THE UNIVERSITY OF WISCONSIN

COMPUTER SCIENCES DEPARTMENT

THE AUTOLING SYSTEML' 2

by

Sheldon Klein
William Fabens
Robert G. Herriot
William J. Katke

Michael A. Kuppin
Alicia E. Towster

Technical Report #43
September 1968

ABSTRACT

The AUTOLING system represents an attempt to replace the human
linguist with a machine in the process of linguistic fieldwork with an
informant. To the extent that the attempt succeeds, the analytic and
heuristic methodology of live linguists can be considered formalized.

The current system consists of three as yet unjoined components:

a morphological analyzer, a program for learning context-free phrase
structure grammar, and a program for learning monolingual and bilingual
transformations. All programs are written in ALGOL and operational on
the Burroughs B-;5500 computer. The capabilities of the system are illus-
trated with examples of its treatment of selected problems in English,

Latin, Roglai, Indonesian, Thai, Chinese and German.

1 . s

A portion of this paper was presented at the 42nd Annual Meeting of the
Linguistic Society of America, December 1967, Chicago, under the title
"Testing an Aut¢ mated Linguistic Fieldworker".

2 .
This research has been supported in part by the Wisconsin Alumni Research
Foundation and the National Science Foundation.

TABLE OF CONTENTS

1,0 Introduction

1.1 On Discovery Procedures, Algorithmic and Otherwise

1.2 The Philosophy Behind AUTOLING

2.0 Morphological Analyser

3.0 Phrase Structure Heuristic Learning Program

3.1 Rule
3.1,1
3.1.2

3.2 Test
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.2.7
3.2.8

3.3 Planned Improvements in the Phrase Structure Learning Program

Testing Heuristics

Substitution and Informant Queries

Parsing Illegal Sentences and Recycling
Problems

Embedding Illustration: Artificial Language
English 1

English 1II

Latin: Koutsoudas #26

Roglai: Koutsoudas #58

Indonesian: Koutsoudas #43 and #9 Combined
Thai

Mandarin Chinese

4.0 Transformation Learning Program

4.1 Bottom-to-Top Transformation Learning

4.2 Top-to-Bottom Transformation Learning

4.2.1
4,2.2
4,2.3
4.2.4

Program Logic

Features of the Program

Learning and Application of an Active-Passive Transformation

Learning a Bilingual Transformation

5.0 Proving the Linguist Superfluous

References

¥

f—

TN NI N N

14
16
17
L9
23
28
35
46
56
65
67
67
69
69
75
7
80
82
84

1.0 Introduction.

The AUTOLING system* is, in conception, an on-line computer program that
replaces a human linguist in analytic interaction with a live informant. The dis-
covery procedures are heuristic rather than‘algorithmic; an algorithm is here defined
as a method that guarantees success; a heuristic as an analytic approach that may

work, but does not necessarily guarantee success in all cases.

1.1 On Discovery Procedures, Algorithmic and Otherwise.

Zellig Harris probably deserves the most credit for expositing in 1946 [5]
and 1951 [6] the method of using massive distributional tabulations of units in
texts to determine the structure of a language. Rulon Wells soon followed in 1947
[21] with an approach to syntactic analysis that also rested ultimately on dis-
tributional analysis.

In 1959 [18], Solomonoff suggested an automatic method for phrase structure
language grammar discovery that, while adding little to the methodology of linguistic
analysis, introduced the problem to a computing audience and suggested the use of
an informant,

Distributributional analysis grammar discovery procedures alone will not work
for two reasons. The first is pracfical: the combinatorial computations required in
the analysis of say a million words of running text woulé yield intermediate data

exceeding the memory capacity of any known computer--and the computatioqi"time

-
‘e

of course would be commensurately prohibitive. More formally, E. Shamir demon-
strated in 1962 [16] that it is impossible to obtain a discovery method for context
free{phrase structure grammars using natural language text alone as input. (He also

rsuggested that the use of an informant would not alter the problem,)

>"’Written in ALGOL for the Burroughs B-5500 Computer.

2
Paul Garvin, in 1961 [2] suggested the use of heuristics in guiding the
" choice of distributional tests. His methodology étill used only edited texts as
a data base.

E. Mark Gold, in 1964 [4], indicates a formal demonstration that a dis-
covery algorithm for learning context free grammar is possible if interaction with
an informant is permitted.

Garvin discussed the use of heuristics in automatic informant work in
1965 [2].%

Work on the AUTOLING system has been described in 1967 [1o,11].

Other programs which involve some sort of language learning inc,}ude those
of Knowlton 1962 [12], Uhr 1964 [20] McConlogue & Simmons 1965 [14], and
Siklossy 1968 [17]. |

1.2 The Philosophy Behind AUTOLING

The basic goal of AUTOLING research is to replace the linguist rather than
aid him. To the extent that this goal is attained (in the form of a computer program
system), the analytic methodology of live linguists can be considered formalized.

Human linguists obtain grammars without performing massive distributional
B analysis through the use of heuristics which permit them to make testable hypoth-
eses that, When verified, eliminate the need for great masses of distributional
analyses.

. /
, 'I'he ideal AUTOLING system would incorporate all the heuristics that a good

linguist uses in fieldwork, and be capable of undertaking the analytic process via

~ interaction with a live informant.
.)

; At a RAND Corporation Linguistics Colloquium in December 1964, S. Klein
suggested to Paul Garvin, the invited speaker, that he might use the concept of
heuristic problem solving and game playing in application to automated informant

work.

a
.

3

However, we have not attempted to deal with phonology in the project.
The intended informant for the system would be bilingual in English and some '

other language, and be capable transcribing his non~English language in

‘phonemic notation on a teletype keyboard. « B /

/ The ideal AUTOLING system would, initially, ask the informant a
battery of prestored questions ('How do you say... ?) designed to elicit |
material for morphalogical analysis. At a somewhat later stage of-interaction
a phrase structure learning component would attempt to learn a phrase structure
grammar, accépting as inputs the informant's ;esponSes rewritten morphophone-
mically., A conﬁnuous interaction between thé phrase structure learning com-
ponent and the morphological program would take place. Ideally, the program
would learn monolingual transfo‘l"mations,and‘also bilingual ones so that the
program might generate its own query list in English. That is, a sentence is
generated to test a hypothesized rule, then translated into English; the system

would then output a 'How do you say' message followed by the English trans-

lation of the test sentence; the informant's reply is then matched against this

. prediction

This paper, however, deals with the current reality of the AUTOLING systém.

At the moment it consists of three disconnected comporents: a morphological

‘- analyzer that is not informant interactive; an informant-interactive, context-

free phrase s'tructure learning program (the most developed component) which

" does test rules, but with a 'Can you say' message followed by the test pro-

duction in the language under analysis rather than its English tré-nslation; and

§

~an informant-interactive program that learns monolihgual and bilingual trans-

S e X

formations. Also, in the actual systems, no query lists are used. The fmfor-

4

mant implicitly provides his own at certain times by feeding in pertinent data.

The reader will please note that all approaches that might involve ‘a

human linguist giving the machine advice have been avoided because of the

primary goal of the research -- the replacement of the linguist and the con-

comitant formalization of fieldwork methodology.

There is of co;.lrse é key secondary goal that demands the same kind
of approach: the AUTOLING system logic will be incorporated in the learning
component of Klein's computer simulation of Historical Change in Language
system [8,9]. The exact function of AUTOLING in this system is described

in a paper presented at the 10th International Congress of Linguists in 1967

[10].

2.0 Morphological Analyzer

This program is essentially the work of Alicia E. Towster. Although a
great deal of work has gone into it, it is relatively undeveloped from the point
of view of integration into the rest of the AUTOLING system. A number of
early versions have been moderately successful in analyzing problems taken
from Nida [151, Koutsoudas’ [13], but have revealed basic problems that

have led to major revisions.

-

One of the key problems is that of control of the gloss metalanguage.
Inherent in the analytic procedure is a parallel comparison of strings in the
language and tl;eir glosses. If the glosses are left in English, the program
is limited to making morphological cuts that match the English gloss units.

Human analysts draw ubon a larger semantic data base and reinterpret the

glosses as the problem demands. To incorporate this reinterpretation in a

program dema‘nds a formalization of the gloss reinterpretation process. This
in turn makes mandatory the incorporation of a universal semantic list (not
necessarily the semantic distinctive features of Katz and Fodor [7] or
Chomsky [1]) with rules for rewriting English glosses in terms of those
features, even though many might not be semantic distinctive features in
English.

If the claim for 'universiality' of such semantic features disturbs some
linguists, they might view them as simple an inventory of all (hopefully)
possible semantic units any language in the world might assign to a given
English gloss.

The determination of such a list of semantic features is, of course, a
momentous task. Accordingly, only a sméll listing of such features suitable
for handling perhaps five or ten assorted text book problems have been
determined.

The decision to rewrite glosses in terms of semantic features creates
another major analytic problem for a program: the determination of which such
features are actually distinctive; or in other terms, what bundles of s.emantic
primitives are to be treated as units in a given language, a’hd how they aré

~distributed. The problem can be made clear from a 'trivial' English example:;

B

Form " Gloss
I eat Ist person, singular, human, animate,

eat,indicative, present tense.

you eat 2nd person, singular, human,animate,

eat,indicative, present tense.

Clearly, 'I' and 'you' are uniquely associated with the features
‘Ist person' and '2nd person'. But what of the remainders ?

In an effort to handle the problem a distinction between primary and
secondary glosses is noted. 'I' and 'you'are assigned 'lst person' and
'2nd person', respectively, as primary glosses. The remaining features with
each input are assigned to both members of each cut but labelled as secon-
dary glosses.

Later analysis determines the final assignment of the features, and
their relabelling as primary.

Other problems that arise in analysis are those of over-cutting.
Occasionally what should emerge as a single morpheme is split into two
components. Proper analysis of the semantic features associated with
these over-cut units at a later stage should provide enough data for recom-
bination, but the pertinent heuristics mhave not yet been programmed.

Additional analytic heuristics which are in a state of flux pertain to
input-sequence sensitivity. Currently, the inputs are analyzed in block units
containing a fixed number of forms and glosses. The selection of new analytic
blocks for intermediate stages of analysis as a functfon of what cuts have
occurred in the preliminary stages involve heuriétics that are also yet to
be programmed. Heuristics for grouping allomorphs, and determining mor-

phophonemic rules also await implementation.

3.0 Phrase Structure Heuristic Learning Program

- This system, which learns unordered, context-free phrase structure

rules is not yet connected to the Morphological Analysis program. It accepts

as inputs sentences written with spaces between morphological units. A multi-
path parser yields all possible parses of each input. If no complete parses are
obtained, the top nodes of the incomplete parses are ordered according to the
number of uncombined nodes remaining in each parse.

These incomplete parse top nodes serve as inputs to the basic heuristic 1.

Heuristic |

XY 2] == *Si—>XYS
[where Si stands for rule: *Si indicates sentence rule]

That is, coin as a rule the closure of the parse. In the case that no rules of
the provisional grammar apply to the input string, the string itself is treated

as a parse, and heuristic 1 yields:

*Si —+ morpheme morpheme . morphemen .

l_ Zoeo

This of course is what happens to the first input to the system. The remaining
learning heuristics cover the various cases in which units in identical environ-
ments are assigned to classes.

Heuristic 2 states that two single morphemes ir} identical environments

are assigned to the same class.

Heuristic 2

Sl—melY S3_)ml

¢ SZ—>Xm2Y 83-—-» m2

where X and Y are strings consisting of terminal, non-terminal or a mixed

combination of units, and ml and m2 are single morphemes, and either

8

X oryY may be empty but not both.

Heuristic 2 also applies in the case that m, and m, are strings of one or

more non-terminals.

Heuristic 3 states that if a terminal element (morpheme) and a single
non-terminal element occur in identical environments, the morpheme is added

to the non~terminal class.

Heuristic 3.

S. = X m Y|=—> S, =+ m,
2 J 1]

S, = m Sl—»XSiY

where X and Y are strings of terminal, non-terminal or mixed elements, and
where X or Z may be empty but not both, and where mi and mj are mor-
phemes. ‘

There are also what might be termed negative heuristics, designed to
prévent prémature ad hoc rule coining. Namely, if ohe of the strings occurring
in an environment identical with some other string should contain one morpheme
plus anythi.ng else, no new rules are coined (other than.to add the tree top to

the rule list via heuristic 1). Also, no new rules are coined in the case of

frame overlap, e.g.
E

Sl-»XY Sl->XABY

or

SZ—*XAY SZ—;XAABY

where X and Y are defined as above, and A and B are strings of non-
terminals.
The last pattern matching, phrase structure learning heuristic coins

recursive rules;

Heuristic 4.

svl - X A Y s3 — A
S2 - X A A Y| = s:3 - s3 A N,
S = X S. Y
i 1 3

where X and Y are defined as before and A is a string of one or more
nonterminals. Actually, this heuristic is not really needed for the coining
of recursive rules. The other heuristics are capable of learning indirect

recursion in a variety of ways.

3.1 Rule Testing Heuristics

The remaining heuristics pertain to the testing of the validity of the
rules coined by heuristics 2,3, & 4. Except for heu_lristic 5, they are not

numbered, and are best described in terms of the flow of the program.

