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semantic universe in the syntax of any natural language for which
grammér is supplied. The system can handle generative semantic
grammars in a variety of theoretical frameworks, and is especially
suited for modelling text grammars, including 'frames', 'scripts’,
and 'scenarios’,.

While Sheldon Klein is responsible for the basic design of
the system, it is the result of the efforts of more than twenty

students, over a five year period.



FORWARD: The History of MESSY

by
Sheldon Klein

While I am responsible for the basic design of the Meta-symbolic
Simulation System, it is the result of the efforts of more than
twenty students over a five year period. A product of the classroom,
it was produced in response to my specifications. What I got was
sometimes less and usually more than I asked.

Our original motivation was to develop a simulation system to
work in conjunction with our language learning programs to provide
a basis for modelling language change in speech communities as a
function of social structure and historical events (Klein 1966, 1967,
1974; Klein, Kuppin, Meives 1969, Klein & Rozencvejg 1975). Toward
this goal we developed a meta-symbolic simulation system that includes
a behavioral simulation programming language that models, generates
and manipulates events in the notation of a semantic network that
changes through time, and a generalized, semantics-to-surface structure
generation mechanism that can describe changes in the semantic
universe in the syntax of any natural language for which a grammar
is supplied. The system can handle generative semantic grammars in
a variety of theoretical frameworks.

One of the most significant features of the system is that
the semantic deep structure of the non-verbal, behavioral rules may

be represented in the same network notation as the semantics for
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natural language grammars, and thereby provide non-verbal context

for linguistic rules. This feature also permits experimentation with
a natural language meta-compiling capability. The semantic network
may be used to generate texts in the simulation language itself, and
these may be compiled as new behavioral simulation rules during

the course of a simulation. These rules may be rules that, them-
selves, describe the process of deriving new rules. Because of

the common notation, non-verbal, behavioral rules can be derived from
natural language conversational inputs using inference techniques
analagous with those for inferring natural language, generative
semantic grammars (Klein et al 1968; Klein & Kuppin 1970; Klein
1973). The total system has the power of at least the second order
predicate calculus, and will make it possible to formulate text
grammars with arbitrarily abstract semantic components, together
with rules for their 1ogica1 quantification. Our use of the term
'text grammar' extends to any kind of general, formal statement of
rules for generating structured behavior, and includes the concepts
of 'frames', 'scripts', and 'scenarios' (Klein 1975).

Qur first major experiment with the system was a text grammar
model that generated 2100 word murder mystery stories in less than 19
seconds each, compléte with calculation of the plot as well as the
surface syntax (Klein et al 1973). The speed of this generation is
100 to 1000 times faster than other existing programs using

transformational grammars just for sentences in isolation.



The goals we set for the system are heroic, and demand heroic
test cases. The approach we adopted was to model major, significant
portions of fields unrelated to our own, and to allow the impact of
our models for the independent field validate our own claims. The
idea of using folklore models was suggested to me at an interdisciplinary
conference on text grammars (held in Bielefeld, Germany in 1974,
sponsored by Jands Petdfi and Teun A van Dijk) by Dimitri Segal,

E11i Kongas Maranda, Heda Jason & Michel de Virville. We were also
stimulated by Ed Kahn, who reviewed the murder mystery model in his
Ph.D. dissertation (Kahn 1973). Kahn's remarks there, and in a
published debate (Kahn & Kiein 1974) suggested that our system was
jncapable of handling the logical quantification complexities

of Fairytale and Myth models of Propp and Lévi-Strauss. As a
consequence, we automated Propp's first order predicate calculus
text grammar for Russian fairytales, originally published in 1928
(Propp 1968, English translation).  Our model generated several
hundred Russian fairytales at an average speed of 128 words a second,
including plot computations and specification of deep structure as
well as surface syntax (Klein et al 1974, Klein et al 1976).

We soon perceived that the Myth models of Levi-Strauss presented
a challenge for control of semantics and symbolism undreamt of -
in ordinary linguistic studies. We produced a simple model for

five myths from The Raw and the Cooked (Lévi-Strauss 1969) (Klein

et al 1974), and a more elaborate one (Klein et al 1976). Our
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current efforts are directed toward automatic inference of
text-grammars using meta-compiling techniques, and our truly heroic
test case for this is the automation of the analyiic techniques used
by Lévi-Strauss, himself. Toward this goal, a portion of.the MESSY
research group will spend academic year 1976-77 in Paris, working
with Lévi-Strauss. Our mailing address for the period September
1976-Jdune 1977 is:

Professor Sheldon Klein

Laboratoire d'Anthropology Sociale

L'ECOLE DES HAUTES ETUDES EN SCIENCES SOCIALES

11 Place Marcelin-Berthelot

75231 PARIS CEDEX 05
FRANCE

At this point I would like to list the contributors to the

Meta-symbolic Simulation system:
John D. Oakley was the first major contributor who, together
with David J. Suurballe and Robert A. Ziesemer, produced the first
version of the system, operational on a Burroughs 5500 computer,
and written in Burroughs extended ALGOL (Klein et al 1971).
John [r. Oakley moved the system from the B5500 ccmputer
to the Univac 1108, converting from ALGOL to FORTRAN V. It is
fair to say that, without his efferts, the project would have died
at the time the University of Wisconsin lost the B5500 computer.
Steven L. Converse added the look-ahead construction and the

secondary triple devics.



David F. Balsiger is the main figure connected with the
natural language generation component. Mark Foster, with some
assistance from Robin Lao, made contributions to the grammar and
dictionary structure.

John F. Aeschlimann, has, at this point, made the largest
contribution to the structure of the Meta-symbolic Simulation System.
A few of his contributions include predicate operations, dyr-mic
modification of lexical lists; subscripted classes and reality value
codings.

Matthew A. Appelbaum is, of couse (with the assistance of John
F. Aeschlimann) the ;uthor of the USER Manual. His other‘contributions
include subroutines (in combination with Scott J. Kamin and S. David
Kalish) as well as contributions to the general revision and clean-up
of the latest version of the system. Appelbaum's primary contribution
remains his coding of the Propp model for Russian fairytales, our
major test case (assisted by S. David Kalish).

With regard to test cases, Lynne A. Price was the major creator
of the design of our Lévi-Strauss model and John F. Aeschlimann
worte the code. Some assistance was provided by Elizabeth J. Curtis.

Claudine Court and Joel Smith produced the Murder Mystery
program.

For all the test cases, David F. Balsiger and Mark Foster
were primarily responsible for the associated semantics-to-surface-

structure grammars.
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Other contributors include Ying-Da Lee, who added classes of
relations, Abbi-Jane Lau, who added the capability of using simulation
language classes as semantic distinctive features with dyanmic
modification capability, Donald Gordon Wilson for expansion of
operations on subscripted classes, Babak Chubak and Carlos A. Cortez
for unifying our treatment of relations, James Weiner, Anita Siu-Man
Lo, Priscilla M. Lu, Sally Siu-Lie Chan and Mark E. Sanders for
miscellaneous contributions, and.James E. Moore and Barry T. Rowe
for a component for facilitating the input and update of grammars

and dictionaries.

The system is currently implemented in FORTRAN V for the Univac
1110 with an interpreter. The code, including that for the generator,
occupies 30K words of core storage, and the data structures may

occupy from 10K to 50K words.
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1. Introduction

This manual will contain a syntactic and semantic description of the
simulation language component of the meta-symbolic simulation system.
When necessary, information about the internal system mechanism and data
structures will be given, but this will generally be avoided. Also
absent from this manual, except in a few special instances, will be any
description of the linguistic generative component of the simulation
system; this component is used to take the output from the simulation
system and, using a grammar and dictionary, produce sentences in a chosen
natural language.

As this is a simulation system, the modelled universe changes as a
function of time. A report on the current state of the universe is printed
out at each time change, this report being called the change stack.

Internally, the universe is modelled as a semantic network (also
referred to as the network) which is composed of semantic triples (also
called triples) which represent the semantic deep structure. The modelled
universe also contains some information, such as regarding class membership,
which is not in the semantic network.

The major component of the language is the group, which comprises
any number of rules. A group is executed at intervals according to an
internal clock, and may also be temporarily or permanently turned off
(disabled) or activated (enabled). Groups may also be called as
subroutines. The rules in a group are evaluated sequentially, but the
sequence may be dynamically changed.

