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Abstract

There has recently been a concerted effort to derive mechanisms in vision and
machine learning systems to offer uncertainty estimates of the predictions they
make. Clearly, there are enormous benefits to a system that is not only accurate
but also has a sense for when it is not sure. Existing proposals center around
Bayesian interpretations of modern deep architectures – these are effective but
can often be computationally demanding. We show how classical ideas in the
literature on exponential families on probabilistic networks provide an excellent
starting point to derive uncertainty estimates in Gated Recurrent Units (GRU).
Our proposal directly quantifies uncertainty deterministically, without the need
for costly sampling-based estimation. We demonstrate how our model can be
used to quantitatively and qualitatively measure uncertainty in unsupervised image
sequence prediction. To our knowledge, this is the first result describing sampling-
free uncertainty estimation for powerful sequential models such as GRUs.

1 Introduction

Recurrent Neural Networks (RNNs) have achieved state-of-the-art performance in various sequence
prediction tasks such as machine translation [1, 2, 3], speech recognition [4, 5], language models
[6, 7], image and video captioning [8, 9, 10] as well as medical applications [11, 12]. For long
sequences which require extended knowledge from the past, popular variants of RNN such as Long-
Short Term Memory (LSTM) [13] and Gated Recurrent Unit (GRU) [14] have shown remarkable
effectiveness in dealing with the vanishing gradients problem and have been successfully deployed
in a number of applications.

Point estimates, confidence and consequences. Despite the impressive predictive power of RNN
models, the predictions rely on the “point estimate” of the parameters. The confidence score can
often be overestimated due to overfitting [15] especially on datasets with insufficient sample sizes.
More importantly, in practice, without acknowledging the level of uncertainty about the prediction,
the model cannot be blindly trusted in mission critical applications. Unexpected performance varia-
tions with no sensible way of anticipating this possibility is also a limitation in terms of regulatory
compliance (e.g., FDA). When a decision made by a model could result in dangerous outcomes in
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real-life tasks such as an autonomous vehicle not detecting a pedestrian, missing a disease prediction
due to some artifacts in a medical image, or radiation therapy planning [16], knowing how ‘certain’
the model is about its decision can offer a chance to look for alternative solutions such as alerting
the driver to take over or recommending a different disease test to prevent bad outcomes made by
erroneous decisions.

Uncertainty. When operating with predictions involving data and some model, there are mainly two
sources of unpredictability. First, there may be uncertainty that arises from an inaccurate dataset or
observations — this is called aleatoric uncertainty. On the other hand, the lack of certainty resulting
from the model itself (i.e., model parameters) is called epistemic uncertainty [17]. Aleatoric uncer-
tainty comes from the observations externally such as noise and other factors that cannot typically
be inferred systematically, and so, algorithms instead attempt to calculate the epistemic uncertainty
that results from the models themselves. Hence this is often also referred to as model uncertainty
[18].

Related work on uncertainty in Neural networks. The importance of estimating the uncertainty
aspect of neural networks (NN) has been acknowledged in the literature. Several early ideas in-
vestigated a suite of schemes related to Bayesian neural networks (BNN): Monte Carlo (MC) sam-
pling [19], variational inference [20] and Laplace approximation [21]. More recent works have
focused on efficiently approximating posterior distributions to infer predictive uncertainty. For in-
stance, scalable forms of variational inference approaches [22] suggest estimating the evidence lower
bound (ELBO) via Monte Carlo estimation to efficiently approximate the marginal likelihood of the
weights. Similarly, several proposals have extended the variational Bayes approach to perform prob-
abilistic back propagation with assumed density filtering [23], explicitly update the weights of NN
in terms of the distribution parameters (i.e., expectation) [24], or apply stochastic gradient Langevin
dynamics [25] at large scales. These methods, however, theoretically rely on the correctness of the
prior distribution, which has shown to be crucial for reasonable predictive uncertainties [26] and
the strength or validity of the assumption (i.e., mean field independence) for computational benefits.
More recently, an interesting and different perspective on BNN based uncertainty estimated based on
Monte Carlo dropout was proposed by Gal et al. [27] where the authors approximate the predictive
uncertainty by using dropout [28] at prediction time. This approach can be interpreted as an ensem-
ble method where the predictions based on “multiple networks” with different dropout structures
[28, 29] yield estimates for uncertainty. However, while the estimated predictive uncertainty is less
dependent on the data by using a fixed dropout rate independent from the data, uncertainty estima-
tion on the network parameters (i.e. weights) is naturally compromised since the fixed dropout rates
are already imposed on the weights by the algorithm itself. In summary, while the literature is still
in a nascent stage, a number of prominent researchers are studying ways in which uncertainty esti-
mates can be derived for deep neural architectures in a way we have come to expect from traditional
statistical analysis.

