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First, we provide some experimental results that are mentioned (but not shown) in the main paper; second, we also show
the performance of our algorithm against a commercially available standard numerical optimization (nonlinear optimization)
solver both in terms of accuracy and runtime in that order.

1. Accuracy with different r and p

Table (1) shows the classification results whereas table (2) shows regression results. In either case, the rows correspond to
PCA rank (p). The columns represent the GEP and R-GEP models (with different choices of tensor decomposition rank r).
Note that we omit the baseline and the standard PCA results in both the tables since they are redundant. It is clear from the
accuracy results that introducing additional sources of information always increases the performance which our algorithm
enables us to do so.

GEP R-GEP
p r = 1 3 5 10 15 20 r = 1 3 5 10 15 20
3 86.6 85.7 85.7 85.7 86.6 87.5 90.3 87.6 88.5 86.5 86.4 85.4
5 85.4 85.4 85.4 86.3 85.5 86.3 89.5 87.6 89.3 87.3 87.4 86.4
7 84.3 84.3 84.3 84.3 86.1 86.4 86.4 88.4 88.4 87.5 88.3 88.3

10 82.4 85.3 84.2 86.2 85.1 85.1 86.5 87.5 86.4 89.3 86.4 87.5
13 86.2 87.1 84.2 88.1 85.4 84.1 89.2 91.2 91.2 88.2 86.3 87.2
20 85.1 86.1 87.0 86.1 86.1 86.1 88.3 90.2 90.8 88.3 89.0 86.5

Table 1: Healthy versus diseased classification accuracy (10-fold cross validated) using GEP and R-GEP. p denotes the PCA
rank and r is tensor rank.

2. Diminishing returns of |K ′|
In this section we show that adding more regularization terms in the objective does not affect the accuracy of the model

significantly as mentioned in section 3 of the main paper. This phenomenon is expected because in the PCA setting we
assume that the principal component or the eigenvector corresponding to the leading eigenvalue is dominant, that is, most
variance of the data can be explained well by the largest few eigenvectors. In the particular dataset (described in section 5 of
the main paper) that we are interested in, it suffices to just include the largest eigenvector.
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GEP R-GEP
p r = 1 3 5 10 15 20 r = 1 3 5 10 15 20
3 0.719 0.718 0.718 0.718 0.726 0.718 0.745 0.755 0.771 0.758 0.750 0.733
5 0.726 0.734 0.737 0.735 0.727 0.735 0.769 0.760 0.746 0.749 0.739 0.749
7 0.707 0.707 0.707 0.713 0.712 0.736 0.763 0.781 0.785 0.734 0.714 0.738

10 0.656 0.702 0.742 0.719 0.700 0.727 0.741 0.742 0.762 0.754 0.748 0.737
13 0.730 0.762 0.765 0.745 0.746 0.743 0.737 0.744 0.757 0.754 0.758 0.757
20 0.643 0.679 0.644 0.648 0.641 0.628 0.656 0.686 0.705 0.665 0.661 0.657

Table 2: Healthy versus diseased regression correlation coefficient (10-fold cross validated) using GEP and R-GEP. p denotes
the PCA rank and r is tensor rank.

m β = 0.0 0.2 0.5 0.8 1.0
1 87.12 87.12 88.12 88.12 88.12
2 87.12 87.12 87.12 87.12 87.12
3 87.12 87.12 87.12 88.12 88.12

Table 3: Average accuracy (10-fold cross validated) using m regularization terms in addition to the base regularization term
for p = 10 and r = 5. The base regularization term uses the largest eigenvector, and the m additional regularization terms
are formulated using the next largest eigenvectors in a similar way. β is the ratio of the regularizer parameter to λ such that
the parameters for the additional regularization terms are βλ. So when β = 0.0, the model is the same as having a single
regularization term. Notice the small differences even with the additional regularization terms. The difference in accuracy
between the result for p = 10 and r = 5 in Table 1 and this table is due to the difference in starting points.

3. Scalability
The following table shows the scalability of our algorithm.

N 100 500 1000 3000 5000 7000 10000 12000 15000 20000
runtime (sec) 3.55 1.41 3.01 35.11 78.49 165.23 365.20 779.61 857.11 1640.57

Table 4: Average runtime (10-fold cross validated) to achieve error < 5% for different problem sizes N with κ = 3 and
p = 20.

4. KNITRO versus our algorithm
We used a commercially available solver KNITRO to test the performance including the run time and the accuracy. We

used YALMIP [1] to model our problem with a few lines of MATLAB code. The results are shown in the table below. We
initialized them both in the same way. Our algorithm always outperforms KNITRO in terms of the run time and also note
that even though the objective value is equal or close, we can see that the accuracy of our algorithm is always better. Also,
compared to KNITRO, the runtime of our algorithm is ∼ 4 times faster for p = 3 and ∼ 7 times faster for p = 5.

p = 3, r = 5 p = 3, r = 15 p = 5, r = 5 p = 5, r = 15
KNITRO R-GEP KNITRO R-GEP KNITRO R-GEP KNITRO R-GEP

acc 72.73 83.48 84.79 86.32 75.74 88.32 84.10 87.53
objval -16394 -16766 -24344 -24330 -73208 -73646 -24508 -24496
epoch 8553 5882 10000 5882 6297 5882 10000 5882

runtime (sec) 1030.1 276.7 1312.4 254.9 1603.1 221.2 3060.8 426.0

Table 5: Comparison between KNITRO and R-GEP.



5. FOptM versus our algorithm
We also compared our algorithm with the algorithm presented in [2]. Recall that their algorithm requires that D � 0 and

λ = 0 i.e., no regularization terms. In our case our D � 0, so we used D′ := D + εI where I is the identity matrix of
appropriate size for experimental purposes. We reformulate the GEP with D′ to a standard EP (Eigenvalue Problem) by the
following procedure. Let D′ = UT ξU be the eigen decomposition of D′ with U be the matrix with eigenvectors and ξ be
the diagonal matrix with positive eigenvalues on the diagonal. Setting Z =

√
ξUV we obtain the standard EP. The following

reason explains the significant difference in the accuracy. In principle one has to choose D′ to be the closest positive definite
matrix to D which might be a hard problem on its own. Even in this simple technique we need to make sure that ε is as small
as possible since a large ε might change the optimal solution and in principle there is not a best way to do this. The accuracy
of our algorithm (λ = 0) when p = 3, r = 5 was 84.51% whereas the accuracy of FOptM was 83.90%. FOptM was faster
than our algorithm but it is a well established fact that computing the eigen decomposition and inverses are expensive and
unstable when the problem size increases making the reformulation impractical for large data instances.
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