A rule controls changes in the universe. It is made up of two
parts: an action list, which manipulates the universe--the network,
class membership 1ists, and sequencing information (and which may
include a look-ahead into the future); and a series of conditions
(subrules) which test the universe and set probability parameters
according to the outcome of the tests, causing execution or skipping
of the associated action list depending on the cumulative probability
as compared to a system generated random number.
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The network is changed and tested with semantic triples, which are
assertions about the universe, A triple is composed of an ordered arrangement
of two or three atoms, atoms being either nodes (semantic objects)
or relations. A triple is generally of the form: subject node
relation object node. Triples are asserted and negated in the network
by rule actions, and have creation and deletion times, user set reality
values, and hypotheticality values associated with them.

Atoms--nodes and relations--are abstract semantic entities whose
meanings are defined by the supplied data base. They may be linked to
a lexical dictionary which contains roots in the vocabulary of the chosen
surface language, and to lexical triples, which are triples not included
in the semantic network but useful for encoding multi-word strings as
single entities. Nodes may also point to other triples in the network,
functioning as complex predicate nodes, thus allowing lists of triples.

Classes of nodes and relations are provided for. Subscripted
classes permit class union and quantification. Loops are used to step
through the elements of a class or the triples of a complex predicate node.

A program running on the simulation system goes through two phases.
During compilation time the program is translated into an internal form,
with syntax checks being made. If the program compiles without error,
it is then executed.

This manual will attempt to give a thorough description of the
language, including rules for its use and examples. It will be assumed
that the reader has a basic idea of simulation techniques, as well as
some understanding of the uses of this particular system. Not all
cases of every language construct have been checked or described,
especially those which, although perhaps legal, would most likely never
be used. Also, the simulation language is constantly changing and
evolving, although the changes are usually in the direction of adding
new abilities and not changing present ones.

As this manual is intended both for learning the language and
for reference purposes, the description of each construct is complete.
Therefore, when reading for initial learning purposes the more complicated



aspects can safely be ignored.

In particular, the following chapters and sections can be omitted
until the basic language has been learned: 3.1.4, 3.2, 4.2, 4.2.1,
5.2, 7., all parts of 12.5 (but should be looked at on the second
pass), 13. (a chapter giving a powerful addition to the basic language),
15., 17., 19., 20., 21., 23.4, many of the details of 25., all parts
of 26.2, 26.3.2, the SECondary functions in 27., 27.8, 28., 29., 30.2,
30.3.

A modified BNF is used to present the syntax of the various
constructs:

[]*= optional

{} = zero or more repetitions

{}* = one or more repetitions i

{3y lower Timit-upper Timit - erom Jower limit to upper limit number of

repetitions i

¥

(An explanation of the number of repetitions'
may be used instead.)

When appropriate, an English description is included in the BNF. Finally,
syntactic entities are placed inside the brackets, < and >, in syntax
descriptions, but the notation is not always carried into the text when
the meaning is clear.

any number
of sets of

ﬁ $RULE

2. General Form of a Program.

An outline of a typical program is given below, along with a
description of each of the major components. This sample structure
is not mandatory, as each of the components may be repeated and the order
changed. However, the given form is typical as it is easiest to use
and understand.

2.1 Outline of a program.

$LIMITS command, giving-range of simulated time and several system options.
$NODES; followed by a list of all nodes and their associated lexical
dictionary elements (and information for the generative
mechanism).
$RELATIONS; followed by a list of all relations, similar to the list of
nodes.
$CLASSES; followed by a list of all classes and subscripted classes,
A detailing any initial members they may contain.
$EXCLUSIONS; followed by exclusion lists, allowing automatic deletion
of contradictory triples.
$NETWORK; followed by actions which initialize the semantic network.
r$GROUP command, giving timing and initial status for this named group.
$RULE followed by rule actions and subrule conditions for this rule.

\$ENDGROUP;
$END; signalling the physical end of the program and always the last
command.

The sections preceding $GROUP are used to define items and initialize
system variables and the simulated universe. The information in these
sections is acted on when reached, and is stored for use by the
simulation program. The program which actually controls the simulation
is contained in the sets of groups, and is first compiled into an
internal form and then executed.



2.2 Rules For Constructing Names.

Nodes, relations, classes, variables, and groups have names, and
rules, switches, and loops may have them. Names must start with a letter,
followed by letters and/or digits to any length; however, as only
the first eight characters are saved internally, RULENAME1 and
RULENAME2 would be taken as the same name by the system. With some
exceptions, all names must be unique. There are also a number of
reserved words which are defined by the system and may not be used
(see below). The exceptions to the uniqueness rule for namec are:
1. Groups and class names may also be atoms. If they are not explicitly
defined as atoms they will automatically be defined as nodes.
A single name could be an atom, a class, and a group.
2. Loop variables names and subrule variable names may have been previously
used as the same ‘type of variable name as long as the previous
use is no Tonger in existence.
3. Labels--names of rules, loops, and switches--are known only in the
group in which they are defined and are known only as labels. Therefore,
they can be used for a different purpose in the same group and for
any purpose in other groups.

2.2.1 Reserved words.

These names may not be used for any user-defined purpose. Their
meanings are defined by the system and they are described in appropriate
places in the manual.

ABS EVER NEQP TIMER
AND EVERSEC NOT TO
CLOCK : FLOAT NUM ' VAL
DEL FROM NUMP VALSEC
DELSEC GE OR

DUR GT PICK

DURSEC LE RANDOM

ENTIER LT RV

EQ MOD RVAL

EQL NE RVALSEC

EQLP NEQ SEC -

2.3 Card Format.

Programs written for the system can be punched in free format,
with specific rules given below. For readability, however, it is
recommended that some standard format be used.

1. Only columns 1-72 of a card will be processed. Columns 73-80 are
ignored but will be printed out with the program listing.

2. A1l names, reserved words and other system functions, numbers, and
durations must be preceded and followed by at least one delimiter.
Delimiters include blanks, which may be freely used subject to the
rules in (3) below, and special symbols such as commas, semicolons,
colons, parentheses, equal signs, etc., which are used only where
required.

3. Any number of blank spaces may appear wherever one space is legal.
Spaces are legal everywhere except: within names and reserved

. words, within numbers and durations, anywhere in an option field,
and anywhere in a trace field.

4. Program lines may continue onto successive cards, the break from one
card to the next being legal at any place where a blank space would
be allowed. There is an assumed blank space between column 72
of one card and column 1 of the card following it.

5. Comments may be inserted anywhere in the program by placing a per
cent sign ('%') in column one of a card; anything on the rest of -
.that card (all 79 remaining columns) will be printed out with the
program listing but will be ignored by the system. Note that
comments must appear on their own cards, and that to continue
a comment over successive cards requires percent signs on each of
the cards.



2.4 Sample Program. 7

The sample program below is quite simple and is shown only to give
an idea as to how a program might look. This program only demonstrates
some of the many capabilities of the language., Numerous comments are
included to explain the program.

$THIS IS AN UPDATED VERSION OF A SMALL PIECE OF THE ORIGINAL MURDER
tMYSTERY PROGRAM. ONLY TWO GROUPS ARE SHOWN, AND THE ONLY ATOMS
$AND CLASSES DEFINED ARE THOSE WHICH ARE USED IN THOSE GROUPS.

$THE REVISIONS IN THE PROGRAM ARE DUE TO CHANGES IN THE SYNTAX OF
$THE LANGUAGE, CHANGES TO SOME POORLY WRITTEN CODE, AND DELETION
$0F A FEW SECTIONS WHICH WOULDN'T ADD TO THIS EXAMPLE.

3

$THE STARTING AND ENDING TIMES OF THE SIMULATION ARE GIVEN.

SLIMITS START=19W3D10H, END=20W2D14H;

3
$ALL OF THE NODES (SUBJECTS AND OBJECTS) ARE LISTED. THE NUMBERS ARE
$USED BY THE GENERATIVE MECHANISM. THE QUOTED STRINGS REPRESENT THE
¥'MEANING(3)' OF EACH NODE.