Other gaps in our knowledge. We notice that while the above methods focus on predictive uncer-
tainty, most strategies do not explicitly attempt to estimate the uncertainty of the entire intermediate
representations of the network such as neurons, weights, biases and so on. While such information
is understandably less attractive in traditional applications where our interest mainly lies in the pre-
diction made by the final output layer, the RNN-type sequential NN often utilizes not only the last
layer of neurons but also directly operates on the intermediate neurons for making a sequence of
predictions [7]. Several Bayesian RNNs have been proposed recently [27, 29, 15] but are based on
the BNN models described above. Their deployment is not always feasible under practical time con-
straints for real-life tasks especially with high dimensional inputs. Furthermore, empirically more
powerful variants of RNNs such as LSTMs or GRUs have not been explicitly studied in the literature
in the context of uncertainty at all.

Contributions. Our overarching goal in this paper is to enable uncertainty estimation on more
powerful sequential neural networks, namely gated recurrent units (GRU), while addressing the
issues discussed above in recent developments of BNNs. To our knowledge, few (if any) other
works offer this capability. We propose a probabilistic GRU, where all network parameters follow
exponential family distributions.We call this framework the SP-GRU, which operates directly on
these parameters, inspired in part by an interesting result for non-sequential data [30]. Our SP-GRU
directly offers the following properties: (i) The operations within each cell in the GRU proceed only
with respect to the natural parameters deterministically. Thus, the overall procedure is completely
sampling-free. Such a property is especially appealing for sequential datasets of small sample size;
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Input and Decoder Estimate
︷ ︸︸ ︷

Prediction Estimate
︷ ︸︸ ︷

Figure 1: Unsupervised image sequence (moving from left to right) learning with uncertainty using
SP-GRU. Top: ground truth input and output. Middle: (left) the reconstruction of the input and
(right) the prediction of the output. Bottom: the model’s uncertainty map where the bright regions
indicate high uncertainty.

(ii) Because weights and biases and all intermediate neurons of SP-GRU can be expressed in terms
of a distribution, their uncertainty estimates can be directly inferred from the network itself. (iii) We
focus on some well-known exponential family distributions (i.e., Gaussian, Gamma) which have
nice characteristics that can be appropriately chosen with minimal modifications to the operations
depending on the application of interest.

2 Background and Preliminaries

We briefly review some concepts that will be useful throughout the paper. We denote matrices with
uppercase letters and vectors as lowercase.

The Gated Recurrent Unit (GRU) and the Long-Short Term Memory (LSTM) are popular variants
of RNN where the network parameters are shared across layers. While they both deal with ex-
ploding/vanishing gradient issues with cell structures of similar forms, the GRU specifically does
not represent the cell state and hidden state separately. Specifically, its gates and cell/hidden state
updates take the following form:

Reset Gate: rt = σ(Wrx
t + br) (1)

Update Gate: zt = σ(Wzx
t + bz) (2)

State Candidate: ĥt = tanh(U
ĥ
xt +W

ĥ
(rt ⊙ ht−1) + b

ĥ
) (3)

Cell State: ht = (1 − zt)⊙ ĥt + zt ⊙ ht−1 (4)

where W{r,z,ĥ} and b{r,z,ĥ} are the weights and biases respectively for their corresponding updates.

Typical implementations of both GRUs and LSTMs include an output layer outside of the cell to
produce the desired outputs [14, 31, 32]. However, both models do not naturally admit more than
point estimates of hidden states and outputs as with other typical deterministic models.

Moving beyond point estimates requires us to have a solid grasp on the distributions our outputs
may take. In classical statistics, the properties of distributions within exponential families have been
extremely well studied.

Definition 1 (Exponential Families) Let x ∈ X be a random variable with probability density or
mass function (pdf/pmf) fX . Then fX is an exponential family distribution if

fX(x|η) = h(x) exp(ηTT (x)−A(η)) (5)

with natural parameters η, base measure h(x), and sufficient statistics T (x). Constant A(η) (log-
partition function) ensures the distribution normalizes to 1.

Common distributions (e.g., Guassian, Bernoulli, Gamma) can be written in this unified ‘natural
form’ with specific definitions of h(x), T (x) and A(η). For instance, the Gaussian distribution in

natural form is given by η = (α, β), T (x) = (x, x2) and h(x) = 1/
√
2π. The more common

parametrization N(µ, σ2) can be derived by letting µ = −α/β and σ2 = −1/β.

Two key properties of this family of distributions have led to their widespread use: (1) their ability
to summarize arbitrary amounts of data x ∼ fX through only their sufficient statistics T (x), and (2)
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× gl

al

W l

W lal al+1 ∼ EXPFAM(gl(W lal))

Figure 2: A single exponential family neuron. Weights W l are learned, and the output of a neuron
is a sample generated from the exponential family defined a priori and by the natural parameters
gl(W lal−1).

their ability to be efficiently estimated either directly through a closed form maximum likelihood es-
timator, or through minimizing a convex function with convex constraints. While Bayesian statistics
and classical machine learning have taken complete advantage of these properties, it is only recently
that deep learning has turned its eye toward them.

