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Abstract 

Many low-level vision problems can be formulated as discrete value assigning problems. 

In order to find the most plausible labels for each problem, their underlying objectives 

are defined as energy minimization problems that consider both individual measurement 

and second order congruency. Once constructed as graphical models such as Markov 

Random Field (MRF) and factor graphs, the problems become applicable to many state-

of-the-art inference methods that are largely categorized as message passing and move 

making techniques. However, the versatilities of the methods are bounded by the 

characteristics of the function. 

We present a quadratic integer programming (QIP) approach to solve MRF 

based low-level vision problems. With auxiliary penalty and smoothness terms, the QIP is 

indiscriminative of functions such that it is capable of converging to the global optimum 

regardless of the curvature of the Hessian matrix originated from the problem. Also, 

using truncated Newton method with preconditioned conjugate gradient descent direction, 

the convergence is robust and efficient. Based on OpenGM framework, we thoroughly 

analyze the strengths and weaknesses of the QIP with many state-of-the-art inference 

methods and demonstrate its potential as the stepping stone to a new approach to solve 

low-level vision problems.
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1.   Introduction 

Many computer vision problems focus on extracting low-level information, such as stereo 

correspondence or clustering, from images. Also known as early vision problems, these 

low-level problems often require pixel-wise accuracy and spatial correlation among 

nearby pixels. Such measurements allow the problems to be formulated as energy 

minimization problems that capture both demands with two different energy functions: 

one measures the pixel-wise cost such as intensity difference and the other assesses 

relationship among neighbors such as smoothness. When these functions take discrete 

values, the energy function can effectively represent various low-level problems. For 

instance, in clustering problem, the labels indicate the assigned clusters of pixels, and in 

stereo problem, they are intensity differences of each pixel from two images. Such 

discrete energy minimization problems pose a major merit of also being able to be 

expressed as a graphical model, Markov Random Field (MRF) [12], allowing various 

inference methods to be applicable. 

MRF model opened the doors to many powerful inference methods, and their 

successful performances on various problems are well known [34]. However, the distinct 

energy functions used in the different methods made the comparison among those 

algorithms inconvenient. In 2006, [34] built a unifying framework providing a fair 

comparison among many prominent inference algorithms at the time such as graph cut 



 

2 

 

[9] and Loopy Belief Propagation (LBP) [11] and presented invaluable analysis of such 

methods on many second order MRF models of important low-level problems such as 

stereo matching and the Photomontage [1]. Seven years later, Kappes et al. [18] have 

extended the idea to incorporate more recent energy minimization techniques, such as the 

Lazy Flipper [4], and diverse factor graph models into a solid benchmarking framework 

called OpenGM2 [3]. Most notably, OpenGM2 has shown promising results of very 

recent linear programming relaxation (LP) methods and integer linear programming (ILP) 

methods to extend the scope of possibilities. 

Yet, despite the fact that many models are at most twice differentiable, or can be 

formulated as second order MRFs, little to no attempts have been made to approach those 

low-level computer vision problems as the naturally suitable and common optimization 

problem: quadratic programming. Relevantly, Ravikumar et al. [29] have adopted 

quadratic programming relaxation for the labeling or MAP estimation problem by 

showing that a pairwise MRF is equivalent to the relaxation of a quadratic program, 

which includes quadratic integer problem (QIP) for labeling. A simple solution for the 

risk of formulating and optimizing over a non-convex objective function has been 

mentioned in [29]. However, especially with the large number of variables in computer 

vision problems, the number of local minima exponentially grows with the number of 

variables which makes QIP extremely sensitive to initialization. 

In order to incorporate second order energy functions with discrete values, the 

labeling problems in QIP are formulated with proper linear equality constraints and 

binary variables constraints. Such nonlinear optimization problems with binary variables 

are known to be NP-hard. In other words, finding the global minimum among 
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exponentially many local minima quick requires impractical amount of computation as 

the problem size grows. Also, enforcing binary variables alters the objective function to 

be more concave, leaving the problem to be more vulnerable to initialization. 

Nonetheless, Murray et al. [26] showed the possibility of obtaining the global minimum 

in a pool of local minima using smoothness function. Consequently, the convex 

smoothness function carefully dominates the concave terms to make the entire objective 

function convex, paving descent paths towards the global minimum regardless of the 

starting position. Their results were encouraging compared to other mixed-integer 

nonlinear programming problem solvers. 

In this paper, we present a QIP method for solving the labeling problems in low-

level computer vision. The labeling problems that we are interested in can easily be 

formulated as pairwise MRF models, which are identical to QIP problems [29]. We have 

used the factor graph models provided in OpenGM2 [3] to express QIP objective 

functions. More specifically, only the second order problems were considered because of 

the nature of QIP, but we were neither limited by function types nor grid structures. Then 

we introduce smoothness terms to make the problem convex and use a descent method to 

search for the global minimum. Since many of the problems of our interests are large in 

terms of number of variables, we used truncated Newton method with preconditioned 

conjugate gradient direction. Despite the immense sizes of the objective matrices (n from 

1,000 to1,000,000), the algorithm took reasonable computation time to converge due to 

the sparse block structure of the objective matrices. Using OpenGM2 benchmark, we 

show our results compared to other state-of-the-art methods in terms of quality and speed. 
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In the following sections, we provide thorough problem formulation. In chapter 2, 

we describe the basic problem formulation, including the transition from labeling 

problem to QIP and the integration of auxiliary penalty and smoothness terms. 

Furthermore, we mention truncated Newton method with precondition conjugate gradient 

because this is the fundamental basis to our optimization scheme. Then, in chapter 3, we 

present the algorithm in depth along with the analysis. In chapter 4, we give detailed 

descriptions of OpenGM framework. The experiments to compare our algorithm among 

various other state-of-the-art algorithms various problem models based on OpenGM2 

framework will be demonstrated in chapter 5. Lastly, in chapter 6, we conclude with the 

future work. 
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2.   Problem formulation 

In this chapter, we first describe the basic knowledge necessary to understand the 

problem. Then we transition into the formulation of the labeling problem into a quadratic 

integer programming problem. 

2.1 Labeling Problem 

Many of the low-level vision problems can be understood as assigning a discrete value to 

each pixel to represent relevant information. For instance, in image segmentation 

problems of partitioning image into sets, each pixel is labeled to indicate the superpixel it 

is partitioned into. In stereo problems of finding pixel correspondences between two 

images, the distance between the corresponding pixels is translated as labels. Naturally, 

to measure the quality of the assignments of each pixel independently with respect to the 

problem objectives, first order function arise in each problem to compute what we call 

matching costs. In addition, the problems also imply certain level of spatial continuity 

among pixels to reflect the coherence of the objects in the image. To express such 

constraints, higher order functions inevitably appear to assess the agreement of a pixel 

given other pixels, usually its neighbors, and return what we call smoothness costs. Given 
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a set of pixels   and a label space  , for each pixel     with label    , written as   , 

we can express the total cost as an energy function 

 
 (  )        (  )         (  )   

(1) 

where        is the matching cost and        (  ) is the smoothness cost. While        

are often defined explicitly to define the basic goal of the problem,        (  ) can be 

completely arbitrary and affect the quality of the result. For instance, in a color based 

segmentation problem, considering 4 (2 horizontal and 2 vertical) and 8 (2 horizontal, 2 

vertical, and 4 diagonal) neighbors shows different results. Also, the functions sometimes 

possess certain conditions for some algorithms such as  -expansion [9] that requires the 

function to be metric. Thus, the choice of smoothness function needs to be carefully 

considered for both the algorithms and the models. Our algorithm only requires the 

smoothness function to be of at most second order while it is not restricted to be metric. 

2.2 Graphical Models 

Given a set of nodes V and a set of edges E, a graph G = (V, E) can be used to express the 

dependence among variables, and a graph with a set of undirected edges is also called a 

Markov Random Field (MRF). Then, the inference problem comes down to assigning the 

most probable label for each node, or finding the maximum a posteriori (MAP) 

estimation. Let    be a variable for node     and the set of those variables be   

          . Since we are interested in a pairwise MRF, we consider the functions related 

to the set of edges          , and let     be a parameter and     be a potential function 
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between two nodes    and    that are connected by an edge        . Without loss of 

generality, as shown in [35], the joint probability distribution of a generic MRF is 

proportional to a pairwise MRF such that 

           (∑           ∑        (     ) 

               

)   (2) 

where   is the set of parameters and the first summation consists of parameters and func-

tions related to individual variables. Therefore, the MAP problem finds    that maximiz-

es (2), which is 

            ∑           ∑        (     ) 

               

  (3) 

We mention another graphical model that is used throughout the experiments. A 

factor graph            consists of a set of variable nodes  , a set of factor nodes  , 

and a set of edges       that makes G a bipartite graph. To define the variable 

nodes involved with each factor    , let             |         be the neigh-

borhood of a factor   and the variable nodes in that neighborhood be       . Then each 

factor has an associated function              which we can use to express the ener-

gy function for a set of labels   as 

        ∑   

   

          (4) 

Using (4), the MAP solution to the log-linear model is 
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           ∑   

   

          (5) 

which is the set of most likely labels. The OpenGM framework specifically modeled the 

problems using factor graph instead of MRF because the relationship between functions 

and variables can be expressed more intuitively than what MRF can represent [20]. 

