

Not All GPUs Are Created Equal: Characterizing Variability in Large-Scale, Accelerator-Rich Systems

Prasoon Sinha, Akhil Guliani, Rutwik Jain, Brandon Tran, Matthew D. Sinclair and Shivaram Venkataraman Computer Sciences Department, University of Wisconsin-Madison

SUPERCOMPUTER

11/17/2022

APPLICATIONS

 \mathbf{O}

SUPERCOMPUTERS

ORNL SUMMIT 27,000 GPUs

SCIENTISTS

DOMAIN

IMAGE RECOGNITION PHYSICS SIMULATION MACHINE TRANSLATION GRAPH ANALYTICS MOLECULAR DYNAMICS SPEECH RECOGNITION GENOMICS

APPLICATIONS

NCSA DELTA 840 GPUs

TACC LONGHORN 416 GPUs

SUPERCOMPUTER

4

Õ

Ó

Ó

Ó

The Problem: Performance Predictability

Hard to get repeatable, consistent performance!
 In multi-GPU experiments, faster nodes keep waiting for slower resources – can lead to resource underutilization!

SUPERCOMPUTER

Objective

Understand and characterize **GPU variability** in large scale, accelerator-rich computing clusters

Examine the effects of scale, application type, cooling and GPU vendors on variability

SUPERCOMPUTER

Related Work

□ Acun, et al. [ICS'16, IPDPSW'16, HiPC'17], Zhang, et al. [IPDPS'15]

- Performance variability in CPU-based HPC systems
- □ Solutions: dynamic load balancing, adaptive runtimes, temperature-aware job placement

Related Work

□ Acun, et al. [ICS'16, IPDPSW'16, HiPC'17], Zhang, et al. [IPDPS'15]

- Performance variability in CPU-based HPC systems
- Solutions: dynamic load balancing, adaptive runtimes, temperature-aware job placement

Coplin, et al. [IPDPSW'16], Jiao, et al. [GreenCom&ICCPS'10]

- Energy, power and performance characterization in GPGPU benchmarks
- Used older generation GPUs (Kepler/Fermi) and focus on single-GPU workstations

17

11/17/2022

Related Work

□ Acun, et al. [ICS'16, IPDPSW'16, HiPC'17], Zhang, et al. [IPDPS'15]

- Performance variability in CPU-based HPC systems
- Solutions: dynamic load balancing, adaptive runtimes, temperature-aware job placement

Coplin, et al. [IPDPSW'16], Jiao, et al. [GreenCom&ICCPS'10]

- Energy, power and performance characterization in GPGPU benchmarks
- Used older generation GPUs (Kepler/Fermi) and focus on single-GPU workstations

□ Scogland, et al. [SC'15]

- Studied LINPACK's performance variation for CPU clusters and AMD GPUs
- Motivated the need for a more in-depth study

Outline

- Motivation
- Related Work
- Methodology
- Experiments and Results
- Conclusion

First, let's define variability

1. How much performance variation is there across GPUs?

2. Do GPU physical metrics (frequency, power and temperature) vary too?

3. How is variability affected by cluster parameters (size, cooling, GPU vendor)?

4. Are these variability observations consistent over time?

5. Is variability application-dependent?

Methodology

Benchmark

SGEMM

Metrics

Kernel duration (ms)

GPU CU/SM **temperature** (°C)

 $\mathsf{GPU}\,\mathsf{CU/SM}\,\textbf{power consumption}\,(\mathsf{W})$

GPU CU/SM **frequency** (MHz)

□ Profiler

NVIDIA

Cluster specifications

□ air-cooled

□ Sample Size

SUPERCOMPUTER

- Sample measurements from almost all GPUs in each cluster
- Profiled 2.9x more GPUs than worst-case recommendations for statistical significance [Scogland, et al. SC'15]

SGEMM on TACC Longhorn: Performance

SGEMM on TACC Longhorn: Scatterplot

SGEMM on TACC Longhorn: Other Metrics

SGEMM on TACC Longhorn: Other Metrics

Key Questions

1. How much performance variation is there across GPUs?	9% for SGEMM
2. Do GPU physical metrics (frequency, power and temperature) vary too?	Yes
3. How is variability affected by cluster parameters (size, cooling, GPU vendor)	
4. Are these variability observations consistent over time?	
5. Is variability application-dependent?	

30

Variability & Cluster parameters

31

SGEMM across clusters

SGEMM across clusters

Comparing cooling methods

34

Water-cooling: SGEMM on SNL Vortex

Water-cooling: SGEMM on SNL Vortex

Mineral oil cooling: SGEMM on TACC Frontera

Mineral oil cooling: SGEMM on TACC Frontera

Key Questions

1. How much performance variation is there across GPUs?	9% for SGEMM with outliers 1.5x slower than median
2. Do GPU physical metrics (frequency, power and temperature) vary too?	Yes
3. How is variability affected by cluster parameters (size, cooling, GPU vendor)	 Consistent perf variability across clusters Liquid cooling reduces temperature variation, but not performance variability
4. Are these variability observations consistent over time?	
5. Is variability application-dependent?	

