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Abstract 
 

The Cell B.E. Architecture is a novel, heterogeneous, multi-core architecture that offers opportunities for 

significant performance.  However, a lack of programmer familiarity with explicitly parallelizing code 

and difficulty using its unique software-managed memory model make writing programs for the Cell 

difficult, even for experienced programmers.  However, if tools can be made to abstract away the issues 

that frustrate programmers, then programmers can concentrate on what they do best – coding.  

MapReduce for the Cell processor is a previously implemented runtime that provides a tool to abstract 

away these issues from programmers; it explicitly parallelizes the user’s code internally and handles all 

memory management internally.  However, MapReduce for the Cell processor is slowed by a bottleneck 

in its sorting and grouping phases.  This bottleneck is caused by the use of quicksort, which is unable to 

exploit the data-level parallelism the Cell generates much of its computational power from.  In this work, 

we replace quicksort with Cellsort, an optimized bitonic sort implementation which can better exploit the 

Cell’s fine-grained and course-grained parallelism.  After converting Cellsort to sort (key, value) pairs, a 

requirement of the MapReduce framework, Cellsort was integrated into MapReduce.  Finally, the 

characteristics of the Cellsort and MapReduce models were studied. 

 

1  Introduction 
 

The Cell processor is a heterogeneous, multi-core architecture [5] that provides high performance at 

relatively low power.  It addresses the challenges of design complexity, memory latency, and power using 

a novel design.  In order to avoiding the costs of accessing memory, the Cell processor uses software-

managed caches, which move the complexity of accessing memory from the hardware to the programmer 

with a DMA (Direct Memory Access) software-managed memory model.  Removing the hardware-

caching of data from the processor alleviates the power consumption issues that plague many processors.  

A major advantage of the Cell’s design is its heterogeneous, multi-core approach which offers a 

magnitude of performance increase over conventional architectures.   

 

However, to harness this power programs must be explicitly written to exploit the specialization of the 

Cell and must be explicitly partitioned so that they can be assigned to the different cores.  This 

partitioning requires knowledge of sophisticated programming techniques.  Additionally, many 

programmers are unfamiliar with the software-managed memory of the Cell processor.  Together, these 

two issues make writing effective programs for the Cell process extremely difficult. 

 

MapReduce for the Cell processor [6] is a runtime tool that makes writing programs for the Cell processor 

easier.  It does this at runtime by parallelizing a users’ code based on provided Map and Reduce 

functions.  It also internally handles all memory accesses.  While MapReduce for the Cell processor 

represents a significant step forward in providing programmers useful tools to help write programs for the 
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Cell processor, it is slow for some types of applications, particularly ones that require significant amounts 

of sorting to be done.  The biggest opportunity for speeding it up is in its sorting and grouping phases.  

This report focuses on optimizations to the MapReduce for the Cell runtime in these phases. 

 

Sensitivity studies [6] showed that the bottleneck of MapReduce for the Cell processor is in the sorting 

technique for the sorting and grouping phases.  These phases currently use quicksort.  While quicksort is a 

fast sorting algorithm, it does not work well with highly parallel architectures such as the Cell.  Quicksort 

is not capable of exploiting data-level parallelism, from which the Cell derives much of its computational 

power.  This issue makes quicksort ill-suited for the Cell architecture.  Recently Cellsort [3], an optimized 

bitonic sort [1], was shown to perform better on the Cell processor than quicksort.  This makes it well-

suited to replace quicksort in the MapReduce for the Cell processor framework.  In this work, we 

extended Cellsort to sort (key, value) pairs and then integrated it into the MapReduce framework. 

 

The original Cellsort only sorted keys (which is why we refer to it as BitSort_keys), while MapReduce for 

the Cell processor sorts (key, value) pairs.  Because Cellsort was designed to fill the entire data section of 

a local store (LS, to be covered in Section 2.1), this required significant modifications, as the keys could 

only take up half of the space in the data section of an LS now (with the values taking up the other half). 

 

We replaced quicksort with Cellsort in MapReduce for the Cell processor; this implementation is referred 

to as Bitonic MapReduce for the Cell processor, or Bitonic MapReduce for short.  Cellsort is a tiered 

sorting approach; it uses a local sort for small amounts of elements, then an in-core sort, and finally an 

out-of-core sort.  The in-core sort builds upon the local sort and similarly for the out-of-core sort.  In this 

work, we implement the local and in-core sorts.  In future work, we will implement the out-of-core sort.  

