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m Support Vector Machines (SVMs) are popular in many areas.

m Decision making, Machine learning, Statistics.
m Bio-informatics, Neuroscience, Geophysics ...

m For classification, regression and many other tasks.
m Result in two different types of convex programs,

Number of variables = length of an input vector.
“Primal” ¢ Obj. consists of a quadratic term and a piecewise linear function.
Costly obj. function evaluation with many input points.
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Support Vector Machines

m Support Vector Machines (SVMs) are popular in many areas.

m Decision making, Machine learning, Statistics.
m Bio-informatics, Neuroscience, Geophysics ...

m For classification, regression and many other tasks.

m Result in two different types of convex programs,

Number of variables = number of input points.
“Dual” { QP with dense and ill-conditioned Hessian.
A single equality constraint and bound constraints. @
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[ {(x,-,y,-)},-"i1 iid.~P(X,Y),
m x; c RV
mye{-1,+1}

m ¢ RY — H.

m Find a classifier

h(x) = (w, ¢(x)) + b,
H h(x;) > +1fory; =41,
B h(x;) < —1fory; = —1,
B Maximizing the “margin”
2/||wlz.
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SVMs for Classification (SVC)

= {(xi Yy} iid. ~ P(X,
m x; c RV
mYy c {—1,+1}.

m ¢ RY — H.

m Find a classifier

h(x) = (w, $(x)) + b,
B h(x;) > +1fory; = +1
m h(x;) < —1fory;= -1
B Maximizing the “margin
2/|lwllz.

1 c¥
min §||w||§+mZeH(h;x,-,y,-),

w -
’ =1

Hinge loss:  ¢u(h; x;, y;) := max{1 — y;h(x;),0} .

Y),

3
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SVMs for Regression (SVR)

Y A

m {(x;,y)M, iid~P(X,Y),

m x; € RV

hx) = (wo(x) +b oy e R.

m Find a regression function,
h(x) = (w, é(x)) + b

® Minimizing prediction error.

m Capture data points in an
e-radius hyper-tube
surrounding h(x).

g /



SVMs for Regression (SVR)
m {(x,y)}M, iid~ P(X,Y),

m x;c RV
h(x)=(wox) +b m oy e R.

Y A

m Find a regression function,
h(x) = (w, é(x)) + b
® Minimizing prediction error.
m Capture data points in an
e-radius hyper-tube
surrounding h(x).

R

M
T,Q 7||WH2+ Z: hxlayl

e-insensitive loss:  ¢.(h; x;, ¥;) := max{|y; — h(x;)| — ¢, 0}. @



SVM Formulations of Interest

Primal

LA 2 _
min 311Wllz + Remp(: X, y),

where
1 M
W > tu(h; xi, yi), (SVC)
Remp = 7;

LS iy, (SVR)

i=1

and A = 1/C. The objective function
is convex but non-smooth.



SVM Formulations of Interest

Primal

D U .
min Wz + Femp (M X, y),

where

M
Z (h: xi, i), (SVC)
Rcmp =

M
Z (h: x;,y), (SVR)

§ \

and A = 1/C. The objective function
is convex but non-smooth.

Dual
min %ZTQZ +p'z

st. ¢’z=d (1)
L<z<u,

- Qis ap.s.d. n x nmatrix, usually
dense and ill-conditioned.

-n= M (SVC) or n=2M (SVR)

- Determined by y and kernel function
w(Xi, Xj) == (d(Xi), B(X;)).-

-z,p,c,l,ucR" and d € R.
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m Standard (nonparametric) SVR: use a linear model

h(x) = (w,$(x)) + b,

m Semiparametric SVR [SFS99]: use an extended linear model

K
hx) = (w,6(x)) +3_ Bry(x)
H_—’ =
Nonparametric part

Parametric part

where v;(-)’s are user-defined (basis) functions.

Benefits of semiparametric models
m No explicit modeling is necessary (nonparametric). @

m Embedding of prior knowledge / model interpretation (parametric).



Primal Formulation

The “primal” SVR formulation is,

1 . .
m|n Ew W+ ;e (h: xi,y1),  Lo(P; x;, 1) == max{|y; — h(x;)| — ¢, 0}.

