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Abstract

We develop a conditional generative model for longitu-
dinal image datasets based on sequential invertible neural
networks. Longitudinal image acquisitions are common in
various scientific and biomedical studies where often each
image sequence sample may also come together with var-
ious secondary (fixed or temporally dependent) measure-
ments. The key goal is not only to estimate the parameters of
a deep generative model for the given longitudinal data, but
also to enable evaluation of how the temporal course of the
generated longitudinal samples are influenced as a function
of induced changes in the (secondary) temporal measure-
ments (or events). Our proposed formulation incorporates
recurrent subnetworks and temporal context gating, which
provide a smooth transition in a temporal sequence of gen-
erated data that can be easily informed or modulated by
secondary temporal conditioning variables. We show that
the formulation works well despite the smaller sample sizes
common in these applications. Our model is validated on
two video datasets and a longitudinal Alzheimer’s disease
(AD) dataset for both quantitative and qualitative evalua-
tions of the generated samples. Further, using our gener-
ated longitudinal image samples, we show that we can cap-
ture the pathological progressions in the brain that turn out
to be consistent with the existing literature, and could facil-
itate various types of downstream statistical analysis.

1. Introduction
Consider a dataset of longitudinal or temporal sequences

of data samples {xt}Ni=1 where each sample xi comes with
sequential covariates {yt}Ni=1, one for each time point
t. In other words, we assume that for each sequential
sample i, x1

i , · · · ,xT
i = {xt}i, the sequential covariates

y1
i , · · · ,yT

i = {yt}i provide some pertinent auxiliary in-
formation associated with that sequential sample. For ex-
ample, in a neuroimaging study, if the sequential samples
correspond to several longitudinal image scans of a partici-
pant over multiple years, the sequential covariate associated
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Figure 1: Conditional sequence generation illustration. 1) Given: a
sequential condition of decreasing cognition (i.e., a memory test score se-
quence y1

i → y2
i → y3

i indicating High→Medium→Low Cognition per-
formance). 2) Model: Conditional Recurrent Flow (CRow). 3) Generate:
a sequence of brain image progression x1

i → x2
i → x3

i corresponding to
the given cognition progression (i.e., brain regions with high (red) and low
(blue) disease pathology). The Generated Sequence follows the trend of
the Real Data Sequence (i.e., similar (≈) to the real brain image progres-
sion) from the subjects with similarly decreasing cognition scores.

with each time point may be an assessment of disease sever-
ity or some other clinical measurement.

Our high level goal is to design conditional generative
models for such sequential image data. In particular, we
want a model which provides us a type of flexibility that is
highly desirable in this setting. For instance, for a sample
drawn from the distribution after the generative model has
been estimated, we should be able to “adjust” the sequential
covariates, say at a time point t, dynamically to influence
the expected future predictions after t for that sample. It
makes sense that for a heart rate sequence, the appropriate
subsequence should be influenced by when the “violence”
stimulus was introduced as well as the default heart rate
pattern of the specific sample (participant) [2]. Notice that
when t = 1, this construction is similar to conditional gen-
erative models where the “covariate” or condition y may
simply denote an attribute that we may want to adjust for a
sample: for example, increase the smile or age attribute for
a face image sampled from the distribution as in [26].

We want our formulation to provide a modified set of xts
adaptively, if we adjust sequential covariates yts for that
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sample. If we know some important clinical information
at some point during the study (say, at t = 5), this infor-
mation should influence the future generation xt>5 condi-
tioned both on this sequential covariate or event y5 as well
as the past sequence of this sample xt<5. This will require
conditioning on the corresponding sequential covariates at
each time point t by accurately capturing the posterior dis-
tribution p(xt|yt). Such conditional sequence generation
needs a generative model for sequential data which can
dynamically incorporate time-specific sequential covariates
yt of interest to adaptively modify sequences.

The setup above models a number of applications in
medical imaging and computer vision that require genera-
tion of frame sequences conditioned on frame-level covari-
ates. In neuroimaging, many longitudinal studies focus on
identifying disease trajectories [3, 5, 28, 18]: for example,
at what point in the future will specific regions in the brain
exceed a threshold for brain atrophy? The future trend is
invariably a function of clinical measures that a participant
provides at each visit as well as the past trend of the subject.
From a methodological standpoint, constructing a sequen-
tial generative model may appear feasible by appropriately
augmenting the generation process using existing genera-
tive models. For example, one could simply concatenate
the sequential measurements {xt} as a single input for ex-
isting non-sequential conditional generative models such as
conditional GANs [31, 19] and conditional variational au-
toencoders [38, 1]. We will see why this is not ideal shortly.