2.1 Exponential Families in Networks

Recent work on Deep Exponential Families (DEFs) [33] explicitly models the output of any given
layer as a random variable, sampled from an exponential family defined by natural parameters given
by the linear product of the previous layer’s output and a learnable weight matrix (see Fig. 2).
While this formulation leads directly to distributions over hidden states and model outputs, we have
not learned distributions over the model parameters. Perhaps even more critical is that we have
completely given up computational feasibility: the variational inference procedure used for learning
these DEFs requires Monte Carlo sampling at each hidden state many times for every input sample.
Indeed, the authors note themselves that the cost of running just text experiments was $40K. In what
follows we explore a different line of attack; one which is sampling free and thus allows us to more
efficiently and precisely compute the natural parameters of distributions over weights, hidden states,
and outputs.

We must first make a key assumption on the distributions of our model parameters. In settings where
we wish to estimate a random variable weight matrix W , we must apply a mean-field assumption on
its elements Wij such that they are all independent and come from distributions defined by their own
individual parameters. For example, let (α, β) be the natural parameters of the distribution family
chosen. Then the joint distribution over all entries in W is

p(W |Wα,Wβ) =
∏

i,j

p(W (i, j) | Wα(i, j),Wβ(i, j)) (6)

where Wα and Wβ are matrices of α and β respectively. This assumption is commonly applied
when the dependence among variables of a high-dimensional sample is not expected to hold and/or
computationally infeasible to infer.

3 Sampling-free Probabilistic Networks

We now describe a probabilistic network fully operating on a set of natural parameters of exponential
family distributions in a sampling-free manner. Inspired by a recent work [30], the learning process,
similar to traditional NNs, is deterministic yet still captures the probabilistic aspect of the output
and the network itself, purely as a byproduct of typical NN procedures (i.e., backpropagation).

Unlike the probabilistic networks mentioned before, our GRU performs forward propogation in a
series of deterministic linear and nonlinear transformations on the distribution of weights and biases.
Throughout the entire process, all operations only involve distribution parameters while maintaining
their desired distributions after every transformation. For simplicity, we focus on a subset of expo-
nential family distributions with at most two natural parameters η = (α, β)T (Gaussian, Gamma
and Poisson) which can easily be mapped to familiar forms (i.e., µ = −α/β and σ2 = −1/β for
Gaussian distribution). This can also provide more intuitive interpretation of the network parame-
ters.
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Figure 3: Linear Moment Matching (LMM) is performed at the weights and bias summands, and
Nonlinear Moment Matching (NMM) is performed at the sigmoid activation function.

3.1 Linear Transformations

We describe the linear transformation on the input vector x with a matrix W of weights and a vector
b of biases in terms of their natural parameters. We first apply the mean-field assumption on each
of the weights and biases based on their individual distribution parameters α and β as in Eq. (6),
where {Wα,Wβ} and {bα, bβ} are the parameters of W and b respectively. Thus, analogous to the
linear transformation o = Wa + b in an ordinary neural networks on the previous layer output (or
an input) a with W and b, the our network operates purely on (α, β) to compute {oα, oβ}.

After each linear transformation, it is necessary to preserve the ‘distribution property’ of the outputs
(i.e., oα and oβ still define the same distribution) throughout the forward propagation so that the
intermediate nodes and the network itself can be naturally interpreted in terms of their distributions.
Thus, we cannot simply mimic the typical linear transformation on aβ and compute oβ = Wβaβ+bβ
if we want oβ to still be able to preserve the distribution [30].

We perform a second order moment matching on the mean and variance of the distributions. We
note that the mean m and variance s can easily be computed with an appropriate function g(·, ·)
which maps g : (α, β) → (µ, σ) for each exponential family distribution of our interests (i.e.,
g(α, β) = (−α+1

β
, α+1

β2 ) for a Gamma distribution). Thus, we compute the (m, s) counterparts of

all the (α, β)-based components (i.e., (om, os) = g(oα, oβ)).

Now, using the linear output before the activation function, we can now apply Linear Moment Match-
ing (LMM) on (1) the mean am following the standard linearity of random variable expectations and
(2) the variance as as follows:

om = Wmam + bm, os = Wsas + bs + (Wm ⊙Wm)as +Ws(am ⊙ am) (7)

where ⊙ is the Hadamard product. Then, we invert back to (oα, oβ) = g−1(om, os). For the
exponential family distributions of our interest involving at most two natural parameters, matching
the first two moments (i.e., mean and variance) is a good approximation.

3.2 Nonlinear Transformations

The next key step in NNs is the element-wise nonlinear transformation where we want to apply a
nonlinear function f(·) to the linear transformation output output o parametrized by η = (oα, oβ).
This is equivalent to a general random variable transformation given the probability density function
(pdf) pO for O to derive the pdf pA of A transformed by a = f(o): pA(a) = pO(f(o))|f ′(o)|.
However, well-known nonlinear functions such as sigmoids and hyperbolic tangents cannot directly
be utilized on (oα, oβ) because the resulting o given η may not be from the same exponential family
distribution. Thus, we perform another second order moment matching in terms of mean om and
variance os via Nonlinear Moment Matching (NMM). Ideally, we need to marginalize over a distri-
bution of o given (oα, oβ) to compute am =

∫
f(o)pO(o | oα, oβ)do and the corresponding variance

as =
∫
f(o)2pO(o | oα, oβ)do − a2m which we map back to (aα, aβ) with an appropriate bijective

mapping function g(·, ·). Unfortunately, when the dimension of o grows, which is often the case in
NN, the computational burden of integral calculation becomes incredibly more demanding.

