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OBJECTIVE

Characterize evolution of brain networks over ordinal cognitive scores via
harmonic bases coupling.

MOTIVATION: LONGITUDINAL + CROSS-SECTIONAL EVOLUTIONS

I Increasing interest in characterizing disease progressions in 2
directions:
1. Longitudinal: individual brain network evolves/ages over multiple time
points/visits, potentially by disease progression.
2. Cross-sectional: set of brain networks shows progressive patterns over
disease-related covariates (i.e., cognitive test scores).

I Need: Characterize individual brain connectivity evolutions while
preserving variances (i.e., cognitive healths) among subjects.

Figure: Brain connectivity evolves as the cognitive stage changes from healthy to diseased.

PARAMETERIZING BRAIN NETWORKS AS HARMONIC BASES

Figure: From brain image to adjacency matrix: (a) Diffusion tensor ellipsoids from dMRI. (b)
Gray matter regions as meaningful graph nodes. (c) Fiber tracts (axonal pathways between
brain regions) estimated via tractography as graph edges between gray matter nodes. (d)
Symmetric adjacency matrix representation of the graph.

I Derive adjacency matrix An×n from brain image data.
I Construct graph Laplacian Ln×n with degree matrix Dn×n:

L = D − A, D(i , i) =
n∑

j=1

A(i , j)

I Find p smallest eigenvalues and its set of eigenvectors Vn×p as ’low frequency’ bases of L:

min
V∈Rn×p

tr(V TLV ), s.t. V TV = I (1)

I Finally, for longitudinal data of N subjects at T time points, find V[i ,j ] for each L[i ,j ]:

min
V[i ,j ]∈Rn×p

N∑
i=1

T∑
j=1

tr(V T
[i ,j ]L[i ,j ]V[i ,j ]), s.t. V T

[i ,j ]V[i ,j ] = I, (2)

EVOLUTION OF REAL FIBER TRACTS DERIVED FROM COUPLED HARMONIC BASES

Covariate Progression (Decreasing Cognitive Function)

Ti
m

e
P

ro
gr

es
si

on
(In

cr
ea

si
ng

A
ge

) λ|| · ||1 λ|| · ||1 λ|| · ||1

R1
[1,2] R2

[1,2] R3
[1,2] R4

[1,2]

R1
[2,3] R2

[2,3] R3
[2,3] R4

[2,3]

Figure: The evolution of top 50 most changing fiber tracts of the real data derived from the coupled harmonic bases. The tract colors represent their strong (blue) and
weak (red) connectivity strengths. Cross-sectional coupling (red arrows) via `1-norm in each row. Longitudinal coupling (blue arrows) via rotation constraints in each column.

LONGITUDINAL COUPLING VIA MASS MATRIX

I Temporally consecutive bases differ only by a small degree of rotation.
I Align V[•,j ] at time j and V[•,j+1] at time j + 1 using R•[j ,j+1] ∈ SO(n):

V[•,j+1] = R•[j ,j+1]V[•,j ]. (3)
I Forward and backward relationship between V[•,j ] and V[•,j+1] allows:

V T
[•,j ]V[•,j ] = V T

[•,j ]R
•
[j+1,j ]V[•,j+1] = I, V T

[•,j+1]V[•,j+1] = V T
[•,j+1]R

•
[j ,j+1]V[•,j ] = I. (4)

I Multiplying the above two equations we have(
V T
[•,j ]R

•
[j+1,j ]V[•,j+1]

)(
V T
[•,j+1]R

•
[j ,j+1]V[•,j ]

)
= I

=⇒ V T
[•,j ] (R

•
[j+1,j ]V[•,j+1]V T

[•,j+1]R
•T

[j+1,j ])︸ ︷︷ ︸
M ′[j+1,j ]

V[•,j ] = I.

I Accounting for both j − 1 and j + 1 relations, compute the mass matrix for V[•,j ] as

M[•,j ] =
M ′[j−1,j ] + M ′[j+1,j ]

2
. (5)

I Enforce the longitudinal coupling as a new constraint on V[•,j ] using (5) for the
initial problem formulation (2):

V T
[•,j ]M[•,j ]V[•,j ] = I. (6)

CROSS-SECTIONAL COUPLING VIA SPARSITY CONSTRAINT

I Partition N subjects into K distinct groups (columns in above figure) based on their
covariates (i.e., cognitive scores).