After integrating Cellsort into the MapReduce for the Cell processor framework we performed functional 

and performance testing of the new Cellsort, which we refer to as BitSort_pairs, and Bitonic MapReduce.  

The functionality testing tested the correctness of the results for datasets of various sizes; it showed that 

BitSort_pairs and Bitonic MapReduce functioned correctly for datasets up to 256 KB in size, the max in-

core sorting size. 

 

The Cellsort performance testing compared sort execution time with the number of items sorted for 

BitSort_pairs, BitSort_keys, and quicksort.  The results of these tests confirmed the results from the 

original Cellsort implementation [3] and found that the overhead of sorting (key, value) pairs is minimal; 

BitSort_pairs requires only a small amount more of time than BitSort_keys did.  Because the out-of-core 

sorting is not yet implemented, only the Map Intensity tests from the MapReduce for the Cell processor 

micro-benchmark [6] could be performed.  As Map Intensity increases, more work is done in the Map 

function.  The Map Intensity tests show that Bitonic MapReduce requires less sorting time than 

MapReduce for the Cell processor does and that the overall execution time is approximately linear.  

Additionally, performance tests for increasing input size showed that Bitonic MapReduce provides 

significant performance increases over MapReduce for the Cell processor as the parallelism (and input 

size) increase. 

 

The rest of the paper is organized as follows.  In Section 2, we present background on the Cell processor, 

MapReduce, bitonic sort, and Cellsort.  In Section 3, we discuss the implementation of the new Cellsort 

and Bitonic MapReduce.  In Section 4, the results of the functionality and performance testing are 

presented and analyzed.  In Section 5, provides some lessons learned during this project.  In Section 6, we 

discuss future Bitonic MapReduce work.  Finally, in Section 7, we conclude. 

  

2  Background 

2.1 Cell Processor 
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Figure 1: An overview of the Cell B.E. Architecture, 

reproduced from [2].  There are eight identical SPEs, which 

provide the bulk of the computational power of the Cell 

processor.  There is also a single PPE which acts as the master 

of the processor.  The EIB is the bus which the PPE and SPE 

communicate across. 

The Cell is a radical departure from previous architectures; multi-core architectures generally use a 

homogeneous approach, providing multiple copies of the same core while the Cell processor uses a 

heterogeneous approach.  It is optimized for large-scale, parallelized floating-point computations.  This 

makes the Cell processor ideal for computation-intensive workloads and graphics-rich computations [7].  

The Cell is able to achieve this massive floating-point computational power through its highly parallelized 

architecture.  Detailed information on the Cell processor’s design and implementation can be found 

elsewhere [5, 7]. 

 

An architectural diagram of the Cell processor can be found in Figure 1.  The Cell processor’s PPE 

(PowerPC Processing Element) is the master of the Cell processor – all work sent to the processor is sent 

to the PPE.  The PPE is then responsible for distributing this work to the eight identical SPEs (Synergistic 

Processing Elements).  These SPEs, the novel part of the Cell processor, are the slaves of the system.  

They are optimized for fast, computation-intensive processing instead of being optimized for general-

purpose processing.  As a result, the SPEs provide a significant portion of the computational power in the 

Cell processor [7]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Another unique feature of the Cell processor is its memory management system.  The Cell processor uses 

a software-managed memory model.  Each SPE has its own 256 KB memory called a Local Store (LS).  

The LS is responsible for storing both the program code and the data for a given SPE.  The SPEs are not 

capable of accessing main memory directly, an important feature of the model.  To read or write from a 

SPE’s LS, a software command must be issued [8].  The command communicates with main memory, 

reading data from main memory and placing it into the LS or writing data from the LS into main memory.  

Thus, the LSs require explicit software management (typical strategies manage memory in hardware), 

which provides the opportunity to prevent memory latency from severely degrading performance. 
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Figure 2: The MapReduce Framework, reproduced from [4].  Users provide Map and Reduce functions.  Then, 

MapReduce automatically parallelizes the user’s code and then executes the parallelized code on a large cluster 

of machine. 

 

The Cell’s memory model is designed to reduce total memory access latency by reducing accesses to 

main memory.  The Cell avoids this slowdown by accessing main memory as infrequently as possible.  