2.3 Quadratic Programming 

An optimization problem where its objective function is a quadratic function subject to 

linear constraints is called a quadratic programming (QP). For     ,      (  is the 

space of symmetric space of size n) and     , a general QP formulation is 

 

           
 

 
         

                   

                           

(6) 

where       ,     ,        and     . If   is positive definite, various opti-

mization methods such as conjugate gradient method become suitable. We modify (6) to 

enforce the variables to be integers such that 

 

           
 

 
         

                   

                              

(7) 
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where the last constraint requires the variables to be binary. However, the last constraint 

not only is nonlinear, but also makes the problem NP-hard; thus the problem is relaxed 

into 

 

           
 

 
         

                   

                            

(8) 

where for the simplicity, an inequality of a vector and a constant implies the element-

wise inequality, and this can be solved  in polynomial time with applied heuristic 

schemes to obtain integer results (Chapter 7 on [14]). Also known as quadratic integer 

programming (QIP), (7) only allows binary variables, but the problem can be formulated 

to fully express the energy functions that take discrete values, or labels, given a factor 

graph and its functions, which will be discussed next. 

2.4 MRF to QIP 

Our algorithm solves the QIP relaxation representation of the labeling problems, which 

are in MRFs; thus, it is important to show their equivalence [29]. We first introduce 

indicator functions to imply discrete values such that 

         {
 
 
 
       

             
 ,        (     )   {

 
 
 
                 

                   
, (9) 

where   and   are discrete values, or labels. (9) can be used to explicitly express the po-

tential functions as 
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        ∑           

 

        (     )  ∑           (     )

   

    

 which allow us to write (3) without expressing edges as 

            ∑            ∑             (     ) 

             

  (10) 

where      is the parameter associated with variable    with label  , and          is the pa-

rameter associated with    and    with labels   and   respectively. The replacement of 

edges with the new potential functions allows (10) to be represented in a relaxed linear 

programming (LP) form as shown in [5]. First, the integer linear programming (ILP) 

formulation of (11) is 

 

          ∑             ∑                     

             

 

            ∑           

  

         

                      ∑       

  

   

                                        

                                      

 

where the variables                and                (     ) are the relaxations 

of (10). The second and the fourth constraints enforce the variable    to have only one 
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label, and the first and the third constraints imply the binary AND relationship between 

   and   . Similar to (8), the above ILP is relaxed into 

  

 

          ∑             ∑                     

             

 

            ∑           

  

         

                      ∑       

  

   

                                      

                                    

(11)  

The binary indicator functions in (9) can be interpreted as an independent joint between 

two unary indicator functions such that    (     )          (  ), which implies that 

the relaxed variables can also be understood such that                            . 

Now we can rewrite (11) as 

 

          ∑            ∑                       

             

 

            ∑      

  

   

                                 

  

which is a relaxed QP. In [29], they have shown that the optimal value of the relaxed ver-

sion is equal to the optimal value of the (10), which is the MAP problem of a MRF model. 
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2.5 Penalty Function 

In 2.3, we have relaxed (7) into (8) by replacing the nonlinear constraint with the affine 

one. Let   and        be the sets of feasible solutions of (7) and (8) respectively. By 

definition,         , and                for all     where      and           are 

the objective functions of (7) and (8) respectively. Furthermore, since the optimal value 

of (8) is                where         , we have 

              
          

where    is the optimal solution to the original problem. In other words, the optimal solu-

tion to the relaxed problem is only a lower bound to the original problem. Notice that for 

the case of relaxing (7) into (8), the                for all   in  . This implies that if 

the optimal solution to the relaxed problem,         
  is in  , then         

    , the op-

timal solution for the original problem [13]. Thus, if we could relax the problem in such a 

way that the optimal solution is also feasible to the original problem, we can solve the 

relaxed problem to exactly solve the original problem. 

We introduce a penalty function 

         (12) 

into (8) to get 

 

                         

                   

                            

(13) 
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where     and                   . In order to minimize (12) with a positive 

coefficient, each variable is pushed towards either 0 or 1. With a sufficiently large  , the 

benefit of reducing the penalty term dominates benefit of using continuous variables 

        , and the variables become binary, or    . Also, we also notice that the ad-

dition of the penalty function does not affect the optimal value of (13) compared to the 

original problem because (12) is zero for a binary   given a sufficiently large  . Thus, the 

optimal values are the same for the newly relaxed problem (13) and the original problem 

(7); thus, the optimal solutions to both problems are the same. Since having a zero penal-

ty from (12) enforces the relaxed and the original problem to have the same global mini-

mum, (12) is called an exact penalty function [26, 13]. 

However, even though the global minimizers for (7) and (13) are the same, find-

ing one is challenging because (12) is highly concave, and with sufficiently large  , the 

entire objective function becomes concave. Thus, while it excels at finding a local mini-

mum, having one that is also the global minimum becomes a whole new task. This leads 

to introducing another term in the next section. 

2.6 Smoothness Function 
 

Many smoothing methods attempt to help finding the global minimum for a problem with 

numerous local minima by “smoothing” out relatively insignificant local minima. In the 

context of optimization [17], the objective function is modified appropriately to suppress 

the magnitudes of higher order derivatives while preserving the general structure. One 

way is by locally smoothing the function, making the function more resilient to numerical 
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noise, which may cause many undesirable minima that could mislead searching methods 

away from desired local minima. Unfortunately, this solution could be irrelevant when 

the problem does not suffer from reaching meaningful local minima successfully such as 

the problem of our interest. Thus, a smoothing method covering the larger scope of the 

problem called global smoothing is suggested. 

 The goal of global smoothing is to tweak the function to find the global minimum 

out of many local minima. By definition, a function is strictly convex if there is only one 

minimum, which is the global minimum. Thus, we appropriately modify the objective 

function to be strictly convex. Again, by appropriately we mean without losing the fun-

damental nature of the function, so the global minimizer of the smoothed function still 

resembles of the original function. The objective function with a smoothing term      is 

thus 

              

for an objective function      and a smoothing parameter    . The choice of the 

smoothing function is crucial along with the parameter, and Theorem 3.1 in [26] provides 

an important insight that guarantees the existence of a smoothing function, which in the 

context of the binary problem is a twice-differentiable function with a positive definite 

Hessian, with a large enough  . Then, a local minimum of the smoothed function found 

by a minimization method is in fact the global minimum. 

However, even though the minimizer is heading towards the global minimum, it is 

still not the same as that of the original function. Thus, this technique is used iteratively 

to reinforce the weakness of the original problem, which is the extreme dependence on 
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the initialization. A large   is used initially to find the roughest but the safest minimizer 

that attempts to find a good minimizer regardless of the quality of the initialization. Then, 

the next iteration uses a smaller   to reduce the amount of smoothness to start reverting 

back to the original problem and the minimizer of the previous iteration, which is much 

closer to the correct local minimizer than a generalized initialization. Eventually,   be-

comes zero and the smoothness is disappeared, and by then the local minimizer found 

using the original non-convex objective function is optimistically the same as the global 

minimum. Consequently,   is the parameter to consider in each iteration, and the mecha-

nism of choosing a good   is not trivial. If   is too large, the smoothness term could 

overwhelm the problem structure so the minimizer could be biased towards optimizing 

the smoothness term. On the other hand, if   is too small, the weak smoothness function 

could start introducing local minima. Thus,   should be delicately chosen in order to get 

the most out of smoothing while avoiding the oversimplification of the problem. 

For the relaxed form (8), [26] presents a logarithmic smoothing function 

       ∑          

 

 (14) 

which highly convex because as    approaches either 0 or 1, the function approaches in-

finity. We also notice that the function acts as soft constraints to enforce binary variables 

because    cannot be less than 0 or greater than 1 because of the logarithmic nature of the 

function. The new globally smoothed binary integer problem is formulated without the 

inequality constraints for binary variables such that 
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                 ∑          

 

 

                   

(15) 

Such technique of implying inequality constraints is called a barrier method and (14) is 

an example of a barrier function known as a logarithmic barrier function. Now we see 

that (14) is an amalgamation of ∑      and ∑          , which are the basic logarithmic 

barrier functions for inequalities     and     respectively. Although eliminating in-

equality constraints does simplify the problem to our favor, the primary advantage of us-

ing a logarithmic barrier function is using its strict convex nature for smoothing. Thus, 

combining (13) with (14), we have the final problem formulation that incorporates both 

the concave penalty function and the convex smoothing function: 

 

                          ∑          

 

 

                   

(16) 

Thus, the problem is shaped by two parameters,     and    . We have already 

pointed out that the penalty term does not affect the structure of the original problem. The 

choice of the smoothing function prevails such that it also does not bias the variables to 

favor 0 or 1 because (14) is an even function with respect to the point of minimum, which 

occurs when the variable is 0.5. Thus, even with sufficiently large   and  , optimization 

techniques on (16) still finds the minimizer based on the structure, or the gradient, of the 

original objective function      while the additional terms only assist the process. Since 

we have acknowledged that the additional terms are independent of the original functions, 
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we now notice that the choice of   and   is a whole new question, which dictates the suc-

cess of our algorithm. 