SNODES;

AFFAIR 2 = 'AFFAIR';

DETAILS 1 = 'DETAIL'; -
CRHUME @ = 'DR. HUME' °'DR. BARTHOLOMEW HUME' 'HUME ' ;
JAMES @ = 'JAMES';

JOHNBUX @ = 'JOHN' 'JOHN BUXLEY';

LADY3UX @ = 'LADY BUXLEY';

LADYJANE @ = 'JANE' 'LADY JANE';

LORDED @ = 'LORD EDWARD' 'EDWARD';

LOVER 8 = 'LOVE';

MARION @ = 'MARION';

MOVIE 0 = 'MOVIE';

MOVIG 0 = ;

PARK 0 = 'PARK';

PASSION @ = 'PASSION';

RUNINTOG 0 = ;

TELEPHONE @ = 'TELEPHONE';

TENNISCOURT 2 = 'TENNIS COURT';

THEY @ = 'THEY';

%

$ALL RELATIONS ARE LISTED. THE NUMBERS AND QUOTED STRINGS ARE AS FOR
$NODES., RELATIONS WITHOUT LEXICAL LISTS WILL LATER BE GIVEN 'MEANING®
33Y USING A LEXICAL TRIPLE ACTION. A RELATION WITH NUMBERS IN ITS
$LEXICAL LIST WILL HAVE ITS LEXICAL ITEM PICKED ACCORDING TO THE
$VALUE OF THE TRIPLE IN WHICH THE RELATION APPEARS, THUS PROVIDING
¥GREATER CONTROL.

SRELATIONS;

AFFECTION 3 @ = /'HATE'/—Z.5/‘DISLIKE'/-0.5/'LIKE'/Z.S/'LOVE'/;
BLACKMAIL 3 0 = 'BLACKMAIL';

CARESS 3 0 = 'CARESS';

FLIRT 3 @ = 'FLIRT';

FLIRTWITH 3 8 = ;

FOLLOW 3 @ = 'FOLLOW';

GOSSIP 3 8 = 'GOSSIP';

Gozzip 3 0 = ;
INVITE 3 @ = '
IS 3 8 = 'BE';

INVITE';
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LEAVE 3 @ = 'LEAVE';
POS 5 @ = 'BE';
RUN 3 @ = 'RUN';
RUNINTO 3 8 = ;
SEE 3 @ = 'SEE';
SMILE 3 @ = 'SMILE';

TALK 3 @ = 'TALK';
TALKWITH 3 0 = ;

%

$ADJECTIVE RELATIONS
%

ATTRACTIVE 2 8 = /'UGLY'/-0.5/'PRETTY'/1.5/'BEAUTIFUL'/;

JEALOUS 2 # = /'NOT JEALOUS'/9.5/'JEALOUS'/;

MARRIED 2 @ = 'MARRY';

WEALTH 2 @ = /'IMPOVERISHED'/-2.5/'POOR'/0.5/'WELL TO DO'/
2.5/'RICH'/;

3

$PREPOSITION RELATIONS
%

BY 4 8 = 'BY';

IN 4 8 = "IN';

INTO 4 @ = '"INTO';
NEAR -4 @ = 'NEAR';
WITH 4 0 = 'WITH';

%

$CLASSES CONTAIN SETS OF RELATED ATOMS. 1IF A LIST OF ATOMS IS GIVEN,
$THEY ARE THE INITIAL ELEMENTS OF THE CLASS. A CLASS MAY BE
$SUBSCRIPTED, AS IS THE SPOUSE CLASS IN ORDER TO PROVIDE A SIMPLE WAY
$OF FINDING THE SPOUSE OF ANY PERSON. CLASSES CAN HAVE THEIR ELEMENTS
$CHANGED DURING THE SIMULATION.
$CLASSES;
DETECT = DRHUME;
FEMALE = LADYBUX LADYJANE MARION;
LOSER = ;
MALE = DRHUME JOHNBUX JAMES LORDED;
PLASE = PARK MOVIE TENNISCOURT;
RENDM = ;
SPOUSE (JAMES) = MARION;
SPOUSE (LADYJANE) = LORDED;
SPOUSE (LORDED) = LADYJANE;
SPOUSE (MARION) = JAMES;
%
$THIS SECTION INITIALIZES THE SIMULATED UNIVERSE. THE *LEXTRP ACTION
%IS USED TO ENCODE A SINGLE ATOM AS A MULTI-WORD CONSTRUCT. THE *SET
SACTION GIVES INITIAL VALUES TO SEVERAL ASSERTIONS. FOR EXAMPLE,
$DR. HUME IS GIVEN A WEALTH OF -2, WHICH, ACCORDING TO THE DEFINITION
SOF THE RELATION WEALTH, MEANS THAT HE IS 'POOR.'
$SNETWORK ;

*LEXTRP (GOSSIP WITH) TO GO2ZIP,

*LEXTRP (RUN INTO) TO RUNINTO,



*LEXTRP (TALK WITH) TO TALKWITH,

*SET (DRHUME WEALTH) = -2,

*SET (LADYJANE WEALTH) = 3,

*SET (LADYBUX ATTRACTIVE) = -2,

*SET (LORDED WEALTH) = 3,

*SET (LORDED AFFECTION LADYJANE) = 1,
*SET (LADYJANE AFFECTION LORDED) = 1,
*SET (LADYJANE ATTRACTIVE) = 1;

TWO PERSONS HAVE AN AFFAIR. DEPENDING JUN WHO
SEES THEM, IT CAN GIVE RISE TO BLACKMAIL,
GOSSIP, OR JEALOUSY.

I OP P oIP oW

$THIS GROUP WILL BE ACTIVATED BY THE GROUP WHICH FOLLOWS. A GROUP
$SPECIFIES A SET OF RULES WHICH TEST AND CHANGE THE UNIVERSE AND
$WHICH ALL SEEM TO OCCUR AT THE SAME INSTANT OF TIME.
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SGROUP MOVIG: ‘18M/0OFF;

$THE GROUP IS DEACTIVATED SO IT WON'T AUTOMATICALLY REPEAT IN TEN
IMINUTES.

SRULE: *DISABLE MOVIG;

ATHE CLASS RENDM ALREADY HAS AS ELEMENTS A MALE AND A FEMALE WHO ARE
$GOING TO HAVE AN AFFAIR. THE EFFECT OF THE NEXT FOUR COMMANDS IS TO
$ASSIGN ONE OF THOSE PEOPLE TO THE VARIABLE X AND THE OTHER TO THE
tVARIABLE Y, LEAVING THE CLASS RENDM WITH BOTH ELEMENTS.

$LOOP: X.PICK(RENDM) ;

SRULE: *REMOVE X FROM RENDM;
$LOOP: Y.PICK(RENDM) ;

SRULE: *ADD X TO RENDM;

$FOUR THINGS ARE ASSERTED: X IS WITH Y IN SOME RANDOMLY PICKED PLACE,
X IS NEAR Y, THEY CARESS, AND THEY ARE LOVERS.
SRULE: *SEC(X WITH Y) (Y IN PICK(PLASE)),

(X NEAR Y),

*SEC(Y CARESS X) (CARESS WITH PASSION),

*SEC(Y IS LOVER) (LOVER POS X);
$THE EFFECT OF THE LOOP AND SWITCH IS TO PICK A FEMALE WHO IS DIFFERENT
tFROM THE FEMALE HAVING THE AFFAIR. THIS NEW PERSON WILL SEE THE
$AFFAIR, AND IS ASSIGNED TO THE VARIABLE %.

$LOOP L1: Z.PICK(FEMALE) ;
SSWITCH: T(L1);
18,-19: (2 EQL RENDM);

$THE ACTIONS IN THIS RULE WILL BE EXECUTED ONLY IF SOME CONDITIONS ARE
$MET. IF THEY ARE MET, THEN 2 WILL BLACKMAIL Y, Z THEREFORE GETTING
SWEALTHIER AND Y GETTING POORER.
SRULE: T(R1)

*SEC(Z SEE AFFAIR) (2 FOLLOW THEY),

(2 BLACKMAIL Y),

*SET (Y WEALTH) =- 1,

*SET (Z WEALTH) =+ 1;
STHESE ARE THE FOUR CONDITIONS CONTROLLING THE ABOVE RULE.
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$IF Z IS THE DETECTIVE OR THE SPOUSE OF EITHER PERSON HAVING THE AFFAIR,
%2 WON'T BLACKMAIL Y.