By using explicit software commands to transfer information between the LS and main memory, the Cell 

processor potentially accesses main memory infrequently.  When it does access main memory, it transfers 

blocks of data at a time, which is beneficial because it amortizes the cost of accessing main memory over 

multiple blocks of data.  Also, because the Cell’s memory model is asynchronous, multiple software 

commands can be in-flight simultaneously [8]. 

 

2.2 MapReduce 
 

MapReduce, originally designed at Google, is a parallel programming model [4].  After users specify a 

Map and a Reduce function, MapReduce automatically parallelizes the user’s code, and then distributes 

the parallelized code to be processed on multiple machines.  The automatic parallelization and 

distribution of the user’s code allows programmers to obtain high performance without having to manage 

the details of parallel programming and distributed systems [4]. 

 

MapReduce parallelizes the user’s code and distributes it to multiple machines through the use of Master 

and Worker threads.  The workflow for this process can be seen in Figure 2.  The Master thread is 

responsible for dividing up the work to be done and sending it to various distributed machines.  The 

Worker threads receive the work that the Master assigns them and then perform the assigned work on a 

machine in the distributed machine network.   

 

The ability of MapReduce to parallelize and distribute a user’s work without requiring the user to 

manually write parallelized code is crucial in its extension to the Cell processor [6].  Understandably, 
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Figure 3: An n-item bitonic sort, reproduced from [1].  

A bitonic sort builds upon itself, creating larger bitonic 

sorts from smaller ones.  For the bitonic sort to work 

correctly it requires that the sequences be bitonic. 

 
Figure 4: An 8-item bitonic sort, reproduced from 

[1].  This sort is identical to that found in Figure 4.  

Larger bitonic sorts are composed of multiples 

levels smaller bitonic sorts. 

MapReduce for the Cell processor operates very similarly to original MapReduce (to be referred to as 

MapReduce).  After the user specifies the Map and Reduce functions, MapReduce for the Cell processor 

then automatically parallelizes the user’s code and internally handles the memory calls, abstracting this 

issue away from the programmer.  The Cell processor’s PPE performs the duties that MapReduce’s 

Master thread performed and the SPEs perform the tasks of the Worker threads. 

 

2.3 – Bitonic Sort and Cellsort 
 

Bitonic sorts [1] perform many comparisons in parallel.  Larger bitonic sorts are composed of multiple 

levels of smaller bitonic sorts, which makes bitonic sort similar to a parallelized merge sort.  Figures 3 

and 4 show examples of bitonic sorts for n-items and 8-items.  For readers who are interested in more 

details on how bitonic sorts work, [1] provides a very good explanation of them.  The ability to construct 

larger bitonic sorts out of smaller bitonic sorts allows a tiered or hierarchical sort such as Cellsort to be 

constructed. 

 

 

 

 

 

 

 

 

 

Cellsort is an optimized bitonic sort for the Cell processor.  It was designed to take advantage of the 

highly parallel nature of the Cell processor and it uses a 3-tiered sorting approach, shown in Figure 5.  

The local sort is performed if the number of elements to be sorted can fit inside the LS of a single SPE.  If 

the number of elements is larger than the number of elements that can fit inside the LS of a single SPE, 

but smaller than the number of elements that can fit inside the LS of all of the SPEs, then an in-core sort 

is performed.  In an in-core sort, each SPE performs a local sort, and then the results from each SPE are 

merged.  An out-of-core sort is performed if the number of elements it greater than the number of 

elements that can fit inside the LSs of all of the SPEs.  This means that we will have to access main  
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Figure 5: The tiered sorting technique of Cellsort, reproduced from [3].  Cellsort is 

a bitonic sort that optimizes its local and in-core sorts to avoid accessing main 

memory.  In this figure, m represents the number of items a single SPE can sort, P 

represents the number of SPE’s available, and L represents the number of accesses 

to main memory. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

memory, which we didn’t need to do in the local and in-core sorts because we exploited the locality of the 

LSs.  To perform an out-of-core sort, we perform break the elements into sets, such that each set can fit 

inside the LSs of all of the SPEs.  Then, we perform an in-core sort on those elements.  This process is 

repeated until all elements have been sorted, and then the results are merged together. 

 

A key trait of the local and in-core sorts is their exploitation of the locality of the LSs.  This minimizes the 

number of accesses to main memory, which allows high performance sorting to be obtained.  It achieves 

this efficient and optimized sorting through the use of SIMD (single instruction, multiple data) 

instructions.  SIMD instructions are similar to vector instructions; they are 128-bits wide, while normal 

instructions are 32- or 64-bits wide.  Thus, SIMD instructions allow multiple values to be processed 

simultaneously.  Cellsort obtains better performance on the Cell processor than quicksort because it uses 

SIMD instructions. 

