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Introduction

S—

* Linear systems of equations are ubiguitous in engineering

* Their solution Is often the bottleneck for entire applications

* NxN systems Ax=b arising from physics have special properties:
* Almost always : Sparse - O(N) nonzero entries

* Very often : Symmetric
» Often enough : Positive definrte, diagonally dominant, etc.

* Dense matrix complexity ~O(N?%3%) does not apply
* [or special matrices, solvers with cost as low as O(N) exist

* [he"hidden constant” becomes important, and can be
owered via parallelism
—fficient algorithms need to be very frugal with storage
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Example : The 3D Poisson equation s




| Applications

Rasmussen et al, Smoke Simulation for Large Scale Phenomena
(SIGGRAPH 2003)




Applications
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Nielsen et al, Out-Of-Core and Compressed Level Set Methods
(ACM TOG 2007)




Applications

Horvath & Geiger, Directable, high-resolution simulation of fire on the GPU
(ACM SIGGRAPH 2009)




Applications

192x288x192 384x576x384 768x1152x768




Introduction

/00M equations

40 sec on | 6 cores
| 6GB RAM required




| Introduction

450M equations
25 sec on |6 cores, | 2GB RAM required
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| 35/\/Ie_quations
| 2 sec on |6 cores, 3GB RAM required
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How good (or not) are these runtimes!?
* [or one of these problems the system Ax=b has
* /00M equations, /00M unknowns
* Storing x (in float precision) requires 2.8GB. Same for b.

* The matrix A has /-nonzero entries per equation.

* MATLAB requires ~40GB to store It, In its “sparse” format

* Our case study computes the solution

* With ~40sec of runtime (on a | 6-core SMP)
* While using <16GB of RAM

(caveat : It avoids storing A)




Development Plan

Design
* Define your objectives
* Choose a parallel-friendly theoretical formulation

* Set performance expectations

* Choose a promising algorithm
Implement

* Implement a prototype

* Organize code Into reusable kernels
Accelerate
Reorder/combine/pipeline operations
Reduce resource utilization (try harder ...)

Parallelize component kernels




Clarifying objectives

I

What kind of accuracy do we need?

* Solve Ax=b down to machine precision?

* Ensure that x Is correct to k significant digits?

* Ensure that x (inrtial guess) I1s improved by k significant digrts?

What is the real underlying problem we care about!

he system Ax=b is rarely the ultimate objective

ypically, it's means to an end

* Solve the system to create a simulation

* Solve the system to generate a solution to a physical law

e We have some

lexibility to make Ax=b “better’ for parallel

algorithmic solut

Ion




I Clarifying objectives
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Design
* Define your objectives
* Choose a parallel-friendly theoretical formulation

* Set performance expectations

* Choose a promising algorithm
Implement

* Implement a prototype

* Organize code Into reusable kernels
Accelerate
Reorder/combine/pipeline operations
Reduce resource utilization (try harder ...)

Parallelize component kernels




Speedup vs. Efficiency

Well-intended evaluation practices ...

“My serial implementation of algorithm X on machine Y ran in Z seconds.
When | parallelized my code, | got a speedup of 156x on 16 cores ...”

e

... are sometimes abused like this:
“... when | ported my implementation to CUDA, this numerical solver
ran 200 times faster than my original MATLAB code ...”
e —

So, what is wrong with that premise?




Speedup vs. Efficiency

Watch for warning signs:
* Speedup across platforms grossly exceeding specification ratios
* e.g. NVIDIA GTX580 vs. Intel 17-2600
* Relative (peak) specifications :
°U has about 3x higher (peak) compute capacity

PU has about 8x higher (peak) memory bandwidth
* Significantly higher speedups likely indicate:
* Different implementations on the 2 platforms

* Baseline code was not optimal/parallel enough

* “Standard’ parallelization yields linear speedups on many cores

* [Reasonable scenario] Implementation 1s CPU-bound

* [Problematic scenario] Implementation 1s CPU-wasteful




Speedup vs. Efficiency

A different perspective ...

“... after optimizing my code, the runtime is about 5x slower than the
best possible performance that | could expect from this machine ...”

... i.e. 20% of maximum theoretical efficiency!