Every day of the week has 8% average performance variability

ð

Every day of the week has 8% average performance variability

Per-GPU variation in performance over time Each point shows normalized Δ (Performance) across 5 runs of SGEMM on same GPU

Per-GPU variation in performance over time Each point shows normalized Δ(Performance) across 5 runs of SGEMM on same GPU

Key Questions

1. How much performance variation is there across GPUs?	9% for SGEMM with outliers 1.5x slower than median
2. Do GPU physical metrics (frequency, power and temperature) vary too?	Yes
3. How is variability affected by cluster parameters (size, cooling, GPU vendor)	consistent perf variability across clusters (other details in paper)
4. Are these variability observations consistent over time?	Yes, variability is not just a transient effect - consistent over time
5. Is variability application-dependent?	

44

O

Benchmark	SGEMM
Input Size	25536 x 25536

Benchmark	SGEMM	ResNet-50
Input Size	25536 x 25536	Training set: 1.2M images Batch Size: 64

Benchmark	SGEMM	ResNet-50	BERT
Input Size	25536 x 25536	Training set: 1.2M images Batch Size: 64	Training set: 30K words Batch Size: 64

Benchmark	SGEMM	ResNet-50	BERT	LAMMPS
Input Size	25536 x 25536	Training set: 1.2M images Batch Size: 64	Training set: 30K words Batch Size: 64	(x,y,z) = (8,16,16)

Benchmark	SGEMM	ResNet-50	BERT	LAMMPS	PageRank
Input Size	25536 x 25536	Training set: 1.2M images Batch Size: 64	Training set: 30K words Batch Size: 64	(x,y,z) = (8,16,16)	642661 nodes 2785421 edges

	compute-intensive			memory-intensive	
Benchmark	SGEMM	ResNet-50	BERT	LAMMPS	PageRank
Input Size	25536 x 25536	Training set: 1.2M images Batch Size: 64	Training set: 30K words Batch Size: 64	(x,y,z) = (8,16,16)	642661 nodes 2785421 edges

	compute-intensive			memory-intensive	
Benchmark	SGEMM	ResNet-50	BERT	LAMMPS	PageRank
Input Size	25536 x 25536	Training set: 1.2M images Batch Size: 64	Training set: 30K words Batch Size: 64	(x,y,z) = (8,16,16)	642661 nodes 2785421 edges
Single/Multi- GPU	single	multi-GPU (4-GPU)	multi-GPU (4-GPU)	single	single

Multi-GPU ResNet-50 on Longhorn

52

Variability across applications

11/17/2022

Variability across applications

Variability across applications

□ Variability is application-specific

- Ill-performing GPUs are consistently illperforming
- □ Memory intensive apps see lower variability

• c004 Cabinet: • c002 • c003 c005 c006 • c007 c008 c009 66500 Runtime (ms) (ms) 61000 (ms) 400 310 Total Runtime (ms) 300 66000 350 Runtime 60000 290 Runtime 65500 300 280 59000 250 270 65000 260 Iteration Iteration 200 58000 Total 64500 250 150 240 57000 64000 100 230 PageRank **ResNet-50** BERT LAMMPS <1% <1% 22% 8%

performance variability

Summary of findings

The following weren't covered in the talk, but are in the paper:	 Variability with cluster scale Variability with different GPU vendors (AMD/NVIDIA) Effect of varying GPU Power Limit Comparing single-GPU ResNet vs multi-GPU ResNet
1. How much performance variation is there across GPUs?	9% for SGEMM with outliers 1.5x slower than median
2. Do GPU physical metrics vary too?	Yes
3. How is variability affected by cluster parameters	consistent perf variability across clusters
4. Is variability consistent over time?	Yes
5. Is variability application-dependent?	Yes, compute-intensive applications see more performance variability than memory intensive ones

61

n

Summary of findings

Harnessing variability to our advantage

Blacklisting and Maintenance

- Periodic variability benchmarking
- Identifying and performing targeted maintenance

Application-Aware Frameworks

- Variability-aware allocation and scheduling frameworks
- □ Application-specific, dynamic allocation

New hardware and system design

- Standards for exposing variability info from HW to SW and runtime layers
- Global power management techniques

63

11/17/2022

Questions?

Summary

- Significant performance variability across clusters 7-9% on average for SGEMM
- Variability much larger for computeintensive workloads (ResNet-50 - 22%) than memory-intensive workloads (PageRank - 1%)
- Air-cooled clusters have larger temperature variation; water/mineral-oil cooling reduces temperature variation but does not help performance and power variation

Artifact

You can reproduce our experiments using: <u>https://github.com/hal-uw/gpu_variability_sc22_artifact</u>

ArXiV

extended version of the paper https://arxiv.org/abs/2208.11035

Contact/About

rnjain@cs.wisc.edu

https://pages.cs.wisc.edu/~rnjain/