Introducing slack variables &; and £} to represent the deviations from
the e-tube, we obtain

min L wTw QZM:E+5 (2a)
woker 20 T A
st yi— (w, (X)) — Zﬁjzp,(x;) <e+¢& fori=1,...,M (2b)
j=1

K
~[yi— weote = S pux)| <ere tori=t M (20)
j=1
£>0,6 >0 (2d)@



Dual Formulation

min F(z) := %ZTQZerTZ st. Az=0, 0<z< %1, (3)

where z,p e R?M, @ e R?M*2M ps.d., and A € RK*2M,

z= [ ;’* ] € R?M for the dual vectors a and * of (2b) and (2c), resp.,

p=le—Vi,....e—Yme+Yi,...,e+yu]" e R?M |

Q — Yiyir(Xi, X;) if1<ijj<MorM+1<ij<2M
"7\ —yiyir(xi,x;)  otherwise '
Pi(xa) e i(xm)  —i(xa) - —i(Xm)
| e(x0) Ya(xm)  —tha(X1) - —a(Xm) RE2M
?bK(IX1) x wK(IXM) —’WI(X1) e _'l/JK.(XM) @

This is a generalization of the standard SVM dual problem. n := 2M.
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m In each outer iteration, we split variables z into

m Basic variables zz, B C {1,2,...,n}.
m Nonbasic variables z,, N = {1,2,...,n}\ B.

l Working Set l

Subproblem
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. . . . . I Working Set I
m In each outer iteration, we split variables z into

m Basic variables zz, B C {1,2,...,n}.
m Nonbasic variables z,, N = {1,2,...,n} \ B.
m B is our working set, of which the size nz < n.

m Fix z,, change z;.

m Given z¥ = (2§, z/), we solve the subproblem to get ™.
Subproblem
min f(ZB) — %ZZ@QBBZB + (Q&MZj(\/ T PB)TZB (4)
ZpB

st Apzs=-AyZir+b, 0<zs< %1.




Decomposition Framework [LWQ09]

m In each outer iteration, we split variables z into

m Basic variables zz, B C {1,2,...,n}.
m Nonbasic variables z,, N = {1,2,...,n}\ B.

m B is our working set, of which the size nz < n.
m Fix z,r, change z;.

m Given zK = (zB,zN) we solve the subproblem to get z;;
Subproblem

. 1
n;]ln f(zg) == EZZSQBBZB aF (QBsz(\/’ = PB)TZB
B

st Apzs=-AyZir+b, 0<zs< %1.

[roren )|

Subproblem

K+1

(4)

u zk+1 - (zk+1 ZN)

vvvvvvvvvvvvv



Choosing B: Working Set Selection

m Inspired by the approach of [Joa99], later improved by [SZ05].

m ng: working set size.
® n.: max. number of “fresh” indices. n, < ng.



Choosing B: Working Set Selection

m Inspired by the approach of [Joa99], later improved by [SZ05].

m ng: working set size.
® n.: max. number of “fresh” indices. n, < ng.

Consider Lagrangian relaxation £ of the dual formulation (3),
L(z;n) = F(z) +n" Az . (5)
Given (2¥, %), find a solution d of

min (Vzﬁ(zk; 77")) "d

0<di <1 if z&+1 =0,
-1<d; <0 it 24" = C/M,

s.t. (6)
-1<d <1 it ZK51 € (0, C/M),

#{di|d; # 0} < ne.



Choosing B: Working Set Selection

m Inspired by the approach of [Joa99], later improved by [SZ05].

m ng: working set size.
® n.: max. number of “fresh” indices. n, < ng.

Consider Lagrangian relaxation £ of the dual formulation (3),

L(z;n) = F(z)+n' Az .
Given (2¥, %), find a solution d of

min (Vzﬁ(zk; 77")) "d

0<d <1 if z&+1 =0,
ot -1<d; <0 it 24" = C/M,
T 1<di< it 2 € (0, C/M),

#{di|d; # 0} < ne.

m Solved efficiently, O(nlog n)

10/22



Subproblem: Primal-dual Solver (PDSG)

m We consider the following formulation of (4):

where

max min  L(z
N ZpeQ (zs,m) ,

L(zz,m) = f(z5) +n' (Agzs + AvZ;) |

Q:{zBeR"ﬂngBg%ﬂ .




Subproblem: Primal-dual Solver (PDSG)

Update

m We consider the following formulation of (4):
[ ¢ 7
max min L(zz,m) , (7)
where B
L(zs,m) := f(z5) + 0" (Aszs + AvZy)
Q={zseR™”0<zz < %1} :

In each “inner” iteration, update primal and dual variables by,
z5" — zig + s(zp, ")
e n' +t(z5 ")
m Primal step s(+, -) is chosen by two-metric GP [GB84] followed by
line-search, on a sub-workingset of size 2. @

m Dual step (-, -) is a direction V,,Z, scaled by dual Hessian % P
diagonal [KS05], on a sub-workingset of size 2. WISCONSIN
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Update

=)

m Update primal-dual iterate pair (25+1, nk+1).

m zK1 — (zlé+17zjfv).

m "' is provided by the subproblem solver.

m “Full gradient” V;£(z; n) has to be updated.

m To check KKT conditions violation.
m For the next working set selection.