We find that for our application, an attractive alternative
to discriminator-generator based GANs, is a family of neu-
ral networks called normalizing flow [36, 35, 10, 9] which
involve invertible networks (i.e., reconstruct input from its
output). What is particularly relevant is that such formu-
lations work well for conditionally generating diverse sam-
ples with controllable degrees of freedom [4] – with an ex-
plicit mechanism to adjust the conditioning variable. But
the reader will notice that while these models, in principle,
can be used to approximate the posterior probability given
an input of any dimension, concatenating a series of sequen-
tial inputs quickly blows up the size for these highly ex-
pressive models and renders them impractical to run, even
on high-end GPU clusters. Even if we optimistically as-
sume computational feasibility, variable length sequences
cannot easily be adapted to these innately non-sequential
generative models, especially for those that extend beyond
the training sequence length. Also, data generated in this
manner involve simply “concatenated” sequential data and
do not consider the innate temporal relationships among the
sequences, which is fundamental in recurrent models. For
these reasons, adapting existing generative models, will in-
volve setting up a generative model which is recursive for
variable length inputs.

Given various potential downstream applications and the

issues identified above with conditional sequential genera-
tion problem, we seek a model which (i) efficiently gener-
ates high dimensional sequence samples of variable lengths
(ii) with dynamic time-specific conditions reflecting up-
stream observations (iii) with fast posterior probability es-
timation. We tackle the foregoing issues by introducing an
invertible recurrent neural network, CRow, that includes re-
current subnetwork and temporal context gating. These
modifications are critical in the following sense. Invertibil-
ity lets us precisely estimate the distribution of p(xt|yt) in
latent space. Introducing recurrent subnetworks and tem-
poral context gating enables obtaining cues from previ-
ous time points x<t to generate temporally sensible sub-
sequent time points x≥t. Specifically, our contributions
are: (A) Our model generates conditional sequential sam-
ples {xt} given sequential covariates {yt} for t = 1, . . . , T
time points where T can be arbitrarily long. Specifically,
we allow this by posing the task as a conditional sequence
inverse problem based on a conditional invertible neural net-
work [4]. (B) Assessing the quality of the generated sam-
ples may not be trivial for certain modalities (e.g., non-
visual features). With the specialized capability of the nor-
malizing flow construction, our model estimates the pos-
terior probabilities p(xt|yt) of the generated sequences at
each time point for potential downstream analyses involv-
ing uncertainty. (C) We demonstrate an interesting practi-
cal application of our model in a longitudinal neuroimag-
ing dataset. We show that the generated longitudinal brain
pathology trajectories (an illustration in Fig. 1) can lead to
identifying specific regions in the brain which are statisti-
cally associated with Alzheimer’s disease (AD).

2. Preliminary: Invertible Neural Networks
We first describe an invertible neural network (INN)

which inverts an output back to its input for solving inverse
problems (i.e., z = f(x) ⇔ x = f−1(z)). This becomes
the building block of our method; thus, before we present
our main model, let us briefly describe a specific type of in-
vertible structure which was originally specialized for den-
sity estimation with neural network models.
2.1. Normalizing Flow

Estimating the density pX(x) of sample x is a classi-
cal statistical problem in various fields including computer
vision and machine learning in, e.g., uncertainty estimation
[14, 15]. For tractable computation throughout the network,
Bayesian adaptations are popular [34, 12, 33, 27, 23, 18],
but these methods make assumptions on the prior distribu-
tions (e.g., exponential families).

A normalizing flow [36, 35] first learns a function f(·)
which maps a sample x to a latent variable z = f(x) where
z is from a standard normal distribution Z. Then, with a
change of variables formula, we estimate

pX(x) = pZ(z)/|JX|, |JX| =
∣∣∣∣∂[x = f−1(z)]

∂z

∣∣∣∣ (1)



(a) Forward map (Eq. (2)) (b) Inverse map (Eq. (3))
Figure 2: Coupling layer in normalizing flow. Note the change of operation
orders: u→ v in forward and v→ u in inverse.

where |JX| is a Jacobian determinant. Thus, f(·) must be
invertible, i.e., x = f−1(z), and to use a neural network
as f(·), a coupling layer structure was introduced in Real-
NVP [9, 10] for an easy inversion and efficient |JX| com-
putation as we describe next.

Forward map (Fig. 2a). Without loss of generality, in
the context of network structures, we use an input u ∈ Rd

and an output v ∈ Rd (i.e., u → v). First, we split u into
u1 ∈ Rd1 and u2 ∈ Rd2 where d = d1 + d2 (e.g., partition
u→ [u1,u2]). Then, we forward map u1 and u2 to v1 and
v2 respectively:

v1 = u1, v2 = u2 ⊗ exp(s(u1)) + r(u1) (2)

where s and r are independent functions (i.e., subnetworks),
and⊗ and + are element-wise product and addition respec-
tively. Then, v1 and v2 construct v (e.g., [v1,v2]→ v).

Inverse map (Fig. 2b). A straightforward arithmetic al-
lows an exact inverse from v to u (i.e., v→ u):

u1 = v1, u2 = (v2 − r(v1))� exp(s(v1)) (3)

where the subnetworks s and r are identical to those used
in the forward map in Eq. (2), and � and − are element-
wise division and subtraction respectively. Note that the
subnetworks are not explicitly inverted, thus any arbitrarily
complex network can be utilized.