Challenge : How can we tell how fast the
best implementation could have been?
(without implementing it ...)




Performance bounds and “textbook efficiency”

Example : Solving the quadratic equation s axz +bx+c¢c =0

What is the minimum amount of time needed to solve this?

“We cannot solve this faster than the time ]
Data access cost bound needed to read a,b,c and write X
e ——

“‘We cannot solve this faster than the time
needed evaluate the polynomial, for given Solution verification bound
values of a,b,c and X’
(i.e. 2 ADDs, 2 MULTs plus data access)

R ————

Equivalent operation bound “We cannot solve this faster than the time
it takes to compute a square root’
e ——




Performance bounds and “textbook efficiency”

What about linear systems of equations? } Ax =Db

It is theoretically possible to compute the
“Textbook Efficiency” solution to a linear system (with certain
(for elliptic systems) properties) with a cost comparable to 10x the

cost of verifying that a given value x is an

actual solution
e ——

It is theoretically possible to compute the
solution to a linear system (with certain
properties) with a cost comparable to 10x the

cost of computing the expression r=b-Ax
and verifying that r=0
(i.e. slightly over 10x of the cost of a
matrix-vector multiplication)




Development Plan

Design
* Define your objectives
* Choose a parallel-friendly theoretical formulation

* Set performance expectations

* (Choose a promising algorithm
Implement

* Implement a prototype

* Organize code Into reusable kernels
Accelerate
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Reduce resource utilization (try harder ...)

Parallelize component kernels
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Preconditioned Conjugate Gradients s
R ——

Performance
* Converges in O(Nd) with
stock preconditioners
Converges in O(N) with
multigrid preconditioners

. procedure MGPCG(r, x)
r—r—Lx, u«rt Vv« |r—pu|c
if (Vv < Vmax) then return
I« T — [, P /\/l_lr(ﬂ, p—p'r
for k = 0 to kyax do
z— Lp,c—plz
o p/o
r«—Tr—0z u«rV—|r—u
if (V < Vmax or k = kmax ) then
X <«— X+ 0op
return
end if
r<—r—,u,z<—./\/l_1r(ﬂ, P

* (Other variants exist, too) B« p"W /p
p - leeW

Benefits
16: X <X+ 0p, p < z+pp
* Low storage overhead 17 end for

Prerequisites
* Requires a symmetric

AR SR AN A A i e

system matrix

e S w S—
Ny = <2

Matrix needs to be

bositive definite

S S U S—
Do W

e Simple component kernels  18: end procedure
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Preconditioned Conjugate Gradients }
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. procedure MGPCG(r, x)
r—r—Lx, u«rt Vv« |r—pu|c
if (Vv < Vmax) then return
r<—r—u, p<—/\/l_1r(ﬂ, p—p'r
for k = 0 to kiux do
z— Lp,lo—p'z
& p/o
r«—Tr—0z u«rV—|r—u
if (V < Vmax or k = kmax ) then
X <«— X+ 0op
return
end if
rer—puz— Ml P
B p"™/p
p — pnew
16: X «— X+op, p—z+Pp
17: end for
18: end procedure

Kernels
Multiply()

Saxpy()
Subtract()

Copy()
Inner_Product()

Norm()

AR SR AN A A i e

—_— e e e e
SNy = O




Preconditioned Conjug
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Kernels
Multiply()

Saxpy()
Subtract()

Copy()
Inner_Product()

Norm()

ate Gradients }

AR SR AN A A i e

—_— e e e e
SNy = O

16:
17:

. procedure MGPCG(r, x)

r—r—Lx, u«rt Vv« |r—pu|c
if (Vv < Vmax) then return
r%r—,u,p<—/\/l_1r(ﬂ, p—p'r
for k = 0 to kjax do
z— Lp,c—plz
o p/o
r«—Tr—0z u«rV—|r—u
if (V < Vmax or k = kmax ) then
X <«— X+ 0op
return
end if
r<—r—,u,z<—./\/l_1r(ﬂ, P
B—p™™/p
p<_pnew
\_X<—X—|—Otp, p—z+Pp
end for

