
Measuring Solid-State Drive Behavior

Daniel Myers Matt Sinclair
CS 736 Final Project Report Fall 2010
The University of Wisconsin-Madison

{dsmyers, sinclair }@cs.wisc.edu

Abstract

Solid-state drives (SSDs) are a potentially revolutionary
new storage technology, but it is not clear that current gen-
eration drives are inherently superior to hard disks. In or-
der to understand the performance of these new technolo-
gies, we measure two commercial SSDs, one from Intel,
the other from Kingston, on a workload of 4K writes to
randomized addresses across the entire address space of
each drive. Our results reveal that there is a strong dif-
ference between a fresh drive’s early performance and its
steady-state behavior, with the drive entering steady-state
after fewer than 100000 writes. To gain insight into the
effect of the flash translation layer (FTL) on drive perfor-
mance, we use simulation and analytic modeling to inves-
tigate FAST, a representative hybrid FTL algorithm.

1 Introduction

Solid-state disks are a potentially revolutionary storage
technology, but currently they are not obviously superior
to disks. While SSDs can be faster, more reliable, and
more energy efficient than disks [4], they have higher cost
per byte and a limited number of write-erase cycles before
they permanently wear out. Additionally, the internal be-
havior of SSDs, while it has been studied before [1, 3, 4],
is not well understood. Performance varies widely from
vendor to vendor, and little exists in the way of under-
standing why, mostly due to SSD internals being intensely
guarded intellectual property of SSD manufacturers.

The goal of our project is to collect data on SSD per-
formance, then try to understand the factors influencing
write performance on the SSD. We focus on SSD write
performance instead of read performance because random
writes provide the greatest challenge to the drive’s inter-
nal management algorithms. To perform this study, we
created a microbenchmark that writes to randomized lo-

cations throughout the SSD and measures the latency of
each write. To try and understand the factors influencing
performance, we used an SSD extension to the DiskSim
simulator [6]. We also created an analytical model of
merge times to help understand the internal behavior of
the SSD. We believe that our results will help the storage
community understand and model the behavior of SSDs.

2 Background

2.1 NAND Flash

There are two types of flash memories – NOR and NAND
flash. Since all of the drives we used in this project are
NAND flash drives, we omit details on NOR flash drives,
which can be found elsewhere [8]. NAND flash memory
has two categories: Single-Level Cell (SLC) and Multi-
Level Cell (MLC). SLC memory cells store only one bit,
while MLC memory cells store two or more. This makes
latency of access in MLC much longer than in SLC. Ad-
ditionally, SLC tends to last significantly longer, which is
why they are usually used in high-end SSDs.

Both SLC and MLC flash memories are composed of
multiple chips, each of which is segmented into multi-
ple planes. Each plane usually contains several thousand
blocks. Blocks usually contain 64 or 128 pages, each of
which is can typically have 2KB or 4KB of data written
to it as the smallest writeable unit (writing is done at page
granularity).

Flash memory has a limited number of erases that can
be performed on a memory cell before that cell is worn
out, and can no longer store data or be used. For MLC
drives, each cell usually support approximately 10000
erase cycles, while SLC cells usually support approxi-
mately 100000 erase cycles. Flash memory cells must be
erased before they are written to, so this effectively limits

1

the number of writes that can be performed to a cell.

2.2 Flash Translation Layer

The Flash Translation Layer (FTL) is an important com-
ponent of an SSD. The FTL is an intermediate software
layer that is responsible for translating logical addresses
supplied by the OS into physical addresses within the
SSD. It is also responsible for hiding the erase opera-
tions and erase-before-write operations from the OS. In-
ternally, the FTL maps each write request from the host to
an empty location (free page) in flash memory and man-
ages the mapping information to allow future accesses to
that data.