The closed form approximations described below can efficiently compute the mean and variance
of the activation outputs am and as [30]. We show these approximations for sigmoids σ(x) and
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Table 1: SP-GRU operations in mean and variance. ⊙ and [A]2 denotes the Hadamard product and
A⊙ A of a matrix/vector A respectively. Note the Cell State does not involve nonlinear operations.
See Fig. 4 for the internal cell structure.

Operation
Linear

Transformation

Nonlinear

Transformation

Reset otr,m = Ur,mxt
m +Wr,mst−1

m + br,m rtm = σm(otr,m, otr,s)

Gate otr,s = Ur,sx
t
s +Wr,sh

t−1
s + br,s + [Ur,m]2xt

s rts = σs(o
t
r,m, otr,s)

+Ur,s[x
t
m]2 + [Wr,m]2ht−1

s +Wr,s[h
t−1
m ]2

Update otz,m = Uz,mxt
m +Wz,mst−1

m + bz,m ztm = σm(otz,m, otz,s)

Gate otz,s = Uz,sx
t
s +Wz,sh

t−1
s + bz,s + [Uz,m]2xt

s zts = σs(o
t
z,m, otz,s)

+Uz,s[x
t
m]2 + [Wz,m]2ht−1

s +Wz,s[h
t−1
m ]2

State ot
ĥ,m

= U
ĥ,m

xt
m +W

ĥ,m
st−1
m + b

ĥ,m
ĥt
m = tanhm(ot

ĥ,m
, ot

ĥ,s
)

Candidate ot
ĥ,s

= U
ĥ,s

xt
s +W

ĥ,s
ht−1
s + b

ĥ,s
+ [U

ĥ,m
]2xt

s ĥt
s = tanhs(o

t

ĥ,m
, ot

ĥ,s
)

+U
ĥ,s

[xt
m]2 + [W

ĥ,m
]2ĥt−1

s +W
ĥ,s

[ht−1
m ]2

Cell State ht
m = (1− ztm)⊙ ĥt

m + ztm ⊙ ht−1
m

Not Needed
ht
s = [(1− zts)]

2 ⊙ ĥt
m + [zts]

2 ⊙ ht−1
s

hyperbolic tangents tanh(x) for a Gaussian distribution, as these will become the critical compo-
nents used in our probabilistic GRU. Here, we use the fact that σ(x) ≈ Φ(ζx) where Φ() is a probit

function and ζ =
√

π/8 is a constant. Then, we can approximate the sigmoid functions for am and
as as

am ≈ σm(om, os) = σ

(

oα

(1 + ζ2oβ)
1

2

)

, as ≈ σs(om, os) = σ

(

ν(om + ω)

(1 + ζ2ν2os)
1

2

)

− a
2

m (8)

where ν = 4 − 2
√
2 and ω = − log(

√
2 + 1). A similar form for the hyperbolic tangent can be

derived easily from tanh(x) = 2σ(2x)− 1.

Note that other common exponential family distributions do not have obvious ways to make
such straightforward approximations. Thus, we use an ‘activation-like’ mapping f(x) = a −
b exp(−γd(x)) where d(x) is an arbitrary activation of choice with appropriate constants a, b and
γ. Nonlinear transformations of other distributions can then be formulated in closed form (see Ap-
pendix A for details).

3.3 Sampling-free Probabilistic GRU

Based on the probabilistic formulations described above, we present Sampling-free Probabilistic
GRU, the (SP-GRU). The internal architecture is shown in Fig. 4. Here, we focus on adapting GRU
with the Sampling-free Probabilistic (SP) formulation.

We express all the variables related to the GRU (left column of Table 1) in terms of their parameters

η = (α, β). Specifically, each of the variables that is related to a certain operation (r, z, ĥ or h)
has an additional subscript indicating its associated gate. For instance, Wr is now expressed only
in terms of its parameters Wr,α and Wr,β (i.e., two weight matrices). Again, we assume that all of
the variables are factorized. Notice that since the GRU consists of a series of operations (i.e., gates)
where each operation is a NN with linear and nonlinear transformations, we can update each gate by
the transformations defined above.

Assuming that the desired exponential family distribution provides an invertible parameter mapping
function g(·, ·), we first transform all of the natural parameter variables to means and variances.
Then, given an input sequence x = {x1

m, x1
s}, . . . , {xT

m, xT
s }, we perform linear/nonlinear transfor-

mations with respect to means and variances for each GRU operation (Fig. 4, Table 1).
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Figure 4: SP-GRU cell structure. Black lines/boxes and red dotted lines/boxes correspond to operations with
respect to variables in mean m and variance s respectively. Circles denote element-wise operators. Note that
even though it is illustrated in m and s to relate this to the list of SP-GRU operations in Table 1, the structure
can be described in terms of their correspondingly mapped natural parameters α and β.

