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Walt Disney Co. in the beginning ...

= Walt Disney originally

decided to be an animator.

=" His initial successes came

in the 1920’s and 1930’s.

= He was doing very well,
and wasn’t forced to

expand into other areas...
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Motivation

" GPUs are very good at data parallel programs.

= However, just like Walt Disney Co., for them to continue
to grow, they need to expand.

= In this paper we find benchmarks that currently do not
perform well on GPUs, but could perform well.
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Executive Summary

= We have identified 19 challenge benchmarks.

= QOur analysis suggests that there is no simple tweak to get
them to perform well on GPUs.
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Identifying Challenging Benchmarks

= Searched common GPU benchmark suites:
— Rodinia
— GPGPU-Sim
— SHOC
— Others

= Wrote some of our own from the PARSEC suite.

" Goal: Identify benchmarks from these suites that
perform pootly on GPUs.
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Classitying Benchmarks as Challenging

= For all benchmarks that perform at < 40% of peak
effective GPU IPC.

— We classify these benchmarks as challenging.
= What 1s etfecttve IPC?

— IPC calculated using only useful instructions per cycle (1.e.
ignoring masked instructions).

= We use a Tesla C1060-like contiguration & GPGPU-Sim
version 2.1.1b.

Sinclair - GPU Challenge Benchmarks - EAMA '11 9



The Challenging Benchmarks

From GPGPU-Sim (5/14):
— WP, NN, N-Queens, Mummer, BEFS

From Rodinia (10/20):
— SC, SRAD1, Backprop, Heartwall, HW Tracking
— CFD, BFS, NN, NW, Myocyte

PARSEC:

— Fluidanimate, Swaptions

Others:
_ S$3D (SHOC)

— Mummer++
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GPU Bottleneck Categories

= Available Parallelism
= Control Flow

" Memory Access
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Avwvailable Parallelism

= Limited by:

— Fraction of algorithm that
is parallelizable.

= Subcategories:
— Block Parallelism (BP)
— Thread Parallelism (TP)

= 12/38 kernels.
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Control Flow

" Limited By:

— Thread divergence.

— Serial execution (due to
atomics, barriers, etc.).

= Subcategories:

— Few active threads per

warp (WP)

— Single active thread per

warp (ST)
= 21/38 kernels.
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Memory Access

= Limited by:
— Lack of caching

— Heavy cache contention.

— For lightly threaded benchmarks, GPUs can’t effectively hide

latency of accesses.

= Subcategories:
— Memory Bandwidth (BW)
— Long Latency of Memory Access (LAT)

= 19/38 kernels.
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Performance Impact ot Bottlenecks

= 32/38 kernels reach peak machine efficiency after
bottlenecks are removed.

— Some require up to 5 bottlenecks be removed before reaching

peak.

— Kernels that do not reach peak are limited by synchronization.

= Need to remove different bottlenecks for each
benchmark to reach peak efficiency.

= Benchmarks require a 19x geometric mean speedup
to reach peak machine efficiency.
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Case Study: BFS (Rodinia)

= ) kernels:
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1. Marks which nodes are
visited.

2. Marks children as next;
updates costs of nodes.

" 1 thread for each node in

the tree, but only a few
threads do useful work.

— Little locality in accesses.
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BES Con’t

Metric Kernel 1
Effective IPC 4.9
Average Threads/Warp 10
Serialization 25%
Memory Access Coalesced 56%
DRAM Bandwidth (GB/s) 70
Stalled for Memory 76%0
Bottlenecks WP, ST, LAT
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Case Study: Fluidanimate

" The fluidanimate GPU implementation requires many
calls to global memory to access values.

= Also exhibits thread divergence and register pressure.

= CPU synchronization between each stage in the
computation due to lack of efficient global GPU
synchronization mechanism.
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Fluidanimate Con’t

Metric Kernel 4
Ettective IPC 0.1
Average Threads/Warp 3
Serialization 51%
Memory Access Coalesced 3%
DRAM Bandwidth (GB/s) 13

Stalled for Memory 40%o

(All) Bottlenecks WP, BP, LAT, ST
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Modeled speedups after removing bottlenecks

= We explored different design improvements to improve
GPGPU pertormance.

— Just adding additional cores or 1solating a single bottleneck is
not sufficient.
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Thus, we look at pairs of design changes.

= Results: (N/35 kernels)
— Group X: Near peak IPC after any design pair introduced (12).

— Group Y: Need specific design pair to get near peak IPC (10).
— Group Z: Don’t reach peak IPC even after multiple pairs (13).

— No single technique to help all benchmarks.
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Conclusions

= We’ve introduced a set of challenging benchmarks

— These benchmarks represent the issues future GPUs need to
overcome to allow GPUs to become more general-purpose.

= We’ve also explored the bottlenecks for these
benchmarks and highlighted how alleviating them will
atfect performance.
— Many changes need to be made to the GPU architecture

— This is a hard problem, 1 or 2 techniques are not
sufficient.
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Questions?

Paper available at cs.wisc.edu/vertical/
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Backup Slides
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W By solving these challenges, GPUs can

continue to expand.
e o— f—
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Case Study: Neural Network

" The neural network executes by calling a series of layers,
which update the weights of the nuerons.

" Varying number of threads per layer to account for
varying number of neurons.

— Never more than 3000 threads per layer.

= All nuerons access global memory when updating
their values and passing them to the next layer.
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Neural Network Con’t

Metric Kernel (Layer) 2
Eftective IPC 12
Average Threads/Warp 25
Serialization 0%
Memory Access Coalesced 90%
DRAM Bandwidth (GB/s) 64

Stalled for Memory 65%

(All) Bottlenecks BW
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Case Study: Mummer++

Kernel 1s attempting to align genomes
Very limited number of threads (250)

Lots of divergence within the kernel because we’re using
lots of conditionals in the pairing process.

Most of references are to global memory.
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Mummer++ Con’t

Metric Kernel 4
Eftective IPC 0.3
Average Threads/Warp 8
Serialization 37%0
Memory Access Coalesced 77%
DRAM Bandwidth (GB/s) 52
Stalled for Memory 58%
(All) Bottlenecks WP, BP, ST
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BES Alternate Data

Metric Kernel 1 | Kernel 2
Effective IPC 4.9 104.3
Average Threads/Warp 10 27
Serialization 25% 4%
Memory Access Coalesced |  56% 7%
DRAM Bandwidth (GB/s) 70 34
Stalled for Memory 76%0 33%
Bottlenecks WP, ST, LAT
LAT
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The changes with Fermi

" Fermi additions:
— Local L1 and shared L2 caching.
— More SPs per SM (doubles effective peak IPC)

— This is a step in the right direction.

" We performed the same hardware profiling study on a
Tesla C2050.

= Result: Challenge benchmarks were only sped up 1.5x.

— Limited parallelism and significant thread divergence are still
problems.
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