There are two general ways of mapping writes to the
flash memory: page mapped and blocked mapped. Page
mapped FTLs can map new data to any page within an
SSD. Block mapped FTLs map new data to any block
within the SSD, but only to one specific page within that
block. In general, page mapped FTLs have greater flexi-
bility in positioning data, but require extremely large map-
ping tables. Block mapped FTLs use smaller, simpler
mapping tables, but have problems with workloads that
frequently overwrite the same page. To obtain the bene-
fits of both schemes, most commercial SSDs usehybrid
FTL algorithms. In these schemes, most of the drive is
block mapped, but a small number oflog blocksare page
mapped. The log blocks provide flexibility for dealing
with overwrites, but the mapping tables remain small and
simple. When we run out of space in the log blocks, we
must merge data blocks and log blocks together to free up
space. [5] provides a good overview of FTL, the differ-
ent FTL mapping styles, and how different merging algo-
rithms affect performance.

Garbage collection (also known as cleaning) and wear-
leveling are other important tasks of the FTL. Garbage
collection is needed because blocks must be erased be-
fore they are used. The garbage collector works by scan-
ning the SSD blocks for invalid pages, then reclaiming
those invalid pages. This process is similar to that of the
Log-Structured File System [9]. Wear-leveling is neces-
sary because most workloads write to a subset of blocks
frequently, while rarely writing to other blocks. Because
each block of flash memory only has a limited number
of write-erases before it is worn out, without wear level-
ing, the frequently written to blocks would easily wear out
well before the other blocks. Wear leveling helps solve
this problem by shuffling cold (unused/less frequently
used) blocks with hot (frequently used) blocks to balance
out the number of writes over all of the flash memory

blocks.

2.3 Write Cliff Phenomenon

Since we are focusing on writing to SSDs, we omit
background on reading from SSDs. More information
on this can be found elsewhere [1, 5]. An interesting
phenomenon in consumer-grade SSDs, that does not ap-
pear to occur in high-end SSDs, is the ”write cliff” phe-
nomenon [4]. In consumer-grade SSDs, write perfor-
mance degrades significantly after the drive is filled the
first time and the drive’s internal garbage collection and
wear-leveling routines must begin to run. We are inter-
ested in seeing if this phenomenon holds for our experi-
ments.

3 Related Work

There has been other work done in this area previously.
Our work is most similar to [3], who conducted a series
of experiments and measurements on multiple SSDs of
different qualities for sequential and random workloads.
They found a strong correlation between performance and
randomness of data accesses for both reads and writes.
Our work differs from theirs in that we focus on write
performance in randomized workloads where we are con-
tinuously writing to the disk to prevent the cleaner from
operating in the background, whereas their work is look-
ing more at trends when multiple operations are going on
simultaneously.

[1] implements an SSD add-on to the DiskSim simulator
to explore design tradeoffs and their effect on SSD per-
formance. Specifically, data placement, parallelism, write
ordering, and workload management are presented as key
design choices to considering when structuring a work-
load. Their work is focused on global design tradeoffs,
whereas we are focusing specifically on how writes to ran-
dom locations on the disk perform. [6] also implemented
an SSD add-on to the DiskSim simulator that simulates
the FAST FTL algorithm.

4 Implementation

To measure the effect of writes in SSDs, we created a mi-
crobenchmark that performs random 4K (i.e. single page)
writes over the entire range of the drive. We perform
these writes continuously to prevent the garbage collector
from running in the background and artificially improv-
ing performance, because we are more interested in the
behavior of the disk when cleaning can not be performed.

2

We synchronize after each write to force the write to take
place and avoid the skewing effect on timing of buffer-
ing. The microbenchmark writes directly to the raw disk
through the use of theO DIRECT, O RDWR, O SYNC, and
O NOATIMEflags of Linux’sopen() function. We de-
fine the latency of access for a single write to the SSD
to be the time it takes to perform the writeandflush that
write to the disk. We do not include the negligible seek
time in this calculation.

To reduce the volume of data we collected, we do not
record exact times for writes with latencies less than 1.5
ms. Instead, we use a compression scheme that bins small
access latencies at 300µs intervals. Small access laten-
cies are the common case, requiring only basic writing
operations to the SSD, but no cleaning or other FTL oper-
ations. Access latencies larger than 1.5 ms require some
sort of extra work on the part of the SSD such as cleaning
or merging, so we store these times exactly.