3.1.1 Substitution and Informent .. Queries

The validity of each rule coined by heuristics 2-4 are tested via
%ubstitution, and test sentence generation. Each time a new class is
coined, the system inspects each rule in the grammar for tokens of elements
of the new class. When such a rule is found, the system tentatively makes

the substitution of the new class name for the token of its element, and

10

performs a test generation in the following manner:

Only full sentences are offered to the informant for acceptance or re-
jection. Accordingly, if the substitution is made in an unstarred rule (non-'
sentence), the system climbs upwards through the heirarchy of rules to the
first starred rule it can find that might yield the test rule in a generation
path. The program then generates randomly downwards but with a forced
choice of the rule in which the substitution was made.

The test sentence is outputted on the teletype with the query:

CAN YOU SAY:

If the informant types:
YES

the substitution is made.

If the reply is NO, no substitution is made, and the test sentence is added
to the illegal list. If a given rule contains two strings in the domain of the
substitution, each is tried individually and serially, and if any succeedsl, the
next substitution is in the revised string. R

If substitution should yield duplicate rules, one of the duplicates is
deleted and all reference to the deleted rule areArepla‘ced by references to
the remaining one.

The system also avoids the creation by substitution of unexitable node

loops involving rules of the type:

11

In the case that all substitutions of a newly posited rule fail, the heuristic
is assumed to have failed, and the next one is tried. If all heuristics 2-4 fail
for a given top node, then the remaining top nodes are each subjected to the
same heuristics and testing. In the event of all failures, the original top node
is added as a rule via heuristic |. There remains one special rule coining
heuristics governing class splitting applicable to morphemes. It is treated in
this section because its application also involves rule testing.

Suppose the grammar contains:

S1 - m
Sl - m,
SZ - X S1 Y
S3 - W Sl Z

where X,Y,W, & Z are strings of terminals or non-

terminals or both.

Suppose that, via heuristic 2, the rule

Sl—bm3

Heuristic 5 is posited, and that the substitution test succeeds in SZ’

but fails in S3 . In that case the following rules are coined

L3

S1 - m ‘
Sl - m,
84 — S.l
S = ™My
82 - X S4
SS - W Sl Z

and the rule S1 —_ m3 is thrown out.

12

3.1.2 Parsing Illegal Sentences and Recycling.

Parsing

Each test sentence rejected by the informant is added to a list of
'illegals'. All illegals determined during a single testing cycle are treated
as belonging to the same frame. A frame is the interaction and processing
that takes place after an input sentence from the informant. All the rule
substitutions, test sentences and informant 'yes' and 'no' responses arising
from the informant input sentence are treated as belonging to the same testing
frame.

As each rule is coined or updated, the parsing component of the program
attempts to parse each illegal sentence of the current frame. If an illegal
sentence parses, then the postulated new rule or substitution is disregarded.

After each five informant inputs, the system attempts to parse all of its
illegals, from all previous processing frames. Because the testing is in-
herently incomplete, bad rules may have slipped into the grammar. If at this
time any of the illegal sentences is successfully parsed, the system enters
a recycle mode, which is described below. (At one stage of development
the program parsed all illegals from all frames before ‘coining a new rule,
This procedure proved too costly in processing time and the current metho-
dology was used instead.) It also happens that some illégals are the pro-
duct of posited spurious recursive rules, and may accordingly be very long
aé well as illegai. Such sentences if parsed to completion, required as much
as 5 or even 10 minutes of computer time. After determining that 99% of

parsable,";sentences were parsed in 1| minute or less, we made the system

-~

13

assume a sentence is unparsable if the completed parse is not found in less
than one minute. This limitation is for the parsing of illegals only; no

limitation exists on parsing time for new inputs from the informant.

Recycling
As indicated earlier, an attempt is made to parse all illegal sentences
from all previous frames after every 5 informant sentence inputs. If an
illegal is parsed, then some bad rule has slipped past the tests. Accordingly
the system destroys its entire grammar, but saves the list of past input
sentences and the list of illegal sentences. The analysis then begins anew,
but with the following differences. The system first processes the recorded
input list instead of immediately soliciting new inputs from the informant. The
input list is reordered slightly as a rough attempt to overcome the sequence
sensitivity of the learning process. Specifically, the last 5 informant sentence
\inputs before the recycle are put at the head of the list and processed first.
Also, the illegal sentence that caused the recycle is made a permanent member
of the current frame illegal set, and an attempt is made to parse it during ea.ch
rule coining step in the recycle mode. If there have been other recycles, the
responsible illegals are also made permanent members of the ‘current frame
illegal set'.
There may be recycles within recycles with a limit of depth 3. If this
limit is reached j:he system gives up on the whole analysis. No limit exists

i

for unnested recycles.

14

3. 2‘ Test Problems

‘In the following copies of actual teletype output, the only human inputs

are:

1. An input sentence following a program generated NEXT.

2. *TYPE in response to a computer generated NEXT which is a
request bf the human for a listing of the current grammar.

3. YES and NO in response to program requests, CAN YOU SAY
THIS ‘followed by a program generated test sentence,

Other messages the systein can accept are:

4., A *RE‘START message permits restarting with an empty grammar.

5. A *SAVE followed by a single digit makes the system periodically
save the total state of the learning process on disc file at
periodic intervals. At each saving point the system outputs a
message, indicated the name of the saved file in terms of the
initial digit after the first *SAVE message, plus a sequence
number,

6. A *RESTART message followed by a file number reinitializes the
program to the state stored under that file &name. This feature
permits the continued analysis, overla long period of time,of up
to 9X different languages. It also permits partial backup resfarts

in case of accidents or erroneous inputs.

¢ Some of the problems were taken from Koutsoudas' test, Writing Trans-
formational Grammars: An Introduction [13]. The sentences were entered as

inputs in the order they occurred in each problem. Often the program generated

15

as a test case a problem sentence not yet entered. In this case the informant
usually omitted the repitition. Each time the computer grammar was adequate
for parsing an input, it outputed the message:
PARSED OK
Often, the informant's responses to the machine's test utterances did
not come from a full knowledge of the language. The informant behaved con-
sistently, but may have said YES and NO to hypothetical constructions that

may have deserved different replies.

16

3.2.1 Embedding Illustration: Artificial Language.

BEGIN AUTOLING

NEXT: (R Y1)
NEXT:
- XY

%81 =

(X XY Ye)

*S1 XYy
X Sl Y ,
[circled items]

*52
(X X XYY Y) from human
"CAN YOU SAY:

X XXXXXYYYYYY

NEXT: (*TYPE «)

*S1 := X Y
*$2 1= X 83 Y
83 := S2
83 := sl
(XXXXYYY Yo
-PARSED OK-
NEXT:

(XXXXXXXXXXXXYYYYYYYYYYYY«—)
-PARSED OK-

L7

3.2,2 English I

BEGIN AUTOLING
NEXT:
I WANT HIM TO GO «

NEXT: I NEED HIM TO GO«

NEXT: :*TYPE

*S1 := I 82 HIM TO GO
S2 := NEED
S2 := WANT

I WANT HER TO GO «
CAN YOU SAY:

I NEED HER TO GO
YES «

NEXT: *TYPE «

#S1 := I S2 83 TO GO
S2 := NEED
S2 := WANT
S3 := HER
S3 := HIM
YOU WANT HER TO GO «
CAN YOU SAY:
YOU NEED HER TO GO
YES
NEXT: *TYPE «
*S1 := S4 S2 S3 TO GO
S2 := NEED
S2 := WANT
S3 := HER
S3 := HIM
S4 := YOU
S4 := 1
YOU WANT HIM TO RUN «
CAN YOU SAY:
YOU NEED HIM TO RUN
YES «

#%PARSING ILLEGALS*

18

NEXT: HE WANT S HER TO GO«
CAN YOU SAY:

HE WANT S HIM TO RUN
YES

NEXT: *TYPE «

#¥S1 := S4 S2 S3 TO S5

S2 := NEED

S2 := WANT

S3 := HER

S3 := HIM

S4 := YOU

S4 := 1

S5 := RUN

S5 := GO

#S6 := HE S2 S S3 TO S5
SHE WANT S HIM TO RUN «
CAN YOU SAY:

SHE WANT S HER TO GO

YES « '

NEXT: *TYPE

*S1 := S84 S2 S3 TO S5
S2 := NEED

S2 := WANT

S3 := HER

S3 := HIM

S4 := YOU

S4 := 1

S5 := RUN

S5 := GO

#S6 := S7 S2 S 83 TO S5
S7 := SHE

S7 := HE

SHE WANT S HER TO RUN «
/ -PARSED OK-

19

3.2.3 English II.

BEGIN AUTOLING
NEXT:

EAT THE CAT «
NEXT: EAT A CAT «
NEXT: EAT THE CAT S «
CAN YOU SAY:

EAT A CAT S
NO «

NEXT: *TYPE «

*S1 := EAT S2 CAT
S2 := A
S2 := THE
#*S3 := EAT THE CAT S
EAT A DOG «
CAN YOU SAY:
EAT THE DOG
YES «
CAN YOU SAY:
EAT THE DOG S
YES «
NEXT: *TYPE «
*S1 := EAT S2 S4
S2 := A
S2 := THE
*S3 := EATTHE S4 S
S4 := DOG
S4 := CAT

KNOW THE DOG «
CAN YOU SAY:
KNOW A DOG

YES «

CAN YOU SAY:

~ KNOW THE AT S
YES «

PARSING ILLEGALS

20

NEXT: *TYPE «

*S1 := S5 S2 S4

S2 := A

S2 := THE

*S3 := 85 THE S4 S

S4 := DOG

S4 := CAT

S5 := KNOW

S5 := EAT
EAT THESE CAT S «
CAN YOU SAY:

EAT THESE DOG S

YES -

NEXT: *TYPE «
*¥S1 := S5 S2 S4

S2 := A

S2 := THE

%33 := S5 S6 S4 S
S4 := DOG

S4 := CAT

S5 := KNOW

S5 := EAT

S6 := THESE

S6 := THE

EAT SOME CAT S«
NEXT: EAT SOME CAT «

NEXT: *TYPE «
*S1 := S5 S2 S4

S2 := SOME
S2 := A
S2 := THE
*33 := S5 S6 S4 S
S4 := DOG
S4 := CAT
S5 := KNOW
S5 := EAT
S6 := SOME
¢+ 86 := THESE
S6 = THE

EAT THOSE CAT S«

NEXT: I EAT A CAT«

CAN YOU SAY:
I KNOW A CAT

YES «
PARSING ILLEGALS

NEXT: *TYPE«

*S1 := S5 S2 S4
S2 := SOME
S2 := A
" 82 := THE
*¥33 := S5 S6 S4 S
S4 := DOG
S4 := CAT
S5 := KNOW
S5 := EAT
Sé6 := THOSE
S6 := SOME
S6é := THESE
S6 := THE
*37 := I Sl

YOU EAT A CAT «
CAN YOU SAY:

YOU KNOW A DOG
YES «

NEXT: *TYPE «

*S1 := S5 S2 S4
S2 := SOME

S2 := A

S2 := THE

#S3 := S5 S6 S4 S
S4 := DOG

S4 := CAT

S5 := KNOW
S5 := EAT

S6 := THOSE
S6 := SOME

¢ S6 := THESE

S6 := THE.

*S7 := S8 Sl

S8 := YOU

S8 := 1

21

22

THE DOG S KNOW A CAT
.CAN YOU SAY:

THOSE CAT S KNOW SOME DOG
YES o=

NEXT: *TYPE +

*S1 := 85 82 S4
82 := SOME
S2 := A
S2 := THE
*S3 := 85 S6 S4 S
S4 := DOG
S4 := CAT
S5 := KNOW
S5 := EAT
S6 := THOSE
S6 := SOME
S6é := THESE
Sé6 := THE
*¥57 := S8 Sl
S8 := YOU
S8 := 1
*39 := 86 S4 S S!

23

3.2.4 Latin: Koutsoudas #26

PROBLEM 26: LATIN

1. puer virum videt The boy sees the man.

2. vir puerum videt The man sees the boy.

3. puer virum defendit The boy defends the man.

4. vir puero nocet The man harms the boy.

5. ‘puer viro nocet The boy harms the man.

6. puer viro subvenit The boy helps the man.

7. puer viri meminit The boy remembers the man.
8. puer viro meminit The boy remembers the man.