2.7 The Choice of   and   

The meaning of sufficiently large penalty function parameter   can be arbitrary, but 

based on the original problem,   can be cleverly chosen. As stated in 2.5, the purpose of 

the penalty function is to adjust the problem to be concave, which enforces the minimizer 

to be at the boundary of the feasible space. This can be achieved with an adequately large 

 , but if   is too large the penalty term can overwhelm the structure of the original 

function. So ideally, one wants   to be just enough to make the objective concave, 

preserving the general shape of the original function.  

We focus on the relevant case of binary QIP. We mention that a second-order 

function is concave if its Hessian is negative semidefinite, or has eigenvalues that are less 

than or equal to zero. Keeping this in mind, we can rewrite (13) with a quadratic function 

such that 

 

           
 

 
                  

                   

                            

(17) 

which can be rewritten as 
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(18) 

where   is an identity matrix of the size of  . Clearly, the Hessian of the objective func-

tion of (18) is     . Since   is symmetric, its eigenvalues are real. Assuming   is not 

negative semidefinite, let   be the largest positive eigenvalue of  . The largest eigenval-

ue of      is then    . Since    , choosing     will ensure the largest eigenval-

ue     to be less than or equal to zero, making      safely negative semidefinite. 

Thus, the smallest and the most ideal   is the largest eigenvalue of  . This is allows us to 

take   out of the consideration, simplifying the algorithm to manipulate only the smooth-

ness parameter  . The remaining portion of the penalty function,     , does not affect 

the choice of   so its absence is indifferent, resulting the equation 

 

           
 

 
              

                   

                             

 

Choosing a good value for the smoothing parameter  , however, can be more 

complicated. Initially, it can be sufficiently large to induce overall convexity of the func-

tion. As the algorithm progresses, the value decreases to start revealing local minima as 

the function becomes non-convex. Once the function is not convex anymore, its behavior 

gets difficult to measure since the function in each iteration differ by the degree of non-

convexity dictated purely by the  , which has no analytical insight below a certain value. 
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In [26], they have heuristically chosen a constant for the initial   for all their experiments 

that diminishes by a constant factor, which is heuristically determined as well. 

 In our algorithm, different from [26], we only consider   in each iteration. De-

spite the heuristics, we point out the fact the algorithm can be terminated when the varia-

bles are not exactly 0 or 1 given the nature of the labeling constraints. As a result,   is not 

required to converge very close to 0 as the algorithm converges to satisfying conditions 

beforehand. This is based on the problem structure, which will be explained in the next 

section. 

2.8 Label Constraints 

The problem of our particular interest is the labeling problem, which can be formulated 

as 

 

           
 

 
               ∑          

 

 

                  

(19) 

which includes the smoothness function as well. Based on the structure of the first con-

straint, this binary QIP can be turned into a labeling problem that can support any label. 

Without loss of generality, assume the original objective matrix   agrees with the in-

stance we are about to state. Let   be the number of variables considered in the given 

problem   such as number of pixels. Let   be the number of labels. We say that a varia-

ble    has a label   by letting    be a binary vector of size   by 1 where only the      var-

iable is 1. Since only one label can be assigned to each   , the constraint is 
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 ∑     

 

   

    (20) 

where      is the      element of   . The idea of (20) is equivalent to the first constraint of 

(11) which consists of an indicator function. We can simplify (20) for each    such that 

                        

The list of equality constraints can be reconstructed as follows. Let the vector     of 

size  . The objective function variable   is a vector of size    such that  

                                       

In other words,   is a stack of    for all   such that  

      
      

     (21) 

Finally, a matrix   of size   by    is constructed such that  

                                     

where      is the element of   at row   and column  . Thus,   is matrix that contains    

for the corresponding    in   to obey (20), and we can formulate (20) as 

       (22) 

In all our labeling problem formulation in QIP, we assume the equality constraints follow 

the structure of (22). 

We point out another trick to simplify (19). We first rewrite the smoothness func-

tion as 
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   ∑    
 

  ∑        

 

  (23) 

Notice that in (23), the left summation implies the constraint    . If this constraint ex-

ists, then (22) implies that     because the individual sum has to equal to 1 as in (21).  

Also, since the left summation of (23) is a convex function itself, the right summation of 

(23) can be taken out such that the final QIP formulation becomes 

 

           
 

 
               ∑    

 

 

                   

(24) 

Note that we cannot consider the same simplification using the right summation of (23) 

because itself and (22) do not imply    . We notice that the new smoothing function 

does make the variables to be biased towards 1. However, the labeling problem concerns 

with which variable is assigned a value instead of what value is assigned. Since the 

smoothing function does not discriminate the variables, the simplification of the penalty 

function is safe. 
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3.  Algorithm 

When applicable, second-order optimization techniques such as Newton method are 

accepted as better approaches than first-order optimization techniques, and they become 

more appealing when the Hessian matrix can be found effortlessly. Fortunately, the QIP 

formulation allows us to extract the Hessian matrix very easily. However, the type of 

problems we are interested in, which are low-level vision problems, consists of thousands 

of variables, and with high number of labels, the size of the scoring matrix   can be 

quickly have a size of a million by a million. For this reason, optimization techniques that 

require matrix inversion become impractical. Furthermore, matrix computation of 

involving such large matrix should be a concern, but due to the block sparse structure of 

the Hessian matrix, which will be described in the next section, matrix multiplication can 

be efficiently handled. As in [26], we utilize truncated Newton method, which find a 

negative descent direction using conjugate gradient method instead of a matrix inversion. 

 To avoid matrix inversion, we first turn the problem into an unconstrained prob-

lem by merging the constraints into the objective function. In short, given (24), we start 

with a constraint obeying initial variable    such that        and consider the direction 

that does not violate the constraint. We let    be a vector of     where   is the number 

of labels, and the direction lives in the null space of   defined   such that     . Let   

be a matrix of rank      that its column vectors are that basis of the null space of   
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such that     . Then, we can safely compute   by searching for the vector   of size 

     such that        . Since we know the structure of  , we used constructed 

the Householder reflection matrix of vector   of size   with the first element added by 

√  in the direction of    to get a reflection that negates all the elements of   except the 

first one to be zero. Thus, we form the null space by using all the columns except for the 

first column of the Householder reflection matrix as the basis, creating the null space  . 

We compute for   using   and express   such that         where    is the feasible 

step. The null space will be used in almost every matrix multiplication involving  . For 

instance, a reduced Hessian matrix      is computed and used instead of   to perform 

multiplications involving   in terms of  . Also, this process needs to be done only once 

before the main iteration because   does not change given the problem. 

 Before the iteration, given   of size   by   where      for   number of la-

bels and   number of variables, we assign   by finding the largest eigenvalue of  . Find-

ing the exact value of the maximum eigenvalue of   by solving the characteristic poly-

nomial is ideal, but this quickly becomes impractical as the size of the matrix increases to 

thousands. Since any   greater than or equal to the maximum eigenvalue of   is still ac-

ceptable, we used the Gershgorin circle theorem to estimate the upper bound of the max-

imum eigenvalue. In our experiments, we have observed this to be viable. 

 The gist of a linesearch method is finding the step direction. In standard Newton 

method, the search direction is          where   is the Hessian matrix and   is the 

first-order gradient. However, as mentioned previously, inverting a large size Hessian 

matrix is not suitable for the problem of interest. Thus, in truncated Newton method, the 

search direction is found approximately by using conjugate gradient method (CG). Com-
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pared to a normal gradient method of finding the search direction orthogonal to the cur-

rent direction, CG computes the step orthogonal to the current vector with respect to the 

Hessian matrix. The conjugate direction is much more efficient than the standard gradient, 

enough to justify the extra computation, which involves a matrix multiplication of the 

large size Hessian matrix. However, CG is still an iterative method that guarantees its 

convergence in   steps, and this requires a special attention since the size of our Hessian 

is very large. Fortunately, the number of steps can be vastly reduced if the condition 

number of the Hessian matrix is small. That is, if the differences among the eigenvalues 

are small, the Hessian matrix is shaped spherically, often allowing CG to converge well 

before   steps. Various preconditioning techniques exist to find a preconditioning matrix 

  that approximates   such that           can be computed efficiently where the 

condition number of      is much smaller than that of  . For a large scale matrix, such 

as our case, a simple diagonal preconditioning is used where we use the diagonal of the 

Hessian matrix as the preconditioner. Clearly, this technique is effective when the matrix 

is non-singular, which is not always the case for our reduced Hessian matrix. Thus, we 

incorporated a commonly used Levenberg-Marquardt method on the reduced Hessian 

matrix by adding a diagonal matrix of entries     to reduce the trust region. 