18: end procedure




Preconditioned Conjugate Gradients }
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. procedure MGPCG(r, x)
r—r—Lx, u«rt Vv« |r—pu|c
if (Vv < Vmax) then return
r<—r—u, p<—/\/l_1r(ﬂ, p—p'r
for k = 0O to kjax do
z— Lp,c—plz
o p/o
r«—Tr—0z u«rV—|r—u
if (V < Vmax or k = kmax ) then
X <«— X+ 0op
return
end if
rer—puz— Ml P
B p"¥/p
p — pnew
16: X «— X+op, p—z+Pp
17: end for
18: end procedure

Kernels

Multiply()

Saxpy()
Subtract()

Copy()
Inner_Product()

Norm()
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Preconditioned Conjugate Gradients ’
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Preconditioned Conjugate Gradients }
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procedure MGPCG(r, x)
r«—r—Lx, u« 1,V |r—ulloo
if (V < Vmax) then return
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Development Plan
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Design
* Define your objectives
* Choose a parallel-friendly theoretical formulation

* Set performance expectations

* (Choose a promising algorithm
Implement

* Implement a prototype

* Organize code Into reusable kernels
Accelerate
Reorder/combine/pipeline operations
Reduce resource utilization (try harder ...)

Parallelize component kernels




Results and performance

Cost of 1 PCG Iteration By Simulation

Simulation and Resolution 1-core 16-core
Smoke flow past sphere
64x64x64 39ms 23ms
96x96x96 127ms 47ms
128x128x128 299ms 6/ms
192x192x192 983ms 167ms
256x256x256 2s 110ms 289ms
384x384x384 7s 380ms 875ms
912x512x512 15s 500ms| 1s 930ms
768x768x768 51s 300ms| 6s 90ms
768x768x1152 76s 800ms|9s 120ms
Smoke past car
768x768x768 51s 200ms| 6s 70ms
Free-surface water
512x512x512 12s 900ms| 1s 940ms




Results and performance

Smoke Past Sphere 7683 PCG lteration Breakdown

PCG lIteration Substep

1-core

16-core

Speedup

(Re-)Initialization™

13s 200ms

2s 370ms

5.6

V-Cycle (finest level breakdown)

Int. Smoothing and Residuals

7s 990ms

1s 170ms

6.8

Bdry. Smoothing and Residuals

Os 983ms

Os 160ms

6.1

Restriction

3s 430ms

Os 287ms

12.0

Prolongation

2s 950ms

Os 398ms

7.4

Bdry. Smooth (upstroke)

Os 719ms

Os 103ms

7.0

11s 700ms
325 200ms]
11s 600ms

2s 270ms
32s 200ms

1s 150ms
3s 910ms
Os 895ms
Os 453ms
3s 910ms

10.2
8.2
13.0
5.0
8.2

Int. Smooth (upstroke)
V-Cycle total (1 iteration)
PCG, line 6
PCG, line 8

PCG, line 13 (inc. V-Cycle)

PCG, line 16

5s 160ms

828ms

6.2

PCG total (1 iteration)

51s 300ms|_6s 90ms)|

8.4

Most kernels reach 60-70% of max theoretical
efficiency (based on architectural limitations)

Preconditioning overhead : ~60% of iteration cost




Resolution

Initialization Time (s)

6473

Results and performance

"Black Box"(1) and Pipelined(*) CG (serial)

2.9837

6.9207

lterations to r=1e-4

667

965

lterations to r=1e-8

1261

1538

Time tor=1e-4 (s)T

2558.44

9010.28

Time to r=1e-4 (s)*

1999.10

5540.92

4836.87

(

(s)
Time to r=1e-8 (s)T
Time to r=1e-8 (s)*

Resolution

Initialization Time (s)

6413

Incomplete Cholesky PCG (serial)

3524.00

32.23

14360.43
8831.03

76.47

lterations to r=1e-4

213

278

lterations to r=1e-8

295

395

Time to r=1e-4 (s)

1526.29

4679.32

Time to r=1e-8 (s)

Resolution

Initialization Time (s)

6413

Multigrid PCG (serial)

2113.88

6648.68

lterations to r=1e-4

lterations to r=1e-8

Time to r=1e-4 (s)

Time tor=1e-8 (s)
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