-10,0: (Z EQL DETECT) OR (Z EQL SPOUSE (RENDM)) ;
$Y MUST BE MARRIED.
.8,-10: (Y MARRIED);

$2 CAN'T ALREADY BE BLACKMAILING Y.
-19,0,C: (Z BLACKMAIL Y);
%2 IS MUCH LIKLIER TO BLACKMAIL Y IF Z NEEDS THE MONEY.
«5,-.22 VAL (Z WEALTH) LT 1;
$IF Z IS THE SPOUSE OF ONE OF THE PEOPLE HAVING THE AFFAIR, Z WILL GET
$VERY JEALOUS. !
S$RULE: T(R1)
(Z SEE AFFAIR),
*SET (2 JEALOUS) =+ 2;
10,-10: (2 EQL SPOUSE (RENDM)) ;
$IF Z DOESN'T BLACKMAIL ANYONE OR GET JEALOUS, 2 MAY STILL GOSSIP
$ABOUT THE AFFAIR. 2 WILL PROBABLY TALK WITH THE SPOUSE OF X IF X
$IS MARRIED AND IF Z IS NOT BLACKMAILING X.
SRULE: (Z SEE AFFAIR),
*SEC(Z GOZZIP SPOUSE(X)) (GOZZIP BY TELEPHONE)
(GOZZIP WITH DETAILS);

0,-14@;: (X MARRIED) ;

-1¢,.8,C: (2 BLACKMAIL X);

$THESE ENDLOOPS ARE REQUIRED TO END THE THREE LOOPS USED ABOVE.
$ENDLOOP;

S$ENDLOOP;

SENDLOOP;

STHE CLASS RENDM IS ERASED, SINCE THE TWO PEOPLE IN THE CLASS HAVE BEEN
$TAKEN CARE OF.

SRULE Rl: *ERASE RENDM;

$THIS ENDS THE GROUP. THE NEXT SCHEDULED GROUP IS NOW EXECUTED.
$ENDGROUP;

3

3

2

% GUY MEETS A GIRL. THEY TALK, POSSIBLE AFFAIR.

%

$THIS GROUP IS ACTIVATED FROM A GROUP NOT SHOWN IN THIS EXAMPLE. IF
$CERTAIN CONDITIONS ARE MET, IT MAY ACTIVATE THE ABOVE GROUP.

%

$GROUP RUNINTOG: 1D/OFF;

SONE AT A TIME, M GETS AN ELEMENT OF THE CLASS OF MALES. IT GETS A NEW
SELEMENT WHEN THE ENDLOOP OF THIS LOOP IS REACHED. A LOOP ALLOWS YOU
$TO EXECUTE THE SAME SECTION OF CODE WITH EACH OF THE MEMBERS OF A
$CLASS.

$LOOP: M.MALE;

$IF ANY FEMALE HAS ALREADY FLIRTED WITH M, OR IF M LIKES ANY FEMALE,
$THEN THE NEXT M IS CHOSEN.

$SWITCH: T (SNEXT M);

10,0: (FEMALE FLIRTWITH M);
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19,-10: VAL (M AFFECTION FEMALE) GT 2;
$THE FEMALES ARE LOOPED THROUGH ALSO, WITH W REPRESENTING THE CHOSEN
SFEMALE.
$LOOP: W.FEMALE;
3IF M IS W'S HUSBAND, OR IF ONE OF THEM IS BLACKMAILING THE OTHER, THE
$NEXT W IS CHOSEN FOR THIS M.
SSWITCH: T(SNEXT W) ;
19,-10: (M EQL SPOUSE(W)) OR (M BLACKMAIL W) OR
(W BLACKMAIL M);

$AN ACCEPTABLE M AND W HAVE NOW BEEN FOUND.
$IF W IS REASONABLY ATTRACTIVE, THERE IS A 45% CHANCE THAT THIS RULE
SWILL BE EXECUTED; OTHERWISE THERE IS ONLY A 5% CHANCE. IF THE RULE IS
¢EXECUTED, THEN M WILL RUN INTO W SOMEWHERE, THEY'LL TALK AND W WILL
$FLIRT WITH M. IF THIS DOESN'T HAPPEN, THE NEXT W WILL BE CHOSEN.
SRULE: F(SNEXT W)

(W IN PICK(PLASE)),

(M RUNINTO W),

(M TALKWITH W),

(W FLIRTWITH M) ;
.4,0: VAL (W ATTRACTIVE) GT 0;
: .85;
$IF M AND W HAVE FLIRTED, THEN IF W DOESN'T REALLY LIKE ANY OTHER MALE,
$THEN: M AND W'S MUTUAL AFFECTION WILL GROW, THE ABOVE GROUP DESCRIBING
THEIR AFFAIR WILL BE ACTIVATED, W'S SPOUSE WILL BE CONSIDERED A LOSER,
$AND M AND W WILL BE PUT IN THE CLASS RENDM FOR USE BY THE ABOVE GROUP,
£AND THIS GROUP WILL BE EXITED FROM.
SRULE: T ($ENDGROUP)

(M INVITE W),

*SET (M AFFECTION W) =+ 1,

*SET (W AFFECTION M) =+ 1,

*ENABLE MOVIG,

*ADD SPOUSE(W) TO LOSER,

*MOVE M TO RENDM,

*ADD W TO RENDM;
-10,10,C: VAL (W AFFECTION MALE) GT 2;
$IF M AND W DID FLIRT, BUT THEY ARE NOT GOING TO HAVE AN AFFAIR, THEN
%M JUST SMILES AND LEAVES, AND THE GROUP IS EXITED FROM.
SRULE: ($ENDGROUP)

*NEG (M RUNINTO W),

(M SMILE), (M LEAVE W);
SENDLOOP;
SENDLOOP;
$THIS ENDS THE GROUP. AT MOST ONE MALE AND ONE FEMALE HAVE MET, AND
SUNDER CERTAIN CONDITIONS THEY WILL HAVE AN AFFAIR.
$ENDGROUP;
RTHIS IS ONLY A PROGRAM SEGMENT; A COMPLETE PROGRAM WOULD END WITH SEND.
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3. Simulated Time and System Options.

Simulated time is kept by an internal clock, which always contains
the number of basic time units, ordinarily minutes, which have elapsed
since the beginning of the simulation, The simulation may start and
end at any desired simulated times, and the time units may be changed
from the regular ones. There are options for seeding the random number
generators, listing the program, and saving a compiled program.

3.1 S$LIMITS.

The $LIMITS command is genefal]y the first command in the program,
as it usually initializes the clock. If no $LIMITS command is present,
all options are set to their defaults and a warning is given. There
may be more than one $LIMITS command in a program, but as the information
in this command is used only during compilation, it makes little sense
(and could cause problems) to use multiple $LIMITS commands, except in
one special case (see 31.).

The syntax of the $LIMITS command is:
$LIMITS [SAVE,] [RESTORE, ] [NOLIST,] [JUMBLE=<uns igned integer>, |CLOCK, ]

[START=<time>,] [END=<time>] ;
A11 items in the $LIMITS command are optional, and any or all may appear,

but only in the given order. There should be no comma just befrre the semicolon.

3.1.1 Time Limits.

The START and END times initialize the clock and end the simulation.
The clock is initially set to the START time, which will generally be
zero time units. However, as events may have occurred before the
simulation begins (for example, John has loved Mary for three weeks),
the START time may be set by the programmer (see 8.). If no START time
is explicitly given, it defaults to zero and the simulation begins with
no basic time units elapsed.

The END time specifies when the simulation will terminate. AIll
groups scheduled for execution on or before the END time will be executed,
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with the simulation ending immediately after the last such group
has finished. Note that any groups scheduled for exactly the END
time will be executed. The simulation may end before the clock reaches
the END time if no further groups are scheduled or if a *END action
is executed (see 18.). If no END time is specified, it defaults
to 99999999 basic units of time. If the END time is less than or
equal to the START time, only groups scheduled for the START time
are executed.

<time> is specified in time units which are initially.weeks,
days, hours, and minutes, with minutes being the basic unit of time.
These units may be changed (see 3.2). Each time unit is denoted
by its first letter, ordinarily W for weeks, D for days, etc. Each

_ letter which is to be used is preceded by an unsigned integer, and

combined with any other number-letter pairs into a single string, with
no internal blanks. For example, 3H10M would be converted into 190
minutes, and 2WI19H27M into 21327 minutes. There is no 1imit to the
number preceding any unit, so 72M and 34HIM are valid. The time

units may be in any order in a <time> specification.