Also, the Jacobian matrix Jv = ∂v/∂u is triangular so
its determinant |Jv| is just the product of diagonal entries
(i.e.,

∏
i exp(s(u1))i) which is extremely easy to compute

(we will discuss this further in Sec. 3.2.1).
To transform the “bypassed” split u1 (since u1 = v1), a

coupling block consisting of two complementary coupling
layers is constructed to transform both u1 and u2:

v1 = u1 ⊗ exp(s2(u2)) + r2(u2)

v2 = u2 ⊗ exp(s1(v1)) + r1(v1)
(4)

and its inverse
u2 = (v2 − r1(v1))� exp(s1(v1))

u1 = (v1 − r2(u2))� exp(s2(u2)).
(5)

Such a series of transformations allow a more complex
mapping which still comes with a chain of efficient Jacobian

determinant computations, i.e., det(AB) = det(A) det(B)
where A and B are the Jacobian matrices of two coupling
layers. More details are included in the supplement.

Note that we have used (and will be using) u and v as
generic input and output of an INN. Thus, specifically in
the context of normalizing flow, by simply considering u
and v to be x and z respectively, we can use a coupling
layer based INN as a powerful invertible function f(·) to
perform the normalizing flow described in Eq. (1).

3. Model Setup: Conditional Recurrent Flow
In this section, we describe our conditional sequence

generation method called Conditional Recurrent Flow
(CRow). We first describe a conditional invertible neural
network (cINN) [4] which is one component of our model.
Then, we explain how to incorporate temporal context gat-
ing and discuss the settings where CRow can be useful.

3.1. Conditional Sample Generation
Naturally, an inverse problem can be posed as a sam-

ple generation procedure by sampling a latent variable z
and inverse mapping it to x = f−1(z), thus generating a
new sample x. The concern is that we cannot specifically
‘choose’ to generate an x of interest since a latent variable
z does not provide any interpretable associations with x.

In other words, estimating the conditional probability
p(x|y) is desirable since it represents an underlying phe-
nomenon of the input x ∈ Rd and covariate y ∈ Rk (e.g.,
the probability of a specific brain imaging measure x of in-
terest given a diagnosis y). In fact, when we cast this prob-
lem into a normalizing flow, the goal becomes constructing
an invertible network f(·) which maps a given input x ∈ Rd

to its corresponding covariate/label y ∈ Rk and its latent
variable z ∈ Rm such that [y, z] = f(x). The mapping
must have an inverse for x = f−1([y, z]) to be recovered.

Specifically, when a flow-based model jointly encodes
label and latent information (i.e., [y, z] = v = f(x) via
Eq. (4)) while ensuring that p(y) and p(z) are independent,
then the network becomes conditionally invertible (i.e.,
x = f−1([y, z]) conditioned on given y). Such a network
can be theoretically constructed through a bidirectional-
type training [4], and this allows a conditional sampling
x = f−1([y, z]) and the posterior estimation p(x|y).

Bidirectional training. This training process involves
three losses: (1) LZ(p(y, z), p(y)p(z)) enforces p(y) and
p(z) to be independent by making the network output
p(y, z) to follow p(y)p(z) which is true if and only if p(y)
and p(z) are independent. (2) LY(y,ygt) is the supervised
label loss between our prediction y and the ground truth
ygt. (3) LX(p(x), pX) improves the likelihood of the input
x with respect to the prior pX. LZ and LX are based on
a kernel-based moment matching measure Maximum Mean
Discrepancy (MMD) [11, 44], also see appendix.

In practice, x and [y, z] may not be of the same dimen-



Figure 3: The CRow model. Only the forward map of a single block (two
coupling layers) is shown for brevity. The inverse map involves a similar
order of operations (analogous to Fig. 2a and Fig. 2b)

sions. To construct a square triangular Jacobian matrix,
zero-padding both x and [y, z] can alleviate this issue while
also increasing the intermediate subnetwork dimensions for
higher expressive power. Also, the forward mapping is es-
sentially a prediction task that we encounter often in com-
puter vision and machine learning, i.e., predicting y = f(x)
or maximizing the likelihood p(y|x) without explicitly uti-
lizing the latent z. On the other hand, the inverse process
of deriving x = f−1(y), allows a more scientifically based
analysis of the underlying phenomena, e.g., the interaction
between brain (x) and observed cognitive function (y).
3.2. Conditional Recurrent Flow (CRow)

The existing normalizing flow type networks cannot ex-
plicitly incorporate sequential data which are now increas-
ingly becoming important in various applications. Success-
ful recurrent models such as gated recurrent unit (GRU)
[6, 40] and long short-term memory (LSTM) [16, 37] ex-
plicitly focus on encoding the “memory” from the past and
output proper state information for accurate sequential pre-
dictions given the past. Similarly, generated sample se-
quences must also follow sequentially sensible patterns or
trajectories resembling likely sequences by encoding appro-
priate temporal information for the subsequent time points.