Update

m Update primal-dual iterate pair (25+1, nk+1).

m zK1 — (le(aﬁvzj(\/)-

m "' is provided by the subproblem solver.

m “Full gradient” V;£(z; n) has to be updated.

m To check KKT conditions violation.
m For the next working set selection.

Update incrementally,
vz£(2k+1,’l’)k+1) — VF(zk+1) + (,r]k+1)TA (9)

= VF(ZF) + [
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function [SFS99, KS05]:
w(x) = sin(x) + sinc (27 (x — 5)).
m Sample y;’s from w at uniform random points x;’s in [0, 10] with
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m Experiment settings
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Experiments

m A toy test problem: modified Mexican hat
function [SFS99, KS05]:
w(x) = sin(x) + sinc (27 (x — 5)).
m Sample y;’s from w at uniform random points x;’s in [0, 10] with
additive noise ¢; ~ N'(0,0.22): y; = w(x;) + .

m Experiment settings

B Parametric components: 11(x) = sin(x), ¢¥2(x) = sinc(2n(x — 5)).
m Gaussian kernel x(x, y) = exp(—7||x — y||?) with v = 0.25.

W Loss function parameter e = 0.05.

B nz =500, n. = ng/5.

m Compare to the current best solver, MPD [KS05].

® Handles the problem as a whole. Working set size is 1.
B Primal-dual method, based on the method of multipliers.
m Primal: gradient projection, dual: scaled gradient ascent. @



Scaling w.r.t. Training Size

m PDSG vs. MPD
(stand-alone).

1 m D:PDSG vs. D:MPD (in

= decomposition).
€ 10 _
3 m C=1.
§ , m D : MPD catches up
£ 10 D : PDSG when M 1: the
£ full gradient update step
i:’: 10" becomes dominant as M
K} grows.

10°

= = =MPD
10_1 ‘a ‘4 5
10 10 10
Training size M @

WISCONSIN



Convergence Behavior

m PDSG vs. MPD

3
%, (stand-alone).
| = M=1000.
z |
£, Lo ‘ L ‘ L m PDSG: 2 sec.
0 2 4 6 8 10 12 14
Time (sec)
N = m MPD: 14 sec.
= I ——— PDSG . .
T . m (Top) max. violation of
1 the dual feasibility
gr e i conditions.
o ‘ ‘ ‘ ‘ o
0 2 4 6 8 10 12 14 . . .
Time (seo) m (Middle) max. violation of
e ‘ ‘ ‘ ‘ ‘ the primal equality
- — —MPD .
50 T cmm e constraints.
205 ) m (Bottom) convergence of

: : e s ‘ : the coefficient of the first
fmeeed parametric basis

function. @




Stochastic Subgradient Methods for SVMs

i Py

m Recent ML research on solving the primal formulation’,

M
min f(w, D) = >\ Z (W; X, yi). (11)

B Alarge dataset D := {(x;,yi):i=1,...,M}.
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@ e
\(\QNN
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M
min f(w, D) = >\ Z (W; X, yi). (11)

B Alarge dataset D := {(x;,yi):i=1,...,M}.
B The objective function is strongly convex*.
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Stochastic Subgradient Methods for SVMs

g

m Recent ML research on solving the primal formulation’,

M
min f(w, D) = >\ Z (W; X, yi). (11)

B Alarge dataset D := {(x;,yi):i=1,...,M}.
B The objective function is strongly convex*.

m These has a connection to stochastic approximation methods
that have developed in the past 50 years and still active.

m New issues arise when applied to machine learning problems.

Y w — (w,b)



Large-scale Linear SVM Training [Bot, SSSS07]

Given D, consider the subgradient of an approximate objective function
f(w; D;) of f(w; D) in (11) for a sample dataset D; C D:

A
f(w; Dy) == w W+ Z tu(w
(X}’ €Dy
g(wi; Dy) = Aw; — | X Z yx € 6f(w Dy)
(x.y)eDf

where D; := {(x,y) € D¢: 1 — y(w'x) > 0}.



