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Let’s begin by thinking about a mouse.
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Walt Disney Co. in the beginning …

 Walt Disney originally 

decided to be an animator.

 His initial successes came 

in the 1920’s and 1930’s.

 He was doing very well, 

and wasn’t forced to 

expand into other areas…
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Walt Disney Co. as we know it.
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Motivation

 GPUs are very good at data parallel programs.

 However, just like Walt Disney Co., for them to continue 

to grow, they need to expand.

 In this paper we find benchmarks that currently do not 

perform well on GPUs, but could perform well.
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Executive Summary

 We have identified 19 challenge benchmarks.

 Our analysis suggests that there is no simple tweak to get 

them to perform well on GPUs.
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Outline

 Introduction

 Identifiying Challenge Benchmarks

 Bottlenecks

 Case Studies

 Conclusions
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Identifying Challenging Benchmarks

 Searched common GPU benchmark suites:

– Rodinia

– GPGPU-Sim

– SHOC

– Others

 Wrote some of our own from the PARSEC suite.

 Goal: Identify benchmarks from these suites that 

perform poorly on GPUs.
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Classifying Benchmarks as Challenging

 For all benchmarks that perform at < 40% of peak 

effective GPU IPC.

– We classify these benchmarks as challenging.

 What is effective IPC?

– IPC calculated using only useful instructions per cycle (i.e. 

ignoring masked instructions).

 We use a Tesla C1060-like configuration & GPGPU-Sim 

version 2.1.1b.
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The Challenging Benchmarks

 From GPGPU-Sim (5/14):

– WP, NN, N-Queens, Mummer, BFS

 From Rodinia (10/20):

– SC, SRAD1, Backprop, Heartwall, HW Tracking

– CFD, BFS, NN, NW, Myocyte

 PARSEC:

– Fluidanimate, Swaptions

 Others:

– S3D (SHOC)

– Mummer++
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Outline

 Introduction

 Identifying Challenge Benchmarks

 Bottlenecks

 Case Studies

 Conclusions
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GPU Bottleneck Categories

 Available Parallelism

 Control Flow

 Memory Access
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Available Parallelism

 Limited by:

– Fraction of algorithm that 

is parallelizable.

 Subcategories:

– Block Parallelism (BP)

– Thread Parallelism (TP)

 12/38 kernels.

Sinclair - GPU Challenge Benchmarks - EAMA '11 13



Department of Computer Science

Control Flow

 Limited By:

– Thread divergence.

– Serial execution (due to 

atomics, barriers, etc.).

 Subcategories:

– Few active threads per 

warp (WP)

– Single active thread per 

warp (ST)

 21/38 kernels.
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Memory Access

 Limited by:

– Lack of caching

– Heavy cache contention.

– For lightly threaded benchmarks, GPUs can’t effectively hide 

latency of accesses.

 Subcategories:

– Memory Bandwidth (BW)

– Long Latency of Memory Access (LAT)

 19/38 kernels.
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Performance Impact of Bottlenecks

 32/38 kernels reach peak machine efficiency after 

bottlenecks are removed.

– Some require up to 5 bottlenecks be removed before reaching 

peak.

– Kernels that do not reach peak are limited by synchronization.

 Need to remove different bottlenecks for each 

benchmark to reach peak efficiency.

 Benchmarks require a 19x geometric mean speedup 

to reach peak machine efficiency.
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Outline

 Introduction

 Identifying Challenge Benchmarks

 Bottlenecks

 Case Studies

– BFS (Rodinia)

– Fluidanimate

 Conclusions
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Case Study: BFS (Rodinia)

 2 kernels:

1. Marks which nodes are 

visited.

2. Marks children as next; 

updates costs of nodes.

 1 thread for each node in 

the tree, but only a few 

threads do useful work.

– Little locality in accesses.
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BFS Con’t
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Metric Kernel 1

Effective IPC 4.9

Average Threads/Warp 10

Serialization 25%

Memory Access Coalesced 56%

DRAM Bandwidth (GB/s) 70

Stalled for Memory 76%

Bottlenecks WP, ST, LAT
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Case Study: Fluidanimate

 The fluidanimate GPU implementation requires many 

calls to  global memory to access values.

 Also exhibits thread divergence and register pressure.

 CPU synchronization between each stage in the 

computation due to lack of efficient global GPU 

synchronization mechanism.
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Fluidanimate Con’t
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Metric Kernel 4

Effective IPC 0.1

Average Threads/Warp 3

Serialization 51%

Memory Access Coalesced 3%

DRAM Bandwidth (GB/s) 13

Stalled for Memory 40%

(All) Bottlenecks WP, BP, LAT, ST
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Modeled speedups after removing bottlenecks

 We explored different design improvements to improve 

GPGPU performance.

– Just adding additional cores or isolating a single bottleneck is 

not sufficient.

Sinclair - GPU Challenge Benchmarks - EAMA '11 22



Department of Computer Science

Thus, we look at pairs of design changes.

 Results: (N/35 kernels)

– Group X: Near peak IPC after any design pair introduced (12).

– Group Y: Need specific design pair to get near peak IPC (10).

– Group Z:  Don’t reach peak IPC even after multiple pairs (13).

– No single technique to help all benchmarks.
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Outline

 Introduction

 Identifying Challenge Benchmarks

 Bottlenecks

 Case Studies

 Conclusions
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Conclusions

 We’ve introduced a set of challenging benchmarks

– These benchmarks represent the issues future GPUs need to 

overcome to allow GPUs to become more general-purpose.

 We’ve also explored the bottlenecks for these 

benchmarks and highlighted how alleviating them will 

affect performance.

– Many changes need to be made to the GPU architecture

– This is a hard problem, 1 or 2 techniques are not 

sufficient.
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Questions?
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Paper available at cs.wisc.edu/vertical/
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Backup Slides
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By solving these challenges, GPUs can 

continue to expand.
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Case Study: Neural Network

 The neural network executes by calling a series of layers, 

which update the weights of the nuerons.

 Varying number of threads per layer to account for 

varying number of neurons.

– Never more than 3000 threads per layer.

 All  nuerons access global memory when updating 

their values and passing them to the next layer.
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Neural Network Con’t
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Metric Kernel (Layer) 2

Effective IPC 12

Average Threads/Warp 25

Serialization 0%

Memory Access Coalesced 90%

DRAM Bandwidth (GB/s) 64

Stalled for Memory 65%

(All) Bottlenecks BW
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Case Study: Mummer++

 Kernel is attempting to align genomes

 Very limited number of threads (256)

 Lots of divergence within the kernel because we’re using 

lots of conditionals in the pairing process.

 Most of references are to global memory.
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Mummer++ Con’t
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Metric Kernel 4

Effective IPC 0.3

Average Threads/Warp 8

Serialization 37%

Memory Access Coalesced 77%

DRAM Bandwidth (GB/s) 52

Stalled for Memory 58%

(All) Bottlenecks WP, BP, ST
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BFS Alternate Data
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Metric Kernel 1 Kernel 2

Effective IPC 4.9 104.3

Average Threads/Warp 10 27

Serialization 25% 4%

Memory Access Coalesced 56% 97%

DRAM Bandwidth (GB/s) 70 34

Stalled for Memory 76% 33%

Bottlenecks WP, ST, 

LAT

LAT
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The changes with Fermi

 Fermi additions:

– Local L1 and shared L2 caching.

– More SPs per SM (doubles effective peak IPC)

– This is a step in the right direction.

 We performed the same hardware profiling study on a 

Tesla C2050.

 Result: Challenge benchmarks were only sped up 1.5x.

– Limited parallelism and significant thread divergence are still 

problems.
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