To prevent the garbage collector from recovering and re-
claiming blocks in the background while we are writing
out the access latency, we perform 100000 writes before
writing out data to an output file. We then repeat this pro-
cess five times in a single run of our microbenchmark.
While it is possible for the garbage collector to reclaim
blocks while we are writing out the access latency results
to the output file, we found 100000 to be a good compro-
mise point between having too much data written out at
once, which gave the garbage collector enough time to re-
claim blocks, and have too little data written out at once,
which would prevent us from observing SSD behavior un-
der continuous writes.

5 SSD Results

We collected results for our microbenchmark on two dif-
ferent consumer-grade SSDs. The first drive is a Kingston
SNV125. It has 30 GB of storage and costs $78.99 re-
tail.1 The second drive is an Intel X25-M. It has 80 GB of
storage, has a rated throughput random write throughput
of 27.3 MB/s, and costs $179.49 retail. Our data collec-
tion reveals that both the Intel and Kingston drives can ex-
hibit significant variations in performance as the number
of writes made to the drive increases. Both drives had ap-
proximately 150 GB of data written to them in the course
of our experiments.

1No specs given for random writes.

Figure 1: Measured Kingston SSD in start-up. The y axis
is the execution time (in ms) of the current write and the
x axis is the write number for the current test.

5.1 Kingston SSD Results

Figure 1 shows the measured times (in ms) for the first
100000 writes made to the Kingston drive. The “great
failure” that occurs at approximately 45000 writes is ob-
vious. After a small initial grace period where latencies
are low and all writes are fast, the drive enters a steady-
state where latencies are increased and variability is much
higher.

Figure 2 shows a close view of 5000 writes taken from the
Kingston drive in steady-state, after approximately 140
GB of data have been written to the drive. Writes can
be divided into four classes based on their latencies:

1. The vast majority of writes that take fewer than 300
µs.

2. The small peaks, representing latencies of approxi-
mately 15 ms.

3. The middle peaks, with latencies around 400 ms.

4. The highest peaks, with latencies mostly around 800
ms, but rarely reaching as high as 1200 ms.

Analysis reveals that 97% of writes take fewer than 300
µs, but the remaining 3% of writes are sufficient to raise
the mean write time to 13 ms.

3

Figure 2: Measured Kingston SSD in steady-state. The y
axis is the execution time (in ms) of the current write and
the x axis is the write number for the current test.

5.2 Intel SSD Results

The Intel drive also exhibits a transition between start-up
and steady-state, but the change is less dramatic. Figure 3
shows 5000 writes from the drive in steady-state. The
steady-state pattern is clearly different from the Kingston
drive, indicating that the two drives have very different
internal resource management strategies. We did not ob-
serve a distinct start-up phase on the Intel drive. This may
be due to the internal behavior of the drive, or it may be
possible that the drive was slightly used by another exper-
imenter before we received it.

The Intel drive still exhibits high variability between the
class of writes taking less than 1.5 ms and the class of
writes taking approximately 150 ms, but the most expen-
sive writes are relatively rare – writes with times in excess
of 200 ms occur at a rate of only one per 2182 writes.
Writes in the middle category, with peaks near 150 ms,
occur every 529 accesses, on average. In contrast to the
Kingston drive, there is considerable variability among
the smallest writes – only 15% of writes take fewer than
300µs and fully 33% of writes take more than 1.5 ms. In
spite of this, the Intel drive still manages to record a mean
latency of 1.5 ms, significantly faster than the Kingston.
This is likely because the Intel drive is of higher quality
than the Kingston drive.

Figure 3: Measured Intel SSD in steady-state. The y axis
is the execution time (in ms) of the current write and the
x axis is the write number for the current test.

Page size 4 KB
Pages per block 64

Drive size 1 GB
Num. log blocks 128
Page read latency 25.25µs
Page write latency 101.25µs
Block erase latency 1500µs

Table 1: Simulation Parameters

6 Simulating SSD Behavior with DiskSim

Unfortunately, we lack useful documentation for the
Kingston and Intel drives, so we are unable to explain the
reasons for their observed behaviors. For example, we
do not know which FTL algorithms are used by the two
drives.

In order to gain additional insight, we used simulation to
investigate one particular hybrid FTL algorithm, Fully As-
sociative Sector Translation (FAST) [7]. The simulator [6]
is a modification of DiskSim [2] and has the parameters
shown in Table 1. Figure 4 shows the behavior of the sim-
ulated FAST SSD in steady-state.