The cell state computation does not involve a nonlinear transformation. For an output layer on the
hidden states to compute the desired estimate ŷ, a typical layer can be defined in a similar manner to
obtain both ŷm and ŷs. In the experiments that we describe next, we add another such layer to com-
pute the mean and variance of the sequence of predictions ŷ = {y1m, y1s}, {y2m, y2s}, . . . , {yTm, yTs }.

Extensibility remarks. Here, we note that despite the simplicity of the cell structure of the SP-GRU as
shown in Fig. 4, where the flow of the internal pipeline roughly resembles a standard GRU setup [14],
our exponential family adaptation is not limited to GRU. For instance, the above formulation can be
extended to other variants of RNNs such as LSTMs. Its additional gates and cells are still sigmoid or
hyperbolic tangent functions. With the rapidly growing appearance of many RNN variants [34, 35],
a versatile probabilistic RNN-type model which is not only empirically competitive but also of sound
interpretability is of high value in the immediate future.

4 Experiments

We perform unsupervised learning of decoding and predicting image sequences from the moving
MNIST dataset [31]. All experiments were run on an NVIDIA GeForce GTX 1080 TI graphics
card using TensorFlow, with learning rate α = 0.05. ADAM optimization [36] was used with an
exponential decay rate of β1 = 0.9, β2 = 0.999 for the first and second moments, respectively. We
use the Gaussian exponential family for all setups.

v1 v2 v3

v̂3 v̂2 v̂1

W1 W1 = W2 W2

v1 v2 v3

v̂4 v̂5 v̂6

U1 U1 = U2 U2

Figure 5: Given an input sequence v1,v2,v3, (Left) Autoencoder outputs v̂3,v̂2,v̂1, and (Right)
Predictor Network outputs v̂4,v̂5,v̂6.

4.1 Moving MNIST for Unsupervised Sequence Learning

Goal. For pixel-level tasks, prediction quality can be understood by the uncertainty estimate, i.e.,
estimated model variance of that pixel. In these experiments, we ask the following questions qualita-
tively and quantitatively: (1) Given a visually ‘good looking’ sequence prediction, how can we tell
that its trajectory is correct? (2) If it is, can we derive the degree of uncertainty on its prediction?

Experimental Setup. The moving MNIST dataset consists of MNIST digits moving within a 64×
64 image. A sequence of 20 frames is constructed for each training sample, where digits move
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randomly, bouncing when a frame edge is hit. Here, the training set consists of an infinite number of
potential sequences, and at each iteration a batch of these samples is used. Following previous work
on image sequences [31], we split sequences into two parts and evaluate SP-GRU in two similar
but distinct network setups. First, we train an SP-GRU auto-encoder, which given the first half of
a sequence, learns a hidden representation to be used in the reconstruction of that same sequence
(see Fig. 5). Second, we set up a predictor SP-GRU, which learns to extrapolate the latter half of the
sequence from that hidden representation. All hidden representations are of size 2048, with 1024
parameters for each of the two natural parameters.

Controlled Moving MNIST. We first train our SP-GRU and the MC-LSTM [27] with the same
number of parameters until they have similar test errors (independent of uncertainty) on simple one-
digit MNIST sequences moving in a straight line (blue line in Fig. 6). We then construct three sets of
100 ‘unfamiliar’ samples where each set consists of sequences deviating from the training sequence
path with varying angle, speed and pixel-level noise.

1. Angle (Fig. 6a): We show the input (first 10 triangles) and output (last 10 circles) trajec-
tories of training angle 20◦ which we train the model with. Note that this is the only path
that the single digit MNIST sequences traveled. The test trajectories with the angles 25◦,
30◦ and 35◦ which become more ‘unfamiliar’ as it increases are tested to predict the last
10 frames (circles).

2. Speed (Fig. 6b): We keep the angle (same training angle as the angle deviation setup show
in Fig. 6a) and the speed (5% of image size per frame) as in top left of Fig. 6b in training.
Then, we increase the speed (Fig. 6b: top right, bottom left, bottom right) to 5.5%, 6%
and 6.5%. Thus, the trajectories all travel in the same direction but with different speeds to
construct paths with unfamiliar speeds.

3. Pixel-level noise: This is a simple setup where the training and testing paths all have the
same angles and speeds, but pixel-level noise is added with higher intensities for testing
sequences. Specifically, for each pixel a noise from Unif(0, b) is added so the training has
zero noise with Unif(0, b) for b = 0 and the testing sequences have noise with Unif(0, b)
for increasing b = 0.2, 0.4, 0.6.

(a) Angles (b) Speeds

Figure 6: (a) Angle deviation trajectories. (b) Speed deviation trajectories.

Results. For varying angle and speed deviations, (top/middle of Fig. 7), the predictions look visually
sensible, but they do not actually follow the ground truth trajectories. We can quantify this directly
by the sum of pixel-level variance per frame (averaged over time and testset) as shown in the right
of Fig. 7. The uncertainty increases as the angle/speed deviation increases for both SP-GRU and
MC-LSTM. The level of pixel-noise (bottom of Fig. 7) also increases model uncertainty (note the
trajectories remain the same). These observations exactly demonstrate the usefulness of uncertainty
when the prediction output itself is visually sensible.