I i.e., average Laplacians of three consecutive groups: X[i−1,•], X[i ,•] and X[i+1,•].
I Their corresponding eigenvectors are V[i−1,•], V[i ,•] and V[i+1,•].
I The partitions consist of disjoint/distinct groups of subjects, so we cannot assume a

homological relationship (i.e., rotation) between them.
I Cross-sectional coupling via `1-norm constraint on the difference of the bases

into the initial problem formulation (2):

g(V[i ,•]) = λ
(
||V[i−1,•] − V[i ,•]||1 + ||V[i ,•] − V[i+1,•]||1

)
(7)

COMBINING LONGITUDINAL + CROSS-SECTIONAL COUPLING

I Extending the initial formulation (2) to enforce both longitudinal (5) and
cross-sectional (7) coupling to obtain the final formulation:

min
V[i ,j ]

K∑
i=1

T∑
j=1

tr(V T
[i ,j ]X[i ,j ]V[i ,j ]) + λ

K−1∑
i=1

T∑
j=1

||V[i+1,j ] − V[i ,j ]||1

s.t. V T
[i ,j ]M[i ,j ]V[i ,j ] = I; V[i ,j ] ∈ Rn×p.

ALGORITHMS

I For each time point i and partition j: Stochastic block coordinate descent algorithm to
solve for each basis V[i ,j ]∈Rn×p ∈ GFn,p(M).

Algorithm 1 Stochastic block coordinate descent in GFn,p

1: Given: f : GFn,p → R, V ∈ GFn,p(M), M ∈ Rn×n

2: while Convergence criteria not met do
3: S := Subproblem row indices
4: P0 := Initial feasible submatrix
5: G := Subdifferential of f w.r.t. P0
6: W := Descent curve in the direction of −G on GFs,p(MSS) at P0
7: τ := Step size under strong Wolfe conditions
8: P := Feasible point W (τ ) of subproblem with sufficient decrease in f
9: V ′(P) := Update new feasible point

10: end while

I For all T time points and K partitions: Alternating SBCD (Algorithm 1) framework to
iteratively find all coupled bases.

Algorithm 2 Coupled bases framework using SBCD
1: Given: f : GFn,p → R, V[:,:] ∈ GFn,p(M[:,:]), M[:,:] ∈ Rn×n

2: while Convergence criteria not met do
3: for i = 1, ..., K do
4: for j = 1, ..., T do
5: V[i ,j ] := Free variable
6: V[i ,j ] := SBCD(V[i ,j ]) (Alg. 1)
7: end for
8: for j = 1, ..., T do
9: R[i ,j ] := Rotation matrix (3)

10: end for
11: for j = 1, ..., T do
12: M[i ,j ] := Mass matrix (6)(5)
13: end for
14: end for
15: end while

EXPERIMENTS AND RESULTS
I Data: Preclinical Alzheimer’s Disease (AD) Dataset

I 89 middle-aged subjects at risk for Alzheimer’s disease with very subtle AD related brain changes.
I Three time points T = 3 with two cognitive test scores: Rey Auditory Verbal Learning Test (RAVLT)

and Mini Mental State Exam (MMSE).
I Experiment setup: cognitive progression prediction

I Coupled bases modeling (training): 68 subjects
1. Group the subjects into P ∈ {2,3,4} partitions and find average graph Laplacians X[i ,j ] for each
partition i and time point j .
2. Compute coupled harmonic bases V[i ,j ] for each X[i ,j ] using Algorithm 1.

I Cognitive progression prediction (testing): 21 subjects (separate from training subjects)
1. For each subject, compute its non-coupled bases V ′n×p.
2. Find the closest (`1 distance) training coupled bases V[i ,j ].
3. Predicted partition (cognitive progression) j ′← partition j of V[i ,j ]

I Partition (Cognitive Progression) Prediction Results:

K Non-coupled Longitudinal Cross-section Coupled
j=1 {1,2,3} 1 {1,2,3} 1 {1,2,3} 1 {1,2,3}

R:2 33.33 34.92 42.86 42.86 66.67 60.32 71.43 71.43
R:3 38.10 33.33 52.38 36.51 57.14 44.44 57.14 55.56
R:4 28.57 28.57 23.81 30.16 30.16 23.81 47.62 34.92
M:2 42.86 41.27 28.57 30.16 57.14 39.68 76.19 71.43
M:3 42.86 38.10 47.62 49.21 47.62 46.03 47.62 50.79
M:4 34.92 28.57 23.81 14.29 19.05 12.70 47.62 28.57

Table: Prediction accuracy (%) of RAVLT (R:K ∈ {2,3,4} quantiles) and MMSE (M:K ∈ {2,3,4} quantiles)
on j = 1 time point and j = {1,2,3}. Best results are in red.
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