades towards 1, as opposed to converging to a value

less than 0.5 as typically expected of functional multi-

grid schemes. This complication appears on irregular do-

mains where successive levels of the multigrid hierarchy

may exhibit significant topological differences, as coarse

modes may not be accurately represented. In these cases,

costly eigenanalysis or recombined iterants may prove use-

ful [TOS01]; however, the highly irregular and changing do-

mains common to fluid simulations make these methods im-

practical.

3.3. Multigrid-preconditioned conjugate gradient

The instability and slow convergence issues described in

the previous section can be efficiently ameliorated by using

the multigrid V-Cycle as a preconditioner for an appropri-

ate Krylov method. Our experiments indicated that the ele-

mentary multigrid scheme in section 3.2 can be an extremely

efficient preconditioner, achieving convergence rates compa-

rable or superior to the ideal performance of the V-Cycle on

regular domains, even if the smoothing effort vested in the

multigrid V-Cycle is significantly less than what is necessary

to make it a convergent solver on its own.

We will use the V-Cycle described in Section 3.2 as a pre-

conditioner for the conjugate gradient method. Algorithm

3 provides the pseudocode for our PCG solver. Our algo-

rithm is numerically equivalent to the traditional definition

of PCG, as stated for example in [GvL89], but certain vari-

ables are being reused for economy of storage, and opera-

tions have been rearranged to facilitate optimized execution,

as discussed in Section 4. Preconditioning operates by con-

structing a symmetric, positive definite matrix M which is

easier to invert than L, and such that M−1L is significantly

better conditioned than L.

In our case, we will use the multigrid V-Cycle as the pre-

conditionerM−1
as described in [Tat93]. In particular, if we

define u :=M−1
b, then u is the result of one iteration of the

multigrid V-Cycle for the problem Lu = b with zero initial
guess, and zero boundary conditions. We can easily verify

that under these conditions, the action of the V-Cycle indeed

corresponds to a linear operator; the requirement that M be

symmetric and positive definite, however, is less trivial. We

refer to [Tat93] for a detailed analysis of the conditions for

symmetry and definiteness, and only present here a set of

sufficient conditions instead. The V-Cycle of Algorithm 1

will produce a symmetric and definite preconditioner if:

• The restriction/prolongation operators are the transpose of

one another (up to scaling). This is common practice, and

also the case for the V-Cycle we described.

• The smoother used in the upstroke of the V-Cycle (Algo-

rithm 1, line 11) performs the operations of the smoother

used for the downstroke (line 4) in reverse order. E.g.,

if Gauss-Seidel iteration is used, opposite traversal orders

should be used when descending or ascending the V-Cycle,

respectively. For Jacobi smoothers, no reversal is necessary

as the result is independent of the traversal order.

• The solve at the coarsest level (Algorithm 1, line 8) needs

to either be exact, or the inverse of L(L)
should be approxi-

mated with a symmetric and definite matrix. If the smoother

is iterated to approximate the solution, a number of iterations

should be performed with a given traversal order, followed

by an equal number of iterations with the order reversed.

Algorithm 3 Multigrid-preconditioned conjugate gradient.

Red-colored steps in the algorithm are applicable when
the Poisson problem has a nullspace (i.e., all Neumann
boundary conditions), and should be omitted when Dirichlet
boundaries are present.
(†) u←M−1

b is implemented by calling V-Cycle(u,b)
1: procedure MGPCG(r,x)

2: r← r−Lx, µ← r̄, ν←�r−µ�∞
3: if (ν < νmax) then return

4: r← r−µ, p←M−1
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(†), ρ← p
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5: for k = 0 to kmax do
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7: α← ρ/σ
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9: if (ν < νmax or k = kmax) then

10: x← x+αp

11: return

12: end if

13: r← r−µ, z←M−1
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(†), ρnew ← z
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14: β← ρnew/ρ
15: ρ← ρnew

16: x← x+αp, p← z+βp

17: end for

18: end procedure

Finally, Poisson problems with all-Neumann boundary

conditions (e.g., simulations of smoke flow past objects) are

known to possess a nullspace, as the solution is only known

up to a constant. The algorithm of Algorithm 3 is modified in

this case to project out this nullspace, and the modifications

are highlighted in red in the pseudocode. No modification to

the V-Cycle preconditioner is needed.

4. Implementation and Optimizations

Minimizing boundary cost: The cost of performing 30-40

smoothing sweeps on the boundary to stabilize the V-Cycle

as a solver cannot be neglected, even though the interior

smoothing effort would asymptotically dominate. In prac-

tice, this amount of boundary smoothing would be the most

costly operation of the V-Cycle for a 256
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grid or smaller,
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cussed in [TOS01]. We will show that this sensitivity to the

boundary treatment is removed when the V-Cycle is used as

a preconditioner.