To overcome these issues, we introduce Conditional Re-
current Flow (CRow) model for conditional sequence gen-
eration. Given a sequence of input/output pairs {ut,vt}
for t = 1, . . . , T time points, modeling the relationship be-
tween the variables across time needs to also account for the
temporal characteristic of the sequence. Variants of recur-
rent neural networks (RNN) such as GRU and LSTM have
been showing success in sequential problems, but they only
enable forward mapping. We are specifically interested in
an invertible network which is also recurrent such that given
a sequence of inputs {ut} (i.e., features {xt}) and their se-
quence of outputs {vt} (i.e., covariates/labels and latent in-
formation {yt, zt}), we can model the invertible relation-
ship between those sequences for posterior estimation and
conditional sequence generation as illustrated in Fig. 1.

Without loss of generality, we can describe our model

in terms of generic {ut} and {vt}. We follow the coupling
block described in Eq. (4) and Eq. (5) to setup a normalizing
flow type invertible model. Then, we impose the recurrent
nature on the model by allowing the model to learn and pass
down a hidden state ht to the next time point through the
recurrent subnetworks. Specifically, we construct a recur-
rent subnetwork q which also contains a recurrent network
(e.g., GRU) internally. This allows q to take the previous
hidden state ht−1 and output the next hidden state ht as
[q,ht] = q(u,ht−1) where q is an element-wise transfor-
mation vector derived from u analogous to the output of
a subnetwork s(u) in Eq. (2). In previous coupling lay-
ers (i.e., Eq. (2)), two transformation vectors s = s(·) and
r = r(·) were explicitly computed from two subnetworks
for each layer. For CRow, we follow the structure of Glow
[26] which computes a single vector q = q(·) and splits it as
[s, r] = q. This allows us to use a single hidden state while
concurrently learning [s, r] which we denote as s = qs(·)
and r = qr(·) to indicate the individual vectors. Thus, at
each t with given [ut

1,u
t
2] = ut and [vt

1,v
t
2] = vt,

vt
1 = ut

1 ⊗ exp(qs2 (u
t
2,h

t−1
2 )) + qr2 (u

t
2,h

t−1
2 )

vt
2 = ut

2 ⊗ exp(qs1 (v
t
1,h

t−1
1 )) + qr1 (v

t
1,h

t−1
1 )

(6)

and the inverse is
ut
2 = (vt

2 − qr1 (v
t
1,h

t−1
1 ))� exp(qs1 (v

t
1,h

t−1
1 ))

ut
1 = (vt

1 − qr2 (u
t
2,h

t−1
2 ))� exp(qs2 (u

t
2,h

t−1
2 )).

(7)

Note that the hidden states ht
1 and ht

2 generated from the
recurrent network of the subnetworks are implicitly used
within the subnetwork architecture (i.e., inputs to additional
fully connected layers) and also passed to their correspond-
ing recurrent network in the next time point as in Fig. 3.

3.2.1 Temporal Context Gating (TCG)
A standard (single) coupling layer transforms only a part of
the input (i.e., u1 in Eq. (2)) by design which results in the
determinant of a triangular Jacobian matrix Jv:

|Jv| =
∣∣∣∣∂v∂u

∣∣∣∣ =
∣∣∣∣∣
∂v1
∂u1

∂v1
∂u2

∂v2
∂u1

∂v2
∂u2

∣∣∣∣∣ =
∣∣∣∣∣ I 0
∂v2
∂u1

diag(exp s(u1))

∣∣∣∣∣ (8)

thus |Jv| = exp(
∑

i(s(u1))i). This is a result from Eq. (2):
(1) the element-wise operations on u2 for the diagonal sub-
matrix of partial derivatives ∂v2/∂u2 = diag(exp s(u1)),
(2) the bypassing of u1 = v1 for ∂v1/∂u1 = I , and (3)
∂v1/∂u2 = 0. Ideally, transforming u1 would be bene-
ficial. However, this is explicitly avoided in the coupling
layer design since this should not involve u1 or u2 directly;
otherwise, Jv will not be triangular.

Using ht in CRow. In the case of CRow, it incorporates
a hidden state ht−1 from the previous time point which is
neither u nor v. This is our temporal information which
adjusts the mapping function f(·) to allow more accurate
mapping depending on the previous time points of the se-
quence which is crucial for sequential modeling.



Specifically, we incorporate a temporal context gating
fTCG(α

t,ht−1) using the temporal information ht−1 on a
given input αt at t as follows:

fTCG(α
t,ht−1) = αt ⊗ cgate(ht−1) (forward)

f−1
TCG(α

t,ht−1) = αt � cgate(ht−1) (inverse)
(9)

where cgate(ht−1) can be any learnable function/network
with a sigmoid function at the end. This is analogous to the
context gating [30] in video analysis which scales the input
αt (since cgate(ht−1) ∈ (0, 1)) based on useful context,
which in our setup is the temporal information ht−1.