24

BEGIN AUTOLING
NEXT:
PUER VIR UM VIDE T«

NEXT: VIR PUER UM VIDE Te

NEXT:
PUER VIR UM DEFENDI T «
CAN YOU SAY:

- VIR PUER UM DEFENDI T
YES '

NEXT: *TYPE «

%Sl := PUERVIRUMS3 T
%82 := VIRPUERUMS3 T
S3 := DEFENDI
S3 := VIDE

VIR PUER O NOCE T «

NEXT: - PUER VIR O NOCE T «
PARSING ILLEGALS

NEXT: PUER VIR O SUBVENI T «
CAN YOU SAY:
VIR PUER O SUBVENI T
YES « *

NEXT: *TYPE «

*S1 := PUERVIRUMS3 T
*S2 := VIRPUERUM S3 T
S3 := DEFENDI
S3 := VIDE :
%S4 := VIRPUEROS6 T
*S5 := PUERVIROGS6 T
S6 := SUBVENI
S6 :=

NOCE
PUER VIR I MEMINI T «

NEXT: PUER VIR O MEMINI T «-
CAN YOU SAY:
VIR PUER O MEMINI T
S
CAN YOU SAY:
: - PUER VIR I SUBVENI T
NO e

25

NEXT: *TYPE «

*Sl := PUERVIRUM S3 T
#¥S2 := VIRPUERUMGS3 T
S3 := DEFENDI
S3 := VIDE

#34 := VIRPUEROS6 T
%35 := PUERVIRO S6 T

S6 := MEMINI
S6 := SUBVENI
S6 := NOCE
*S37 := PUER VIRI MEMINI T

[The sentence inputs that follow have been added to the problem]

VIR PUER UM VIDE T «
~-PARSED OK-

NEXT: VIR PUER I MEMINI T «
CAN YOU SAY:
VIR PUERI NOCE T
NO «
PARSING ILLEGALS

NEXT: *TYPE «

#S1 := PUERVIRUMS3 T
*%*S2 := VIRPUERUMGS3 T
S3 := DEFENDI
S3 := VIDE
*S4 := VIRPUEROS6 T

*S5 := PUERVIROS6 T
S6 := MEMINI
86 := SUBVENI
S6 := NOCE
*S7 := PUER VIRI MEMINI T ;
*Sl2:= VIR PUER I MEMINI T
PUER VIR O NOCE T «
-PARSED OK-

NEXT: PUER OPPID UM VIDE T «
CAN YOU SAY:

PUER OPPID UM DEFENDI T
YES «
GAN YOU SAY:

OPPID PUER O SUBVENI T
YES «
CAN YOU SAY:

OPPID PUER I MEMINI T
YES «

26

CAN YOU SAY:

OPPID PUER UM VIDE T
YES «
CAN YOU SAY:

PUER OPPID O MEMINI T
YES
CAN YOU SAY:

PUER OPPID I MEMINI T
YES «

NEXT: *TYPE «

*S1 := PUERSI3 UMS3 T
%S2 := S13 PUERUMS3 T
S3 := DEFENDI

S3 := VIDE
*S4 := SI3 PUEROS6 T
*#$5 := PUERSI30 S6T
S6é := MEMINI

S6 := SUBVENI

S6 := NOCE

*S7 := PUERSI13 I MEMINIT
#S12:= S13 PUERI MEMINI T
S13:= OPPID
S13:= VIR
VIR OPPID UM VIDE T «
CAN YOU SAY:
OPPID OPPID UM VIDE T
YES «
CAN YOU SAY:
PUER PUER I MEMINI T
YES «
CAN YOU SAY:
PUER PUER O MEMINI T
YES «
CAN YOU SAY:
PUER PUER UM VIDE T
YES «
CAN YOU BSAY:
PUER PUER O NOCE T
YES «
CAN YOU 8AY:
~ OPPID OPPID O SUBVENI T
YES «
CAN YOU SAY:
PUER PUER UM DEFENDI T
YES &

nou

28

3.2.5 Roglai: Koutsoudas #58

PROBLEM 58: ROGLAI

2.

10.
11.
12,
13.
14.
15.

16,

18.
19.
20.

21.

23.

ama naw
Father went.
ama naw tubray
Father went yesterday.

. adoy *bak bu

The child ate rice.
ama naw judoy aday *bok bu
Father went after the child ate rice.

. aday ?bak bu tubray

The child ate rice yesterday.

. aday "bak bu judsy ama naw

The child ate rice afler the father went.

. tubroy ama naw

Yesterday father went.

. juday aday *hok bu ama naw’

Afler the child ate rice, the father went.

. tubray aday "bok bu

Yesterday the child ate rice.
judoy ama naw aday "bok bu

Afler father icent, the child ate rice.
aday naw musu- p

The child wen! early in the morning.
ama *bok ika-t

Father ate fish.
aday naw judoy ama "bok ika-t

The child went after the father ate fish.
adoy naw juma ama *bok ika-t

The child went before father ate fish.
musu-p adsy naw

Early in the moming the child went.
judey ama *bok ika-t adoy naw

Afier the father ate fish, the child went. ‘

. juma ama ?bok ika-t aday naw

Before the father ate fish, the child went.
ama naw juma adoy *hak bu
Father went bejore the child ate rice.
juma aday ?bok hu ama naw -
Before the child ate rice, the father went.
adoy *bok ika-t tubray :
The child ate fish yesterday.
tubray adoy *bok ika-t
Yesterday the child ate fish.

. juday ama naw adoay *bak ika-t

‘After father went, the child ate fish.
juma ama naw aday *bok ika-t
“ Before father went, the child ate fish.

29

BEGIN AUTOLING
NEXT: AMA NAW «

NEXT: ADEY NAW « [Added input]

NEXT: AMA NAW TUBREY «
CAN YOU SAY:

ADEY NAW TUBREY
YES

NEXT: ADEY QBEK BU «
CAN YOU SAY:

AMA QBEK BU
YES «

NEXT: AMA NAW JUDEY ADEY QBEK BU «
CAN YOU SAY:
ADEY NAW JUDEY AMA QBEK BU
YES
PARSING ILLEGALS

NEXT: ADEY QBEK BU TUBREY «
CAN YOU BSAY:
AMA QBEK BU TUBREY
YES
CAN YOU SAY:
AMA QBEK BU JUDEY AMA QBEK BU
YES «
CAN YOU SAY:
AMA NAW JUDEY ADEY NAW
YES «~

NEXT: *TYPE «

*S1 := S2 NAW
S2 := ADEY
S2 := AMA

%33 := S6 TUBREY
%S4 := S2 QBEK BU
%35 := S6 JUDEY Sé
S6 := S4
S6 := Sl

ADEY QBEK BU JUDEY AMA NAW «
-PARSED OK-

30

NEXT: TUBREY AMA NAW «
CAN YOU SAY:

TUBREY ADEY QBEK BU
YES «

NEXT: JUDEY ADEY QBEK BU AMA NAW «
CAN YOU SAY:

JUDEY AMA QBEK BU ADEY QBEK BU
YES «

NEXT: JUDEY AMA NAW ADEY QBEK BU «
-PARSED OK-
PARSING ILLEGALS

NEXT: ADEY NAW MUSUUP «
CAN YOU SAY:

ADEY QBEK BU MUSUUP
YES «
CAN YOU SAY:

MUSUUP ADEY QBEK BU
YES « N
NEXT: *TYPE «

*S1 := S2 NAW

S2 := ADEY
S2 := AMA
*33 := S6 S9

*S4 := S2 QBEK BU
*35 := S6 JUDEY S6
S6 := S4

S6 := Sl

*S7 := 89 S6

*S8 := JUDEY S6 S6
S9 := MUSUUP

S9 := TUBREY

AMA QBEK IKAAT «
CAN YOU SAY:

ADEY QBEK IKAAT
YES «

31

NEXT: #TYPE «

%Sl = S2 NAW
S2 := ADEY
S2 := AMA

#*33 := S6 S9

*S4 := S2 QBEK SI10
%35 := S6 JUDEY Sé
S6 := S4

S6 := Sli

*S7 := S9 S6

#*S8 := JUDEY S6 S6
S9 := MUSUUP

S9 := TUBREY
S10:= IKAAT

S10:= BU

ADEY NAW JUDEY AMA QBEK IKAAT «
-PARSED OK-

NEXT: ADEY NAW JUMA AMA QBEK IKAAT «
CAN YOU SAY:
ADEY NAW JUMA AMA NAW
YES «—
CAN YOU SAY
JUMA AMA NAW AMA NAW
YES «
CAN YOU SAY:
AMA NAW JUDEY AMA NAW
YES «~
CAN YOU SAY:
JUDEY ADEY NAW ADEY NAW
YES «
CAN YOU SAY:
TUBREY AMA QBEK IKAAT |
YES «
CAN YOU SAY:
TUBREY ADEY NAW
YES «
CAN YOU SAY:
AMA QBEK IKAAT TUBREY
YES +
CAN YOU SAY: .
‘ AMA QBEK BU JUMA AMA NAW
YES «
CAN YOU SAY:
MUSUUP ADEY NAW ADEY QBEK IKAAT AMA QBEK BU
NO «

32

CAN YOU SAY:
ADEY QBEK BU JUMA AMA QBEK IKAAT AMA NAW ADEY NAW AMA QBEK BU

NO «

NEXT: *TYPE «

#S1 := S2 NAW
S2 := ADEY
S2 := AMA
*S3 := S5

*S4 := S2 QBEK S10
*S5 := S6 Sl2

S6 := S4
S6 := St
*S7 := S8

*S8 := Sl2 S6
S9 := MUSUUP
S9 := TUBREY
S10:

= IKAAT
S10:= BU
Sll:= JUMA
Stl:= JUDEY
Sl2:= Sl1 S6
St2:= 89

MUSUUP ADEY NAW «
-PARSED OK-
PARSING ILLEGALS

NEXT: JUDEY AMA QBEK IKAAT ADEY NAW «
-PARSED OK-

NEXT: JUMA AMA QBEK IKAAT ADEY NAW «
-PARSED OK-

NEXT: AMA NAW JUMA ADEY QBEK BU «
-PARSED OK-

NEXT: IUMA ADEY QBEK BU AMA NAW «
-PARSED OK-

NEXT: ADEY QBEK IKAAT TUBREY«
~-PARSED OK-

NEXT: TUBREY ADEY QBEK IKAAT «
-PARSED OK-

NEXT: JUDEY AMA NAW ADEY QBEK IKAAT «
-PARSED OK-

33

NEXT: JUMA AMA NAW ADEY QBEK IKAAT «
-PARSED OK-

NEXT: *TYPE «
*S1 := S2 NAW

S2 := ADEY
S2 := AMA
#*33 := S5

*S4 := S2 QBEK Sl10
%35 := 856 Sl2

S6 := S4
S6 := Sl
*S7 := S8

#*S8 := Sl2 S6
S9 := MUSUUP
S9 := TUBREY

S10:= IKAAT
S10:= BU
Stl:= JUMA
Sll:= JUDEY
Sl2:= Sl1 S6
Sl2:= S9

As indicated earlier, fewer heuristics operate on strings containing individual
morphemes. Accordingly, to add more members to the verb classes, the cover
morphemes VERBTRAN and VERBINTRAN were introduced into the inputs with

the following result:

AMA VERBINTRAN «
CAN YOU SAY:

"ADEY VERBINTRAN
YES «

NEXT: *TYPE «
#S1 := 82 815

S2 := ADEY
S2 := AMA
*53 := S5

%S4 := S2 QBEK S10
. %S5 := 86 Sl2

Sé6 := S4
S6 := Sl
%87 := S8

%38 := Sl2 Sé
S9 := MUSUPP
S9 := TUBREY

34

S10:= IKAAT
S10:= BU

Sltl:= JUMA
Sll:= JUDEY
Sl2:= Sl1 Sé6
Slz:= 89

S15:= VERBINTRAN
S15:= NAW

ADEY VERBTRAN BU «
CAN YOU SAY:

ADEY VERBTRAN IKAAT
YES
CAN YOU SAY:

AMA VERBTRAN BU
YES «
CAN YOU SAY:

AMA VERBTRAN IKAAT
YES «
CAN YOU SAY:

ADEY VERBINTRAN JUMA AMA NAW
YES

NEXT: *TYPE «

*#*S1 := S4

S2 := ADEY
S2 := AMA
#33 := S5
*S54 := S2 S17
%S5 := S6 Sl12
S6 := Sl

#*37 := S8

*S8 := Sl12 Sé6

S9 := MUSUUP
S9 := TUBREY

S10:= IKAAT
S10:= BU
Sll:= JUMA
Sll:= JUDEY
S12:= Sl1 Sé
St2:= 359
S15:= VERBINTRAN
S15:= NAW
S16:= VERBTRAN
~ Slé:= QBEK
" S17:= Sl6 S10

S17:= S15

35

3.2.6 Indonesian: Koutsoudas #43 and #9 Combined

Some additional sentences were added to the corpus to link the two

problems.

PROBLEM 43; INDONESIAN

1. guru itu makan somanpka
teacher the eat watermelon
The teacher is eating watermelon.
2. guru itu rupaia makan somanka
-~ The teacher is apparently eating watermelon.
3. rupafia guru itu makan somanka
The teacher is apparently eating watermelon.
4. guru itu makan somanka rupaifia
The teacher is apparently eating watermelon.
5. guru itu disini kamarin makan somapka
teacher the here yesterday eal watermelon
The teacher ate watermelon here yesterday.
6. disini kamarin guru'itu makan somanka
The teacher ate watermelon heve yesterday.
7. guru itu makan ssmanka disini kamarin
The teacher ate watermelon here yesterday.
8. makan somanka guru itu
The teacher is eating watermelon.
9. rupafia makan somagka guru itu
Apparently the teacher is eating watermelon.
10. makan somanka guru itu rupafa
The teacher is eating watermelon apparmtly.
11. makan somanka rupafia guru itu v
" The teacher apparently is eating watermelon.

12. disini kamarin makan somanka guru itu
The teacher ate watermelon here yesterday.
13. makan somarnka guru itu disini kamarin
The teacher ate watermelon here yesterday.
_ 14. makan somanka disini kamarin guru.itu
" The teacher ate watermelon here yesterday.

36

- 9. INDONESIAN

1.

10.

11.

12

13.

14.

15.

16.

18.
19.
20.
21.
22.

23.
24.

oray itu makan kacan kamarin

. orap itu kamarin makan kacarg

.. kamarin orayg itu makan kacan

kamarin makan kaca orar itu
makan kacan kamarin oray itu

makan kacan orarn itu kamarin

. ana? itu makan kacary kamarin

ana’ itu kamarin momboli kacan
kamarin guru itu momboli ks;xcaq
kamarin mamboli kuwe guru itu
moamboli kuwe oran itu kamarin
makanv kacan kamarin ana? itu
kapan oran itu makan kuwe
kapan mamboli kuwe ana” itu
guru itu kapan makan kacar

moamboli kacan kapan oray itu

.- mambali kuwe ana® itu kapan

guru itu makan kuwe kapan
siapa makan kacan kamarin
siapa kamarin makan kuwe
kamarin siapa mombali kuwe

yan kamarin momboli kacar siapa

yar) makan kacarn siapa kamarin
yan) mambali kuwe kamarin siapa

The man ate peamits
__ yesterday.

