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BACKGROUND

I Characterizing Alzheimer’s disease (AD) at preclinical stages is crucial for
early diagnosis for effective prevention and treatments.

I Pittsburgh compound B (PiB) detects highly potent risk factor known as
beta-amyloid.

I Currently, studies treat the connections either locally with individual edges or
globally with features such as modularity.

I While sufficient for detecting influence of disease, they severely fall short for
detecting effects of preclinical pathology on brain connectivity.

PROBLEM STATEMENT

I In this study, we investigate the influence of the amyloid burden.
I Specifically, distribution volume ratios (DVR) of PiB in 16 gray matter

regions of interest (ROIs) on brain connectivity.
I We propose a multi-resolution statistical analysis method for brain

connectivity networks.

WAVELETS IN CONTINUOUS SPACE

I Similar to the Fourier transform, but uses wavelet basis function instead of
sin() and cos() functions.

I Wavelet transform overcomes the ringing artifacts (i.e., Gibbs phenomenon)
caused by infinite duration of basis function in Fourier transform.

I Localized in both time and frequency.
I Behave as band-pass filters in the frequency domain.
I The mother wavelet ψ on x is a function of scale s and translation a,

ψs,a(x) =
1
a
ψ(

x − a
s

).

I The forward wavelet transform is

Wf (s,a) = 〈f , ψ〉 =
1
s

∫
f (x)ψ∗(

x − a
s

)dx ,

I The inverse wavelet transform is

f (x) =
1

Cψ

∫∫
Wf (s,a)ψs,a(x)da ds

where Cψ is the admissibility constant.

WAVELET IN THE NON-EUCLIDEAN SPACE

I Graph G is given as G = {V ,E , ω} where V is a vertex set, E is an edge set
and ω is the edge weight.

I Main bottleneck for defining wavelet in the non-Euclidean space, i.e., a graph
: What is the notion of scale and translation?

I Key idea: Define scale in the frequency domain and translate by an impulse
function (Maggioni, 2007; Hammond 2012).

I Spectral graph theory: Graph Laplacian defined as L = D− A where D and
A are graph adjacency and degree matrix, and the eigenfunctions χl of L
provide the orthonormal bases for graph Fourier transform.

I Graph Fourier Transform

f̂ (l) = 〈χl, f 〉 =
N∑

n=1

χ∗l (n)f (n) and f (n) =
N−1∑
l=0

f̂ (l)χl(n)

I Spectral graph wavelet is constructed by applying a band-pass filter g at
various scales s ∈ S and localizing it at n with a impulse function as,

ψs,n(m) =
N−1∑
l=0

g(sλl)χ
∗
l (n)χl(m)

WAVELET IN THE NON-EUCLIDEAN SPACE (CONTINUED)

I The wavelet transform of a given function f (n) is derived from graph Fourier
transform and yields the wavelet coefficients.

Wf (s,n) = 〈ψs,n, f 〉 =
N−1∑
l=0

g(sλl)f̂ (l)χl(n)

I Wavelet Multiscale Descriptor (WMD): multi-resolutional shape descriptor
WMDf (n) = {Wf (s,n)|s ∈ S}

Figure: Shark-shaped mesh domain (left), ψ1,1 (center) ψ2,1 (right).

LINE GRAPH (DUAL GRAPH) TRANSFORMATION

I Line graph L(G) is a dual form of graph G.
I The L(G) is formed by interchanging the roles of V and E in G.
I When two edges share a common vertex in G, these edges are connected to

each other by the common vertex.
I Let gij be the elements in the adjacency matrix AL of L(G), then

gij =

{
1 if v ∈ V , v v ei,ej

0 otherwise

where v is a vertex in V and e is an edge in E .

Figure: Examples of graphs and the corresponding line graphs. Original graphs with vertices (red) and edges
(yellow) with edge weights (thickness). Line graphs with vertices (yellow) with function (vertex size) and edges (red).

NETWORK FILTERING PROCESS

I In order to filter the network structure, we need to bring the network
connectivity information as a signal into another domain.

I Using line graph, we transform our domain G to L(G), where edge weights
are viewed as a signal defined on vertices.

Figure: A toy example of graph structure filtering. The top panel shows the graph filtering steps: (1) Construction of
the line graph, (2) filtering the signal on the line graph vertices, (3) reconstructing the filtered graph. The bottom
panel shows the corresponding adjacency matrices.

DATASET

I 140 subjects (40 male, 100 female) in Wisconsin registry for Alzheimer’s
prevention (WRAP) cohort.

I Brain connectivity strengths between 162 gray matter regions from
Destrieux atlas were defined as the mean fractional anisotropy (FA) along
the tracts of diffusion tensor imaging.

I 5 different scales of the wavelet based multi-resolution connectivity
signatures (WaCS) for each connectivity.

I Pittsburgh compound B (PiB) distribution volume rations (DVR) of 16
different regions.

EXPERIMENTAL RESULT

Group Analysis
I Modeled its relationship to mean DVR of PiB for 16 important ROIs.
I Selected 197 edges with mean FA > 0.01 for all 140 subjects at all scales.
I We used multivariate general linear model (MGLM) on the WaCS to compute

p-values.
I For individual scales, we used univariate GLM.

Results
I The false discovery rate (FDR) threshold curve is also shown (red).
I The p-values for WaCS (blue) for 10 out of the 16 ROIs clearly show the

advantage of having multi-resolutional views.
I For 7 out of these 10 ROIs the statistical significance is at the FDR corrected

level (blue above red).
I For cingulum regions, the multiple resolutions and individual scales seem to

perform similarly at the uncorrected level.

Figure: Comparisons of sorted p-values of 16 ROIs using MGLM (blue) and GLMs (other straight lines) and FDR
(red) in -log10 scale.

CONCLUSION

I We presented a unique multi-resolutional statistical analysis to study the
influence of amyloid burden on structural brain connectivity.

I In almost all the regions implicated as important in Alzheimer’s disease the
multiple resolutions tend to improve the distribution of the p-values.
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