From a practical perspective, the uncertainty inference should not sacrifice computational speed,
e.g., realtime safety of an autonomous vehicle. With respect to this crucial aspect, SP-GRU greatly
benefits from its sampling-free procedure: each epoch (30 sequences) takes ∼3 seconds while MC-
LSTM with a Monte Carlo rate of 50 requires ∼40 seconds (> 10 times SP-GRU) despite their
comparable qualitative performance. The MC sampling rate for these methods cannot simply be
decreased: uncertainty will be underestimated. Further, theoretical analysis may be necessary to
determine the rate of convergence to the true model uncertainty, if convergence is guaranteed at all.
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θ Ground Truth Prediction Uncertainty

20◦

25◦

30◦

35◦

v Ground Truth Prediction Uncertainty

5.0%

5.5%

6.0%

6.5%

b Input Prediction Uncertainty

0.0

0.2

0.4

0.6

Figure 7: Predictions and uncertainties (frames 11, 15, and 20) from testing varying deviations from
trained trajectories (first of four rows, blue). Top: angle. Middle: speed. Bottom: pixel-level noise.
Right: the average sum of per frame pixel-level variance using SP-GRU and MC-LSTM.

With SP-GRU, we compute this model uncertainty in closed form, without the need for any heavy
lifting from large sample analysis.

Qualitative Comparisons. We demonstrated that the uncertainty measures of both SP-GRU and
MC-LSTM behave similarly such that the increasing trajectory deviations had also increased the un-
certainties (Fig. 7). However, the absolute magnitudes of these measures do not necessarily translate
directly to the quality of uncertainty. For instance, given the same unfamiliar input, if the uncertainty
of SP-GRU is higher than that of MC-LSTM, that does not necessarily mean that the uncertainty es-
timate of SP-GRU is better than that of MC-LSTM. Instead, the relative measure of uncertainty
within each model is of more interest which demonstrates how each model appropriately detects the
degree of uncertainty given various inputs.

Figure 8: Uncertainty maps of SP-GRU (left) and MC-LSTM (right) of three identical frames given
a trajectory with deviated angle.

Thus, in Fig. 8, we qualitatively show that the uncertainty measures of the models, despite the small
gaps between their quantities, agree with each other. In other words, we see how the uncertainty
maps from SP-GRU and MC-LSTM look similar to each other, implying that (1) these models
interpret the uncertainty similarly (which is reasonable given the similarity between their basic cell
structures) and (2) the between-model uncertainty gaps are of less significance.

Random Moving MNIST. We perform two learning tasks on training sequences of 20 frames of
two moving moving digits. Given the first 10 input frames, (1) reconstruct the same input frames
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Input and Decoder Estimate
︷ ︸︸ ︷

Prediction Estimate
︷ ︸︸ ︷

Figure 9: SP-GRU decoder and predictor results. Each row corresponds to the ground truth, mean
prediction, and variance estimate respectively.

and (2) predict the next 10 frames. We use the same test set provided by [31] to facilitate model
comparison.

Results. A test sample is given in Fig. 9 (top three rows). As expected, the quality of the in-
put reconstruction diminishes as the network progresses further into the past. We see a reflected,
but similar behavior with the predictor model. Notice that these qualitative interpretations are di-
rectly quantifiable through the variance output.We briefly evaluate how well SP-GRU is able to
perform on out-of-domain samples (Fig. 9, bottom three rows). Models deployed in real-world
settings may not realistically be able to determine if a sample is far from their training distributions.

Table 2: Average cross entropy test loss per image
per frame on Moving MNIST.

Model Test Loss

[31] Srivastava et al. 341.2
[37] Xingjian et al. 367.1
[38] Brabandere et al. 285.2
[39] Ghosh et al. 241.8
SP-GRU 277.1

However, with our specific modeling of un-
certainty, we would expect that images or se-
quences distant from the training data will ex-
hibit high variance. We construct sequences
of 3 moving digits. In this case, future recon-
struction is generally quite poor. As has been
observed in previous work [31], the model at-
tempts to hallucinate two digits. Our model
is aware of this issue: the variance for a large
number of pixels is extremely high, regardless
of if the digits overlap. Even in “easy" cases
where there is little overlap and digits are rela-
tively clear, the model has some sense of the particular input sample and recovery being far from its
learning distribution.

We compare our method to previous work in Table 2. SP-GRU with a basic predictor network setup
(Fig. 2) performs comparably or better than other methods that do not provide model uncertainty.
In these works, model performance often benefits from their specific network structure: encoder-
predictor composite models [31], generative adversarial networks [39], and external weight filters
[38]. Further, more recent models [40, 41] have achieved better results with large, more sophisticated
pipelines. Extending SP-GRU to such setups becomes a reasonable modification, providing model
uncertainty without sacrificing performance.