" The man _ate peanuts
- pestarday.]
- The man ate peanuts

yesterday.

. The man ate peanuts

yasterday.

The man ate peanuts
yesterday.

The man ate peanuis
yesterday.

The child ate peanuts
yesterday.

The child bought peanuts

yesterday.

The teacher bodg/zt peanuits

yesterday.

The teacher bought cookies

yesterday.
The man bought cookies
Jyesterday.
The child ate peanuts
Yyesterday. :
When did the man eat
cookies? .
When did the child buy
cookies?
When did the teacher eat
peanuts?
When did the man buy
peanuts?
When did the child buy
cookies?
When did the teacher eat
 cookies?

Who ate peanuts yesterday?

Who ate cookies yesterday?

- Who bought cookies

_yesterday?

Who bought pednuts
yesterday?

Who ate peanuts yesterday?

Who bought cookies
yesterday? -

37

BEGIN AUTOLING
NEXT: GURU ITU MAKAN SEMANGKA «

NEXT: ORANG ITU MAKAN SEMANGKA «=
NEXT: ANAQ ITU MAKAN SEMANGKA «

NEXT: GURU ITU MEMBELI SEMANGKA «
CAN YOU SAY:
ANAQ ITU MEMBELI SEMANGKA
YES
NEXT: GURU ITU MEMBELI KUWE +
CAN YOU SAY:
ORANG ITU MAKAN KUWE
YES «
PARSING ILLEGALS

NEXT: GURU ITU MAKAN KACANG «

NEXT: #*TYPE «
%51 := S2 ITU S3 S4

S2 := ANAQ

S2 := ORANG
S2 := GURU

S3 := MEMBELI
S3 := MAKAN
S4 := KACANG
S4 := KUWE

S4 := SEMANGKA
GURU ITU RUPANYA MAKAN SEMANGKA «

CAN YOU SAY:

GURU ITU RUPANYA MEMBELI KACANG

YES «

[added to problem]
[added to problem]

[added to problem]

[added to problem]

[added to problem]

NEXT: RUPANYA GURU ITU MAKAN SEMANGKA «

CAN YOU SAY:

RUPANYA ANAQ ITU MEMBELI SEMANGKA

YES «

NEXT: GURU ITU MAKAN SEMANGKA RUPANYA «

CAN YOU SAY:

GURU ITU MEMBELI SEMANGKA RUPANYA

YES «

38

NEXT: GURU ITU DISINI KAMARIN MAKAN SEMANGKA «

CAN YOU SAY:
ORANG ITU DISINI KAMARIN MEMBELI KUWE

YES
PARSING ILLEGALS

NEXT: DISINI KAMARIN GURU ITU MAKAN SEMANGKA «

CAN YOU SAY:
DISINI KAMARIN ANAQ ITU MAKAN KUWE

YES «

NEXT: GURU ITU MAKAN SEMANGKA DISINI KAMARIN «

CAN YOU SAY:
GURU ITU MAKAN KUWE DISINI KAMARIN

YES «

NEXT: *TYPE «

*81 := S2 ITU S3 S4

S2 := ANAQ

S2 := ORANG

S2 := GURU

S3 := MEMBELI

S3 := MAKAN

S4 := KACANG

S4 := SEMANGKA

*S5 := S2 ITU RUPANYA S3 S4
#*S6 := RUPANYA S!

#*37 := SI RUPANYA

*S8 := S2 ITU DISINI KAMARIN S3 S4
*S9 := DISINI KAMARIN S1
#*S10:= S1 DISINI KAMARIN

MAKAN SEMANGKA GURU ITU «
CAN YOU SAY:

MEMBELI KUWE ORANG ITU .
YES «

NEXT: RUPANYA MAKAN SEMANGKA GURU ITU «
CAN YOU SAY:

RUPANYA MAKAN KUWE ORANG ITU
YES «~
CAN YOU SAY:

MAKAN KUWE ANAQ ITU DISINI KAMARIN
YES « ’
CAN YOU SAY:

MAKAN KACANG GURU ITU RUPANYA
YES «
CAN YOU SAY:

DISINI KAMARIN MEMBELI KUWE ORANG ITU
YES «

39

NEXT: *TYPE «

*¥S1 := S2 ITU S3 5S4
S2 := ANAQ

S2 := ORANG

S2 := GURU

S3 := MEMBELI

S3 := MAKAN
S4 := KACANG

S4 := KUWE

S4 := SEMANGKA

%S5 := S2 ITU RUPANYA S3 5S4

#S6 := RUPANYA Sl12

*S7 := S12 RUPANYA

#S8 := S2 ITU DISINI KAMARIN S3 S4
*39 := DISINI KAMARIN S12

*%S10:= Sl2 DISINI KAMARIN

#*S1l:= S3 S4 S2 ITU
Si2:= Sll1
Sl2:= S1

MAKAN SEMANGKA GURU ITU RUPANYA «
-PARSED OK-
PARSING ILLEGALS

NEXT: MAKAN SEMANGKA RUPANYA GURU ITU

CAN YOU SAY:
MEMBELI KUWE RUPANYA GURU ITU

YES «

NEXT: DISINI KAMARIN MAKAN SEMANGKA GURU ITU «
-PARSED OK-

NEXT: MAKAN SEMANGKA GURU ITU DISINI KAMARIN «
-PARSED OK-

NEXT: MAKAN SEMANGKA DISINI KAMARIN GURU ITU «

CAN YOU SAY: :
MEMBELI KUWE DISINI KAMARIN ANAQ ITU

YES «

40

NEXT: *TYPE «

%Sl := S2 ITU S3 S4
S2 := ANAQ

S2 := ORANG

S2 := GURU

S3 := MEMBELI

S3 := MAKAN

S4 := KACANG

S4 := KUWE

S4 := SEMANGKA

*35 := S2 ITU RUPANYA S3 S4

#36 := RUPANYA Sl2

*#37 := S12 RUPANYA

*S8 := S2 ITU DISINI KAMARIN S3 S4
*S39 := DISINI KAMARIN S12

*310:= Sl2 DISINI KAMARIN

#¥Sll:= 83 S4 S2 ITU
Si2:= Stl
S12:= Sl

#*S13:= S3 S4 RUPANYA S2Z2 ITU
*S14:= S3 S4 DISINI KAMARIN SZ2 ITU

ORANG ITU MAKAN KACANG KAMARIN ¢
CAN YOU SAY:
MAKAN KACANG ORANG ITU KAMARIN
YES «~
CAN YOU SAY:
KAMARIN ANAQ ITU MAKAN KUWE
YES «
CAN YOU SAY: ‘
ORANG ITU KAMARIN MEMBELI KUWE
YES «
CAN YOU SAY:
MAKAN SEMANGKA RUPANYA ORANG ITU
YES «
CAN YOU SAY: i
ANAQ ITU DISINI RUPANYA MEMBELI SEMANGKA
NO « ’ ‘
CAN YOU SAY:
DISINI RUPANYA ANAQ ITU MAKAN SEMANGKA
NO «
CAN YOU SAY:
MAKAN SEMANGKA ORANG ITU DISINI RUPANYA
NO «
€CAN YOU SAY:
MAKAN KACANG DISINI RUPANYA ANAQ ITU
NO «
#*PARSING ILLEGALS*

41

NEXT: *TYPE «

*S1 := S2 ITU S3 S4

S2 := ANAQ

S2 := ORANG

S2 := GURU

S3 := MEMBELI

S3 := MAKAN

S4 := KUWE

S4 := SEMANGKA

*¥$5 := S2 ITU S15 S3 S4

%S6 := Sl5 S12

*¥S7 := Sl2 Sl15

*S8 := S2 ITU DISINI KAMARIN S3 S4
*S9 := DISINI KAMARIN Sl12

#*S10:= Sl12 DISINI KAMARIN

*S1l:= S3 S4 S2 ITU

Sl2:= St

Sl2;= Sl

*S13:= S3 S84 S15 82 ITU

#S14:= S3 S4 DISINI KAMARIN S2 ITU
S15:= KAMARIN

S15:= RUPANYA

ORANG ITU KAMARIN MAKAN KACANG «
-PARSED OK-

NEXT: KAMARIN ORANG ITU MAKAN KACANG «
-PARSED OK-

NEXT: KAMARIN MAKAN KACANG ORANG ITU «
-PARSED OK-

NEXT: MAKAN KACANG KAMARIN ORANG ITU «
~-PARSED OK-

NEXT: MAKAN KACANG ORANG ITU KAMARIN +
~PARSED OK-

NEXT: ANAQ ITU MAKAN KACANG KAMARIN «
-PARSED OK-

NEXT: ANAQ ITU KAMARIN MEMBELI KACANG «
-PARSED OK-

¥

NEXT: KAMARIN GURU ITU MEMBELI KACANG +
-PARSED OK-

42

NEXT: KAMARIN MEMBELI KUWE GURU ITU «
~PARSED OK-

NEXT: MEMBELI KUWE ORANG ITU KAMARIN «
~PARSED OK-

NEXT: MAKAN KACANG KAMARIN ANAQ ITU «
-PARSED OK -

NEXT: KAPAN ORANG ITU MAKAN KUWE «
CAN YOU SAY:

MEMBELI SEMANGKA KAPAN GURU ITU
YES «
CAN YOU SAY:

GURU ITU KAPAN MEMBELI KACANG
YES «
CAN YOU SAY:

MAKAN KACANG GURU ITU KAPAN
YES «

NEXT: *TYPE «
*S1 := S2 ITU S3 S4

SZ2 := ANAQ

S2 := ORANG

S2 := GURU

S3 := MEMBELI

S3 := MAKAN

S4 := KACANG

S4 := KUWE

S4 := SEMANGKA

*¥S5 := S2 ITU S15 S3 S4
*S6 := Sl5 Sl2

*S7 := Sl2 8§15

*38 := S2 ITU DISINI KAMARIN S3 S4

%39 DISINI KAMARIN Sl2

*S10 := S12 DISINI KAMARIN

*S1l := S3 S4 S2 ITU

sl2 := sli

Sl2 := Sl

*S13 := S3 S4 Sl5 S2 ITU

*S14 := 83 S4 DISINI KAMARIN S2 ITU
S15 := KAPAN

S15 := KAMARIN

S15 := RUPANYA
f
KAPAN MEMBELI KUWE ANAQ ITU «
-PARSED OK -

43

NEXT: GURU ITU KAPAN MAKAN KACANG «
-PARSED OK-

NEXT: MEMBELI KACANG KAPAN ORANGE ITU «
-PARSED OK-~-

NEXT; MEMBELI KUWE ANAQ ITU KAPAN «
-PARSED OK-
PARSING ILLEGALS

NEXT: GURU ITU MAKAN KUWE KAPAN +
-PARSED OK-

NEXT: SIAPA MAKAN KACANG KAMARIN «
CAN YOU SAY:
SIAPA MAKAN KACANG KAPAN

NO «

NEXT: SIAPA KAMARIN MAKAN KUWE «
CAN YOU SAY:
SIAPA RUPANYA MAKAN SEMANGKA

NO «

NEXT: *TYPE «

#*S1 := 82 ITU S3 S4
S2 := ANAQ
S2 := ORANG
S2 := GURU

S3 := MEMBELI

S3 := MAKAN

S4 := KACANG

S4 := KUWE

S4 := SEMANGKA

*S5 := S2 ITU S15 S3 S4
®S6 := S15 Sl2

%S7 := Sl12 Sl5
%38 := S2 ITU DISINI KAMARIN S3 S4
%39 := DISINI KAMARIN Sl2
#%310:= S12 DISINI KAMARIN
#S1l:;= S3 S4 S2 ITU
S12:= Sll
S12:= Sl
#313:= S3 S4 S15 82 ITU
#S14:= S3 S4 DISINI KAMARIN S2 ITU
; S15:= KAPAN
S15:= KAMARIN
S15:= RUPANYA
%316 := SIAPA MAKAN KACANG KAMARIN

ot

*517:= SIAPA KAMARIN MAKAN KUWE

44

KAMARIN SIAPA MEMBELI KUWE «
CAN YOU SAY:

KAPAN SIAPA MEMBELI SEMANGKA
NO « ’

NEXT: YANG KAMARIN MEMBELI KACANG SIAPA «
CAN YOU SAY:

YANG RUPANYA MAKAN KUWE SIAPA
NO

NEXT: YANG MAKAN KACANG SIAPA KAMARIN ¢
CAN YOU SAY:
YANG MAKAN SEMANGKA SIAPA KAPAN
NO «
PARSIN ILLEGALS

NEXT: YANG MEMBEVLI KUWE KAMARIN SIAPA «
CAN YOU BSAY:

YANG MEMBELI KACANG RUPANYA SIAPA
NO «

NEXT: *TYPE «
*S1 := §2 ITU S3 S4

S2 := ANAQ
S2 := ORANG

S2 := GURU

S3 := MEMBELI

S3 := MAKAN

S4 := KACANG

S4 := KUWE

S4 := SEMANGKA

*35 := 82 ITU Sl5 S3 S4

#S6 := S15 Sli2

*§7 := Sl2 Sl5

*38 := S2 ITU DISINI KAMARIN S3 S4
*S9 := DISINI KAMARIN Sl12

#S10:= S12 DISINI KAMARIN

*311:= 83 S4 S2 ITU

S12:= Slt

Sl2:= Sl

*S13:= S3 S4 S5 S2 ITU

*314:= S3 S4 DISINI KAMARIN S2 ITU
S15:= KAPAN

S15:= KAMARIN

S15:= RUPANYA

%316 := SIAPA MAKAN KACANG KAMARIN
%317:= SIAPA KAMARIN MAKAN KUWE
*S18:= KAMARIN SIAPA MEMBELI KUWE

*S19:= YANG KAMARIN MEMBELI KACANG SIAPA
*5320:= YANG MAKAN KACANG SIAPA KAMARIN
*S21:= YANG MEMBELI KUWE KAMARIN SIAPA

ihon

" 45

SIAPA MEMBELI KACANG KAMARIN «
CAN YOU SAY:
SIAPA MEMBELI SEMANGKQ KAMARIN

YES «

NEXT: SIAPA MAKAN KUWE KAMARIN «
~PARSED OK-

NEXT: SIAPA MAKAN KACANG KAMARIN «

[added to the problem]

[added to the problem]

[added to the problem]

-PARSED OK-
NEXT: *TYPE «
*31 := S2 ITU S3 S4
S2 := ANAQ
S2 := ORANG
S2 := GURU
S3 := MEMBELI
S3 := MAKAN
S4 := KACANG
S4 := KUWE
S4 := SEMANGKA
*§5 := S2 ITU S15 S3 S4
%#S6 := S15 Si2
*¥87 := Sl12 Sl15
*38 := S2 ITU DISINI KAMARIN S3 S4
%39 := DISINI KAMARIN Sl12
#310:= S12 DISINI KAMARIN
#*Sl1l:= 83 S4 S2 ITU
S12 := Sl1i
Si2 := 8SiI
#313 := S3 S4 S15 S2 ITU
*S14 := S3 S4 DISINI KAMARIN S2 ITU
815 := KAPAN
S15 := KAMARIN
S15 := RUPANYA
*¥S16 := SIAPA MAKAN KACANG KAMARIN
#3117 := SIAPA KAMARIN MAKAN KUWE
*S18 := KAMARIN SIAPA MEMBELI KUWE
*S19 := YANG KAMARIN MEMBELI KACANG SIAPA
%320 := YANG MAKAN KACANG SIAPA KAMARIN
%321 := YANG MEMBELI KUWE KAMARIN SIAPA

%322 :=

SIAPA S3 S4 Sl15

46
3.2.7 Thai

Problem cbnsytructed by Peter Lee of the University of Wisconsin Linguistics
Department, who also acted as informant. The tones are not indicated as they
are not pertinent to this particular problem. Glosses of the sentences have

been added to the original teletype printout.

BEGIN AUTOLING
NEXT: KHUN CHOOP PHAK « ("You like vegetables")
NEXT: KHUN CHOOP BURII « ("You like cigarettes")

NEXT: *TYPE «

%Sl := KHUN CHOOP S2
S2 := BURII
S2 := PHAK
KHUN CHOOP KHAJ « ("You like eggs")

NEXT: *TYPE «

*S1 := KHUN CHOOP Sz

S2 := KHA]

S2 := BURII

S2 := PHAK | | .
KHUN HIW KHAJ «- ("You are hungry for eggs")
CAN YOU SAY: : _ .

KHUN HIW BURII

NO «)

NEXT: *TYPE «

*S1 := KHUN CHOOP S2
S2 := KHAJ
.82 := BURII
82 := PHAK

*S5 := KHUN HIW KHA]J

KHUN HIW KHAAW « ("You are hungry for rice")
PARSING ILLEGALS :

NEXT: *TYPE «

*S1 := KHUN CHOOP S2
S2 := KHAJ

SZ := BURII

S2 := PHAK

*#S5 := KHUN HIW 86
S6 := KHAAW

S6 := KHAJ

KHUN HIW PHAK «

NEXT: *TYPE «

#S1 := KHUN CHOOP S2
S2 = KHAJ
S2 := BURII
S2 := PHAK
*S5 := S10
Sé := PHAK
S6 := KHAAW
S6 := KHAJ

#5510 := KHUN HIW S6
KHUN HIW NAAM
NEXT: KHUN HIW NAAM MATJ «
CAN YOU SAY:
KHUN HIW KHAJ MAJ
YES «

NEXT: *TYPE «

#S1 := KHUN CHOOP 82
S2 := KHAJ

S2 := BURII

S2 := PHAK

*S5 := S10

S6 := NAAM

Sé6 := PHAK

S6 := KHAAW

S6 := KHAJ

*S10 := KHUN HIW S6
#*S1l := S5 MAJ

KHUN CHOOP KHAJ MAJ «
CAN YOU SAY:

; KHUN CHOOP BURII MAJ
YES «

47

("You are hungry for vegetables")

("You are thirsty.")

("Are you thirsty ?")

(" Do you like eggs ?")

("Do you like cigarettes ?")

48

NEXT: *TYPE «

*S1 := KHUN CHOOP 82
S2 := KHAJ
S2 := BURII
S2 := PHAK
*S5 := 810
Sé := NAAM
S6é := PHAK
S6 := KHAAW
S6 := KHAJ
*S10 := KHUN KIW 86
*SI1 := Sl12 MAJ
S12 := 8§l
S12 := 85
KHUN CHOOP PHAK MAJ -
-PARSED OK-

PARSING ILLEGALS

NEXT: KHAW MII NAAM MAJ «
CAN YOU SAY:

KHAW MII PHAK MAJ
YES

NEXT: PHOM MII PHAK «
CAN YOU SAY:

PHOM MII KHAJ
YES «

NEXT: *TYPE «

*51 := KHUN CHOOP S2
S2 := KHAJ
SZ2 := BURII
S2 := PHAK
*S5 := Sl10
S6 := NAAM
S6 := PHAK
S6 := KHAAW
S6 := KHAJ

*S10 := KHUN HIW S6
*S11 := S12 MAJ

312 := Sl
S12 := 85

*S13 := KHAW MII S6 MAJ
*S14 := PHOM MII S6

KHAW CHOOP KHAJ «
CAN YOU SAY:

KHAW CHOOP PHAK
YES «

(" Do you like vegetables ?")
("Does he have water?")
("Does he have vegetables ?")

("I have vegetables.")

("I have eggs.")

("He likes eggs.")

("He likes vegetables.")

49

CAN YOU SAY:

KHAW HIW PHAK ("He is hungry for vegetables.")
CAN YOU SAY:

KHUN MII KHAAW MAJ (" Do you have rice ?")
YES

NEXT: *TYPE «
*$1 := S15 CHOOP S2

S2 := KHAJ

S2 := BURII

S2 := PHAK

#*S5 := S10

S6 := NAAM

S6 := PHAK

S6 := KHAAW
S6 := KHAJ
#*S10 := S15 HIW Sé6
%311 := S12 MAJ
S12 := Sl

Stz := 85

*S13 := S15 MII S6 MAJ
*S14 := PHOM MII S6
S15 := KHAW

S15 := KHUN

KHUN MII KHAJ « ("You have egg(s).")
CAN YOU SAY:
KHUN MII NAAM ("You have water.")
YES
CAN YOU SAY:
PHOM CHOOP KHAJ ("I like egg(s).")
YES)
CAN YOU SAY:
PHOM MII KHAAW MAT ("Do I have rice?")
YES «
CAN YOU SAY:
PHOM HIW KHAJ ("I'm hungry for egg(s).")
YES «
CAN YOU SAY:
KHAW MII KHAAW MAT (" Does he have rice ?")
YES «
CAN YOU SAY: ' :
KHAW MII PHAK ("He has vegetable(s).")
YES «
CAN YOU SAY:
. PHOM HIW NAAM ("I am thirsty.")
YES «
CAN YOU SAY:
PHOM HIW KHAAW ("I'm hungry (for rice.)")
YES «

50

CAN YOU SAY:

PHOM MII NAAM MA]J ("Do I have water?")
YES «
CAN YOU SAY:

PHOM MII KHAJ MAJ ("Do I have egg(s)?")
YES «
CAN YOU GSAY:

KHUN MII KHAJ] MAJ (" Do you have egg(s)?")
YES «
CAN YOU SAY:

KHAW CHOOP KHAJ MAJ ("Does he like egg(s)?")
YES «

NEXT: *TYPE « \
*S1 := S15 CHOOP S2

S2 := KHAJ
S2 := BURII
S2 := PHAK Morphological Note:
*S5 := S10
S6 := NAAM PHOM = 'I' (masc. speaker)
S6é := PHAK DICHAN ="'I' (fem. speaker)
S6 := KHAAW KHRAP = 'sir or ma‘'am' (masc. speaker)
S6 := KHAJ KHA = 'sir or ma'am' (fem. speaker)
*S10 := Sl4
*S11 := Sl13 N
Si2 ;= Sl
S12 := S5
#*S13 := S17 MAJ
*S14 := S15 Sl6 S6
S15 := PHOM
S15 := KHAW
S15 := KHUN
S16 := MII
Sl16 := HIW
S17 := Sl0
S17 := Sl12 ‘
PHOM KIN KHAJ KHRAP « ("I eat egg(s), sir or ma'am.")
CAN YOU SAY:
' PHOM KIN KHAAW KHRAP ("I eat rice, sir or ma'am.,")
YES - . .
PARSING ILLEGALS
NEXT: DICHAN KIN KHAAW KHA « ("I eat rice, sir or ma'am.") *
CAN YOU SAY:
DICHAN KIN KHAJ KHA ("I eat egg(s), sir or ma'am.")

YES «

NEXT:
*S1
S2
S2
S2
*S5
S6
)
S6
)

*S10

*S1l
Si2
Si2

*S13

*S14

S15

S15 :

S15
Slé
SLé
S17
S17
*S18
*S19

51

*TYPE

:= S15 CHOOP S2

KHAT

BURII

PHAK

S10

NAAM

PHAK
KHAAW

KHAJ

Si4

S13

Sl

S5

S17 MAJ
Sl5 Slé6 Sé6
PHOM
KHAW
KHUN

MII

HIW

S10

= Sl12

S15 KIN S6 KHRAP
:= DICHAN KIN S6 KHA

DICHAN KAMLANG KIN KHAJ KHA «
CAN YOU SAY:

DICHAN KAMLANG KIN KHAAW KHA

YES

NEXT:
*S1
S2
S2

Sz

*S5
S6
S6
S6
Sé

%311

Sli2
812
%S 13

*Sl4

S15
S15
Sl5

*S10

*TYPE -

S15 CHOOP S2
= KHAJ

BURII

PHAK

S10

NAAM

PHAK

KHAAW

= KHAJ

Sl4

S13

Sl

S5

S17 MAJ
Si5 S16 Sé6
PHOM
KHAW

KHUN

I u o onon
H oW Hon ’

("I am eating egg(s) sir or maam.")

("I am eating rice sir or maam.")

S1é
Slé
S17
S17
*S18
*S19
%*320

52

MII
HIW

S10

Si2

= S15 KIN S6 KHRAP

DICHAN KIN S6 KHA

DICHAN KAMLANG KIN S6 KHA

KHAW KIN PHAK «
CAN YOU SAY:
KHAW HIW PHAK KHRAP

YES «
CAN YOU SAY:
DICHAN KIN NAAM KHA
YES «
CAN YOU SAY:
DICHAN KAMILANG HIW NAAM KHA
YES «
NEXT: *TYPE «
*S1 := S15 CHOOP S2
S2 := KHAJ
S2 := BURII
S2 := PHAK
%S5 := S10
S6 := NAAM
S6 PHAK
Sé := KHAAW
S6 := KHAJ
*S10 := Sl4
#*S1l := S13
Sl2 := Sl
Sl2 := 85
*S13 := S17 MAJ
%314 := Sl5 S16 S6
Sl5 := PHOM
S15 := KHAW
S16 := KHUN
Sl6 := KIN
Slé := MII
S16 := HIW
Sl7 := Sl0
S17 := Sl12
; *S18 SL5 Sl6 S6 KHRAP
*%*S19 := DICHAN Sl6 S6 KHA

*520

DICHAN KAMLANG Sl6 S6 KHA

("He eats vegetable(s).")

("He is hungry for vegetable(s)
sir or madam.")

("I am drinking, sir or ma'am.")

("I am (and have been for some
time) thirsty, sir or maam.")

53

DICHAN CA HIW NAAM KHA «
CAN YOU SAY:

DICHAN CA KIN PHAK KHA
YES «

NEXT: NAKRIAN CA KIN KLUAJ «
CAN YOU SAY:

NAKRIAN KAMLANG HIW KLAUJ
YES
PARSING ILLEGALS#

NEXT: NAKRIAN KAMLANG KIN KLUAJ «
-PARSED OK-

NEXT: NAKRIAN KAMLANG RIAN NANGSYY

CAN YOU SAY:
NAKRIAN CA RIAN NANGSYY
YES «
NEXT: *TYPE «
*S1 := S15 CHOOP 82
S2 := KHAJ
S2 := BURII
S2 := PHAK
*S5 := Sl10
S6 := NAAM
S6 := PHAK
S6 := KHAAW
S6 := KHAJ
#S10 := S14
*S1l := Sl13
S12 := Sl
S12 := 85
%*S13 := S17 MAJ
*S14 := S15 Sl6 S6
S15 := PHOM
S15 := KHAW
S15 := KHUN
S16 := KIN
S16 := MII
S16 := HIW
S17 := Sl0
S17 ::= Sl12
*318 := S15 Sl6 S6 KHRAP
%319 := DICHAN S16 S6 KHA
#S20 := DICHAN S21 S16 S6 KHA
S21 := CA
S21 := KAMLANG
*322 := NAKRIAN S21 S16 KLUAJ

#3523 := NAKRIAN S21 RIAN NANGSYY

("I (will

am about to) be thirsty, sir.")