Stagnation: Even when the V-Cycle iteration is stable, on

certain irregular domains the residual reduction rate quickly

degrades towards 1, as opposed to converging to a value

less than 0.5 as typically expected of functional multi-

grid schemes. This complication appears on irregular do-

mains where successive levels of the multigrid hierarchy

may exhibit significant topological differences, as coarse

modes may not be accurately represented. In these cases,

costly eigenanalysis or recombined iterants may prove use-

ful [TOS01]; however, the highly irregular and changing do-

mains common to fluid simulations make these methods im-

practical.

3.3. Multigrid-preconditioned conjugate gradient

The instability and slow convergence issues described in

the previous section can be efficiently ameliorated by using

the multigrid V-Cycle as a preconditioner for an appropri-

ate Krylov method. Our experiments indicated that the ele-

mentary multigrid scheme in section 3.2 can be an extremely

efficient preconditioner, achieving convergence rates compa-

rable or superior to the ideal performance of the V-Cycle on

regular domains, even if the smoothing effort vested in the

multigrid V-Cycle is significantly less than what is necessary

to make it a convergent solver on its own.

We will use the V-Cycle described in Section 3.2 as a pre-

conditioner for the conjugate gradient method. Algorithm

3 provides the pseudocode for our PCG solver. Our algo-

rithm is numerically equivalent to the traditional definition

of PCG, as stated for example in [GvL89], but certain vari-

ables are being reused for economy of storage, and opera-

tions have been rearranged to facilitate optimized execution,

as discussed in Section 4. Preconditioning operates by con-

structing a symmetric, positive definite matrix M which is

easier to invert than L, and such that M−1L is significantly

better conditioned than L.

In our case, we will use the multigrid V-Cycle as the pre-

conditionerM−1
as described in [Tat93]. In particular, if we

define u :=M−1
b, then u is the result of one iteration of the

multigrid V-Cycle for the problem Lu = b with zero initial
guess, and zero boundary conditions. We can easily verify

that under these conditions, the action of the V-Cycle indeed

corresponds to a linear operator; the requirement that M be

symmetric and positive definite, however, is less trivial. We

refer to [Tat93] for a detailed analysis of the conditions for

symmetry and definiteness, and only present here a set of

sufficient conditions instead. The V-Cycle of Algorithm 1

will produce a symmetric and definite preconditioner if:

• The restriction/prolongation operators are the transpose of

one another (up to scaling). This is common practice, and

also the case for the V-Cycle we described.

• The smoother used in the upstroke of the V-Cycle (Algo-

rithm 1, line 11) performs the operations of the smoother

used for the downstroke (line 4) in reverse order. E.g.,

if Gauss-Seidel iteration is used, opposite traversal orders

should be used when descending or ascending the V-Cycle,

respectively. For Jacobi smoothers, no reversal is necessary

as the result is independent of the traversal order.

• The solve at the coarsest level (Algorithm 1, line 8) needs

to either be exact, or the inverse of L(L)
should be approxi-

mated with a symmetric and definite matrix. If the smoother

is iterated to approximate the solution, a number of iterations

should be performed with a given traversal order, followed

by an equal number of iterations with the order reversed.

Algorithm 3 Multigrid-preconditioned conjugate gradient.

Red-colored steps in the algorithm are applicable when
the Poisson problem has a nullspace (i.e., all Neumann
boundary conditions), and should be omitted when Dirichlet
boundaries are present.
(†) u←M−1

b is implemented by calling V-Cycle(u,b)
1: procedure MGPCG(r,x)

2: r← r−Lx, µ← r̄, ν←�r−µ�∞
3: if (ν < νmax) then return

4: r← r−µ, p←M−1
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(†), ρ← p
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5: for k = 0 to kmax do
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8: r← r−αz, µ← r̄, ν←�r−µ�∞
9: if (ν < νmax or k = kmax) then

10: x← x+αp
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13: r← r−µ, z←M−1
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(†), ρnew ← z
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14: β← ρnew/ρ
15: ρ← ρnew

16: x← x+αp, p← z+βp

17: end for

18: end procedure

Finally, Poisson problems with all-Neumann boundary

conditions (e.g., simulations of smoke flow past objects) are

known to possess a nullspace, as the solution is only known

up to a constant. The algorithm of Algorithm 3 is modified in

this case to project out this nullspace, and the modifications

are highlighted in red in the pseudocode. No modification to

the V-Cycle preconditioner is needed.

4. Implementation and Optimizations

Minimizing boundary cost: The cost of performing 30-40

smoothing sweeps on the boundary to stabilize the V-Cycle

as a solver cannot be neglected, even though the interior

smoothing effort would asymptotically dominate. In prac-

tice, this amount of boundary smoothing would be the most

costly operation of the V-Cycle for a 256
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grid or smaller,
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cussed in [TOS01]. We will show that this sensitivity to the

boundary treatment is removed when the V-Cycle is used as

a preconditioner.