 

3  Implementation 
 

Our work extends Cellsort [3] from sorting only keys (BitSort_keys, a single array) to sorting (key, value) 

pairs (BitSort_pairs, two arrays, with dependencies between the arrays).  After extending Cellsort to sort 

(key, value) pairs, we then integrate it into MapReduce for the Cell processor.  The resulting 

implementation we refer to as Bitonic MapReduce. 

 

The extension of BitSort_keys to sort (key, value) pairs is necessary because MapReduce for the Cell 

processor requires the use of (key, value) pairs.  Functionally, in BitSort_keys, whenever two keys were 

swapped, they were swapped as in Figures 3 and 4.  In BitSort_pairs, the keys are swapped and the 

associated values are also swapped. 

 

After modifying BitSort_keys to sort (key, value) pairs, we verified the functionality of BitSort_pairs. 

The results showed that BitSort_pairs correctly sorted elements for the local and in-core sorting levels.  

We hope to implement out-of-core sorting in future work.  After verifying the functionality of 

BitSort_pairs, we integrated BitSort_pairs into the MapReduce for the Cell processor framework.  We 

used several tests to ensure the functional correctness of our implementation.  The output of these tests 

confirmed that our sort was functioning correctly for both local and in-core sorts. 
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Dataset size # of SPEs BitSort_pairs sorting type 

< 64 KB 1 Local 

128 KB 2 In-core 

256 KB 4 In-core 

> 256 KB 4 Out-of-core 
Table 1: Relationship between Dataset size, number of SPEs, and 

BitSort_pairs sorting type. 

 
Integrating Cellsort into the MapReduce for the Cell processor framework has several implications.  First, 

it provides a faster sorting kernel for Bitonic MapReduce to use while abstracting away from the 

programmer the details of the sort (while the sort itself does not make it easier to program, it does enable 

MapReduce for the Cell processor to more efficiently convert programs to a parallelized, Cell-friendly 

form).  More efficient sorting will enable better processor resource utilization.  The integration of bitonic 

sort into MapReduce for the Cell processor represents an internal improvement that can be leveraged to 

execute parallel programs.  Additionally, the use of the quicksort and merge sorts in the sorting and 

grouping phases of MapReduce for the Cell processor required the use of several threads in order to 

perform these tasks.  While MapReduce for the Cell processor used eight threads (two threads per SPE) 

with the use of quicksort, Bitonic MapReduce uses only one thread.  Thus, using Cellsort removes seven 

threads from the runtime when four SPEs are used; this removes the overhead of swapping values 

between threads and improves performance. 

 

4  Results 
 

In this section, we present our methodology and then evaluate our BitSort_pairs and Bitonic MapReduce 

implementations. 

 

4.1 Methodology 
 

We ran all of our tests on a Playstation 3, which contains a Cell processor with six SPEs.  In our tests we 

used up to four SPEs.  Additionally, we used Yellow Dog Linux 6.1 as the operating system and we 

installed the Cell SDK 3.1 to enable compilation and testing.  All of our code was written in C and C++, 

with GCC being used as the compiler and O3 being used as the optimization level.  After completing the 

integration of BitSort_pairs into Bitonic MapReduce, we performed functional and performance tests on 

BitSort_pairs and Bitonic MapReduce. 

 

For the testing of BitSort_pairs, we used various inputs, ranging in size, in powers of two, from 16 KB to 

16 MB, of random integers.  In these tests, we kept the inputted stream of keys and values identical to 

simplify the verification process.  The metric used in the testing of the new Cellsort was sort execution 

time.  The relationship between dataset size, number of SPEs, and Cellsort sorting type can be found in 

Table 1.  We then compared the results for BitSort_pairs to results obtained from quicksort and 

BitSort_keys. 