Other Methods of Measuring Uncertainty. Deep Markov Models [42] introduced recently natu-
rally give rise to a probabilistic interpretation of predictions from deep temporal models. However,
upon application of this model to Moving MNIST we were unable to obtain any reasonable pre-
diction, across a range of hidden dimension sizes and trajectory complexities, even with significant
training time (days vs. hours for SP-GRU). Shown in Fig. 10 are results using a hidden dimension
size of 1024, with 100 dimensional hidden state. We note that the experimental setups described in
[42] are small in dimension and complexity compared to Moving MNIST, and it may be the case
that small technical development with DMMs may lead to promising and comparable uncertainty
results.
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Figure 10: Results for a single-digit fixed trajectory after 646K iterations using the DMM model.
Top: Ground Truth Trajectory. Bottom Right: Predicted trajectory of last 10 frames given first 10.
Bottom Left: Uncertainty estimation of predicted trajectory.

5 Conclusion

Recent developments in vision and machine learning suggest that in the near term future, network-
based algorithms will play an increasing role in systems deployed in healthcare, economics, scien-
tific studies (outside of computer science) and even policy making. But to facilitate this progression,
one of potentially many requirements will be the ability of the models to meaningfully reason about
uncertainty. Complementary to the developing body of work on Bayesian perspectives on deep
learning, this paper shows how a mix of old and new ideas can enable deriving uncertainty estimates
for a powerful class of models, GRUs, which is easily extensible to other sequential models as well.
While the low-level details of the approach are involved, it is intuitive and works surprisingly well
in practice. We first show applications on a standard dataset used in sequential models where our
results are competitive with other algorithms, while offering uncertainty as a natural byproduct. The
TensorFlow implementation will be publicly available.
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Appendix A Nonlinear Transformations of Other Exponential Family

Distributions

We show the activation functions (nonlinear transformations) of some common exponential family
distributions. As we mentioned in the main text, the closed form solutions of the nonlinear transfor-
mations (Sec. 3.3) of several exponential family distributions involves a monotonically increasing
and bounded ’activation-like’ mapping f(x) = a − b exp(−γd(x)) where d(x) is an arbitrary acti-
vation of choice with appropriate constants a, b and γ. Using f(x), the goal is to perform nonlinear
transformations on the pre-activation output o with respect to mean m and variance s, equivalent to
the following marginals:

am =

∫

f(o)pO(o | oα, oβ)do and as =

∫

f(o)2pO(o | oα, oβ)do− a2m (9)

which we express in closed forms. We refer to [30] to show the derivations for Gamma, Poisson and
Gaussian distributions.

A.1 Gamma Distribution

The probability density function (pdf) of the Gamma distribution given parameters α > 0 and β > 0
(not to be confused with natural parameters as these are conventional notations) is

pX(x | α, β) = βα

Γ(α)
xα−1 exp(−βx)

for the support x ∈ (0,∞) and Γ(α) =
∫∞

0
xα−1 exp(−x)dx. Then, let c = a = b, c > 0 and

d(x) = x to get f(x) = c(1− exp(−γx)). We first perform a nonlinear transformation with respect
to m as follows:

am =

∫

f(o)pO(o | oα, oβ)do

=

∫ ∞

o=0

c(1− exp(−γo))
oβ

oα

Γ(oα)
ooα−1 exp(−oβ ⊙ o)do

= c

∫ ∞

o=0

oβ
oα

Γ(oα)
ooα−1 exp(−oβ ⊙ o)do

− c

∫ ∞

0

oβ
oα

Γ(oα)
ooα−1 exp(−(γo+ oβ)⊙ o)do

= c

[

1− oβ
oα

Γ(oα)

∫ ∞

0

ooα−1 exp(−(γo+ oβ)⊙ o)do

]

= c

[

1− oβ
oα

Γ(oα)
⊙ Γ(oα)⊙ (oβ + γ)−oα

]

= c

[

1− oβ
oα

(oβ + γ)oα

]

= c

[

1−
(

oβ
oβ + γ

)oα]
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and for the variance,

as =

∫

f(o)2pO(o | oα, oβ)do − a2m

=

[∫ ∞

o=0

c2(1− 2 exp(−γo) + exp(−2γo))
oβ

oα

Γ(oα)
ooα−1 exp(−oβ ⊙ o)do

]

− a2m

= c2
[

1− 2
oβ

oα

Γ(oα)
⊙ Γ(oα)⊙ (oβ + γ)−oα +

oβ
oα

Γ(oα)
⊙ Γ(oα)⊙ (oβ + 2γ)−oα

]

− a2m

= c2
[

1− 2
oβ

oα

(oβ + γ)oα
+

oβ
oα

(oβ + 2γ)oα

]

− a2m

= c2

[(
oβ

oβ + 2γ

)oα

−
(

oβ
oβ + γ

)2oα
]

for c > 0 and γ > 0 where c = 1 and γ = 1 are generally good choices that resemble tanh.