("I will eat vegetable(s), sir.")

("Students will eat banana(s).")

and have been
for some time

)

(" The students are (

hungry for bananas.

((The) students are eating bananas.)

((The) students are studying (books).)

({(The) students will study (books).)

54

KHRUU KAMLANG SOON NAKRIAN «
CAN YOU SAY:

KHRUU CA SOON NAKRIAN
YES «

NEXT: KHRUU KAMILANG SOON NANGSYY «

CAN YOU SAY:

KHRUU CA SOON NANGSYY
YES «~
CAN YOU SAY:

NANGSYY CA RIAN NANGSYY
NO «
CAN YOU SAY:

NANGSYY KAMLANG KIN KLUAJ
NO «
CAN YOU SAY:

NAKRIAN KAMLANG RIAN NAKRIAN
NO «

NEXT: *TYPE «
%Sl := S15 CHOOP S2
S2 := KHAJ
S2 := BURII
S2 := PHAK
%S5 := S10
S6 := NAAM
S6 := PHAK
S6 := KHAAW
S6 := KHAJ
*¥S10 := Sl4
%*S11 = S13
S12 := Sl
S12 := 85
%313 := S17 MAJ
*S14 := Sl5 Slé6 S6
S15 := PHOM
S15 := KHAW
S15 := KHUN
Sl6 := KIN
S16 := MII
Sl6 := HIW
S17 := Sl10
S17 := 812
/%818 := Sl15 S16 S6 KHRAP
%*S19 := DICHAN Slé6 S6 KHA
%520 := DICHAN S21 Sl6 S6 KHA
S21 := CA
S21 := KAMLANG

(" Teacher is teaching the students.")

(" The teacher will teach students.")

((The) teacher is teaching (from .
the book).)

((The) teacher will teach (from the book).)

(The book(s)will study book(s).)

(The book is eating bananas.)

(The student is studying students.)

55

1l

*522 NAKRIAN S21 S16 KLUAJ
*323 := NAKRIAN S21 RIAN NANGSYY
#*S24 := KHRUU 8§21 SOON 825

S25 := NANGSYY

525 := NAKRIAN

1

KHRUY JAT NAAK «- (" The teacher is very big.")
NEXT: KHRUU KHAW KAW MAAK «~ ("His teacher is very old.")
CAN YOU SAY:

KHRUU PHOM KAW MAAK (" My teacher is very old.")
YES «~

PARSING ILLEGALS

NEXT: *TYPE «

*S1 := S15 CHOOP S2
S2 := KHAJ
S2 := BURII
S2 := PHAK

*¥S5 := S10
86 := NAAM
S6 := PHAK
S6 := KHAAW
S6 := KHAJ

*S10 := Sl4

*S1l := S13
S12 := Sl
S12 := S5

%313 := S17 MAJ
*S14 := S15 S16 86
S15 := PHOM

S15 := KHAW

S15 := KHUN
S16 := KIN
Sl6 := MII ;
Sl6 := HIW
S17 := Sl10
S17 := Sl2
%518 := S15 Sl6 S6 KHRAP
%319 := DICHAN Sl6 S6 KHA
%320 := DICHAN S21 S16 S6 KHA
S21 := CA
S21 := KAMLANG
¢ #¥S22 := NAKRIAN S21 S16 KLUAJ

#8323 := NAKRIAN S21 RIAN NANGSYY
%324 := KHRUU S21 SOON S25

S25 := NANGSYY
S25 := NAKRIAN
%526 := KHRUU JA] MAAK

*S527 KHRUU S15 KAW MAAK

56

3.2.8 Mandarian Chinese

Problem constructed by Margaret A. Naeser of the University of Wisconsin
Linguistic Debartment. Ai Chen Ting of the University of Wisconsin East Asian
Languages and Literature Department served as informant. Transcription is in
the Yéle romanization system. Tones are not indicated as they were not per-
tinent to this particular problem (no minimal pairs used). Glosses have been

added to the original output.

SYSTEM REINITIALIZED

NEXT: WO SHWO HWA « ("I speak words.")
NEXT: TA SHWO HWA « ("He speaks words.")
NEXT: NI SHWO HWA « ("You speak words.")
NEXT: WO MEN SHWO HWA « ("I plural speak words.")
CAN YOU SAY: w¥

NI MEN SHWO HWA ("You plural speak words.")
YES «
NEXT: WO YOU SHU & ("I have books.")
CAN YOU SAY:

TA YOU SHU ("He has books.")
YES «

PARSING ILLEGALS

NEXT: *TYPE «
*S1 := S2 SHWO HWA ‘

S2 := NI

S2 := TA

S2 := WO

#S3 := S2 MEN SHWO HWA

*S4 := S2 YOU SHU B
WO YOU JUNG GWO SHU « ("I have China Land, books.")
CAN YOU SAY: Chinese

TA YOU JUNG GWO SHU ("He has China Land books.")

YES «

57

NEXT: WO YOU FA GWO SHU «
CAN YOU SAY:

TA YOU FA GWO SHU
YES «

NEXT: WO SHWO FA GWO HWA «
CAN YOU SAY:

NI SHWO FA GWO HWA
YES =

NEXT: WO YOU YING GWO SHU «
CAN YOU SAY:

NI SHWO YING GWO HWA
YES « \

NEXT: WO YOU DE GWO SHU «
CAN YOU SAY: '

NI SHWO DE GWO HWA
YES «
PARSING ILLEGALS

NEXT: WO KAN SHU «
CAN YOU SAY:
TA KAN SHU
YES «
CAN YOU SAY:
TA KAN YING GWO SHU
YES «

NEXT: TA CHANG GER «
CAN YOU SAY:

NI CHANG GER
YES «

NEXT: *TYPE «

%31 := S2 SHWO HWA
S2 := NI
S2 := TA
S2 := WO
*S3 := S2 MEN SHWO HWA
%S4 := S2 S8 SHU
%S5 := 82 S8 S6 GWO SHU
S6 := DE
S6 := YING
S6 := FA
86 := JUNG -
* %37 := S2 SHWO S6 GWO HWA
S8 := KAN
S8 := YOU

*S9 S2 CHANG GER

("I have France Land books.")

French

("He has France Land books.")

French

("I speak France Land words.")

French
("You speak French.")

("I have England Land books.")
-English
("You speak England Land,words.")
English

("I have Germany Lahd books.")

German
("You speak Germany Land,words.")
German

("I read books.")

("He reads books.")

("He reads England Land books.")
English

("He sings songs.")

("You sing songs.")

TA CHANGE JUNG GWO GER «
CAN YOU SAY:

NI CHANG JUNG GWO GER
YES «

NEXT: WO CHR FAN «
CAN YOU SAY:

TA CHR FAN
YES «~

NEXT: TA CHR JUNG GWO FAN +
CAN YOU SAY:
TA CHR YING GWO FAN
YES «
PARSING ILLEGALS

NEXT: TA DZWO FAN «
CAN YOU SAY:
WO DZWO FAN
YES &
CAN YOU SAY:
WO DZWO YING GWO FAN
YES «

NEXT: TA CHR TSAI «
CAN YOU SAY:
TA DZWO TSAI
YES «
CAN YOU SAY:
NI CHR JUNG GWO TSAI
YES «

58

NEXT: *TYPE «
#*31 := S2 SHWO HWA
S2 := NI
S2 := TA
S2 := WO
*33 := S2 MEN SHWO HWA
#*34 := S2 S8 SHU
%35 := S2 S8 S6 GWO SH
S6 := DE :
S6 := YING
S6 := FA
S6 := JUNG
#$7 := S2 SHWO S6 GWO HWA
S8 := KAN
; 38 := YOU

*59 S2 CHANG GER

("He sings China Land songs.")
Chinese
("You sing Chinese songs.")

("I eat food.")

("He eats food.")

("He eats China Land, food.")
Chinese

("He eats England Land food.")
English

("He prepares food.")

("I prepare food.")

("I prepare England Land, food.")
English

("He eats vegetables.")

("He prepares vegetables.")

("You eat Chinese vegetables.")

59

S2 CHANG S6 GWO GER
S2 S13 Sl4

S2 813 86 GWO Sl4
DZWO

CHR

TSAI

FAN

*S10

*S11

*S12
Sl13
Si3
Si14
Si4

"

LU B T I 1|

WO HE CHA ~ | ("I drink tea.")
CAN YOU SAY:

TA HE CHA ("He drinks tea.")
YES « '

NEXT: WO HE JYOU « ("I drink wine.")
CAN YOU SAY:

NI HE JYOU ("You drink wine.")
YES «

NEXT: WO HE PITYOU « ("I drink beer.")
PARSING ILLEGALS

NEXT: WO HE FA GWO PIJYOU+« ("I drink French beer.")
CAN YOU SAY:

NI HE FA GWO PIJYOU ("You drink French beer.")
YES

NEXT: SHEI HE FA GWO PIJYOU « ("Who drinks French beer?")
CAN YOU SAY:
SHEI SHWO HWA ("Who speaks words ?")
YES «
CAN YOU SAY:
SHEI HE JYOU ("Who drinks wine ?")

*TYPE «
*S1
S2
S2
S2
S2 WO
*S3 S2 MEN SHWO HWA
*S4 := S2 S8 SHU

S2 SHWO HWA b
SHEI

NI

TA

nwoiu

"o

#*S5 := S2 S8 S6 GWO SHU
Sé := DE
, S6 := YING -
- 86 := FA
S6 := FA
S6 := JUNG
. %87 := 82 SHWO S6 GWO HWA
S8 := KAN
S8 := YOU

60

*S9 := S2 CHANG GER By
*S10 := S2 CHANG S6 GWO GER
*¥S11 := S2 S13 Sl4
*S12 := S2 Sl13 S6 GWO Sl4
S13 := DZWO.
S13 := CHR
S14 := TSAI
S14 := FAN
*S15 := 82 HE Sl6
Sl6 := PIIYOU
S16 := JYOU
Sié6 := CHA
- %817 := S2 HE S6 GWO Sl6
YES «
CAN YOU SAY:
SHEI DZWO FAN
YES «
CAN YOU SAY:
i SHEI DZWO JUNG GWO FAN
- YES «
CAN YOU SAY: ,
SHEI CHANG DE GWO GER
YES
CAN YOU SAY:
SHEI CHANG GER
YES «
CAN YOU SAY
SHEI YOU SHU
YES «
CAN YOU SAY:
SHEI SHWO FA GWO HWA
YES «
CAN YOU sAY:
SHEI KAN DE GWO SHU
YES «
CAN YOU SAY:

SHEI MEN SHWO HWA

NO «

("Who prepares food ?")

("Who prepares Chinese food ?")
("Who sings German songs ?")
("Who sings sonés 2")

("Who has books ?")

("Who speaks French words ?")

French

("Who reads German books ?")

61

NEXT: *TYPE «

*S1 := S18 SHWO HWA
S2 := NI
S2 := TA
S2 := WO
#33 := S2 MEN SHWO HWA
*S4 := S18 S8 SHU
%35 := S18 S8 S6 GWO SHU
S6 := DE
S6 := YING
S6 := FA
Sé6 := JUNG
%37 := S18 SHWO S6 GWO HWA
S8 := KAN
S8 := YOU
*59 := S18 CHANG GER
%310 := S18 CHANG S6 GWO GER
#S11l := S18 S13 Sl4
#S12 ;= S18 S13 S6 GWO Sl4
S13 := DZWO
S13 := CHR
Sl4 := TSAI
Sl4 := FAN
*S15 := S18 HE Slé6
Sl6 := PIJYOU
S16 := JYOU
S16 := CHA
%517 := S18 HE S6 GWO Slé6
S18 := S2
S18 := SHEI
WO YAU SHWO HWA «
CAN YOU SAY:
TA YAU SHWO HWA
YES «

NEXT: WO SYIHWAN SHWO HWA «
CAN YOU SAY:
SHEI SYIHWAN SHWO HWA

YES «

NEXT: WO KEYI SHWO HWA «
PARSING ILLEGALS

NEXT: WO DEI SHWO HWA «

¥

("I want to gpeak words.")

speak

("He wants to gpeak words.")

speak

("I desiire to gpeakvwords M)

speak

("Who desires to speak words."

speak

("I can spéak.“)

("I must speak words.")
speak

)