 

 

 

 

 

 

 

 

 

For the testing of Bitonic MapReduce, a square root test was used.  The output of Bitonic MapReduce for 

this test was then verified.  MapReduce for the Cell processor used several different tests for performance 

testing.  One of the tests used was a micro-benchmark [6], which tested how MapReduce for the Cell 

processor performed for six different types of parameters that fully classify the behavior of applications in 

the MapReduce for the Cell processor runtime.  Because we only implemented the local and in-core sorts, 

a full evaluation of these six parameters could not be undertaken.  Only the Map Intensity parameter tests 

worked with only the local and in-core sorts.  Map Intensity is a measure of how much work the user is 



8 
 

 

Figure 6: Plot of Sort Execution Time vs. Input Size for quicksort, BitSort_keys, and 

BitSort_pairs (16 KB – 256 KB).  The input sizes in this graph range from 16 KB – 256 

KB (local and in-core sorts). 

0

5

10

15

20

25

16 32 64 128 256

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

Input Size (KB)

Sort Execution Time vs. Input Size 

(16 KB - 256 KB)

BitSort_keys

Quicksort

BitSort_pairs

doing in the inputted Map function [6].  The Map Intensity was varied from 1 – 256 to simulate 

increasing Map Intensity.  We also varied the number of SPEs from 1 to 4 in our tests.  MapReduce for 

the Cell processor also used a suite of real-world tests but these tests also require the use of the out-of-

core sort.  Thus they were not evaluated either. 

 

4.2 Cellsort Results 
 

When these tests were run, the expectation was that sorting the (key, value) pairs would require more time 

than either quicksort or BitSort_keys; in the worst case, BitSort_pairs could take twice as long the other 

sorts.  BitSort_pairs sorts (key, value) pairs, whereas BitSort_keys and quicksort only sort keys – half the 

amount of information BitSort_pairs sorts.   

 
Figure 6 compares the sorting performance of BitSort_keys, BitSort_pairs, and quicksort.  The 

encouraging news is that BitSort_pairs requires nowhere near twice as long as the other sorts.  On 

average, BitSort_pairs required 16.1% longer time than BitSort_keys and 8.5% longer time than 

quicksort.  This amount of time required to sort the extra array of elements is quite small.  This is likely 

because the extra array doesn’t require any additional comparisons in the bitonic sort.  Recall from 

Section 3 that the items in the Values array are simply swapped if the bitonic sort swaps the items in the 

Keys array.  Since the arrays are always in the LS, swapping them requires very little extra time.  It will 

be interesting to see if this holds for sorts that require out-of-core sorting. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 7 and 8 compare the execution times of BitSort_keys and quicksort on datasets that require out-

of-core sorting.  Figure 7 confirms the result that BitSort_keys is faster than quicksort on the Cell 

processor, especially for sorts that require more SPEs.  Figure 8 also demonstrates the prohibitive cost of 

accessing main memory – doubling the input size causes a quadratic increase in execution time. 

 

These tests were done to demonstrate the functionality and performance of BitSort_pairs as compared to 

BitSort_keys and quicksort on the Cell processor.  They showed that the new Cellsort functions correctly 

for datasets up to 256 KB in size.  The results also showed that while sorting (key, value) pairs takes  
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Figure 7: Plot of Sort Execution Time vs. Input Size for quicksort, BitSort_keys, and 

BitSort_pairs (16 KB – 512 KB).  The input sizes in this graph range from 16 KB – 512 

KB (local, in-core, and out-of-core sorts). 
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Figure 8: Plot of Sort Execution Time vs. Input Size for quicksort, BitSort_keys, and 

BitSort_pairs (16 KB – 16 MB).  The input sizes in this graph range from 16 KB – 16 MB 

(local, in-core, and out-of-core sorts).  Note that the lines are nearly on top of each other 

due to the huge increase in execution time. 
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longer than sorting only keys, the amount of additional time needed to perform this sorting is small.  

Additionally, the results of the original Cellsort tests were confirmed. 

 

4.3 Bitonic MapReduce Results 
 

The expectation is that execution time scales linearly with increasing Map Intensity because the Map 

Intensity tests do not modify input size.  Instead, the Map Intensity tests modify how much work is done 

in the Map function.  The expectation for overall execution time is that there will not be a significant 
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Figure 9: Sort Time vs. MapIntensity (1 SPE) – Bitonic MapReduce vs. MapReduce. 
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Figure 10: Sort Time vs. MapIntensity (4 SPEs) – Bitonic MapReduce vs. MapReduce. 
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performance improvement, since the Map Intensity tests are map-dominated, which means that the 

amount of time required for sorting is small.  It is also expected that Bitonic MapReduce will require less 

sorting time than MapReduce for the Cell processor and that both will behave in a linear pattern.  The 

results for sorting time are shown in Figures 9 and 10 and the results for overall execution time are shown 

in Figure 11. 