Preserving the Jacobian structure. In the context of
|Jv| computation in Eq. (8), we perform fTCG(u1,h

t−1) =
u1 ⊗ cgate(ht−1) (w.l.o.g., we omit t for u and v). Im-
portantly, we observe that this ‘auxiliary’ variable ht−1

could safely be used to transform u1 without altering the
triangular structure of the Jacobian matrix for the following
two reasons: (1) we still perform an element-wise opera-
tion u1 ⊗ cgate(ht−1) resulting a diagonal submatrix for
∂v1/∂u1, and (2) ∂v1/∂u2 is still 0 since u2 is not in-
volved in fTCG(u1,h

t−1). Thus, we now have

|Jv| =

∣∣∣∣∣
∂v1
∂u1

∂v1
∂u2

∂v2
∂u1

∂v2
∂u2

∣∣∣∣∣ =
∣∣∣∣∣diag(cgate(ht−1)) 0

∂v2
∂u1

diag(exp s(u1))

∣∣∣∣∣
(10)

where |Jv| = [
∏

j cgate(h
t−1)j ] ∗ [exp(

∑
i(s(u1))i)].

As seen in Fig. 3, we place fTCG to transform the “by-
passing” split (non-transforming partition) of each layer of
a block (i.e., the “bypassing” partition ut

2 gets transformed
by fTCG2

). We specifically chose a gating mechanism for
conservative adjustments so that the original information
is preserved to a large degree through simple but learn-
able ‘weighting’. The full forward and inverse steps in-
volving fTCG can easily be formulated by following Eq. (6)
and Eq. (7) while respecting the order of operations seen in
Fig. 3. See appendix for details.

3.3. How do we use CRow?
In essence, CRow aims to model an invertible mapping

[{yt}, {zt}] = f({xt}) between sequential/longitudinal
measures {xt} and their corresponding observations {yt}
with {zt} encoding the latent information across t =
1, . . . , T time points. Once we train f(·), we can perform
the following exemplary tasks:

(1) Conditional sequence generation: Given a series of
observations of interest {yt}, we can sample {zt} (each in-
dependently from a standard normal distribution) to gener-
ate {xt} = f−1([{yt}, {zt}]). The advantage comes from
how {yt} can be flexibly constructed (either seen or unseen
from the data) such as an arbitrary disease progression over
time (see Fig. 1). Then, we randomly generate correspond-
ing measures {xt} to observe the corresponding longitudi-
nal measures for both quantitative and qualitative analyses.
Since the model is recurrent, the sequence length can be ex-
tended beyond the training data to model future trajectory.

A potential direction would be to use the generated se-
quences to directly enable common data analysis proce-
dures (i.e., statistical analysis on synthetic data) and help
evaluate scientific hypotheses.

(2) Sequential density estimation: Conversely, given
{xt}, we can predict {yt}, and more importantly, estimate
the density pX({xt}) at each t. When {xt} is generated
from {yt}, the estimated density can indicate the ‘integrity’
of the generated sample (i.e., low pX implies that the se-
quence is perhaps less common with respect to {yt}).
4. Experiments

We validate our framework in both a qualitative and
quantitative manner with two sets of experiments: (1) two
image sequence datasets and (2) a neuroimaging study.

4.1. Conditional Moving MNIST Generation
Moving Digit MNIST: We first test our model on a

controlled Moving Digit MNIST dataset [39] of image se-
quences showing a hand-written digit from 0 to 9 moving
in a path and bouncing off the boundary (see supplement
for animations). This experiment qualitatively shows that
the images in a generated sequence with specific conditions
(i.e., image labels) are consistent across the sequence. Here,
we specifically chose two digits (e.g., 0 and 1) to construct
∼13K controlled sequences of frame length T = 6 where
each frame of a sequence is an image of size 20 by 20 (vec-
torized as xt ∈ R400) and has a one-hot vector yt ∈ R2 of
digit label at t indicating one of the two possible digits. We
found this intuitive and interpretable assessment before ex-
perimenting with arguably less interpretable datasets (i.e.,
neuroimaging data we show later).

Training. Our model consists of three coupling blocks,
each block shown in Fig. 3, where each subnetwork q con-
tains one GRU cell and three layers of residual fully con-
nected networks with ReLU activation. For each TCG
(fTCG in Fig. 3, Eq. (9)), the network cgate(·) is a single
fully connected network with sigmoid activation. Each in-
put frame ut = xt is split into two halves u1 and u2. Mod-
els were trained on T = 6 time points, but further time
points data can be generated since our model is recurrent.
Each training sequence has a digit label sequence {yt} for
t = 1, . . . , 6 where all yt are “identical” in each sequence
since the the same digit is shown throughout the sequence.