 Before we explain the conjugate gradient search direction, we first explicitly show 

the necessary components to demonstrate the simplicity of constructing them. First, we 

rewrite (24) such that 
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where      is the objective function of (24). Given  , we can express      in terms of   

such that it is the null space of  , or         for a vector   of size      as 

      
 

 
        

 

 
           ∑     

 

 (25) 

where    is the      row of  . Thus, if   is computed, then the problem can be formulated 

as an unconstrained QIP as 

                . (26) 

The first-order derivative of (25) with respect to   can easily derived as 

                               

where            
 

   
  for           . Notice (25) is equivalent to        . 

Finally, the second-order derivative of (25) with respect to   is 

                             

and we mention that                 . 

 Now that we have all the necessary components, let us illustrate the precondi-

tioned conjugate gradient (PCG) method as in [31], but in terms of our variables. In our 

case, PCG tries to solve 

                      

at each of its iteration for   such that        . Given an appropriate preconditioner 

 , the entire PCG procedures is as follows: 
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(27) 

where           ,            ,    ,   is the residual vector,   is the feasible 

step direction   ,   is the coefficient for the direction for      and      and   is the coef-

ficient for the direction itself in the next iteration. This iteration terminates when one of 

the three conditions is met. First, PCG terminates when a negative curvature direction is 

found such that 

                 

which is the same as   
      . In other words, the reduced Hessian is negative definite, 

meaning that the current step direction is safely in the right direction. Second, when the 

current solution is within some desired accuracy, or when |  |    for    , we conclude 

that the PCG has successfully converged, terminating with the current best solution. Last-

ly, to prevent unpredictable divergence, the algorithm terminates when the predetermined 

maximum number of iterations is reached. 
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 The PCG is a direction searching method for the truncated-Newton method, 

which is an iterative method itself. The truncated-Newton method, once it converges and 

finds a local minimum, is repeated with the minimizer of the previous iteration for the 

current iteration that is closer to the original problem by gradually decreasing the 

smoothness parameter  . For our experiments, a constant coefficient        is mul-

tiplied to   such that          . The entire algorithm terminates if each    that consists 

  in such way as in (22) is assigned a label with enough confidence such that          

  for         where        . Note that   does not need to be very close to 1, es-

pecially with large labels. In practice, we used      . Otherwise, the algorithm termi-

nates after a certain number of top iterations. Once the final solution in binary variables is 

chosen, the index of the maximum variable in each    for         is the label for the 

respective    such that                 (    ). The pseudo-code of our entire algo-

rithm is presented on the next page.
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Algorithm 1 

 

Quadratic Integer Programming with Global Smoothing 

 

Initialization: 

  = problem matrix; 

  = null space of  ; 

  = number of labels; 

  = number of problem variables; 

  = penalty parameter; 

   = initial smoothness parameter;  
   = smoothness parameter multiplier; 

  = label confidence threshold; 

   = initial point; 

   = initial feasible point spanning  ; 

  = preconditioned conjugate gradient tolerance; 

  = Newton method gradient tolerance;  
 

Start QIP: 

  =   ; 

  =   ; 

  =      ; 

  = Gershgorin circle upper bound; 

 
Outer iteration: 

while sum(number of elements     )<   
 Truncated-Newton method: 

 while ||    ||    

    = Preconditioner; 
        = Final step direction from PCG (27) with   and  ; 

    = Step length using linesearch; 
    =         ; 
 end while  

  =      ; 
   =    ; 
end while 

 

Solution in label space: 

for         
 Entries in   representing problem variable   : 

    =                        
 ; 

 Label    for each problem variable problem variable   : 

    =              (    ); 
end for 

 

End QIP. 
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4. OpenGM 

Fortunately for the community, Andres, Beier, and Kappes have provided an extensive 

framework that is based upon a C++ template library called OpenGM [3] that formulates 

discrete graphical models and implements inference techniques on those models. As 

mentioned in 2.2, various low level computer vision problems are posed in factor graphs, 

and they are stored as HDF5 [16] files that follows unified conventions and describes the 

problem exactly with minimal information. As a result, the inference algorithms do not 

need to necessarily know the problems. In fact, many of the inference methods have been 

incorporated into OpenGM by creating wrappers for the pre-existing codes that are 

available by the individual authors to interpret and use the HDF5 files. However, even 

though the simplification of the modeling scheme greatly benefits the overall framework 

in many ways, we believe that we need to understand the problems on a high level in 

order to truly identify the strengths and weaknesses of each algorithm. Thus, we dig a 

little deeper into the models to better understand existing low level vision problems and 

analyze them in terms of our algorithm, which allows us to explain the bridge between 

the models and QIP formulation. Also, for our research, it is equally important to 

comprehend the cores of the inference methods to select the ones that have similar 

limitations as ours to provide a fairer and more common stage.  
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4.1   Problem Models 

Many of the low level vision problems have been constructed in various researches to 

facilitate the computer vision community. Since the problems have originally been 

formulated for individual algorithm, they have been reformulated as factor graphs in 

HDF5 files with unified convention. On the high level, the models are derived from 

common low level vision problems such as segmentation and stereo problems that 

involve single or multiple images and assignment of each pixel with a problem related 

label. On the low level, the entire factor graph can be constructed with basic parameters 

such as number of variables and the predetermined scoring functions that describe the 

problems. We go over suitable problem models from both high and low level 

perspectives. 

By the nature of computer vision problems involving images, many models in-

volve tens of thousands of variables to represent each pixel in the image. To distinguish 

these variables from the QIP variables, we will call them the problem variables. Also, we 

will be talking about the problems that are implemented in OpenGM. The smallest and 

the largest problem sizes are 19 and 7 million respectively. Typically, the problem size 

affects the runtime of the algorithms proportionally. For instance, in QIP, the problem 

size is directly correlated to the size of the objective matrix. More specifically, letting   

be the number of problem variables, the size of   is proportional to   . 

On a high level sense, the label space represents the objective of the problem. For 

example, in a segmentation problem, the label space is the number of maximum super-

pixels. Varying from 2 to 100,000, the number of labels also has a similar effect as the 
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problem size such that the size of   is exactly      . Therefore, the size of   can in-

crease very quickly, giving a practical limitation in terms of the number of variables and 

labels that QIP can handle reasonably. Fortunately, we do not need to make any assump-

tion about the label space as it is provided and static for each model. 

An arguably more significant component of the problem models is the order of 

functions. Although the factor graph is capable of implementing higher order functions, 

many low level problems use second order functions. This is because the problems often 

deal with the grid structured 2D images and consider neighboring pixels, which makes 

second order function appropriate. The majority of the models in OpenGM are defined 

with second order functions, which fit perfectly for our QIP method along with many 

other state-of-the-art techniques that only support up to second order functions. 

As mentioned in the introduction, low level vision problems handle tasks that are 

closer to the raw image than the semantic representation for high level techniques such as 

machine learning. Consequently they may look relatively simpler than the high level 

tasks, but the difficulty and the significance are nonetheless complex and invaluable. 

4.1.1  Inpainting [10]  

The inpainting problem is a problem of filling in the missing portion of the image. The 

original image consists of a three equally divided pie chart shape where the label space 

has 3 labels, each for a different color and 1 label for the background boundary to 

maintain the circular shape. To human eyes, the most plausible picture comes intuitively 

based on the given portion of the image. In other words, the nearby pixels are naturally 
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factored in to make the most sense possible. The solution is not so obvious, especially for 

convex relaxation solvers because of the multiple global minima that exist as a result of 

indistinguishable labels. The problem is of an intermediate size with a medium number of 

problem variables and four labels. Also, the Potts function based on pairwise factor is 

used, favoring algorithms that require second order functions and metric distances. Two 

types of models exist that consider 4 neighbors (n4) and 8 neighbors (n8). Overall, the 

algorithms have performed well, some of them achieving the global minimum. 

4.1.2 Multiclass Color-based Segmentation [8] 

One of the most common low level vision problems, segmentation is a problem of 

mapping each pixel to a much smaller sized disjoint sets. This particular partitioning 

problem is color based, relying on pixel intensities to make the decision. Also, each 

image focuses on an object rather than a scene with multiple objects. Thus, purpose is 

more towards image simplification rather than object or scene recognition. Naturally, the 

4 neighbor and 8 neighbor versions are provided with the predetermined colors as the 

label space of size from 4 to 12 and the problem size in the order of 5. Also, the second-

order Potts function make it a well applicable problem. Roughly speaking, the 

performance deviation among different algorithm is small but not many of them have 

reached the optimal results. 
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4.1.2 Color Segmentation [2] 

Similar to 4.1.2, this color segmentation problem uses small to large images from an 

order of 4 to 6 with fewer labels. The notable difference is that the images contain 

multiple objects with distinct colors, and with only 3 to 4 classes to partition into, the 

segments tend to be those significantly distinct objects, making them look more intuitive 

to human eyes than 4.1.2. Thus, based on an 8 neighbor Generalized Potts function of 

order 2, this segmentation problem is one of the easier models to solve as many 

algorithms have performed very well on average. 