 

Figure 9 shows how sort time varies against Map Intensity for a single SPE for the original MapReduce 

for the Cell processor and for Bitonic MapReduce.  Our expectation for a linear behavior compared to 

sorting time was not met in this test.  The sort times for MapReduce for the Cell processor vary 

significantly.  This can mean several things.  We could have not run enough samples to obtain an accurate 

measurement; the trend to the data is definitely upward, which was the expectation, so it’s possible the 

Map Intensity = 32 tests are an outlier.  It is also possible our implementation of the timing metric is 

incorrect.   Or the sort time, only one component of the total time 
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Figure 11: Overall Execution Time vs. MapIntensity (1 SPE) – Bitonic MapReduce vs. 

MapReduce. 
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spent executing, could be non-linear.  Regardless, these results definitely show the need for further tests 

to be performed. 

 

The results in Figure 10 (4 SPE tests) are similar in that they show a non-linear behavior for MapReduce 

for the Cell.  The results for Bitonic MapReduce in both Figures 9 and 10 show that Bitonic MapReduce 

requires less time sort time than MapReduce for the Cell processor in all cases.  For 1 SPE Bitonic 

MapReduce requires 12.2% less time than MapReduce.  For 4 SPEs Bitonic MapReduce requires 2.6% 

less time than MapReduce.  While there remain some questions as to the validity of the results, this result 

does match expectations. 

 

Figure 11 shows that the overall execution times for MapReduce and Bitonic MapReduce are nearly 

identical for all Map Intensities (ranging from 1 – 256) when a single SPE is used.  We also ran the same 

MapIntensity tests on four SPEs and found that the execution time was also nearly identical in this case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In addition to the Map Intensity tests, we also obtained performance results for sorting time and execution 

time for the square root test.  We expect the results from these tests to show that execution time increases 

significantly as input size increases, especially for MapReduce for the Cell processor, which uses 

quicksort.  As input size increases, more SPEs are used to sort the data.  The use of more SPEs causes 

more overhead from the extra threads used in quicksort.  In comparison, Bitonic MapReduce should not 

show significant increases as the input size increases.  Because we’re using only local and in-core sorts, 

the Bitonic MapReduce sort times should be approximately identical due to the parallelization and lack of 

overhead of BitSort_pairs.  The results from these tests are shown in Figures 12 and 13. 

 

Figure 12 compares the amount of time MapReduce and Bitonic MapReduce spend sorting for input sizes 

ranging from 2048 to 262144 (2 KB to 256 KB), the max in-core sort size.  As the input size increases, 

Bitonic MapReduce requires little extra sorting time, while MapReduce requires significantly more time.  

This is expected, as the additional overhead MapReduce requires for its threads to perform quicksort 

reduce performance.  As the input size increases, performance should decrease – a result we confirm here.  

On average, MapReduce requires over seven times more time than Bitonic MapReduce to sort the same 

number of elements. 
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Figure 12: Square Root Test, Sort Time vs. Input Size – Bitonic MapReduce vs. 

MapReduce. 
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Figure 13: Square Root Test, Overall Execution Time vs. Input Size – Bitonic MapReduce 

vs. MapReduce. 

 

0

100

200

300

400

500

600

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

Input Size (# Items)

Square Root Test -

Execution Time vs. Input Size

MR

BitonicMR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 compares the execution time of MapReduce and Bitonic MapReduce for the square root test.  

When the input size is large enough that multiple SPEs are required (128 KB and 256 KB – in-core sorts), 

MapReduce requires significantly more time than Bitonic MapReduce.  When a single SPE is used, 

however, MapReduce offers similar performance to Bitonic MapReduce.  For a 128 KB input, Bitonic 

MapReduce performs the same operations as MapReduce in two-thirds the time.  For a 256 KB input, 

Bitonic MapReduce performs the same operations as MapReduce in half the time.  For a single SPE, 

quicksort has fewer threads and less overhead, so its performance is not degraded by the parallelization of 

the Cell processor.  However, as the parallelization increases and more SPEs are used, that overhead 

begins to degrade the performance of quicksort.  We expect the trend of Bitonic MapReduce providing 

better performance than MapReduce as input size increases to continue in future work once the out-of-

core sort is integrated. 
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These tests were done to determine how Bitonic MapReduce responds to increasing Map Intensity.  As 