Generation. Now, we want to generate sequences show-

Ours:

cINN:

Figure 4: Examples of generated sequences given the changing condition
1→1→0→0→0→0 (top of each frame, [digit label]: density). Ours
shows smooth transition while cINN shows temporally drastic transition.



3→5:

5→9:

Figure 5: Examples of generated sequences using CRow.

ing digits gradually transform (e.g., changing from 1 to 0).
We first specified sequential conditions (i.e., digit label) that
change midway through the sequence (e.g., {yt} sequence
indicating digit labels 1→1→0→0→0→0). Then, we gen-
erated the corresponding sequences {xt} and visually check
if the changes across the frames look natural. Note that we
trained only the image sequences with consistent digit la-
bels. One demonstrative result is shown in Fig. 4 where
we compare the generated image sequences with condition
(i.e., digit label) changing from 1 to 0. Our result at the top
of Fig. 4 shows gradual transition while cINN result does
not show such temporally smooth and consistent behavior.

Density estimation. Our model quantifies its output con-
fidence in the form of density (i.e., likelihood) shown at the
top of each generated images in Fig. 4. Not only our model
adjusts generation based on inputs, but it also outputs lower
density at the frame showing the most drastic transforma-
tion as such patterns were not observed during the training,
i.e., the likelihood decreases when then condition changes
and then increase as the sequence goes. This means that
our model simultaneously shows the conditional genera-
tion ability and estimates outputs’ relative density given the
training data seen. Different from other generative models,
it allows conditional generation on sequential data while
maintaining exact and efficient density estimation. More
examples are shown in Fig. 5 (and appendix).

Moving Fashion MNIST: We also tested our model on
a more challenging dataset called Moving Fashion MNIST
[43] of moving apparel image sequences. The image sizes.
frames lengths, and moving paths are identical to those of
Moving Digit MNIST. An important difference is that they
are real images of 10 types of apparels (i.e., T-shirt, Bag,
etc. see supplement for the full list) instead of hand-written
digits. The same models and training setups were used to
generate the transforming sequences in a similar manner. In
Fig. 6, we show the examples of various apparels success-
fully transforming to other types while moving. Compared
to Moving Digit MNIST, capturing the smooth transforma-
tions of these apparel images are more challenging as the
apparel shapes vary more in terms of shapes and sizes.

4.2. Longitudinal Neuroimaging Analysis
In this neuroimaging experiment, we evaluate if our con-

ditionally generated samples actually exhibit statistically
robust and clinically sound characteristics when trained
with a longitudinal Alzheimer’s disease (AD) brain imaging
dataset. We generated a sufficient number of longitudinal

T-shirt [0]→ Bag [8]

Ankle boot [9]→ Sneaker [7]

T-shirt [0]→ Long sleeve [4]

Figure 6: Examples of generated Moving Fashion MNIST sequences using
CRow (apparel type [label index]). More examples are in the supplement.

brain imaging measures (i.e., {xt}) conditioned on various
covariates (i.e., labels {yt}) associated with AD progres-
sion (e.g., memory). Thus, the generated brain imaging se-
quences should show the pathology progression consistent
with the covariate progression (see Fig. 1 and Fig. 7 for il-
lustrations). We then performed a statistical group analysis
(i.e., healthy vs. disease progressions) to detect disease re-
lated features from the imaging measures. In the end, we
expected that the brain regions of interests (ROIs) identified
by the statistical group analysis are consistent with other
AD literature with statistically stronger signal (i.e., lower
p-value) than the results using the original training data.

Dataset. The Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) database (adni.loni.usc.edu) is one
of the largest and still growing neuroimaging databases.
Originated from ADNI, we use a longitudinal neuroimaging
dataset called The Alzheimer’s Disease Prediction of Lon-
gitudinal Evolution (TADPOLE) [29]. We used data from
N=276 participants with T = 3 time points.

Input. For the longitudinal brain imaging sequence {xt},
we chose Florbetapir (AV45) Positron Emission Tomogra-
phy (PET) scan measuring the level of amyloid-beta de-
posited in brain which has been a known type of pathology
associated with Alzheimer’s disease [42, 22]. The AV45 im-
ages were registered to a common brain template (MNI152)
to derive the gray matter regions of interests (82 Desikan
atlas ROIs [8], see appendix). Thus, each of the 82 ROIs
(xt ∈ R82) holds an average Standard Uptake Value Ratio
(SUVR) measure of AV45 where high AV45 implies more
amyloid pathology in that region.