4.1.3 Object-based Segmentation [32] 

Each label represents an object such as grass, tree, or sky, and the problem is to assign an 

appropriate label to each pixel based on its 4 nearby pixels. The main difference between 

4.1.3 and 4.1.4 is the potential function. 4.1.4 uses various parameters to incorporate 

shape-texture, color, and location along with a second order Potts function to formulate a 

more complex energy function. However, since the HDF5 files already contains every 

possible outcome of the function, the inference methods do not need to compensate 

anything. This problem is also one of the easier problems. 
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4.1.5 MRF Photomontage [1] 

Photomontage consists of two problems that involve multiple images. The first model is 

the well-known panorama stitching where multiple overlapping images merge into one 

image in a spatially agreeable manner. The second model is group photo merging 

[Szeliski] where multiple images take from the same camera pose with slight variations 

in the contents combine together using the most plausible portion of those images into a 

single image. The problem sizes are in the order of 5. The label represents which image 

the pixel is from, where the numbers of images are 5 and 7. Using the second-order Potts 

function, the problem is extremely difficult that the performances varied significantly 

among different algorithms due to the complexity of the images and the large problem 

size. 

4.1.6 Stereo Matching [34] 

Given two rectified images that are horizontally shifted, the stereo correspondence 

problem is to find a disparity map to show the horizontal displacement of every pixel 

from one image to the other. Naturally, close objects will have higher disparities than the 

distant objects. The label space is the pixel distance between the two corresponding pixel, 

varying from 16 to 60. The problem variable size is in an order of 6, alarming that the 

problem size is on the larger side of the spectrum. Each instance of the problem uses the 

second-order version of either a truncated L1 or a truncated L2 functions. Both functions 
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obey the triangular inequality in terms of the label differences, making it a difficult but 

applicable problem. 

4.1.6 Image Inpainting [11] 

Similar to 4.1.1, this problem solves to fill in the missing region of a noisy image. 

However, compared to 4.1.1, the problem is much more complicated. The label space is 

not predetermined to be an arbitrary number. Instead, the label space is of size 256 

representing the pixel intensity. A second-order truncated L2 function is used assuming 4 

neighbor grid structure. In general, because of the large label space, the inference 

algorithms had the longest runtime and the least success rate of all the problem models. 

4.1.7 Chinese Character [27] 

Originated from the KAIST Hanja2 database, this is another inpainting problem where 

the images are handwritten binary Chinese characters. Even though the problem size is 

relatively small with only binary labels, the potential function is explicitly learned via 

decision trees based on 300 training images which considered 8 horizontal and vertical 

neighbors and 27 farther neighbors. Thus, the function does not imply metric distance, 

allowing only a small number of inference methods including our algorithm to be 

applicable. 
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4.1.9 Scene Decomposition [15] 

Fundamentally, this is another segmentation problem, but the problem formulation is 

different from the other segmentation problems we have. The problem variables are 

superpixels of size 100 to 200 with 8 possible labels. The unary potential function is a 

mixture of various features such as SIFT features. The pairwise potential function is 

based on the gradient magnitudes along the edges separating the superpixel and its 4 

neighboring superpixels. Thus, the overall potential function is explicit, preventing the 

use of metric distance based inference methods. If solvable, the problem is very easy 

considering the small problem size and small label space where the algorithms have 

consistently achieved the global optimum very fast. 

4.1.10 Non-rigid Point Matching 

This problem does not involve 2D images. Instead, it is a bipartite matching problem 

between two sets of size 19 or 20. Naturally, the label space is the node label. The one-to-

one constraint has been implied with large diagonal entries in the scoring tables, and the 

edge weights are expressed with binary potential functions. Despite the simplicity, the 

problem is extremely difficult as the performances among the techniques vary greatly. In 

some cases, the lower bound could be calculated, but the verified optimality could never 

be achieved. 
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4.2   Inference Methods 

The strength of OpenGM is its unified framework that integrates various state-of-the-art 

inference methods. The algorithms have been modified with wrappers to adapt the 

structured syntax and semantics of OpenGM problem models. Thus, every inference 

method can be used to solve every model. The only limitation is the algorithm’s inherent 

inability to solve certain types of problems. The overall runtime has been sacrificed in 

general, but the amount is modest and easily justified by the adaptability of the 

framework. For the purpose of this research, we have chosen the methods that have 

similar requirements, namely the problem size and the function order. The algorithms 

take vastly distinctive approaches from each other that it is worth understanding them. 

4.2.1 Message Passing 

This type of algorithms, as self-explanatory it is, passes massages between the connected 

nodes in a graph. Ultimately, the algorithms attempt to assign a value to each variable to 

make the most sense that maximizes a MAP formulation given the dependencies with 

predetermined weights between nodes. A common message passing algorithm is Belief 

Propagation [28] which solves the exact solution if the graph is an undirected acyclic 

graph, or a tree. For a graph with cycles, Loopy Belief Propagation (LBP) is used to 

consider the possibility of not converging as in [11]. A more effective way to deal with 

loops was presented by Wainwright et al. [36] called tree-reweighted message passing 

(TRW). It solves trees within the graph that are connected by edges with weights to 
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obtain a probability distribution of trees, and since it is a formulated as a dual problem, 

TRW also finds a lower bound, which is not guaranteed to increase consistently. Thus, 

TRW also does not always guarantee convergence. Kolmogorov [22] has demonstrated a 

way to avoid decreasing the lower bound using a modified version of TRW called 

sequential TRW (TRW-S). The success rate of these algorithms are impressive, but the 

thorough consideration of every single possible state of the graph makes them 

computationally challenging with large number of variables. In terms of the labeling 

problem, the potential functions do not need to be metric or nonnegative, making them 

more applicable than many other algorithms. Both MRF-LIB [33] and libDAI [25] 

versions of these message passing algorithms have been implemented in OpenGM. 

4.2.2 Graph Cut 

The graph cut algorithms of our interest are  -expansion [9] and   -swap [9]. These two 

very popular and successful algorithms make moves that lower the energy after each 

move. In the each iteration of  -expansion, the move is an assignment of a label   to the 

variables are not already assigned as   which lowers the energy, and in the each iteration 

of   -swap, some of the variables with label   are assigned as   and vice versa in a way 

that lowers the energy, and they terminate when there are no moves that lowers the 

energy for each  . The moves are chosen by solving min-cut problems; hence they are 

categorized as graph cut algorithms. Since min-cut problems can be solved in polynomial 

time and the rest of the algorithms are simple, they are generally very fast. However, to 

solve the min-cut problem efficiently in polynomial time, the potential functions have to 
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be metric and semi-metric for  -expansion and   -swap respectively. For labels   and  , 

the function   is called a semi-metric if it satisfies                 and        

  is equivalent to    . For labels  ,  , and   The function   is a metric if it is semi-

metric and follows the triangle inequality                     . As a result, the 

graph cut methods were only applied to the problem models that met those requirements. 

But if applicable, the algorithms are capable of providing fast and accurate results. 

OpenGM provides implementation of  -expansion and   -swap from two libraries: 

boost graph library [21] and MRF-LIB [33]. 

 A linear programming primal-dual extension of a move making algorithm is pre-

sented by Komodakis et. al [23]. By the nature of duality, a lower bound is also computed. 

The potential functions need to be at least semi-metric to guarantee optimality, and the 

solution is equivalent to that of  -expansion if the function is metric. However, the algo-

rithm is still bottlenecked by the complexity of min-max problem. The modified version 

called FastPD [24] achieved noticeable increase in speed while not compromising the 

quality. If applicable, FastPD converged the fastest in all the problems while obtaining 

near optimal solutions. 

 Another algorithm is mentioned here that relies on min-max problem. Quadratic 

pseudo-boolean optimization (QPBO) is presented by Boros and Hammer [7] for uncon-

straint quadratic binary programming and network-flow problems based on roof duality. 

This algorithm has been applied to graphical models [30], and OpenGM constructs the 

problem as a min-max problem. QPBO has been used to solve the Chinese character 

problem which is a general second-order binary model. 
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For some of the inference methods we have mentioned so far, a post-processing 

technique called the Lazy Flipper [4] has been applied. It is a binary version of Iterated 

Conditional Modes (ICM) [6], which iteratively performs greedy search. The Lazy 

Flipper is a more generalized version of ICM that flips binary variables in terms of 

subsets instead of just single variables. Since the solution is improved iteratively from an 

initial state, the algorithm is heavily dependent on the initialization. Thus, the Lazy 

Flipper was used as a post-processing step that is applied on the results of the previously 

mentioned algorithms to improve the solution. 
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5. Experiment 

In this section, we show the experiment results of state-of-the-art inference methods and 

our method on various low vision problems. We use OpenGM to run the previously 

mentioned inference algorithms in 4.2 and our algorithm on the problems in 4.1. The 

entire experiment was run on an Intel i7-2670QM at 2.20GHz PC with 8 GB RAM 

running on 64 bit Linux with MATLAB 2013. All the computations were given a single 

thread with at most 3 out of 4 cores running at the same time. 

While QIP converges to local minim, there tends to be rooms for improvements in 

our results compared to the state-of-the-art methods. However, we want to point out that 

the primary purpose of our research is to introduce the potential of a new technique to 

approach low level vision problems. As we have observed in our experiments, we have 

seen ways to improve the solution, which will be discussed later in this section. 