3.1.2 Seeding The Random Number Generators.

There are two random number generators in the system, one for the
PICK function (see 11.2) and the other for subrules (see 24.). Ordinarily,
whenever a program is run, each random number generator begins with
the same number as it always does, and produces the same sequence of
numbers. This allows you to rerun a program and get the same results,
which is very important for debugging. However, in order to be able to
run a program and get different results, the random number generators
can be reseeded. Notice that even if you do reseed the random number
generators you can still rerun any particular execution of a program by
using the same seed values.

JUMBLE=<unsigned integer> uses the given integer to reseed both
random number generators. CLOCK uses the computer's internal clock to
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reseed both random number generators. If CLOCK is used, the seed value
is printed out so, by using JUMBLE, the run can be duplicated. CLOCK is
especially useful when running the same program numerous times, as the
seed number need not be changed for the different executions of the
program.

The random number generators may also be changed during the
execution of the program (see 21.).

3.1.3 Program Listing.

If NOLIST is present, then from this point on the program will not be
listed, and only the change stack will be printed. If the $LIMITS command
with NOLIST is the first card, it will be the only card printed. If NOLIST
is not present, the program and associated information regarding the
initial members of classes will be listed. In large programs, this listing
can be quite large and expensive and can generally be avoided (see 31.).

3.1.4 Saving a Compiled Program.

SAVE and RESTORE allow repeated execution of a program without
recompilation. Since compilation usually takes considerably more time
than execution, this option can save a significant amount of time and
money. It is accomplished by compiling the program once, for the first
execution, and saving the compiled version on a temporary file. Therefore,
for the first execution of the program you include SAVE in the $LIMITS
command, with the program following as usual. However, each successive
execution of the program requires only the $LIMITS command, with RESTORE
in it. Also possible is adding additional groups which can be compiled
and added to the saved version; this is a very powerful feature for
incremental program construction.

In order to get different results from each execution, the JUMBLE
or CLOCK option should be used. Use NOLIST to prevent producing
multiple copies of your program. For more details, and several examples,
see chapter 30.
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There is also an action *SAVESYS, which can save the system at
any point during execution. See 30.3 for details.

3.1.5 S$LIMITS examples,

a. $LIMITS START=0M, END=3D5M;
The program will be listed, the usual random number sequences used,
and the simulation started at zero minutes and terminated at 3 days
and 5 minutes.

b. $LIMITS NOLIST, CLOCK, END = 5W2D10M;
The program won't be listed, the random number generator will be
seeded by the computer's internal clock (with the seed value
printed out), and the simulation will begin at zero minutes and
end at the specified END time.

c. $LIMITS JUMBLE = 37, START = 2D5M, END = 6W3D4H;
The program will be listed, the random number generators reseeded
using the number 37, and the simulation will have the speicfied
START and END times.
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3.2 S$TIME

The units of time used are initially weeks (W), days (D), hours
(H), and minutes (M). You may decide to use different units of time,
however, and the $TIME command allows you to specify any units you wish.
One unit must be the basic unit of time, with all other units defined
in terms of the basic unit, One time unit may specify the rumber of
basic time units in a simulated ‘day' (your 'day' need not be called
'day'); this is used internally to produce a value for the dayclock,
which is the number of time units elapsed modulo the number of units
in the 'day.' There may be up to ten different time units,

The $TIME command should occur before any time units are used.
Multiple $TIME commands could cause serious problems, as one set of
units might be in effect while compiling several groups while another
set of units might be in effect while compiling other groups.

The syntax of the $TIME command is:
$TIME {<unit name> = <number of basic time units>[*]}]']0;

<unit name>may be any name, up to twelve characters. The names are
important only for their first letters, which are used in durations.
Make sure that no two units have the same first letters.

<number of basic time units>is an unsigned integer. The first unit
must have a 1 in this position; it becomes the basic unit of time.

The other units may be any multiples of the basic unit of time.

* may be present for one unit and specifies the number of basic
time units in one 'day,' which is used in setting the system's dayclock.
If no unit has an asterisk in its definition, then the dayclock will
be the current time modulo 1440. See 27.1.2 for an explanation of the
dayclock.

Note that at least one unit must be present and there may be up
to ten units specified. Also, in durations only the first letter of
the unit name is used.
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Examples:
$TIME MIN=1 HOUR=60 DAY=1440 WEEK=10080;
This is the initial defintion of the time units and will be in
force unless changed by a user's $TIME command.
$TIME JOE = 1 PETE = 42 MIKE=12345 STEVE=84* B0B=987;

Five time units are speicified, with JOE being the basic time
unit, PETE being 42 multiples of JOE and STEVE being the time in
one 'day.' A duration written with these units in effect might
be: 4B352J.
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4. Nodes.

Nodes are atoms which will be used as subjects and objects, and
thus are usually nouns and sometimes pronouns. The names these nodes
will have in the program must be listed, along with their 'meanings.’
A node has no inherent meaning, but can be given one by linking it to
the lexical dictionary. This dictionary will not be discussed here,
but the 1inkage methods will be. These links are established in the
Texical expression list, which will be a major topic of this chapter.
However, the system may be run without a dictionary or lexical expression
list, as will be desscribed.

4.1 $NODES.

The $NODES; command must precede the list of nodes. A1l nodes
used in the program must be listed before they are used. Therefore,
all nodes are generally listed together. The nodes need not be listed
in alphabetical order, but for increased readability, nodes should be
listed one per line and in order.

Class names and group names are the only exceptions to the rule
that all nodes must be listed. Both class names (with a special marker)
and group names may be used as nodes even if not explicitly declared
to be nodes. However, if either type of name is to have a link to the
lexical dictionary, the name should be included in the node list.

See chapter 6 for more information about classes and chapter 9 for more
information about groups.

Following the $NODES; command is a list of nodes, each of the form:
<nodename><grammar number> = [<lexical expression list>];

<nodename>is an internal name for the node and can be any legal
name (see 2.2). While these names are completely arbitrary, they should
naturally represent their meanings, with JOHN being used to stand for
the person whose name is John, instead of using the perfectly legal
node name X123Y. These internal node names will be used when the
change stack 1s printed.
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<grammar number> {s an unsigned integer which will be used by the
generative mechanism, It must be present, even if the generator isn't
being used. In examples in this manual, it will always be zero.

<lexical expression list> is optional and will be described in the
next section. Nodes can also be linked to be dictionary by program
actions (see 15.).
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4.2 Lexical Expression Lists.

A node may be given a meaning by associating a lexical expression
list with the node, This Tist points to items in an already constructed
Texical dictionary, If the generative mechanism is not being used, a
dictionary is not needed and nodes need not have lexical expression lists.
(Any such 1ists will just be ignored, which is useful during debugging.)
Except for this section and several others where lexical items are
discussed, it will be assumed that the generative component will not be
used, and output will be in the form of a change stack with no associated
natural language output.

The syntax of a lexical expression list is: . .
<lexical expression 1list>::={{'<dictionary entry>'} {(<lexical triple>)} }
This syntax is rather confusing; simply put, a lexical expression list
is composed of any number of <dictionary entry>s in quotes and <lexical
triple>s inside parentheses, in any order. Several nodes may include
the same item(s) on their lexical expression lists. If more than one
item is on a lexical expression list for a node, the generative mechanism
will randomly pick one item. Note that only the internal node names
are printed in the change stack.

A<dictionary entry>is any item that is in the dictionary. It is
usually a word, but may be any character string, and is placed inside
quotes. A <dictionary entry> may thus be a series of words, such as
'"MR. SMITH', but in this case a grammatical transformation may not be
possible; in most cases lexical triples (see below and 15.) are better
than quoted strings consisting of more than one word.
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4.2,1 Lexical Triples.

A lexical triple looks 1ike a semantic triple (assertions about
the universe, see 12.) but is not included in the semantic network,
Lexical triples are useful for encoding multi-word strings as single
entities. In many cases, a multi-word construct could be deffned either
as a multi-word quoted string or as a lexical triple, or it may
sometimes be possible to just use single atoms and connect them in the
program by how they are used in semantic triples. Which method is best
depends upon the specific case and the grammar being used, and will
become more evident with experience,

This section will concentrate on defining lexical triples in the
node 1ist, but this will be seen to be somewhat unwieldy. It is suggested
that for most uses, lexical triples be defined by a program action
(see 15.).