Condition. For the corresponding labels {yt} for lon-
gitudinal conditions, we chose five covariates known to be
tied to AD progression (normal to impaired range in square
brackets): (1) Diagnosis: Normal/Control (CN), Mild Cog-
nitive Impairment (MCI), and Alzheimer’s Disease (AD)
[CN→MCI→AD]. (2) ADAS13: Alzheimer’s Disease As-
sessment Scale [0→85]. (3) MMSE: Mini Mental State
Exam [0→30]. (4) RAVLT-I: Rey Auditory Verbal Learning
Test - Immediate [0→75]. (5) CDR: Clinical Dementia Rat-
ing [0→18]. These assessments impose disease progression

adni.loni.usc.edu


≈

≈
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Figure 7: Generated sequences vs. real data sequences comparison for CN (top)→MCI (middle)→AD (bottom). Each blue/pink frame has top, side
(interior of right hemisphere), and front views. Left (blue frames): The average of the 100 generated sequences conditioned on CN→MCI→AD. Right
(pink frames): The average of the real samples with CN→MCI→AD in the dataset. Red/blue indicate high/low AV45. ROIs are expected to turn more red
as CN→MCI→AD. The generated samples show magnitudes and sequential patterns similar (≈) to those of the real samples from the training data.

of samples. See supplement and [29] for details.
Analysis. We performed a statistical group analysis

on each condition {yt} independently with the following
pipeline: (1) Training: First, we trained our model (the
same subnetwork as Sec. 4.1) using the sequences of SUVR
in 82 ROIs for {xt} and the covariate (‘label’) sequences
for {yt}. (2) Conditional longitudinal sample genera-
tion: Then, we generated longitudinal samples {x̂t} con-
ditioned on two distinct longitudinal conditions: Control
(healthy covariate sequence) versus Progression (worsen-
ing covariate sequence). Specifically, for each condition
(e.g., Diagnosis), we generate N1 samples of Control (e.g.,
{x̂t

1}
N1
i=1 conditioned on {yt}= CN→CN→CN) and N2

samples of Progression ({x̂t
2}

N2
i=1 conditioned on {yt} =

CN→MCI→AD). Then, we perform a two sample t-test at
t = 3 for each of 82 ROIs between {x̂3

1}
N1
i=1 and {x̂3

2}
N2
i=1

groups, and derive p-values to tell whether the pathology
levels between the groups significantly differ in those ROIs.

Result 1: Control vs. Progression (Table 1, Top row
block). We set the longitudinal conditions for each covari-
ate based on its associated to healthy progression (e.g., low

ADAS13 throughout) and disease progression (e.g., high
ADAS13 related to eventual AD onset). We generated
N1 = 100 and N2 = 100 samples for each group respec-
tively. Then, we performed the above statistical group dif-
ference analysis under 4 setups: (1) Raw training data, (2)
cINN [4], (3) Our model, and (4) Our model + TCG. With
the raw data, the sample sizes of the desirable longitudinal
conditions were extremely small for all setups, so no statis-
tical significance was found after type-I error control. With
cINN, we occasionally found few significant ROIs, but the
non-sequential samples with only t = 3 could not generate
realistic samples. With CRow we consistently found signif-
icant ROIs and detected the most number of ROIs (the ROIs
for Diagnosis shown in Fig. 8) including many AD-specific
regions reported in the aging literature such as hippocampus
and amygdala [20, 22] (see appendix for the full list).

Result 2: Control vs. Early-progression (Table 1, Bot-
tom row block). We setup a more challenging task where
we generate samples which resemble the subjects that show
slower progression of the disease (i.e., lower rate of covari-
ate change over time). This case is especially important in

# of Statistically Significant ROIs (# of ROIs after type-I error correction)
Covariates Diagnosis ADAS13 MMSE RAVLT-I CDR-SB
Control CN→CN→CN 10→10→10 30→30→30 70→70→70 0→0→0
Progression CN→MCI→AD 10→20→30 30→26→22 70→50→30 0→5→10
cINN (N1=100 / N2= 100) 11 (4) 5 (2) 5 (0) 3 (0) 7 (0)
Ours (N1=100 / N2= 100) 25 (11) 24 (12) 19 (2) 15 (2) 18 (7)
Ours + TCG (N1=100 / N2= 100) 28 (12) 32 (14) 31 (2) 19 (2) 25 (9)
Control CN→CN→CN 10→10→10 30→30→30 70→70→70 0→0→0
Early-progression CN→MCI→MCI 10→13→16 30→28→26 70→60→50 0→2→4
cINN (N1=150 / N2= 150) 2 (0) 2 (2) 2 (0) 0 (0) 1 (0)
Ours (N1=150 / N2= 150) 6 (2) 6 (4) 11 (4) 5 (1) 2 (0)
Ours + TCG (N1=150 / N2= 150) 6 (4) 8 (5) 12 (4) 5 (1) 5 (1)

Table 1: Number of ROIs identified by statistical group analysis using the generated measures with respect to various covariates associated with AD at
significance level α = 0.01 (type-I error controlled result shown in parenthesis). Each column denotes sequences of disease progression represented by
diagnosis/test scores. In all cases, using CRow with TCG yielded the most number of statistically significant ROIs.