5.1 OpenGM 

The latest version of OpenGM and its manual can be found in [3]. The framework 

already contains many of the inference methods, but it still requires many third party 

codes and binaries from different websites. For this experiment, HDF5 can be 

downloaded from the website [16]. In terms of the inference methods, a shell script is 
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given for Linux environment to automatically download and patch the necessary external 

libraries. Some methods, such as FastPD, need to be downloaded separately from their 

respective websites and then patched to be functional. A cross platform compiler CMake 

[19] is used to conveniently build the entire project. Currently, OpenGM is more 

conveniently handled on Linux so we highly recommend setting up OpenGM on Linux. 

The more detailed process is described in the manual. 

 Linux shell scripts are provided to run the suitable methods on the problems. 

Since there are many algorithms, each with parameters to specify the function type, we 

have provided a table listing all the algorithms of different function types with descrip-

tions that were used in the experiments in Table 5.1. Also, to have a better look at the ap-

plicability of the algorithms on the models, Table 5.2 is included to show the methods 

used on the problems in terms of Table 5.3. 

5.2 HDF5 

All the necessary models can be obtained from the OpenGM website, and third party 

programs exist to graphically view the content of HDF5 file format. We used the built-in 

HDF5 toolbox in MATLAB to read and use the files for QIP. As we have stated before, 

the advantage of using HDF5 format is the simplicity which comes from the implicit 

convention. Thus, in order to utilize the models, it is important to 
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Table 5.1: Complete table of models with properties. In the Functions column, Explicit (Potts) indicate that the model fully consists of explicit 

functions and the Potts functions are expressed explicitly as a part of the explicit functions.

Model Variables Labels Order Structure Q matrix structure Functions Instances

inpainting-n4 14400 4 2 grid 4 5 banded Explicit (Potts) 2

inpainting-n8 14400 4 2 grid 8 9 banded Explicit (Potts) 2

color-seg-n4 76800 3 - 12 2 grid 4 5 banded Explicit (Potts) 9

color-seg-n8 76800 3 - 12 2 grid 8 9 banded Explicit (Potts) 9

color-seg 21000 - 414720 3,4 2 grid 8 9 banded Explicit, Potts 3

object-seg 68160 41372 2 grid 4 5 banded Explicit, Potts 5

mrf-photomontage 425632 - 514080 41401 2 grid 4 5 banded Explicit (Potts) 2

mrf-stereo ~100000 16, 20, 60 2 grid 4 5 banded Explicit, TL1, TL2 3

mrf-inpainting 21838 - 65536 256 2 grid 4 5 banded Explicit, TL2 2

dtf-chinesechar 4992 - 17856 2 2 sparse non-banded Explicit 100

scene-decomposition 150 - 208 8 2 sparse non-banded Explicit 715

matching 19 - 21 19 - 21 2 full non-banded Explicit 4
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Table 5.2: Complete list of algorithms with descriptions 

Algorithms (detailed) Algorithm Algorithm description Function type

bps BPS Sequential Belief Propagation TABLES

bps_TL1 BPS Sequential Belief Propagation TL1

expansion_view EXPANSION alpha-Expansion VIEW

FastPD FASTPD FastPD

fastpd_lf2 FastPD-LF2 FastPD with Lazy Flipper

mrf_bp_TABLES mrf-LBP MRF-LIB Loopy Belief Propagation TABLES

mrf_bp_TL1 mrf-LBP-LF2 MRF-LIB Loopy Belief Propagation TL1

mrf_bp_TL2 mrf-LBP-LF2 MRF-LIB Loopy Belief Propagation TL2

mrf_bps_TABLES mrf-BPS MRF-LIB Sequential Belief Propagation TABLES

mrf_bps_TL1 mrf-BPS MRF-LIB Sequential Belief Propagation TL1

mrf_bps_TL2 mrf-BPS MRF-LIB Sequential Belief Propagation TL2

mrf_expansion_TABLES mrf-EXPANSION MRF-LIB alpha-Expansion TABLES

mrf_expansion_TL1 mrf-EXPANSION MRF-LIB alpha-Expansion TL1

mrf_expansion_TL2 mrf-EXPANSION MRF-LIB alpha-Expansion TL2

mrf_swap_TABLES mrf-SWAP MRF-LIB alpha-beta-Swap TABLES

mrf_swap_TL1 mrf-SWAP MRF-LIB alpha-beta-Swap TL1

mrf_swap_TL2 mrf-SWAP MRF-LIB alpha-beta-Swap TL2

mrf_trws_TABLES mrf-TRWS MRF-LIB Sequential Tree-reweighted TABLES

mrf_trws_TL1 mrf-TRWS MRF-LIB Sequential Tree-reweighted TL1

mrf_trws_TL2 mrf-TRWS MRF-LIB Sequential Tree-reweighted TL2

qpbo QPBO Quadratic Pseudo-Boolean Optimization

swap_view SWAP alpha-beta-Swap VIEW

trws TRWS Sequential Tree-reweighted TABLES

trws_TABLES_lf2 TRWS-LF2 Sequential Tree-reweighted and Lazy Flipper TABLES

trws_TL1 TRWS Sequential Tree-reweighted TL1

trws_TL1_lf2 TRWS-LF2 Sequential Tree-reweighted with Lazy Flipper TL1

trws_TL2_lf2 TRWS-LF2 Sequential Tree-reweighted with Lazy Flipper TL2
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Table 5.3: Complete table of inference methods used on problem models. Refer to Table 5.2 for the descriptions of the entries. 

Model BPS EXPANSION FASTPD FastPD-LF2 mrf-LBP(-LF2) mrf-BPS mrf-EXPANSION mrf-SWAP mrf-TRWS QPBO SWAP TRWS TRWS-LF2

inpainting-n4 FastPD fastpd_lf2 mrf_bp_TL1 mrf_bps_TL1 mrf_expansion_TL1 mrf_swap_TL1 mrf_trws_TL1 trws_TL1_lf2

inpainting-n8 bps_TL1 expansion_view FastPD fastpd_lf2 swap_view trws_TL1 trws_TL1_lf2

color-seg-n4 FastPD fastpd_lf2 mrf_bp_TL1 mrf_bps_TL1 mrf_expansion_TL1 mrf_swap_TL1 mrf_trws_TL1 trws_TL1_lf2

color-seg-n8 bps_TL1 expansion_view FastPD fastpd_lf2 swap_view trws_TL1 trws_TL1_lf2

color-seg bps_TL1 expansion_view FastPD fastpd_lf2 swap_view trws_TL1 trws_TL1_lf2

object-seg FastPD fastpd_lf2 mrf_bp_TL1 mrf_bps_TL1 mrf_expansion_TL1 mrf_swap_TL1 mrf_trws_TL1 trws_TL1_lf2

mrf-photomontage mrf_bp_TABLES mrf_bps_TABLES mrf_expansion_TABLES mrf_swap_TABLES mrf_trws_TABLES trws_TABLES_lf2

mrf-stereo FastPD fastpd_lf2 mrf_bp_TL1/TL2 mrf_bps_TL1/TL2 mrf_expansion_TL1/TL2 mrf_swap_TL1/TL2 mrf_trws_TL1/TL2 trws_TL1/TL2_lf2

mrf-inpainting FastPD mrf_bp_TL2 mrf_bps_TL2 mrf_expansion_TL2 mrf_swap_TL2 mrf_trws_TL2 trws_TL2_lf2

dtf-chinesechar bps qpbo trws trws_TABLES_lf2

scene-decomposition bps trws trws_TABLES_lf2

matching bps trws trws_TABLES_lf2
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fully understand the structure of the files. Since the convention is not conspicuous at first, 

we have included Figure 5.1 to help understand and visualize the structure. 

5.3 Scoring Matrix   Construction 

Based on the understanding of 5.2, we can construct the scoring matrix   for our 

algorithm. Following the convention, we can obtain a predetermined scoring table   of 

size   by   representing a potential function   . Given two problem variables with 

labels    and   , we let vectors   and   be the binary vectors of size   that have zeros for 

entries and ones at    for   and    for  . In other words, the index of one of each vector 

represents its label. Then,      is the output of the function    with labels    and    such 

that               . 

 As seen in the factors vectors of the HDF5 files, each problem variable is as-

signed with a number to refer to that variable, or node, with. We first initialize the scor-

ing matrix   as a zero matrix of size    by   . Then for each factor, we know the vari 

ables involved, let them be   and  , along with the appropriate scoring table   of size   

by  . Now, we create our own convention by constructing    such that 

                                               

for   and   of each factor. The final scoring matrix is created by adding   and the trans-

pose of   to make it symmetric and divide it by 2 because              . In other 

words,   consists of blocks of scoring tables that are responsible for the appropriate en-

tries of the vector   as we have stated in (22). Thus, the sparsity of   is correlated to the  
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Figure 5.1: HDF5 file structure 



 

48 

 

complexity of the factor graph. For instance, the grid-structured problems create   as 5-

banded and 9-banded block matrix structures for 4 neighbors and 8 neighbors grid struc-

tures respectively. Considering the number of problem variables being much larger than 

the label space, the matrices are usually very sparse. Even for those problems that do not 

have grid structures, they are still highly sparse. Such sparse nature of   allows QIP to be 

applicable with large problems. In terms of memory, storing the sparse matrices, espe-

cially with the repeating potential functions, can be extremely efficient. The computation 

can be optimized with block-wise matrix multiplication.  