Stagnation: Even when the V-Cycle iteration is stable, on

certain irregular domains the residual reduction rate quickly

degrades towards 1, as opposed to converging to a value

less than 0.5 as typically expected of functional multi-

grid schemes. This complication appears on irregular do-

mains where successive levels of the multigrid hierarchy

may exhibit significant topological differences, as coarse

modes may not be accurately represented. In these cases,

costly eigenanalysis or recombined iterants may prove use-

ful [TOS01]; however, the highly irregular and changing do-

mains common to fluid simulations make these methods im-

practical.

3.3. Multigrid-preconditioned conjugate gradient

The instability and slow convergence issues described in

the previous section can be efficiently ameliorated by using

the multigrid V-Cycle as a preconditioner for an appropri-

ate Krylov method. Our experiments indicated that the ele-

mentary multigrid scheme in section 3.2 can be an extremely

efficient preconditioner, achieving convergence rates compa-

rable or superior to the ideal performance of the V-Cycle on

regular domains, even if the smoothing effort vested in the

multigrid V-Cycle is significantly less than what is necessary

to make it a convergent solver on its own.

We will use the V-Cycle described in Section 3.2 as a pre-

conditioner for the conjugate gradient method. Algorithm

3 provides the pseudocode for our PCG solver. Our algo-

rithm is numerically equivalent to the traditional definition

of PCG, as stated for example in [GvL89], but certain vari-

ables are being reused for economy of storage, and opera-

tions have been rearranged to facilitate optimized execution,

as discussed in Section 4. Preconditioning operates by con-

structing a symmetric, positive definite matrix M which is

easier to invert than L, and such that M−1L is significantly

better conditioned than L.

In our case, we will use the multigrid V-Cycle as the pre-

conditionerM−1
as described in [Tat93]. In particular, if we

define u :=M−1
b, then u is the result of one iteration of the

multigrid V-Cycle for the problem Lu = b with zero initial
guess, and zero boundary conditions. We can easily verify

that under these conditions, the action of the V-Cycle indeed

corresponds to a linear operator; the requirement that M be

symmetric and positive definite, however, is less trivial. We

refer to [Tat93] for a detailed analysis of the conditions for

symmetry and definiteness, and only present here a set of

sufficient conditions instead. The V-Cycle of Algorithm 1

will produce a symmetric and definite preconditioner if:

• The restriction/prolongation operators are the transpose of

one another (up to scaling). This is common practice, and

also the case for the V-Cycle we described.

• The smoother used in the upstroke of the V-Cycle (Algo-

rithm 1, line 11) performs the operations of the smoother

used for the downstroke (line 4) in reverse order. E.g.,

if Gauss-Seidel iteration is used, opposite traversal orders

should be used when descending or ascending the V-Cycle,

respectively. For Jacobi smoothers, no reversal is necessary

as the result is independent of the traversal order.

• The solve at the coarsest level (Algorithm 1, line 8) needs

to either be exact, or the inverse of L(L)
should be approxi-

mated with a symmetric and definite matrix. If the smoother

is iterated to approximate the solution, a number of iterations

should be performed with a given traversal order, followed

by an equal number of iterations with the order reversed.

Algorithm 3 Multigrid-preconditioned conjugate gradient.

Red-colored steps in the algorithm are applicable when
the Poisson problem has a nullspace (i.e., all Neumann
boundary conditions), and should be omitted when Dirichlet
boundaries are present.
(†) u←M−1

b is implemented by calling V-Cycle(u,b)
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3: if (ν < νmax) then return
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18: end procedure

Finally, Poisson problems with all-Neumann boundary

conditions (e.g., simulations of smoke flow past objects) are

known to possess a nullspace, as the solution is only known

up to a constant. The algorithm of Algorithm 3 is modified in

this case to project out this nullspace, and the modifications

are highlighted in red in the pseudocode. No modification to

the V-Cycle preconditioner is needed.

4. Implementation and Optimizations

Minimizing boundary cost: The cost of performing 30-40

smoothing sweeps on the boundary to stabilize the V-Cycle

as a solver cannot be neglected, even though the interior

smoothing effort would asymptotically dominate. In prac-

tice, this amount of boundary smoothing would be the most

costly operation of the V-Cycle for a 256
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Design
• Define your objectives
• Choose a parallel-friendly theoretical formulation 
• Set performance expectations
• Choose a promising algorithm

Implement
• Implement a prototype
• Organize code into reusable kernels

Accelerate
• Reorder/combine/pipeline operations
• Reduce resource utilization (try harder ...)
• Parallelize component kernels
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Results and performance

Most kernels reach 60-70% of max theoretical
efficiency (based on architectural limitations)

Preconditioning overhead : ~60% of iteration cost
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