The syntax of a lexical triple is:

(<atom position><atom postion>[<atom name>])
where <atom position>::=<atom name>|-

The triple is composed of two or three items, each item being either
an <atom name> or a dash (a minus sign on a keypunch). An <atom name>
is a node name or a relation name. (It may be a class name acting as an
atom, if the class has been defined already. See 6.).

The first, and the third 1f used, items must be node names and the
middle item a relation (see 5.). For example, the node BALLOFTHREAD
might have its meaning the lexical triple BALL OF THREAD, with the
nodes BALL and THREAD and the relation OF having the obvious character
strings as their meanings. A dash is used in one of the first two positions
to indicate an empty position, as in the relation CALLUP being defined by
the lexical triple (- CALL UP). This is necessary because of the rule
given above regarding the atomic types of the three items. An item in a
lexical triple may itself be defined by a lexical triple; an example
of this is in the next section.
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Finally, a problem would occur if all the atom names used in a lexical
triple had to be defined before their use. This is because nodes and
relations are usually declared in two complete 1ists, one for each
type, and a lexical triple in the node 1list will generally include
a relation, whose definition had not yet been reached. Therefore, it
is legal to use atom names which have not yet been defined, providing
that they are later defined as the correct type of atom.

Again, it is advisable to declare lexical triples by using a
program action (see 15.), since in that case there are no restricting
rules on the lexical triple.

4.3 Examples.

The examples will be shown as part of a single node 1ist, with
comments inserted for explanation.
%#List of nodes.
$NODES;

#0ne of the three meanings will be randomly chosen by the generative mechanism.

BUG 0 = 'BUG' 'MOSQUITO' 'FLY';

DAUGHTER 0 = 'DAUGHTER';

%No lexical expression list is needed when the system is run without the
%generative mechanism. If the generator is used, no natural language

%output will appear for this node unless it is assigned a meaning in the program

%by means of the lexical triple action.

FRIEND 0 =;

HIM 0 = 'HIM';

JOHN 0 = *JOHN' 'MR. SMITH';

LADY 0 = 'LADY';

#0ne of two lexical triples or a dictionary entry will be randomly chosen.

%The node LADY has already been defined, but the other items in the lexical

%triples have not. The grammar will take care of changing the word order.
OLDLADY 0 = (LADY OLD) 'LADY' (WOMAN ELDERLY);

%OLDMAN will be given a meaning by a lexical triple assigned to it by an
%¥action in the program.
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OLDMAN 0 = ;
ROBERT 0 = 'ROBERT';
%Here, a lexical triple uses a node defined by another lexical triple. How
%this will finally turn out in the natural language depends upon the gra%mar
¥being used.
SWEETOLDLADY 0 = (OLDLADY SWEET);
%#This could have been defined as a lexical triple instead.
TENNISCOURT O = 'TENNIS COURT';
WOMAN O = 'WOMAN';

u

"
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5. Relations.
Relations are atoms which will be used as verbs, adjectives, adverbs,
prepositions, etc. The basic concepts governing relations are the same
as those for nodes (see 4.). Relations are listed with their ‘meanings'
described by associated lexical expression 1ists.

5.1 $RELATIONS.

The $RELATIONS; command must precede the list of relations. The Tist
is similar to the node list except that relations have some additional
information associated with them. One other difference in the 1ist is that
since class names and group names will automatically be nodes if not
declared otherwise, they should be in the relation list if they are to be
used as relations. (See chapter 6 for more information about classes and
chpater 9 for more information about groups.) Finally, the lexical
expression list for a relation may be Tike that for a node or may include
numeric information (see 5.2).

The form of each relation in the relation list is:
<relation name>[<relation type>]<grammar number><grammar number>

= [<lexical expression 1ist>];

<relation name> is an internal name for the relation and can be any
legal name (see 2.2).

<relation name> is T for transitive (see below) or is not used.

<grammar number> is as for nodes (see 4.1). Two numbers must be
present, even if the generative mechanism isn't being used.

<lexical expression 1ist> is optional and is as for nodes. See 4.2 and
4.2.1 as the discussion there is also applicable to relations, as are
the lexicalexpressions used in the examples in 4.3. <lexical expression 1ists>s
may have numeric information associated with them, as will be described in 5.2.

A transitive (T) relation is one which is specified as acting in a
logically transitivite manner. For example, if ON is a transitive
relation, then if (BOX1 ON BOX2) were in the network and (BOX2 ON BOX3)
were added to the network, (BOX1 ON B0X3) would return a value of True
in a subrule test. Also, transitive relations have automatic object
exclusions (see 7.2).
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5.2 Numeric Lexical Expression Lists.

It is sometimes useful for a lexical item to be chosen based upon
the value of the triple in which an atom appears--this gives you greater
control over lexical output than that gotten from the otherwise random
selection of a lexical item. For example, the relation AFFECTION can be given
a lexical list so that if (JOHN AFFECTION MARY) = 3 the word "adore" might
be used for AFFECTION, while if (JOHN AFFECTION MARY) = -3 the word
"despise" might be used. In between values might yield less extreme
terms. .
Numeric lexical expression lists may be attached to any relation.
They differ from regular expression 1ists in two main ways: ' the numeric
lists are divided into disjoint parts by the use of bounds, and the numeric
lists may not include lexical triples.
The syntax of numeric lexical expression lists is:
[<lower bound>] {/[<lexical expression list>]/[<inclusive upper bound>]}+
<lower bound> and <inclusive upper bound> are numbers, real or
integer, optibna]]y signed. They break the numeric lexical expression
1ist into disjoint parts.
<lexical expression 1ist> is as for nodes (see 4.2 and 4.3), except
that here lexical triples are not allowed. Each list must be inside slashes.
During execution, if the generative mechanism is being used and a triple
whose relation has a numeric lexical expression 1ist is to be output,
the following occurs: the current value of the triple is checked, and only
those lexical items (there may be any number of them) whose left bound
is less than and whose right bound is greater than or equal to the current
value are candidates for the lexical item to be printed (the actual item
is then randomly chosen).
An example will help:
I1Q 0 0 = /'IDIOTIC'/75/'STUPID' ‘DUMB'/99.9/'SMART'/127/'BRILLIANT'/;
If the IQ for some subject is < 75, 'idiotic' will be chosen; if it is >75 and
<99.9, either 'stupid' or 'dumb' will be chosen; if IQ is >127, then 'brilliant’
will be used.
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If there is a <lower bound> it is not inclusive, but if there is
no such bound, then the leftmost <lexical expression Tist> will be used
for any value which is less than or equal to its upper (left) bound,

If there is no final <inclusive upper bound>, then the last <lexical
expression Tist> will be used for any value which is greater than its

Tower (left) bound. There may be no items between bounds, in which case

a value between those bounds would yield no lexical output, as could
also be the case if the first <lower bound> or final <inclusive upper
bound> were inside the current value of a triple.

5.3 Examples.

The examples will be shown as part of a single relation list, with
comments inserted for explanation.
#List of relations.
$RELATIONS;
AFFECTION 0 0 = /'LOATHE' /-2.5/'DISLIKE' /-0.5/'LIKE"
/2.5/'LOVE" 'ADORE'/;

%0ne of these two meanings will be randomly chosen by the generative mechanism.

ASK 0 0 = 'ASK' 'REQUEST';

%UP must be a node for this to be allowed. It is easier to use the lexical

%triple action.

CALLUP 0 0 = (-CALL UP) 'TELEPHONE';

#The next two relations both have the same meanings. The same relation
%name could have been used, but different ones were chosen for easier

%readability of triples. The grammar will take care of the transformations.

FIGHT 0 0 = 'FIGHT';

FIGHTING 0 0 = 'FIGHT';

FOR 0 0 = 'FOR';

HAVE 0 0 = 'HAVE';

#Values between -4 and -2 or between 3 and 5 cause lexical output,
%but other values don't

LIKEO 0 = -4/'HATE' 'DESPISE'/-2//3/'LOVE'/5

#This relation will be used for internal counting purposes and so s
% given no lexical expression list.

27

NUMBER 0 0 = ;

ONT OO = 'ON';

PREPARED 0 0 = 'PREPARE';

%This will get a lexical triple assigned to it during the program, as both

4PREPARED and FOR are relations and a lexical triple in a lexical expression
91ist can't have two relattons in it. It is spelled without the 'E' to
%differentiate it from the relation PREPARED.