5.4 Results 

The results of the total of 2808 experiments of solving 850 small to large problem 

instances with various inference methods are summarized on tables from Table 5.4 to 

Table 5.15. The best column shows the percentage of the solutions that were the best 

among all the algorithms, while the ver. opt column shows the percentage of the duality 

gaps that were within the tolerance of      and verified the global optimality. 

Throughout the experiments, the QIP used       ,       ,       ,       , 

     , and used a vector of zeros as the initial point   . The penalty parameter   was 

estimated with the Gershgorin upper bound.  The visual results based on the OpenGM 

scripts are provided in Figure 5.1 through 5.4. 

We first observe the results from the perspective of the models. The difficulties of 

the problems have been revealed by the outcomes of the inference methods. While the 

verified optimality could be found consistently for some problems such as object  
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Table 5.4: color-seg (3 instances)         

algorithm mean runtime mean value mean bound best ver. opt 

FastPD 0.50 sec 308472275.00 ∞ 66.67% 0.00% 

mrf-BPS 158.63 sec 308733349.67 ∞ 0.00% 0.00% 

EXPANSION 9.73 sec 308472275.67 ∞ 66.67% 0.00% 

FastPD-LF2 23.78 sec 308472275.00 ∞ 66.67% 0.00% 

SWAP 9.95 sec 308472292.33 ∞ 66.67% 0.00% 

TRWS 207.15 sec 308472310.67 308472270.43 66.67% 33.33% 

TRWS-LF2 213.97 sec 308472294.33 308472270.43 66.67% 33.33% 

QIP 218.90 sec 308487641.33 ∞ 0.00% 0.00% 

 

 

 

 

 

     

Table 5.5: color-seg-n4 (9 instances)         

algorithm mean runtime mean value mean bound best ver. opt 

FastPD 0.37 sec 20034.80 ∞ 0.00% 0.00% 

FastPD-LF2 9.48 sec 20033.21 ∞ 0.00% 0.00% 

mrf-LBP-LF2 61.64 sec 20053.25 ∞ 0.00% 0.00% 

mrf-BPS 39.21 sec 20094.03 ∞ 0.00% 0.00% 

mrf-EXPANSION 1.40 sec 20033.45 ∞ 0.00% 0.00% 

mrf-SWAP 0.98 sec 20050.50 ∞ 0.00% 0.00% 

TRWS 39.78 sec 20012.18 20012.14 88.89% 77.78% 

TRWS-LF2 77.76 sec 20012.17 20012.14 88.89% 77.78% 

QIP 207.32 sec 27514.79 ∞ 0.00% 0.00% 

 

 

 

 

 

     

Table 5.6: color-seg-n8 (9 instances)         

algorithm mean runtime mean value mean bound best ver. opt 

FastPD 0.87 sec 20011.14 ∞ 0.00% 0.00% 

BPS 138.76 sec 20120.79 ∞ 0.00% 0.00% 

EXPANSION 13.55 sec 20011.13 ∞ 0.00% 0.00% 

FastPD-LF2 41.71 sec 20010.28 ∞ 0.00% 0.00% 

SWAP 16.06 sec 20038.26 ∞ 0.00% 0.00% 

TRWS 165.91 sec 19991.39 19991.16 33.33% 22.22% 

TRWS-LF2 221.79 sec 19991.27 19991.16 100.00% 22.22% 

QIP 202.43 sec 28140.54 ∞ 0.00% 0.00% 
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Table 5.7: dtf-chinesechar (100 instances)       

algorithm mean runtime mean value mean bound best ver. opt 

BPS 105.68 sec −49537.08 ∞ 68.00% 0.00% 

QPBO 0.15 sec −49501.95 −50119.38 6.00% 0.00% 

TRWS 132.36 sec −49496.84 −50119.41 4.00% 0.00% 

TRWS-LF2 115.79 sec −49519.44 −50119.41 32.00% 0.00% 

QIP 3.28 sec -49452.04 ∞ 0.00% 0.00% 

 

 

 

 

 

     

Table 5.8: inpainting-n4 (2 instances)         

algorithm mean runtime mean value mean bound best ver. opt 

FastPD 0.02 sec 454.75 ∞ 50.00% 0.00% 

FastPD-LF2 0.30 sec 454.75 ∞ 50.00% 0.00% 

mrf-LBP-LF2 6.46 sec 475.56 ∞ 50.00% 0.00% 

mrf-BPS 2.82 sec 454.35 ∞ 100.00% 0.00% 

mrf-EXPANSION 0.02 sec 454.75 ∞ 50.00% 0.00% 

mrf-SWAP 0.02 sec 454.35 ∞ 100.00% 0.00% 

mrf-TRWS 2.92 sec 490.48 448.09 50.00% 50.00% 

TRWS-LF2 6.17 sec 489.30 448.09 50.00% 50.00% 

QIP 5.84 sec 499.91 ∞ 0.00% 0.00% 

 

 

 

 

 

     

Table 5.9: inpainting-n8 (2 instances)         

algorithm mean runtime mean value mean bound best ver. opt 

FastPD 0.13 sec 465.02 ∞ 100.00% 0.00% 

BPS 8.62 sec 468.21 ∞ 50.00% 0.00% 

EXPANSION 0.49 sec 465.02 ∞ 100.00% 0.00% 

FastPD-LF2 1.03 sec 465.02 ∞ 100.00% 0.00% 

SWAP 0.40 sec 465.02 ∞ 100.00% 0.00% 

TRWS 11.52 sec 500.09 453.96 50.00% 0.00% 

TRWS-LF2 11.72 sec 499.30 453.96 50.00% 0.00% 

QIP 6.43 sec 496.99 ∞ 0.00% 0.00% 
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Table 5.10: matching (4 instances)         

algorithm mean runtime mean value mean bound best ver. opt 

BPS 0.33 sec 40.26 ∞ 25.00% 0.00% 

TRWS 0.31 sec 64.29 15.22 0.00% 0.00% 

TRWS-LF2 1.06 sec 32.38 15.22 75.00% 0.00% 

QIP 26.47 sec 37500000119.86 ∞ 0.00% 0.00% 

 

 

 

 

 

     

Table 5.11: mrf-inpainting (2 instances)         

algorithm mean runtime mean value mean bound best ver. opt 

FastPD 10.45 sec 32939430.00 ∞ 0.00% 0.00% 

mrf-LBP-LF2 819.54 sec 26597364.50 ∞ 0.00% 0.00% 

mrf-BPS 827.27 sec 26612532.50 ∞ 0.00% 0.00% 

mrf-EXPANSION 66.37 sec 27248297.50 ∞ 0.00% 0.00% 

mrf-SWAP 156.89 sec 27392252.00 ∞ 0.00% 0.00% 

mrf-TRWS 760.51 sec 26464865.00 26462450.59 0.00% 0.00% 

TRWS-LF2 3604.92 sec 26463829.00 26462450.59 100.00% 0.00% 

 

 

 

 

 

     

Table 5.12: mrf-photomontage (2 instances)       

algorithm mean runtime mean value mean bound best ver. opt 

mrf-LBP 1351.45 sec 438611.00 ∞ 0.00% 0.00% 

mrf-BPS 449.70 sec 2217579.50 ∞ 0.00% 0.00% 

mrf-EXPANSION 13.15 sec 168226.00 ∞ 100.00% 0.00% 

mrf-SWAP 15.20 sec 197706.00 ∞ 0.00% 0.00% 

TRWS 390.74 sec 1243144.00 166827.07 0.00% 0.00% 

TRWS-LF2 666.65 sec 735193.00 166827.12 0.00% 0.00% 
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Table 5.13: mrf-stereo (1 instance)         

algorithm mean runtime mean value mean bound best ver. opt 

FastPD  0.98 sec 370825.00 ∞ 0.00% 0.00% 

FastPD-LF2 27.83 sec 370787.00 ∞ 0.00% 0.00% 

mrf-LBP-LF2 127.77 sec 406896.00 ∞ 0.00% 0.00% 

mrf-BPS 89.02 sec 427036.00 ∞ 0.00% 0.00% 

mrf-EXPANSION 3.05 sec 369863.00 ∞ 0.00% 0.00% 

mrf-SWAP 4.01 sec 373994.00 ∞ 0.00% 0.00% 

mrf-TRWS 89.90 sec 369252.00 369217.58 0.00% 0.00% 

TRWS-LF2 135.65 sec 369244.00 369217.58 100.00% 0.00% 

QIP 1555.82 sec 928453.00 ∞ 0.00% 0.00% 

 

 

 

 

 

     