6.1 FAST

Like most hybrid schemes, FAST uses a mixture of data
blocks and log blocks to manage the SSDs internal data.

4

Figure 4: Simulated FAST SSD in steady-state. The y axis
is the execution time (in ms) of the current write and the
x axis is the number write in the sequence for the current
test.

If possible, new data is written directly to a data block.
When the desired location in the data block is already oc-
cupied, FAST writes to a log block. Under certain circum-
stances, FAST performsmergeoperations to clear space
for new writes.

FAST recognizes two kinds of log blocks:random log
blocks and one specialsequentiallog block. The sequen-
tial log is designed to help FAST deal with sequential
writes to one block, which may be interspersed with ran-
dom writes to other blocks. Any write to the first page in
a block is directed to the sequential log – we refer to these
aszero-pagewrites. If the sequential log already contains
data, it is first merged with a data block and cleared to
create a clean log for the new write. After the initial zero-
page write, any sequential writes to the same active block
will be directed to the sequential log. The sequential log
is merged and cleared when one of the following occurs:

• The log fills with all of the sequentially written pages
from one block.

• A non-sequential write to the active block occurs.

• Another zero-page write to a different block occurs.

Random log blocks are used to log writes that do not
go directly to data blocks or to the sequential log block.
When all of the random log blocks are filled, FAST per-
forms afull mergeto garbage collect one data block. Each

page written to the log block overwrites one page in an ex-
isting data block. In a full merge, all of the pages written
to the log block are merged back into their correspond-
ing data blocks. Thus, the cost of the full merge depends
primarily on the distinct number of data blocks dirtied by
pages in each log block. In the worst case, each page of
the log may overwrite a page in a different data block, re-
quiring all of those data blocks to be read and rewritten
before completing the merge and freeing the log block.

6.2 The Effect of Merges

Knowledge of the underlying FTL algorithm for FAST al-
lows us to explain the behaviors in Figure 4. Most of the
writes do not require any merging and complete in the
minimum write time of 101µs (our simulations measure
only the physical write time and ignore any overhead for
bus contention or data transfer).

There are 64 pages in a block, so on average every 64th
request will be a zero-page write. These writes trigger a
small merge operation to clear the sequential log block
before writing the new zero-page. These small merges
cause the small peaks of approximately 5 ms. Each zero-
page merge requires the following steps:

• Read any valid data from the old data block.

• Copy the valid data into the current sequential log
block.

• Relabel the current sequential log block as the new
data block.

• Erase the old data block.

Analytically, we can express the time required for a zero-
page merge as (see Table 2 for descriptions of the terms):

Tzero−page = Nvalid(Tr + Tw) + Te. (1)

Examining the simulator data shows thatNvalid = 32 in
the average case. Using this value, the expected time for
a zero-page merge (in microseconds) is

Tzero−page = 32(25.25 + 101.25) + 1500 = 5548, (2)

which agrees with the simulated results. This means that,
for our random workload, the sequential log block is prac-
tically never used for its intended purpose. Instead, it only
adds additional overhead to every 64th write.

Filling all of the random log blocks triggers a full merge.
Because writes are randomized over a large address space,

5

Term Description
Nvalid Number of valid pages in the block
Ndata Number of valid data blocks to be merged

Tr Expected page read time
Tw Expected page write time
Te Expected page erase time

Table 2: Description of Terms used in Modeling Equa-
tions

each page in the log block is likely to correspond to a
different data block. Thus, each full merge is likely to
involve 64 data blocks – the worst possible case.

For each data block involved in the full merge, FAST per-
forms the following steps:

• For each occupied page in the data block, copy the
most recent version of that page into a new block.

• Update the mapping table to include the new, up-
dated data block.

• Erase the old data block.

After all data blocks involved in a merge have been pro-
cessed, FAST finally deletes the log block. Thus, the ex-
pected time required for a full merge is given by

Tfull = Ndata(Nvalid(Tr + Tw) + Te) + Te. (3)

For the simulated data,Ndata = 64 andNvalid = 32.
Using these values, we predict an average merge time (in
microseconds) of

Tfull = 64(32(25.25+101.25)+1500)+1500 = 356572,
(4)

which agrees with the simulated results.