PREPARDFOR 0 0 = ‘READIED';

SEE 0 0 = 'SEE' 'RECOGNIZE';

TALL 0 0 = 'TALL';

WEALTH 0 O = /'IMPOVERISHED'/-3/'POOR'/G/'WELL TO DO'
/2.85/'RICH' 'WEALTHY'/;

YOUNG 0 O = 'YOUNG';
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6. Classes.

A class is a set of related atoms. As a set, there may be no
duplicates (duplicates will be ignored) and the only ordering of the
elements is based on the order in which the elements were originally
declared in the node or relation 1ist, which isn't very useful. There
are no arrays in the language.

The elements in a class must all be of the same type and must have
been previously defined, but there can be classes of either type: classes
of nodes or classes of relations.

Group names may be in classes, sometimes useful for sequencing
through groups. However, the names must be already defined, so the
group names should be in the node or relation list. (It is possible to
define the group name by putting the program statements of the group
physically before the use of the name in a class list, but this is not
recommended.) Remember that if a class of group names is to be used
for sequencing, the group names will have to be defined in the correct,
undoubtedly non-alphabetical order in the node or relation list.

Elements can be dynamically added to and removed from classes
during the simulation (see 14.). Loops are available to go through the
elements of a class, one at a time (see 23.). An element may be randomly
picked from a class (see 11.2), and there are tests for class membarship,
determination of subsets, and checks for the inequality of classes (see
26.3.1), as well as a function giving the number of elements in a class
(see 27.3).

6.1 Class names.

A class name is automatically made a node if it has not been previously
defined. In this case, the class can only contain nodes as elements. In
order for a class to contain relations, the class name must be defined as a
relation before the class is defined; the class may then contain only
relations.
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Even if a class is to contain nodes, its name may be put on the node list
in order to assign a lexical expression list to it, although it would always
be possible to dynamically assign lexical triples to the class name since
it would become a node name in either case,

Since class names can be used either to represent the elements in the
class or to represent the atom having that class name, a marker (/) is used
before the class name in order to signify the second usage. So, if PEOPLE
were a class containing nodes (people's names), PEOPLE would refer to
the elements in the class, and /PEOPLE to the node PEOPLE.

6.2 Subscripted Classes.

A class name may be subscripted. However, as there are no arrays,
thé subscripts must be atoms, and may not be numbers. A subscript
may be any defined node or relation, regardless of the type of class it
is being used with.

A subscripted class may have any number of different subscripts,
with each class-subscript pair acting as a separate class, uniquely defined
by the class name and the particular subscript. However, since the class
name remains the same over all the different subscripts, the important
class manipulation capability of class union is gained.

Subscripted classes allow easy class union because a subscripted class
need not have only a single atom as its subscript (except when defining a
particular subscripted class). The subscript may be a second class, which
effectively yields the union of the classes whose name is the subscripted
class and whose subscripts are the elements of the second class. To
clarify: if PEOPLE is a class composed of the nodes JOHN and DAVE, and
FRIENDS(JOHN) is a subscripted class composed of TOM and DICK, and
FRIENDS(DAVE) a subscripted class composed of TOM and MARY, then
FRIENDS (PEOPLE) would be the union of FRIENDS(JOHN) with FRIENDS
(DAVE), or TOM, DICK, and MARY.

A subscript may also be a subscripted class, adding to the class union
capability. For more details, see 11.2.
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Once a class is defined as being subscripted, any number of subscripts
may be dynamically assigned during the program. This actually permits
dynamic class generation. A class may be defined as subscripted without
giving it a specific subscript at definition time, as the subscript(s) is
(are) to be dynamically determined during the simulation.
Subscripted class names may also be uses to represent the atom having .

that class name by preceding the name of the subscripted class with a slash.

In this case, no subscript is allowed. So, /FRIENDS would refer to the
node FRIENDS in the above example.
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6.3 $CLASSES,

The $CLASSES; command must precede the list of classes, A1} classes
which are to be used inthe program must be listed before they are used.

The definition of a class simply contains the class name, a subscript
if desired, and an optional list of initial elements. The syntax of an
element in the class 1ist is:
<class name>[([<subscript>])] = [<initial member list>];

<class name> is any legal name (see 2.2). Unless otherwise defined,
it is automatically made a node. A subscripted class name may be repeated
in the Tist: if the subscripts differ, then different class are defined and
possibly initialized; if a unique class-subscript is listed more than once,
all of the initial members are unioned together to form the initial
member 1ist for that subscripted class.

<subscript> may be any already defined atom, in which case a specific
subscripted class is defined. If that class with that subscript is not going
to be initialized, there is no point in listing it with that subscript, as the
subscript may be used in the program as long as the class is defined as
subscripted. A class may be defined as being subscripted by either giving
it at least one specific subscript, or, if no initialization of the class is
wanted for any particular subscript, the class may be defined with the
null subscript: a pair of parentheses with no intervening blanks (in this
case an initial member 1ist has no meaning).

<initial member list> is optional and defines the elements in the class
before the simulation starts. The elements can simply be already defined
atoms, or they may be any already defined classes or union of classes, or
any combination of these things in any order,

If a class name orcunion of classes is on the intial member list, then
the element of the class, or elements resulting from the union, are
placed in the class being initialized. In order to put a class name acting
as an atom on the initial member 1ist, the class name must be preceded
by a slash, as described in 6.1.
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A more precise definition of intial member list is;
{<general atom field>}'
which allows for any number of <node name>s, <relation name>s, or
/<class name>s, and for <general class reference>s, which allow for
classes and unions of classes. <general atom field> is fully defined in
11.2, with the exceptions that subrule variable names and loop variable
names are not allowed in the initial member 1ist as they could have no
possible meanings.

6.4 Examples.

The examples will be shown as part of a single class list.
%List of classes.
$CLASSES;
%Class is defined as subscripted, with subscripts to be dynamically defined,
ENEMIES() = ;
FEMALES = ANN MARY SUE;
%This class will be used as an index into the REL subscripted class, useful
%for quantification.
INDEX = I1 I2 13;
MALES = JOHN PETE;
MARRIED = JOHN ANN PETE MARY;
%PEOPLE receives five initial elements.
PEOPLE = MALES FEMALES;
%REL contains elements which are relations, so
%REL must have already been defined as a relation. The type of the
%#subscript--nodes in this case--is arbitrary.
REL(I1) = ABDUCT;
REL(I2) = EXPEL;
REL(I3) = MURDER;

%The groups will be ordered as they were defined in the node 1ist (they
%must alreadv be defined).

SEQUENCE = GROUP1 GROUP2 THIRDGROUP LASTGROUP;

SPOUSE(ANN) = JOHN;
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SPOUSE(JOHN) = ANN;

%This expands to JOHN and ANN, and could have been written that way.
FRIENDS(PETE) = JOHN SPOUSE(JOHN);

%This expands first to SPQUSE of each of the four married pecple. As
%explained in 11.2, the elements of these four classes will be unioned together.
%If a particular class-subscript pair doesn't exist, such as SPOUSE(MARY), it
%is treated as having no elements. Therefore, FRIENDS(MARY) has as

%initial elements JOHN and ANN,

FRIENDS(MARY) = SPOUSE(MARRIED);

%RELATIVES contains 3 nodes, one of which is a node which has been defined
%as a class (when the class was defined above, it was automatically made

%a node if it wasn't already one), and so must be preceded by a slash to
%differentiate it from the class SPOUSE. If RELATIVES had been defined
9before the class SPOUSE, and SPOUSE had been defined at a node, the

%slash would not have been needed.

RELATIVES = CHILD /SPOUSE PARENT;

%Class will be used in the program to temporarily hold nodes.

TEMP = ; '
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7. Exclusions,

Exclusions define concepts which are mutually exclusive, and therefore
cannot be allowed to exist simultaneously. Mutually exclusive items are
listed together, and should a triple containing one of these items be asserted,
an existing triple containing one of the excluded items (in the proper context)
would be negated in the network. This ability provides a convenient way
of keeping inconsitent information out of the network.

The exclusions section is introduced with the $EXCLUSIONS; -.7mmand.
Following this command are lists of excluded items. Each 1ist is of one of
three types, relation, subject, or object exclusion, each of which is
described below.

7.1 Relation exclusions.:

Certain relations are mutually exclusive when used in the same
subject-object context. For example, if (JOHN AT HOME) 1is in the network
and (JOHN LEAVES HOME) is added, then the first triple should be negated.