62

NEXT: WO DEI SHWO JUNG GWO HWA « ("I must speak China Land words M)
CAN YOU SAY: Chinese
WO SYIHWAN SHWO FA GWO HWA ("I desire to speak French.")
YES
CAN YOU SAY:
WO SYIHWAN KAN SHU ("I desire to read books.")
YES «
CAN YOU SAY:
WO YAU CHANG GER ("I want to sing songs.")
YES
CAN YOU SAY: _
TA SYIHWAN CHANG DE GWO GER ("He desires to sing German songs.")
YES -
CAN YOU SAY:
TA KEYI DZWO FA GWO FAN ("He can prepare French food.")
YES «
CAN YOU SAY:
NI DZWO TSAI ("You prepare vegetables.")
YES
CAN YOU SAY:
NI SYIHWAN HE CHA ("You desire to drink tea.")_"
YES
CAN YOU SAY:
NI HE FA GWO CHA ("You drink French tea.")
YES «
CAN YOU SAY:
NI DEI SHWO HWA ("You must speak.")
YES
CAN YOU SAY:
TA DEI KEYI SHWO HWA
NO «
CAN YOU SAY:
NI YAU YOU JUNG GWO SHU ("You want to have Chinese books.")
YES «
CAN YOU SAY:
NI SYIHWAN SHWO HWA ("You desire to speak.")
YES -
CAN YOU SAY: : ~
NI SYIHWAN KAN SHU ("You desire to read books.")
YES + '
CAN YOU 8AY: N
SHEI KEYI CHANG GER ("Who can sing songs ?")
YES «
CAN YOU GSAY:
SHEI CHANG JUNG GWO GER ("Who can sing Chinese songs ?")
{ES
CAN YOU sAY:
TA CHR FA GWO FAN ("He eats French food.")
YES «

63

CAN YOU SAY:
WO KEYI DZWO TSAI ("I can prepare vegetables.")
YES «
CAN YOU SAY:
SHEI HE CHA ("Who drinks tea?")
YES
CAN YOU SAY:
TA DEI HE YING GWO CHA ("He must drink English tea.")
YES
CAN YOU SAY:
TA DEI SHWO HWA ("He must speak.")
YES « :
CAN YOU SAY:
NI YAU SHWO HWA ("You want to speak.")
YES «
CAN YOU SAY:
TA YAU YOU FA GWO SHU ("He wants to have French books.")
YES « ‘
CAN YOU SAY:
SHEI SHWO YING GWO HWA ("Who speaks English?")
YES

NEXT: WO MEN DEI SHWO HWA « ("We must speak.")
CAN YOU SAY:

SHEI MEN SYIHWAN SHWQO HWA
NO «

NEXT:
WO MEN DEI DAU JER LAI SHWO HWA « ("We must come here to speak.")
CAN YOU SAY:
WO KEYI MEN DEI DAU JER LAI SHWO HWA
NO « '

NEXT: SHEI DEI DAU JER LAI SHWO HWA « ("Who must come here to speak ?")
CAN YOU SAY:

WO YAU DAU JER LAI SHWO HWA ("I waht to come here to speak.")
YES « ,
PARSING ILLEGALS
NEXT: WO YAU DAU JYA LAI SHWO HWA « ("I want to come home to speak.")
CAN YOU SAY:

SHEI YAU DAU JYA LAI SHWO HWA ("Who wants to come home to speak.")
YES
NEXT: WO YAU DAU SYWESYAU LAI SHWO HWA « ("I want to come to school to
CAN YOU SAY: speak.")

NI SYIHWAN YAU DAU SYWESYAU LAI SHWO HWA
NO «
CAN YOU SAY:

NI KEYI YAU DAU SYWESYAU LAI SHWO HWA
NO «

64

CAN YOU SAY:
TA YAU DAU SYWESYAU LAI SHWO HWA

YES «
NEXT:

NEXT:
*S1
S2
S2
S2
*S3

*S4

*S5
S6
S6
Sé
S6

*S7

S8
*S9
*S10
*S11
*S12

S8 :

(“He wants to come to school
to speak.") 4

WO YAU DAU FANGDZ 1AI SHWO HWA « ("I want to come to the house

*TYPE «

S22 SHWO HWA

NI

TA

WO

S2 MEN SHWO HWA
S22 S8 SHU

S22 S8 S6 GWO SHU
DE

YING

= FA
= JUNG
= 8§22 SHWO S6 GWO HWA

SL3

Si3

S14
Sl14 :

*S15
S1é6
SLé6
S16

%*S17
S18
S18

*S19
S20

S20 :

S20
S20
S21
S21

S22 :
S22

*523
*S24

L | (T VN | A [| R [R 1 B T 1}

W o onou

*S25 :=

*S26
S29
S29
Q29

o non

KAN
YOU
S22 CHANG GER

S22 CHANG S6 GWO GER
S22 S13 §l4

S22 Sl3 S6 GWO Sl4
DZWO

CHR

TSAI

FAN

S22 HE Slé6

PIJYOU

JYOU

CHA

S22 HE S6 GWO Sl6

s2

SHEI

Sl

DEI

KEYI

SYIHWAN

YAU

S2 20

S18

szl

S18 S20

WO MEN DEI SHWO HWA
WO MEN DEI DAU JER LAI SHWO HWA
S22 DAU JER LAI SHWO HWA
S22 YAU DAU S29 LAI SHWO HWA
FANGDZ

SYWESYAU

VA

to speak.")

65

3,3 Planned Improvements in the Phrase Structure Learning Program.

The system is very sensitive to the order in which inputs are presented.

At the moment the class splitting heuristic 5 does not apply under certain
input sequence circumstances. For example, given the inputs:

the girl is tall

a girl is tall,
yielciing the grammar:

*Sl - S2 girl is tall

S2 — the

Sz—va

If the next input is:
the girl s are tall
The system will add the rule:

" .
S3 - S‘2 girl s are tall

without checking to see if
a girl s are tall
is legal, This test would have been made if the last input had been the

first input. As a result the system maintains an illegal rule which may not

¥

be corrected for a very long time, if ever. If an 'a' should occur with a

plural noun in a later test for another rule and be rejected by the informant,

the system will merely reject the rule currently under test. In such circumstance

3 different things may happen. The system may recycle and correct the error
ih a later learnin;; run; the system may recycle recursively to a depth 3 and
quit; or, more frequently, learn a very complicated grammar which is capable
of parsing all the inputs from the informant, but which, from a generative

point of view, still contains illegal rules,

ADDENDUM to page 65

The sensitivity problem described on page 65 is now corrected
via random checking., The. error might still occur on a random basis
if Sz has more than two members.

The improvement is reflected in the examples of Secticn 3,

e.g. page 19,

66
This flaw can probably be corrected by the following heuristic procedure

which will be added to the system: -i'f a given top node string derived from
an informant input sentence contains any nonterminals that are classes of
morphemes, generate test sentences through the top node string selecting
the other members of each morpheme class, and apply the class splitting
heuristic 5, each time the informant rejects a test case.

Another method for obtaining a cleaner grammar would be to treat the
right half of each rule in which a valid substitution has been made as an
informant input, and subject it to the input rule coining heuristics. This
improvement will be attempted, but the refining may come :only at periodic
intervals rather than after evey rule change because of computation time
problems,

The major improvement of the system will come from converting it to a
context sensitive phrase structure learning system. The data structures
already have appropriate links for associating context with individuals
rules. Such an improvement will also require the construction of a context
sensitive multi -path parser,

The heuristics for context sensitive learning will be supplemental to,
and on the pattern of those for context free learning.: Basically, if a con-
fext free rule is té be rejected on the basis of an informant's réjection of
a text senfence, the system will attempt to reformulate ‘the rule with a-

context restriction.

The formulation of the context restrictions themselves will initially be
¢
rather specific, but may grow in generality of statement via application of

th_e'heuristics already used in learning the context free rules.

CORRECTION

Delete second paragraph of page 66.

Improvement already in system and reflected in examples of Section 3,

67

4.0 Transformation Learning Program,

Our work on a transformation learning program yielded two learning
methods, bottom-to-top and top-to-bottom. The top-to-bottom method,
» which is entirely the work of William Fabens, was the one actually imple-
mented. The bottom-to-top method, however, lends itself more readily
to rule modification via informant interaction, and will be implemented and
used in futuer versions of the system. Both methods require as input first
a P-marker, (that is, an input sentence with a tree structure derived either
from parsing or generation); and second; the sentence (without a tree) into
which the first sentence is to be transformed. In each method the sentences
may be in different languages. Both methods yield learning of bilingual
transformations . Tf;e leaming of monolingual transformations is a special

case.

4.1 PBottom-to-Top Learning,

This method yields learning of the least general case first, and gradually

increases the level of generality acceptable to an informant. Consider an

/-S\ ‘

input P-Marker

NP NPl
D/ \KN Vv / \NP
‘ sg
S LA VAN
‘I’l Slgl D, Tz
The man eat s a fish

dnd'a 'target' sentence (the desired transform)

a fish is eat en by the man

K
1

68

Increasingly complex transformations are coined by climbing up the trees of
both sentences: in the case of the first, the given P-marker; in the case
of the second, the implicit local tree structures existing in common with the

first.

" Accordingly, the lowest level transformation that could be coined is:

T : themaneat s a fish = a fish is eat en by a man,

1
A somewhat higher level transformation would incorporate what is common to

both inputs one level above the terminal string level. e.gq.

TZ: Dl N1 V1 Sg1 D2 Nzﬁ DZ N2 is V, en ‘by D, N

1
The assignment of higher level nodes to the elements on the right
was determined by their existence in the P-marker of the first sentence.

Test sentences generated via this transformation are offered an informant.

‘Should he reject any, the level of generality of the transformation is

decreased. For example, should this transformation not work if a different

member of class V, is used, the transformation would be reformulated:

T3: Dl N1 eat Sg1 I)2 Nz = D2 NZ is eat en by I)1 N1

And a special verb class containing 'eat' might be fbrmulated at a later

stage. Assuming, however that T, is accepted, the program would search

2

for additional higher level common units, e.g.

NP P, NP - NP

T N 2 1
/N _ /X /N A

D N,: V, Sg,D, N => P N v D N
w1 | 1 172 2 2 2 1 71 1
O R - l I

the | man - eat s a fish a fish is eat en by the man

69

This suggests the transformation:

T4: NPl Vl Sgl NP2 %> NPZ is Vl en by NP1

There would, of course, be intermediate stages before T 4 is obtained, e.q.
the coining of:

NPl .Vl Sg1 DZ N2 = D2 N2 is V1 en by NPl

If the informant accepts the test cases for T, , itis accepted as the most

4

general transformation to be learned, as no more common elements can be
Vfound between the explicit tree of the source and the implicit tree of the
transform string. Should the informant. reject test sentences derived from
T 4 the system would again retreat in level of generality.

The transformation might ‘also be subject to change and updating

because of changes'in the nature of the phrase structure grammar,

4,2 Top-~-to-Bottom Transformation Learning.

As indicated, this program is implemented and working. (Some bugs
still exist in it, but these did not seriously interfere with the test examples
presented here.) As indicated the logic and program are due to William

Fabens.

4.2.1 Program Logic.

The output of the learning process is a list of ordered transformations,
which operate from the top of the‘ tree downwa’rds‘. Thi; block of _transfozma -
tions is also restated by the program (through substitution of terms) as 'aF, V‘
gingle trqnsform.ation identical v;ith the type derived by the _bét?toxj__;,.,—-t_o-ftdp

" learning method.

™

‘a D, NP, VP / s\

70

Let us consider the learning process with the same example as in
section 4.1. The input P-marker is "the man eat s a fish;' pius its
attendant tree structure, and again the transforrmzr‘ "a fish is eat en by
the man". The system asks the translation of each morpheme in the input
sequence, The correct reply is the equivalent morpheme in. the transform
string. (This is a substitute for dictionary lookup in the general case of

bilingual transformation learning.) If there are no equivalents, the infor-

mant replies 'NONE'. If two morphemes are identical in the transform, the

informant subscripts his replies to identify the relative positions of each
like morpheme. (In the case of bilingual learning, this is in no sense
word for word translatién. Rather it is a method for locating equivalent
phrase units).

Each»morp‘heme in the transform sentence is placed at the bottom of its
own push down stack. Above each morpheme in its stack is a list, in
se‘quence; of the tree nodes on the path leading from it to the S node in

the original input P-marker. Thus

fish N2 NP2 VP1 NPl i ‘VPl

i ' \N / \NP

S A R
eat Vl- Vs'.gl‘VP1 from , \ll Slg1]:I)2 l\llz
en The man eat s a fish
by

the D NP

man N NP

Next the tops of the stacks are scanned.

71

If the same node occurs

discontinuously on the top level, it is added to the tops of the intervening

stacks.

fish

is

eat

Accordingly,

NP2

NP2

‘ ng1

VP1 is added to the top of the stack above '‘is':

VP1

VPI,

VP

If one or more morphemes are at the top of an adjacent stack (immediate

adjacency in a forward linear scan) the node at the top of the stack of the

last sequence of like top nodes is added to the tops of the morpheme stacks.

In this case the result is that VP1 is now added to the stacks containing

lenl

and ‘by' .

(The ordering is admittedly arbitrary: one may ask why

NP1 was not added instead of VPl). The result is:

a
fish
is
eat
en
by
ghe

man

NP2

NP2

ng1

NP

NP

VPI

VP, ;

- VP

1

72

The system then tabulates all possible tree branch transformations starting
at the top. The source tree yields the left hand formulation of each transforma-
tion. The left half of the first of the series of ordered transformations is:

S(NP1 VPl) ==

which may be interpreted as 'NP1 and VPII dominated by an S node.
An S node was implicity at the top of the transform pushdown stacks.
Accordingly, the right half of the transformation is formulated as S dominating

whatever is currently at the top of the pushdown stacks, where adjacent

strings of like nodes are treated as a single node:

,Ta: S(NP1 VPI) == S(VPl NPl)

For the next step, the top nodes of the pushdown stacks above the transform
tree are deleted and the node redistribution process described above is
repeated except that morphemes at the top of the stacks no longer receive

adjacent nodes. In this case no new nodes are added to any of the stacks.

a DZ NP2

fish N2 I\TP2

is _
eat V1 ng1

en

by

the D

than N

73

The strings of VPl's and NPl's have been removed from the tops of
the pushdown stacks. The right half of the next transformation is formed

from what was under the VPl nodes:

= VP1 (NP2 is ng‘1 en by)

The left half is derived from what is under the V-P1 node in the input tree;

yielding:

T, : VPl (Vsc_;l NP == VPl (NP is ngl en by)

2.) 2
Similarly, what is beneath the deleted NP1 in the source tree and the stack

form the next transformation;
NPl (Dl Nl) > NP1 (Dl Nl)

which is an identity transformation (a consequence of the method). Identity
transformations, although calculated, are surpressed in the teletype output.