Large-scale Linear SVM Training [Bot, SSSS07]

Given D, consider the subgradient of an approximate objective function
f(w; D;) of f(w; D) in (11) for a sample dataset D; C D:

A
f(w; Dy) == w W+ Z tu(w
(X}’ €Dy
g(wi; Dy) = Aw; — | X Z yx € af(w Dy)
(x.y)eDf

where D} = {(x,y) € D;: 1 — y(w'x) > 0}.
Update the iterate w by

Wi = Py (W — nig(we; Dr)) (12)
where 1 W e _ < 1 Dl 1
nf_ﬁv _{W||W||2_ﬁ}7 | I|_ . @
WISCONSIN



Stochastic Approximation (SA)

Classical SA methods

m Choice of n; = O(1/t) has a history back to
[RM51, KW52, Chu54, Sac58].

m Require the objective function to be strongly convex.

- SVM objective function f(+) is strongly convex with modulus .

m Highly sensitive to the scaling of n; [NJLS09].
m Asymptotic convergence of O(1/t) in expectation.
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m Asymptotic convergence of O(1/t) in expectation.
Robust SA methods

m Choice of n = O(1/+/1) suggested in [NY83].

m Useful when the objective is convex but not strongly convex, or the
curvature is not known.

m \ =~ 0 for some choices of C (A = 1/C).
m Asymptotic convergence of O(1/v/1) in expectation.
m Similar analysis in online learning [Zin03].



Stochastic Approximation (SA)

Classical SA methods

m Choice of n; = O(1/t) has a history back to
[RM51, KW52, Chu54, Sac58].

m Require the objective function to be strongly convex.
- SVM objective function f(+) is strongly convex with modulus .

m Highly sensitive to the scaling of n; [NJLS09].

m Asymptotic convergence of O(1/t) in expectation.
Robust SA methods

m Choice of n = O(1/+/1) suggested in [NY83].

m Useful when the objective is convex but not strongly convex, or the
curvature is not known.

m \ =~ 0 for some choices of C (A = 1/C).
m Asymptotic convergence of O(1/v/1) in expectation.
m Similar analysis in online learning [Zin03].

Both requires a bound on E(||g(w; D)||?).



A Stopping Criterion?
m SA algorithms require the number of iterations T to run.

m An efficient stopping criterion is important,

m Slow convergence of SA methods.
B Data sets are large.



A Stopping Criterion?
m SA algorithms require the number of iterations T to run.

m An efficient stopping criterion is important,
m Slow convergence of SA methods.
B Data sets are large.
Elements of statistical learning theory,
= Unknown P(X, Y), and a dataset D = {x;, y;}¥, i.i.d. ~ P(X,Y).



A Stopping Criterion?
m SA algorithms require the number of iterations T to run.

m An efficient stopping criterion is important,
m Slow convergence of SA methods.
B Data sets are large.
Elements of statistical learning theory,
= Unknown P(X, Y), and a dataset D = {x;, y;}¥, i.i.d. ~ P(X,Y).
m Hypothesis f € F, F is a chosen family of hypotheses.



A Stopping Criterion?
m SA algorithms require the number of iterations T to run.

m An efficient stopping criterion is important,
m Slow convergence of SA methods.
B Data sets are large.
Elements of statistical learning theory,
= Unknown P(X, Y), and a dataset D = {x;, y;}¥, i.i.d. ~ P(X,Y).
m Hypothesis f € F, F is a chosen family of hypotheses.
m Loss function £(f(X), Y).



A Stopping Criterion?
m SA algorithms require the number of iterations T to run.

m An efficient stopping criterion is important,

m Slow convergence of SA methods.
B Data sets are large.

Elements of statistical learning theory,

= Unknown P(X, Y), and a dataset D = {x;, y;}¥, i.i.d. ~ P(X,Y).
m Hypothesis f € F, F is a chosen family of hypotheses.

m Loss function £(f(X), ).

m Risk R(f) := E({(f(X = [L(f(X), Y)dP(X,Y).



A Stopping Criterion?
m SA algorithms require the number of iterations T to run.

m An efficient stopping criterion is important,
m Slow convergence of SA methods.
B Data sets are large.
Elements of statistical learning theory,
= Unknown P(X, Y), and a dataset D = {x;, y;}¥, i.i.d. ~ P(X,Y).
m Hypothesis f € F, F is a chosen family of hypotheses.
m Loss function £(f(X), Y).
m Risk R(f) :=E((f(X),Y)) = [L(f(X), Y)dP(X,Y).
m Empirical Risk Remp(f) := 7 Soim £(f(Xi), Vi)



A Stopping Criterion?
m SA algorithms require the number of iterations T to run.

m An efficient stopping criterion is important,

m Slow convergence of SA methods.
B Data sets are large.