Table 5.14: object-seg (5 instances)         

algorithm mean runtime mean value mean bound best ver. opt 

FastPD 0.21 sec 31317.60 ∞ 80.00% 0.00% 

FastPD-LF2 2.67 sec 31317.60 ∞ 80.00% 0.00% 

mrf-LBP-LF2 44.38 sec 32400.01 ∞ 0.00% 0.00% 

mrf-BPS 20.50 sec 35775.27 ∞ 0.00% 0.00% 

mrf-EXPANSION 0.54 sec 31317.60 ∞ 80.00% 0.00% 

mrf-SWAP 0.40 sec 31318.70 ∞ 60.00% 0.00% 

mrf-TRWS 19.95 sec 31317.23 31317.23 100.00% 100.00% 

TRWS-LF2 30.52 sec 31317.23 31317.23 100.00% 100.00% 

QIP 138.98 sec 33684.73 ∞ 0.00% 0.00% 

 

 

 

 

 

     

Table 5.15: scene-decomposition (715 instances)       

algorithm mean runtime mean value mean bound best ver. opt 

BPS 0.28 sec −866.73 ∞ 79.16% 0.00% 

TRWS 0.29 sec −866.92 −866.93 99.58% 99.58% 

TRWS-LF2 0.33 sec −866.93 −866.93 99.86% 99.58% 

QIP 0.23 sec -862.41 ∞ 0.14% 0.00% 
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segmentation and scene decomposition by duality methods, the global optimum could not 

be achieved at all for many problems such as matching and mrf-stereo. Also, although the 

large problems such as mrf-stereo tend to be more difficult compared to the small prob-

lems such as scene decomposition, this is not always true. For instance, as seen on Table 

5.10, the bipartite matching problem of size ~20 variables and ~20 possible labels is the 

smallest sized problem but the results had a very high deviation and the optimality could 

not be verified. The runtime, however, was proportional to the size of the problem. The 

one-to-one relationship was implied with the potential functions with extremely high di-

agonal values as the soft constraints, but the QIP could not accomplish one-to-one rela-

tionship. The conjecture is that once the QIP has made an initialization which is not one-

to-one, then climbing back up the current descent direction to more optimal locations be-

comes immensely difficult with diagonal values that are practically close to infinity. The 

applicable methods were limited for the models with non-metric potential functions, but 

the problem complexities were indifferent of the function types as we see that Table 5.10 

and Table 5.15 were challenging and moderate respectively in terms of the difficulties. 

We would like to point out the fact that for mrf-stereo problem, we have only used the 

smallest instance out of the three available because the QIP has not been optimized to yet 

handle the other two problem sizes. The Photomontage was the most difficult problem in 

terms of the quality and the runtime of the solution such that the best and the worst solu-

tions differed by an order of one. Also, the inpainting problem 4.1.7 and the Photomon-

tage problem 4.1.5 create very large scoring matrices for the QIP because of the large 

number of problem variables and the label space. Thus, the current version of QIP could 

not be used to solve those problems in this experiment. 
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Figure 5.2: Examples of dtf-chinesechar results. Top row: Given images of Chinese letters with 

missing portions. Bottom row: QIP results of the respective top images. 

 

 

    

    
 

Figure 5.3: Examples of inpainting-n4 and inpainting-n8 results. Top row: inpainting-n4 results. 

From left to right: TRWS-LF2 and QIP for plain ring, TRWS-LF2 and QIP for inverse ring. Bot-

tom row: inpainting-n8 results. From left to right: TRWS-LF2 and QIP for plain ring, TRWS-LF2 

and QIP for inverse ring. 
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Figure 4: Examples of color-seg-n4 results. Left column: TRWS-LF2. Right column: QIP 
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Figure 5.5: Examples of mrf-stereo results. Top: ground truth disparity map. Bottom: QIP results 

disparity map.  
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 We immediately observe that TRW-S from either MRF-LIB or boost graph li-

brary was the most versatile inference method as it was applied to all the problem models 

regardless of the function types. Except for the Photomontage models, TRW-S provided 

one of the best solutions while also yielding the lower bounds. However, the quality of 

the results came with the cost of slow runtime. Naturally, the Lazy Flipper extended 

TRW-S (TRWS-LF2) could be applied to all the problems which usually improved the 

results of TRW-S. The biggest improvement could be observed on the matching problem 

on Table 5.10 where the mean value of TRW-S was halved with the Lazy Flipper. TRW-

S struggled to reduce the duality gap for the Photomontage problem, which TRWS-LF2 

reduced but could not overcome the poor initialization. On the side, we could verify the 

quality of the lower bound by realizing the duality gap of  -expansion. Belief Propaga-

tion (BPS) methods also prevailed in all the models, resulting excellent mean values. In 

general, BPS was slightly faster and higher results than TRW-S. In terms of the computa-

tional speed, FastPD came out on top of all the algorithms when applicable. On average 

for most of the experiments, FastPD converged in less than one second when other meth-

ods required minutes. Although the results were not always optimal, the solutions were 

consistently impressive, often achieving the best solutions. The Lazy Flipper was imple-

mented on FastPD on some models to improve the results at the cost of computation time. 

We could also observe two very similar move making methods which are  -expansion 

and   -swap. On our experiments,  -expansion had slightly better results than   -swap. 

Such outcome was expected because  -expansion requires metric potential functions 

compared to   -swap that requires the less strict semi-metric potential functions. Since 
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all the applicable problems had metric functions,   -swap could not utilize its versatility 

of handling semi-metric functions. 

5.5 The QIP Analysis 

As observed in the tables, the current version of QIP often struggled to find the 

competitive results compared to the other state-of-the-art inference methods depending 

on the difficulties of the problems. However, that does not mean that QIP is incapable of 

converging to the global optimum. The scene-decomposition instances are relatively 

small sized with 150 to 208 problem variables with 8 labels. Despite the size, the problem 

consists of non-metric potential functions, immediately limiting many algorithms 

requiring metric or semi-metric potential functions for guaranteed convergence. The QIP 

achieved the verified global optimum on the problem instance 0102234. The exact same 

standard parameter values were used for all the problem models and instances. When we 

altered the  

parameter values to those that were better for each problem instance, our solutions were 

often improved. 

 The QIP heavily relies on the strength of smoothness term determined by the pa-

rameter  . For the most experiments, the results appear to be on the right track towards 

the global minima as they close to the better solutions. Ideally, assuming the current point 

is in the right direction, the parameter should be just enough to reveal the correct trajecto-

ry while still smoothing out misleading local minimizers. However, the current   tuning 

scheme is optimistically heuristic as we reduce it by an arbitrary       . Increasing    
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to take more conservative steps did not improve the quality of the results by a considera-

ble amount. We suspect that with numerous seemingly appealing local minima in the 

problems, the QIP makes very close calls when it faces with multiple desirable descent 

directions that are almost equally beneficial, and the irreversible steps make every step 

extremely important. Naturally, the next step is to investigate ways to cleverly choose   

in each step to make less greedy and more global choices. 

 The computation time of the QIP is largely determined by the repetitive large size 

matrix multiplications and the inversion of diagonal blocks for preconditioning the matrix. 

In order to utilize the memory efficient data structure of the scoring matrix, we have im-

plemented a block-wise matrix multiplication as a MATLAB mex function that uses the 

indices of the blocks to minimize unnecessary computation. The idea is very similar to 

ordinary sparse matrix multiplication, and the speed of our mex function is comparable to 

the sparse matrix multiplication of MATLAB. Also, the procedure is highly parallelizable 

to speed up the computation even more, which has not been implemented for the experi-

ment. The matrix inversion of the block diagonal entries for preconditioning is also paral-

lelizable since the inversions are block-wise as well. As with many iterative algorithms, 

the number of such computations depends on the effectiveness of the each iteration as 

well. Thus, there are rooms to reduce the number of computations as the QIP becomes 

more polished. The stopping criterion can be adjusted as well to avoid redundant compu-

tations in the later steps. For all the experiments, the label confidence threshold   was set 

to be 0.8. Depending on the number of labels, the value could be extreme. For instance, 

then the label space is of size 16, requiring a variable to be at least 0.8 implies that the 

other 15 residual variables share the amount of 0.2. In our experiments, reducing the 
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threshold allowed the algorithm to terminate a lot sooner while not compromising the 

confidence. Thus, the runtime can be improved in many ways. 
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6. Conclusion 

In this research, we presented a QIP approach to solve the popular low-level vision 

problems. The QIP method is capable of finding the global optimum with the penalty 

term and the logarithmic barrier smoothness function. The optimization process is 

uncomplicated and efficient with well-known truncated Newton method with simple 

preconditioning technique to aid the conjugate gradient direction search. We extensively 

use the OpenGM benchmark framework to perform our experiments on numerous 

problems in factor graph models. We also described many state-of-the-art inference 

methods included in the OpenGM framework to carefully analyze the strengths and 

weaknesses of all the methods including the QIP.  

Compared to the state-of-the-art message passing and move making methods, the 

QIP has shown itself lacking in terms of the quality of the solutions. However, consider-

ing the fact that the current state of QIP relies on heuristics, the technique has a plenty of 

rooms for improvements. We also point out the fact that the gist of the algorithm is the 

problem formulation that allows the discovery of the global optimum. Thus, the optimiza-

tion scheme is not limited to the methods we have presented. In other words, the QIP is 

just the first step which opened up a potent but uncharted territory that is to be refined 

and built upon. Thus, we strongly believe that the QIP is capable of becoming a solid part 

in the field of low-level computer vision.
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