Figure 8: 12 Significant ROIs found between two Diagnosis groups
(CN→CN→CN vs. CN→MCI→AD) at t = 3 using our model under
‘Diagnosis’ in Table 1. The colors denote the -log p-value. AD-related
ROIs such as hippocampus, putamen, caudate, and amygdala are included.

AD when early detection leads to effective prevention. With
N1 = 100 andN2 = 100 samples, no significant ROIs were
found in all models. To improve the sensitivity, we gener-
ated N1 = 150 and N2 = 150 samples in all models and
found several significant ROIs only with CRow related to an
early AD progression such as hippocampus [13, 21, 24, 17]
(full list in the appendix).

Statistical advantages. By generating realistic samples
with CRow, we achieve the following advantages: (1) In-
creasing sample size makes the hypothesis test more sensi-
tive and robust – rejecting the null when it is indeed false
– leading to a lower type-II error. (2) Also, we do not sim-
ply detect spurious significant ROIs because (i) we control
for type-I error via the most conservative Bonferroni multi-
ple testing correction, and (ii) we additionally improve the
statistical power of detecting the true effects (i.e., signifi-
cant ROIs) that at least need to be detected with the raw
data only. In Table 2, we show that the significant ROIs
identified with the real data only are also detected through
our framework with improved p-values from the Control vs.
Progression experiment. These results on the generated data
suggest that one can utilize CRow in a statistically mean-
ingful manner without neglecting the true signals from im-
portant AD-specific ROIs [13, 32]. Note that the scientific
validity of our findings requires further investigation on ad-
ditional real data. These preliminary results, however, point
to the promise of using such models to partly mitigate prob-
lems related to recruiting large number of participants for
statistically identifying weak disease effects.

Generation assessments. In Fig. 7, we see the gener-
ated samples (Left) through CN→MCI→AD in three views
of the ROIs and compare them to the real training samples
(Right). We observe that the generated samples have sim-
ilar AV45 loads through the ROIs, and more importantly,
the progression pattern across the ROIs (i.e., ROIs turning
more red indicating amyloid accumulation) follows that of
the real sequence as well. We also quantified the similarities
between the generated and real data sequences by comput-

ROI p-value
Real CRow

Diagnosis Left Amygdala 5.51E-03 1.18E-06
Left Putamen 7.38E-03 3.99E-05

ADAS13 Left Inferior Temporal 3.34E-03 7.93E-04
Left Middle Temporal 6.83E-03 2.02E-03

MMSE Left Superior Parietal 7.13E-03 1.52E-05
Left Supramarginal 6.75E-03 8.20E-08

RAVLT-I Left Paracentral 9.16E-03 8.09E-05
CDR-SB Left Hippocampus 4.01E-03 3.36E-06

Table 2: p-values in ROIs improve (get lower) with the sequences gener-
ated by CRow with increased sample size over using real sequence data.

ing effect size (Cohen’s d [7]) which measures the differ-
ence between the two distributions (Table 3) showing that
CRow generates the most realistic sequences.

Scientific remarks. Throughout our analyses, the signif-
icant ROIs found such as amygdala, putamen, temporal re-
gions, hippocampus (e.g., shown in Fig. 8) and many oth-
ers reported as AD-specific regions in the aging literature
[13, 20, 21, 32, 41, 25]. This implies that the generated
longitudinal sequences could resemble the underlying dis-
tribution of the real data which we may not be available
with large enough sample sizes. The appendix includes ad-
ditional details on the scientific interpretation of the results.

5. Conclusion
We design generative models for longitudinal datasets

that can be modulated by secondary conditional variables.
Our architecture is based on an invertible neural network
that incorporates recurrent subnetworks and temporal con-
text gating to pass information within a sequence genera-
tion, the network seeks to “learn” the conditional distri-
bution of training data in a latent space and generate a
sequence of samples whose longitudinal behavior can be
modulated based on given conditions. We demonstrate ex-
perimental results using three datasets (2 moving videos, 1
neuroimaging) to evaluate longitudinal progression in se-
quentially generated samples. In neuroimaging problems
which suffer from small sample sizes, our model can gener-
ate realistic samples which is promising.
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Cohen’s d of Generated vs. Real of Progressions Cohen’s d of Generated vs. Real of Early-progressions
Covariates Diagnosis ADAS13 MMSE RAVLT-I CDR-SB Diagnosis ADAS13 MMSE RAVLT-I CDR-SB
cINN 1.2551 1.5968 1.1498 1.8948 1.5516 1.0656 1.4985 0.9482 1.8435 1.4541
Ours 0.4193 0.5562 0.3485 0.7112 0.6456 0.3591 0.5612 0.2953 0.6133 0.6254
Ours + TCG 0.2828 0.3915 0.1679 0.5889 0.3775 0.2341 0.5248 0.0902 0.5448 0.4998

Table 3: Difference between the generated sequences and the real sequences at t = 3. Lower the effect size (Cohen’s d), smaller the difference between the
comparing distributions. In all settings, CRow with TCG generates the most realistic sequences with the smallest effect sizes.
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