Map Intensity increases, more work is done in the Map function.  The sorting time results did not meet 

our expectations, as they were non-linear.  However, the results for overall execution time of the Map 

Intensity tests did match our expectations, as there was approximately no difference in total execution 

time between MapReduce and Bitonic MapReduce.  The results from the square root test show that 

Bitonic MapReduce is able to obtain better performance than MapReduce for the Cell processor as input 

size increases.  Overall, we found that Bitonic MapReduce requires less time to sort the items than 

MapReduce for the Cell processor in all cases.  Further testing with the extremities for out-of-core sort 

will be undertaken in future work; these results will show if there are performance improvements in a 

different types of applications and with the out-of-core sort. 

 

5 Lessons Learned 
 

This section summarizes our lessons learned throughout the process of developing the runtime.  

Specifically, we discuss the process of setting up the Playstation 3 environment,  issues in programming 

the Cell processor, and difficulties debugging Cell programs, specifically the barrier() bug we 

encountered. 

 

5.1 Setting up the Playstation 3 Environment 
 

Previous work in our research group on the Cell processor was done via the IBM Virtual Loaner Program, 

which allowed researchers access to Cell processors at IBM.  However, this program has been 

discontinued.  After looking at options such as the Georgia Tech Cellbuzz cluster [9] and the UW-

Madison Metronome [10], we decided that the best course would be to purchase a Playstation 3 and 

install the necessary tools on it. 

 
The directions on the Yellow Dog Linux website indicate that its distributions come with the Cell SDK 

(3.1 in the case of YDL 6.1) pre-installed such that you only need to install YDL 6.1 and the Cell SDK 

will be installed simultaneously.  However, this is not true.  The Yellow Dog Linux distribution did come 

with the Cell debuggers (ppu-gdb and spu-gdb), but it didn’t come with the full Cell SDK 3.1.  Thus, in 

order to get the full SDK working on the Playstation 3, we needed to download the Cell SDK from IBM’s 

website and manually install it. 
 

5.2 Programming the Cell 

 
Previous work on the MapReduce for the Cell processor project had been done with Cell SDK 2.1 [6]. 

However, Yellow Dog Linux 6.1, the recommended Linux distribution for the Playstation 3, was only 

compatible with Cell SDK 3.1 and up.  This required us to upgrade our code to be compatible with the 

new SDK.  There were two main issues we encountered.   

 

The first issue was Makefile-related.  In Cell SDK 2.1, our Makefiles used 

/opt/cell/sdk/make.footer to link in with the Cell Makefiles (internally, make.footer calls 

make.header, which was located in the same folder).  However, in Cell SDK 3.1, the make.footer 

and make.header files have been moved to /opt/cell/sdk/buildutils/.  This required modifying 

our Makefiles to use /opt/cell/sdk/buildutils/make.footer, which then linked to make.header.  

Note that /opt/cell/sdk represents where the Cell SDK was installed; it may be different on your 

system if it was installed somewhere else. 
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The second issue was related to the files that were included in our C and C++ program files.  In Cell SDK 

2.1, the XL C compiler had been used.  This compiler allowed the user get away without declaring the 

spu_intrinsics.h, spu_internals.h, or spu_mfcio.h files.  The file that our code needed was 

spu_internals.h, which is included in both the spu_mfcio.h and spu_instrinsics.h header 

files. So, by including either spu_mfcio.h or spu_intrinsics.h, the implicit declaration issue (when 

using the gcc compilers) disappears. 

 

5.3 Debugging Cell Programs 

 

Perhaps the most frustrating part about using the Cell processor is debugging code on the Cell processor.  

Because the Cell processor is a multi-core, heterogeneous architecture, there are numerous threads at any 

given time.  While IBM has created the ppu-gdb and spu-gdb debuggers to aid in this process, it is still 

difficult at times to obtain the needed information. 

 

An error that we ran into frequently when debugging our code was the “SPU_ADDR18” error.  This error 

occurs when your SPE code is taking up more space than a SPE can hold.  Of course, optimizing your 

code generally removes this error, but that prevents you from debugging your code.  The easiest way we 

found to alleviate this issue was to remove print statements from our SPE code, which take up a lot of 

space on the SPEs.  This is a result of the Cell design, which prevents SPEs from accessing the operating 

system.  Instead of printing information out, use the ppu-gdb or spu-gdb debuggers to stop execution at 

the point you are debugging. 