Though these analytic models can accurately predict the
time required for merges, they are still incomplete. In
particular, we have not yet derived an expression for the
number of valid pages in a data block when a merge takes
place. This is a critical parameter in both equations. How-
ever, the models do provide some insight into the FTL al-
gorithm’s of the SSD drives in Section 5.

7 Conclusion

We have investigated the performance of two commercial
SSDs and one simulated FTL algorithm. Our results re-
veal several interesting facts about SSD performance on

workloads of random writes. First, there is a considerable
difference between the very early performance of a drive
and its actual performance in steady-state. For this rea-
son, performance measures taken on fresh drives may be
far too optimistic. Further, the transition into steady-state
occurs early in the life of the drive, after fewer than 50000
writes. This differs somewhat from the “write cliff” phe-
nomenon seen in [4], where performance did not rapidly
decrease until after the entire drive had been filled once.

Second, the behavior of the flash translation layer is a
critical factor in drive performance, particularly the fre-
quency and severity of merge operations used to free
space in the drive. Different FTL algorithms may be better
suited to different workloads. Analytic modeling can pro-
vide some insight into factors influencing the performance
of a particular FTL algorithm, but deriving the exact pa-
rameters for each model may be difficult.

Finally, there are several questions we were unable to an-
swer in this project. While the models provide us with
some insights into the FTL algorithm’s of the Intel and
Kingston drives, we do not understand the internal oper-
ation of the Intel and Kingston drives, so we cannot pro-
vide and explanations for their performance. Our analytic
models are incomplete, with some important parameters
left to derive. Finally, we do not know how SSD perfor-
mance will change as cells in the drive begin to wear out
and fail.

Acknowledgments

The authors would like to thank Yiying Zhang for her help
setting up the SSD drives and machines to run our experi-
ments on. We would also like to thank Aayush Gupta and
Nitin Agrawal for providing us with their SSD add-ons to
DiskSim, which we used for our simulations.

References

[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis,
M. Manasse, and R. Panigrahy. Design tradeoffs for
ssd performance. InUSENIX 2008 Annual Technical
Conference on Annual Technical Conference, pages
57–70, Berkeley, CA, USA, 2008. USENIX Associa-
tion.

[2] J. S. Bucy, J. Schindler, S. W. Schlosser, G. R.
Ganger, and Contributors. The disksim simulation en-
vironment - version 4.0 reference manual. Technical
report, Carnegie Mellon, 2008.

6

[3] F. Chen, D. A. Koufaty, and X. Zhang. Understand-
ing intrinsic characteristics and system implications
of flash memory based solid state drives. InPro-
ceedings of the eleventh international joint confer-
ence on Measurement and modeling of computer sys-
tems, SIGMETRICS ’09, pages 181–192, New York,
NY, USA, 2009. ACM.

[4] L. G. Harbaugh. Storage smack-
down: Hard drives vs ssds.
http://www.networkworld.com/reviews/2010/041910-
ssd-hard-drives-test.html, April 2010.

[5] D. Jung, J.-U. Kang, H. Jo, J.-S. Kim, and J. Lee.
Superblock ftl: A superblock-based flash translation
layer with a hybrid address translation scheme.ACM
Trans. Embed. Comput. Syst., 9:40:1–40:41, April
2010.

[6] Y. Kim, B. Taurus, A. Gupta, and B. Urgaonkar.
Flashsim: A simulator for nand flash-based solid-
state drives. InIn Proceedings of the First Interna-
tional Conference on Advances in System Simulation,
Sep 2009.

[7] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee,
S. Park, and H.-J. Song. A log buffer-based flash
translation layer using fully-associative sector trans-
lation. ACM Transactions on Embedded Computing
Systems, 6(3), July 2007.

[8] M-Systems. Two technologies compared: Nor vs.
nand. In White Paper, 2003.

[9] M. Rosenblum and J. K. Ousterhout. The design
and implementation of a log-structured file system.
ACM Transactions on Computer Systems, 10(1):26–
52, February 1992.

7