Again the program strips the top nodes from the push down stacks:

2
fish NZ
(is) (removed from the stack) _
eat vV

1

{en) (removed from the stack)\- h
{by) (removed from the stack)
the

man

74

The removed NP2 yields an identity transformation which is disregarded;

NPZ (D2 NZ) = NP2 (D2 NZ)

However the removal of the ngl unit yields a non-trivial transformation;
TC: VSgl (V Sq) — ng_l(V)
The deleted D | and N 1 nodes again yield trivial i-dentity transformations:

D, (the) =—> D, (the)

1 1

NI (man) =—> N1 (man)

Repeating the process, the identity transformations
D,(a) == D, (a)
N2 (fish) =—> N2 (fish)

are also coined,

Repeated substitutions in the battery of ordered transformations yield

a rule identical to that derived by the bottom-to-top learning method:

Ta: S(NPl VPl) => S(\IP1 NPl)
yields via substitution of the terms in Tb for VPl H
S(NPl ng1 NPZ) => S(NP2 is ngl' en by NPL)

followed by substitution for ngl from transformation Tc:
S(NPl V1 Sgl NPZ) =D S(NP2 is Vl en by»NPl)

which is identical to the transformation T 4 derived in section 4.1,

75

4.2 2 Features of the Program.

The system begins its input of the starting P-marker by outputting a
message:
SENT :=
The human replies with the nodes deriving from SENT. The nodes must
be bracketed by quotes and separated by commas. For example the human
might reply:

n NP L1} . [} VPII

followed by an arrow. The system will then query the expansion of each
node, descending the left most branch of the tree first. E.g. the next query
would then be:

. NP :=
The dot indicates the relative depth in the tree. If the last element was a
terminal, the arrow key alone is punched. At the end of the input of a tree
the system asks:

DO YOU WANT ANOTHER PARSE?
If the answer is YES, (in case of error) the program disregards the last
inputted tree and offers one the chance of another tree input. If the answer
is NO , the system outputs the message:

PLEASE TRANSLATE
foilowed by the terminal elements of the tree in sequential order. The human
must then input the desired transform string, with each morpheme in quotes
;nd separated by commas. The system will then ask for morpheme equivalents.

If two or more morphemes are identical in either string the system assigns or

interprets subscripts where appropriate,

76

After the transformation is learned, the system prints the rules, both
in the ordered form and in the expanded, single expression notation. The
program also uses '+' to indicate two units descended from the same node,
and '-' to indicate more remote ancestry. The program then outputs a

message:

WANT TO REAPPLY IAST TRANSFORMATION?

A YES answer means that the next time a tree exhibiting nodes in the domain
of the transformation is inputted, the program will apply the transformation.

If the new P-marker is more complex then that of the learning input
(but with nodes étill in the domain of the transformation), the system will
still correctly apply the rule (except in case of extreme complexity because
of an uncorrected bug in the program).

Section 4.2.2 lists a copy of the teletype output with keypunch errors
and extraneous system mességes excluded) for learning of an active-passive
transformation, and its application to a more complex sentence with different
vocabulary. Section 4.2.3 lists a similar teletype transcript for the learning
of an English to German bilingual transformation. (The print out of the
~ dominating node on the right half of each transformation is surpressed on

the teletype output.)

77

4,2.3 Llearning and Application of an Active-Passive Transformation.

SENT := "NP", "VP"«

- NP := "D", “NP" «
e o« D =«

. NP := «

VP := «

DO YOU WANT ANOTHER PARSE? YES «~
SENT := "D"«
D = &
DO YOU WANT ANOTHER PARSE? YES «
SENT := "NP", "VP" «
NP := "JOHN" «
JOHN := &
. VP := "VP", "NP" «
. . VP := "VSTMA", "SGA" «
VSTMA := "WANT" «
+ +« WANT = «
SGA := "§" « *
A
NP := "MARY" «
. + MARY := «
DO YOU WANT ANOTHER PARSE? NO«
PLEASE TRANSTATE
JOHN WANT S MARY

1"# MARYII . " ISII . L1} 'WANTII s [1] EDII . " BYII . n]’OHNII -

78

C{ JOHN) := "JOHN" «
C(WANT) := "WANT" «
C{8) := "NONE"

C{ MARY) := "MARY" «

It

SENT (NP, VP) ::= VP NP

VP (VP(1), NP{l))::= NP(l) IS VP(l) ED BY

VP(l) (VSTMA , SGA)::= VSTMA

OR: NP - VSTMA + SGA ~ NP(l) - := NP(1) + IS - VSTMA - ED + BY - NP

TRANSLATION IS...
MARY IS WANT ED BY JOHN

WANT TO REAPPLY LAST TRANSFORMATION ? YES +-
SENT := “NP", "VP" «=
. NP := "D", "NP" «
. « D = "THE" «
. « « THE := «
. « NP := "NP", "MOD" «
. +« « NP := "MAN" «
. MAN := «
. .« « MOD := "PREP", "NP" «

H IN" —

'
-~
3
)

1]

« « + « NP := "D", "NP"
w « +« o » D = "THE" «

e« o« +« +» o o+ THE := «

« « +» « « NP := "PARK" «

« o o « o « PARK := &=

79

VP := " V‘PII . 1] VPII —

VP := "VSTMA", "SGA" «

VSTMA := "KISS" «
KISS := «
. . SGA := "ES" «
ES = «

NP := "D", "NP" «
D := "A" «
e s 2+ A 1T 4=
. NP := "ADJ", “NP"
. « o ADJ := "PRETTY" «
. « PRETTY := 4
e « « NP := "GIRL"
e« o« « o « GIRL := 4=
DO YOU WANT ANOTHER PARSE? NO «
T(A) := "A" «
T(PRETTY) := "PRETTY" «
T(GIRL) := "GIRL" «
T(KISS) := "KISS" 4
T(THE):=- "THE" «
T(MAN) := "MAN" «
T(IN):= "IN" «
f(THE(1)) := "THE" «
T(PARK):= "PARK" «

TRANSIATION IS...
A PRETTY GIRL IS KISS ED BY THE MAN IN THE PARK

80

4,2,4 Learning a Bilingual. Transformation.

SENT :=

. NP :=

l{]

[L] . . . MAN

3 - . RC : = " RP"

81

e « + +« o &+ o o CITY :=

DO YOU WANT ANOTHER PARSE?

PLEASE TRANSIATE

HE IS A MAN WHO LIVE S IN THE CITY
C’(HE):=

C({ IS)=

C{ A 1=

C{ MAN):=

C(WHO):=

C{ LIVE):=

c(s)=

C{ IN)=

C{ THE):=

- C({ CITY):=

SENT (NP , VP):= NP VP

VP ({ VP(l), NP(l)):»= VP(1) NP(1)

NP(U (NP(2), RC)= NP(2)

NP(2) (D, NP(3)):= D RC -ENDER NP(3)
RC (RP, VP(2)):= VP(2)

vVP(2) (Vv, MOD):= MOD V

82

MOD (PREP, NP(4)):= PREP NP(4)
Program error: identity trans-
NP(4) (D(1) . NP(5)):= D{l) NP(5) formations should not have
been printed.
V (V(1} , 8G):= V(i)

OR: NP - VP{l) - D+ NP(3) - RP - V(1) + SG - PREP - D(1) + NP{5) -

:= NP - VP(1) - D - PREP - D(1) + NP(5) - V(1) - ENDER + NP(3) -

[IA compounded error: the collapsed transformation used the identity trans—]
f_ormations in the expansion. With corrections, it should read

NP - VP(1) - D + NP(3) - RP - V(1) + SG - MOD :=
NP - VP(l) - D - MOD - V(1) - ENDER + NP({3)

5.0 Proving the Lingquist Superfluous.

In terms of speed in producing a grammar, the phrase structure learning
component of the AUTOLING system seems to have an advantage over the
human linguist. For example, the Indonesian problem of Section 3.2.6 required
about 45 minutes of the 'informant's' time at the teletype, including the usage
of less than 4 minutes of computer central processor time (in a time sharing
environment involving relatively light demands by other users). AUTOLING's
time advantage over a human analyst appears to increase with the size of the
corpus, but precise tests have not been carried out. \

Wiih respect to completeness and quality, the existing AUTOLING
system is not yet ready to replace human linguists. But gradual improve-
ments are inevitable, and eventually the role of the hl.:man fieldworker may be
éhallenged seriously, particularly if the state of the art ever permits the
incorporation of adequafe vocal communication between informant and com~
puter,

p The proof of the adequacy of the machine as linguist might eventually be

" demonstrated through a variant of the Turing test for artificial intelligence [19].

Let 5 or 10 human linguists each spend a set amount of time individually

working with the same informant. Let the machine linguist do the same

83

Then let the grammars produced by all participants be presented, annonfmously,
to ar;other group of linguists who must attempt to spot the machine's grammar.
If the machine linguist is not determined as such with statistically significant
frequency, one may assume it is: at least as good a fieldworker as the weakest
human analyst in the test group.

While such a success might make ‘'data collecting' linguists superfluous,
it should free most for work in linguistic theory. Of course by jthat time the
computer will have become an essential tool of the theorist, not. just for
data collection and analysis, but as a means of checking the implications of

theoretical formulations and models.

10,

84

REFERENCES

Chomsky, N. Aspects of the Theory of Syntax. MIT Press, Cambridge
1962,

Garvin, Paul L. Automatic Linguistic Analysis - a heuristic problem,
in 1961 International Conference on Machine Translation of Languages
and Applied Language Analysis, Her Majesty's Stationary Office,
London, 1962,

Garvin, Paul L. The Automation of Discovery Procedure in Linguistics,
Language, Vol. 43, No. 1, March 1967. (Presented at Linguistic
Society of America Meeting in 1965).

Gold, E. M. Language Identification in the Limit. RAND memorandum
RM=-4136~PR, July 1964, RAND Corporation, Santa Monica. Also, published
in a revised version in Information and Control, Vol. 10, No. 5, May 1967,

Harris, Z. §. From Morpheme to Utterance. Language, 22, 161-83,
1946,

Harris, Z. S. Methods in Structural Linguistics. University of Chicago,
1951,

Katz, J. & Fodor, J. The Structure of a Semantic Theory. Language.
Vol. 39, No. 2, April-June, 1963.

Klein, S. Some Components of a Program for Dynamic Modelling of
Historical Change in Language Using Monte Carlo Techniques. Paper

No. 14 of Preprints of Invited Papers for 1965 International Conference

on Computational Linguistics. Associational Conference on Computational
Linguistics. (Also will appear in Russian, in a book on Language Contact,
edited by V. Rosentsveig, Moscow).

Klein, S. Historical Change in Language Using Monte Carlo Techniques
Mechanical Translation, Vol. 9, Nos. 3 & 4, Sept. & Dec. 1966, (Publ.
May 1967). (Also will be reprinted in a source language version of
immediately preceeding mentioned book edited by V. Rosentsveig, as a
replacement for the earlier paper. Mouton, The Hague.)

Klein, S. Current Research in the Computer Simulation of Historical
Change in Language. In press, Proceedings of the Xth International
Congress of Linguists, September 1967, Bucharest.

Klein, Davis, Fabens, Herriot, Katke, Kuppin & Towster, AUTOLING:
An Automated Linguistic Fieldworker, Second International Conference on
Computational Linguistics, August 1967, Grenoble.

12,

13,

14,

15,

16,

17,

18,

19.

20,

21,

85

Knowlton, K. Sentence Parsing with a Self-organizing Heuristic Program.
Ph.D. thesis, MIT, Cambridge, August, 1962,

Koutsoudas, A. Writing Transformational Grammars: An Introduction.
McGraw~Hill, New York, 1966,

McConlogue, K. & Simmons, R. F., "Analysing English Syntax with a
Pattern-Learning Parser." Communications of the ACM, Vol. 8, No. 11,
November, 1965.

Nida, E. A. Morphology, The Descriptive Analysis of Words, 2nd
Edition. University of Michigan Press, Ann Arbor, 1949,

Shamir, E. A Remark on Discovery Algorithms for Grammars, Information
and Control, Vol. 5, September, 1962,

Siklossy, L. Natural Language Learning by Computer. Ph.D. thesis,
Carnegie-Mellon University, Pittsburgh, 1968,

Solomonoff, R. A New Method for Discovering the Grammars of Phrase
Structure Languages. Information Processing, Proceedings of the Inter-
national Conference on Information Processing, UNESCO, 1959,

Turing, A. M. Computing Machinery and Intelligence. Mind, 59: 433-460,
October, 1950,

Uhr, L. "Pattern-string Learning Programs." Behaviorial Science,
Vol. 9, No. 3, July 1964,

Wells, R. Immediate Constitutents. Language Vol. 23, 81-117, 1947,