 

The main issue that is preventing us from completing the out-of-core sort is a bug in the barrier() 

function, which is used by the in-core and out-of-core sorts.  The barrier function is a function described 

in the original Cellsort paper [3]; it is responsible for synchronizing the SPEs as Cellsort is progressing.  

The issue in the barrier() function is a DMA transfer issue. 

  

In this function, there is an mfc_get() command that is causing a bus error.  When adding NOPs before 

this error, the error disappears, but re-emerges later on in the code as several values in the values array are 

overwritten during the final merge. When running the debugger on the btn_core_g() [3] function, where 

the values are being overwritten, it appears that the values we want are not arriving in time, which causes 

the swaps to be done incorrectly.  At first, this seemed to have to do with the temporary variables being 

uninitialized, but even after fixing this issue, the same garbage values are written into the values array 

(but not the keys array).  Even worse, when running the debugger, the values that we expect to be 

swapped arrive on time because the execution has been sufficiently slowed down.  Adding too many 

NOPs into the code causes the SPU program text to be corrupted, which prevents that solution from being 

used. 

 

6 Future Work 
 

Updating BitSort_pairs for out-of-core sorting is of utmost importance.  Most real datasets will use out-

of-core sorting due to the limited 256 KB memory space of the SPE’s local stores.  Integrating the out-of-

core Cellsort sort into the Bitonic MapReduce framework should be trivial. 
 

After updating Bitonic MapReduce for the out-of-core sorts, the embedded timing and performance 

metrics in Bitonic MapReduce may need to be updated to obtain accurate timing and performance 

metrics.  There also exist some new performance analysis tools [11-14] for the Cell.  If these metrics 

prove to be more useful than the embedded MapReduce metrics, they will be used instead of the 

embedded metrics.  Otherwise they will be used for further analysis. 

 



15 
 

After the timing modifications are made to the Bitonic MapReduce framework, complete performance 

results can be obtained and analyzed.  Completing these tasks will allow us to obtain an accurate, 

comprehensive understanding of how Bitonic MapReduce performs for a data set of any size. 

 

7  Conclusions 

 
The Cell processor’s novel, heterogeneous design offers an order of magnitude performance increase over 

conventional architectures.  However, writing programs for the Cell processor requires the user to 

explicitly parallelize their code and to use the non-standard software-managed memory protocol.  Many 

programmers simply do not possess the knowledge necessary to successfully perform these tasks, which 

makes writing programs for the Cell processor very difficult without tools to help them more easily 

harness the power of the Cell processor.   
 
MapReduce for the Cell processor is a simple runtime that abstracts away the issues of manually writing 

parallelized code and dealing with the Cell’s memory model.  Instead, users only need to supply the Map 

and Reduce functions.  However, MapReduce for the Cell processor is slow due to a bottleneck in its 

sorting and grouping phases.  This bottleneck is caused by the use of quicksort, which is ill-suited for the 

Cell processor because it cannot take advantage of the parallelism that the Cell processor offers. 

 

In this research, we replaced quicksort with Cellsort, a bitonic sort optimized for the Cell processor, 

which is able to exploit its data-level parallelism.  Cellsort has been shown to be faster than quicksort on 

the Cell processor.  Replacing quicksort with Cellsort makes MapReduce for the Cell processor faster, 

which allows the processors resources to be allocated more efficiently.  Converting Cellsort to sort (key, 

value) pairs instead of keys only incurs only minimal overheads due to the Cell’s ability to store both 

arrays in the local store(s) of SPE(s).  The integration of Cellsort and MapReduce to create Bitonic 

MapReduce has been verified for datasets up to 256 KB.  Preliminary performance studies show that 

BitSort_pairs requires 16.1% longer time to sort (key, value) pairs on the Cell processor as compared to 

BitSort_keys, which only sorts keys.  Additionally, the new Cellsort requires 8.5% longer time than 

quicksort, which also only sorts keys.   The preliminary Map Intensity performance studies show no 

decrease in execution time.  The Map Intensity tests also showed that Bitonic MapReduce offers a 12.2% 

improvement in sorting time over MapReduce for a single SPE and a 2.2% improvement for four SPEs.  

The square root tests showed that Bitonic MapReduce offers significant performance improvements over 

MapReduce as parallelism and the input size increase.  Further testing needs to be performed to obtain a 

complete picture of the performance of the runtime. 
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