A.2 Poisson Distribution

The pdf of the Poisson distribution over the support x ∈ {0, 1, 2, . . .} with a parameter λ > 0 is

pX(x | λ) = λx exp(−λ)

x!
. (10)

Then, let c = a = b, c > 0 and d(x) = x to get f(x) = c(1 − exp(−γx)). The nonlinear
transformation on o to obtain am is as follows:

am =

∞∑

x=0

f(x)pO(o | oα, oβ)

=

∞∑

x=0

c(1− exp(−γx))
oxα exp(−oα)

x!

= c

∞∑

x=0

oxα exp(−oα)

x!
− c

∞∑

0

exp(−γx)
oxα exp(−oα)

x!

= c− c(exp(−oα))

∞∑

x=0

oxα exp(−γx)

x!

= c[1− exp(−oα) exp(exp(−γ)oα))]

and for the variance,

as =

∞∑

x=0

f(x)pO(o | oα, oβ)− a2m

=

[
∞∑

x=0

c2(1− 2 exp(−γx) + exp(−2γx))
oxα exp(−oα)

x!

]

− a2m

= c2
∞∑

x=0

oxα exp(−oα)

x!
− 2c2 exp(−oα)

∞∑

x=0

oxα exp(−γx)

x!

+ c2 exp(−oα)

∞∑

x=0

oxα exp(−2γx)

x!
− a2m

= −c2 exp(2(exp(−γ)− 1)oα) + c2 exp((exp(−2γ)− 1)oα)

= c2[exp((exp(−2γ)− 1)oα)− exp(2(exp(−γ)− 1)oα)]

for c > 0 and γ > 0.
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A.3 Gaussian Distribution

Here, we provide details of the nonlinear transformation on the Gaussian distribution (Eq. (5,6,7,8)
of main text). Note that our goal is to compute

a =

∫ ∞

−∞

f(x)N(x | m, s2)dx

for some nonlinear function f(x), mean m and variance s2. First, we consider f(x) = σ(x). Then,
Eq. A.3 is the logistic-normal integral:

a =

∫ ∞

−∞

σ(x)N(x | m, s2)dx =

∫ ∞

−∞

1

1 + e−x

1√
2πs2

exp

(

− (x−m)2

2s2

)

dx

which does not have a closed form solution. Now, we use the fact that a probit function

Φ(x) =

∫ x

−∞

N(z | 0, 1)dt

can be used to approximate a sigmoid function such that

σ(x) ≈ Φ(ζx)

for ζ2 = π/8. Further, we know that

∫ ∞

−∞

Φ(x)N(x | m, s2)dx = Φ

(
m√
1 + s2

)

so the nonlinear transformation on o with respect to m is

am =

∫

σ(o)N(o | oα, diag(oβ))do ≈ Φ

(

oα
√
ζ−2 + oβ

)

= σ

(

oα
√
1 + ζ2oβ

)

for ζ2 = π/8. Similarly, for the variance, since

σ(x)2 = Φ(ζν(x + ω))

for ν = 4− 2
√
2 and ω = − log(

√
2 + 1)/2, we see that

as =

∫

σ(o)2N(o | oα, diag(oβ))do− a2m

= Φ

(

ν(oα + ω)
√

ζ−2 + ν2oα

)

− a2m

= σ

(

ν(oα + ω)
√

1 + ζ2ν2oα

)

− a2m

for ζ2 = π/8.

The hyperbolic tangent function can be derived in a similar way since tanh(x) = 2σ(2x)− 1. Thus,
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for f(x) = tanh(x) over the support x ∈ (−∞,∞),

am =

∫

tanh(o)N(o | oα, diag(oβ))do

=

∫

(2σ(2o)− 1)N(o | oα, diag(oβ))do

= 2

∫

σ(2o)N(o | oα, diag(oβ))do −
∫ ∞

−∞

σ(2o)N(o | oα, diag(oβ))do

= 2

∫

σ(2o)N(o | oα, diag(oβ))do − 1

≈ 2

∫

Φ(2o)N(o | oα, diag(oβ))do− 1

= 2Φ

(

2ζoα
√
1 + 4ζ2oβ

)

− 1

≈ 2σ

(

2oα
√
1 + 4ζ2oβ

)

− 1

= 2σ




oα

√
1

4
+ ζ2oβ



− 1

and for the variance,

as =

∫

tanh(o)2N(o | oα, diag(oβ))do − a2m

=

∫

(4σ(2o)2 − 4σ(2o) + 1)N(o | oα, diag(oβ))do − a2m

≈
∫

(4Φ(ζν(o+ ω))− 4σ(2o) + 1)N(o | oα, diag(oβ))do − a2m

=

∫

4Φ(ζν(o + ω))N(o | oα, diag(oβ))do−
∫

4σ(2o)N(o | oα, diag(oβ))do

+ 1− a2m

= 4Φ

(

ν(oα + ω)
√
ζ−2 + ν2oβ

)

− 2σ




oα

√
1

4
+ ζ2oβ



− 3− a2m

≈ 4σ

(

ν(oα + ω)
√
1 + ζ2ν2oβ

)

− a2m − 2am − 1

where ν = 2(4− 2
√
2) and ω = − log(

√
2 + 1)/2.
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