Elements of statistical learning theory,

= Unknown P(X, Y), and a dataset D = {x;, y;}¥, i.i.d. ~ P(X,Y).
m Hypothesis f € F, F is a chosen family of hypotheses.

m Loss function £(f(X), Y).

m Risk R(f) :=E((f(X),Y)) = [L(f(X), Y)dP(X,Y).

m Empirical Risk Remp(f) := 7 Soim £(f(Xi), Vi)

B R* :=inf; R(f).



A Stopping Criterion?
m SA algorithms require the number of iterations T to run.

m An efficient stopping criterion is important,
m Slow convergence of SA methods.
B Data sets are large.
Elements of statistical learning theory,
= Unknown P(X, Y), and a dataset D = {x;, y;}¥, i.i.d. ~ P(X,Y).
m Hypothesis f € F, F is a chosen family of hypotheses.
m Loss function £(f(X), Y).
m Risk R(f) :=E((f(X),Y)) = [L(f(X), Y)dP(X,Y).
m Empirical Risk Remp(f) := 7 Soim £(f(Xi), Vi)
B R* :=inf; R(f).
m Error decomposition,

inf Remp(f) ~ R" = (Iug; R(f)— R ) + (,‘QL Remp(f) — inf. H(f)) . @

generalization error approximation error estimation error WISCONSIN
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A Stopping Criterion?

[SSS08] suggested a new error decomposition

(gen. err) = (approx. err) + (est. err) + (optimization err) .

m Approx. error doesn’t change for fixed F.

m As M — oo, (est. err) — 0 if f is consistent.
m Allow larger opt. err to achieve the same level of gen. err with large M.

Total Generalization Error

Optimization Error

Estimation Error

Approximation Error

Number of Data Points M

[Due to N. Srebro at MLSS09]



Conclusions

Decomposition Algorithm
m Can solve other SVMs, v-SVM, semiparametric SlapSVM, etc.
m Proofs are on the way.

SA Algorithms
m More work is heeded.

m SA methods are inherently serial, each iterate is an instantiation.

m Reduce the variation of the final iterate distribution, possibly
by running several SA algorithms in parallel.

m Nonlinear ¢(x) (other than ¢(x) = x).
m Initial work by [JY09].
m Explicit consideration of the intercept b. @

WISCONSIN



Thank you.



Optimality Condition of the Dual Formulation
Lagrangian function £ of (3) and its gradient w.r.t. z:
L(z;n)=F(z)+n"Az . (13)
V:L(zin)=Qz+p+ ATy . (14)

From Karush-Kuhn-Tucker (KKT) first-order optimality conditions,

(Qz+p+ATn)i20 if z; = 0 (15a)
(Oz+p+ATn)l_§0 if z; = C (15b)
(Qz+p+ATn)i =0 if zi € (0,C/M)  (15c)
Az=b (15d)
0<z<(C/M)1 . (15e)

which is necessary and sufficient. @



Decomposition Framework

Algorithm 1 Decomposition Framework

1. Initialization. Choose an initial z' (3) (possibly infeasible), initial guess of
7', positive integers ng > K and 0 < ne < ng, and tolD. Choose an initial
working set B. k «— 1.

2. Subproblem. Solve the subproblem (4) for the current working set 3, to
obtain zi"" and n**'. Set 2Kt = (2K, 2K,).

3. Gradient Update.

QB B

VF(E) + (0" A= VF(Z") + [ Qs

| =2y oy

4. Convergence Check. If the maximal violation of the KKT conditions falls
below tolD, terminate with the primal-dual solution (2", n**").

5. Working Set Update. Find a new working set B by solving (6).

6. Set k — k + 1 and go to step 2. @

WISCONSIN



Scaling of D:PDSG w.r.t K

Total cputime in seconds

>
o

. . . . . .
2 4 6 8 10 12 14 16
Number of equality constraints K

.
18

20

Total solution time of
D:PDSG with increasing
number of parametric
components K.

= M = 1000.
m Time complexity of

D:PDSG is O(uKng), u
is the number of outer
iterations.

Solver time appears to
increase linearly with K
for K > 6.

Yi(x) =
cos(jmx) j=0,2,4,...
sin(jrx) j= LS,&W
WISCONSIN
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