If AT and LEAVES are listed as relation exclusions, this negation will be
done automatically.

Any number of relations can be declared to be mutually exclusive by
putting them in asingle relation exclusion list. The relations may not be
transitive.

When one relation in the list is asserted in a triple using a particular
subject-object pair (or particular subject for relations not having objects),
then if another relation in the list already exists in the network in a triple
using the same subject-object pair, this existing triple will be negated.

The negation will appear on the change stack.

For example, if AT and LEAVES are listed as being mutually exclusive,
(DAVE AT SCHOOL) will be negated if (DAVE LEAVES SCHOOL) is asserted.

But (DAVE AT SCHOOL) naturally will be untouched if either (JOHN LEAVES
SCHOOL) or (DAVE LEAVES HOME) is asserted.

As another example, if ASLEEP and AWAKE are listed as relation
exclusions, (JOHN AWAKE) will negate (JOHN ASLEEP), but will leave
(MARY ASLEEP) untouched. However, (JOHN AWAKE TODAY) would not affect
(JOHN ASLEEP).
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Relation exclusion lists are of the form:
R: {<general relation fie1d>}2 or more
<general relation field> is described in 11.2, with the exceptions that
subrule variable names and loop variable names have no use here.
The examples given above would be written: R: AT LEAVES;
R: ASLEEP AWAKE;

7.2 Subject and Object Exclusions.

In subject exclusions, a relation is given along with a list of subjects.
Two items from the list of subjects will not be allowed to coexist in triples
having the specified relation and same (possibly null) object. For example,
a subject exclusion might be used with a superlative relation, such as
tallest. If the subject 1ist for this relation is all people, then when
one person is specified as tallest, if another person were already
tallest this fact would be negated. So, (JOHN TALLEST) would negate
(TOM TALLEST) and (JOHN TALLEST PERSON) would negate (TOM TALLEST
PERSON), but, for example, (JOHN TALLEST) would not affect (TOM TALLEST
PERSON).

Object exclusions require lists of objects for a specified
relation. No one subject will then be allowed to be in the specified
relation with more than one item in the object list. For example,
the object exclusion may associate the relation IS with the day of the week,
so if (DAY IS TUESDAY)is asserted, the triple asserting any previous
day in the same manner would be negated. However, if(TODAY IS THURSDAY)
were in the network, it would not be affected.

For both subject and object exclusions, as for relation exclusions,
any automatically negated triple will be shown in the change stack.

An object exclusion is automatically set up for a transitive
relation, with all objects being assumed as mutually exclusive.
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Subject exclusions take the form: d.
S: <relation name> = {<general node fie1d>}+;
where <relation name> cannot be a transitive relation. e.

Object exclusions take the form:

0: <relation name> = {<general node field>}+;

where <relation name> cannot be a transitive relation. g.
In both cases <general node field> is described in 11.2, omitting

loop and subrule variable names.
The examples given above could be written:

S: TALLEST = PEOPLE;

0: IS = DAYSOFWEEK;

7.3 Examples.

A sample exclusion section will be shown. The letters to the left
refer to the discussion below the program section, and are not part of the
language.

%List of exclusions.

$EXCLUSIONS;

: AT LEAVES;
: SUNNY RAINY WINDY;
: IN LEAVES;
TALLEST = PEOPLE;
STRONGEST = MALES;

o0Q -H O Q 0O T 2
o O O UnVw ;v x N X
ve ss  ee  se  as

1S = WEEKDAYS SATURDAY SUNDAY;
IN = LOCATIONS;
IS = PRESIDENT;

Notes on above exclusion lists:
a. This is discussed in 8.1.
b. (WEATHER SUNNY) will cause (WEATHER RAINY) to be negated.
c.  (JOHN LEAVES ROOM) negates (JOHN IN ROOM). This exclusion might
be combined with (a), 1isting all three relations, but then
(JOHN IN SCHOOL) would negate (JOHN AT SCHOOL), so care should be taken.
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This is discussed in 7.2, PEQPLE is assumed to be a class of nodes
naming people.

Only one male will be the strongest.

This is discussed in 7.2. WEEKDAYS is assumed to be a class of five
nodes, being the names of the five weekdays,

LOCATIONS is a class of various locations, such as ROOM1, ROOM2, etc.
Another way of preventing someone or something from being IN two
places at one time is by declaring IN to be transitive, causing an
automatic object exclusion for all objects. This exclusion complements
(c) above, since now (JOHN IN ROOM) will be negated if either (JOHN
LEAVES ROOM) or (JOHN IN ROOM2) is asserted.

This allows only one person to be the president.
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8. Initializing the Semantic Network.

This section is placed here because this construct would probably
appear in this position in a program, However, in order to understand
the description given below, you will need to know quite a bit more
about the system than has been presented in the preceding sections.

The semantic network, which contains the state of the universe
represented by semantic triples, may be initialized before the execution
of the simulation. This is accomplished by using the same actions as
allowed in the executable program, with these actions taking place
immediately. Furthermore, you can specify how long the various semantic
triples should seem to have existed before the simulation begins.

As almost any program action is legal in the initialization section,
more than just initializing the semantic network can be accomplished,
with several specific suggestions given below.

8.1 JNETWORK.

The initialization section is specified by the $NETWORK; cowmand.
This is followed by any number of action lists, each list terminating

with a semi-colon and each list composed of any number of actions separated

with commas. Actions are described beginning in chapter 11, and other
than some exceptions to be noted, actions in the initialization section
are identical to actions which are part of rules.

Unlike rules, however, the initialization can only contain actions,
which are then performed immediately. There may be no subrules (testing
of the network) or loops.

Any or all of the action lists (each terminated by a semi-colon) may
have durations associated with them. This is of the form:
FOR<time>:<action list>;
where <time> is described in 3.1.1 and <action 1ist> beginning in 10.

The <time> specifies the length of time before the start of the simulation
that the listed actions are to seem to have taken place. Semantic

triples have times associated with them, and their durations in the
network can be tested.
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For example, if John has loved Mary for three hours and ten
minutes before the simulation begins, this might be used;
FOR 3H1OM: (JOHN LOVE MARY);

If FOR OM is specified, the associated triples will act as if
they were set at the starting time of the $LIMITS command. If no
<time> is specified the associated triples will act as if they were
set at time zero. If a <time> is given, the $LIMITS command should
have already been read in, and the starting time on it should be
greater than the <time> now given in order to avoid meaningless
negative times.

To summarize, the syntax of the initialization section is:
$NETWORK: {[FOR<time>:]<action Ttst>;)"

Triples set during initialization are not printed on the change stack.

8.2 Actions Used for Initialization.

More than just the semantic network can be initialized, and the
following 1ist will give some information on each of the classes of
actions that could occur during initfalization.

a. Actions affecting the semantic network (12. and 13.). Any action
is valid, and a triple's duration in the network can be set as
explained above.

b. Actions affecting classes (14.). Any action is valid. A possible
use is defining a class in terms of another class where to do so
in the class list would cause unalphabetizing of the list. As
loops aren't allowed, most class initialization would be done
in the class- 1ist instead of here. As times are not associated
with classes, a <time> specification will be ignored.

c. Actions affecting lexical items (15.). This is a major use of the
network section, as lexical triples are easier to set up using
the lexical triple action than describing them in lexical expression
lists attached to atom definitions. As times are not_associated
with lexical triples, a <time> specification will be ignored.
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d. Actions affecting the scheduling of groups (16.). A group may be
enabled to take place at a specified time. However, be sure to
use a FOR OM phrase before enable actions in order to set the
timer correctly. Disabling a group would make 1{ttle sense.

e. Actions affecting subroutines (17.). Calling a subroutine from
the network section is illegal.

f. Miscellaneous actions. Ending the simulation (18.) makes no sense.
Setting the RV (19.) is Tegal. Hypotheticality values (20.) could
be included in any triples which are set. The random numbe:
generators (21.) could be reseeded.

g. Tracing actions (32.3). The tracing controls can be conveniently
set in the network section. ~However, even if.tracing is activated,
tracing will not actually begin until the simylation program begins
to execute, and no iracing of the initialization actions is possible.

8.3 Examples.

The examples will be shown as part of a single initialization section.

A11 atoms and classes used are assumed to have been previously defined.

#Initialization section.
$NETWORK;
*LEXTRP (CALL UP) TO CALLUP,
*LEXTRP (SHOWN TO) TO SHOWNTO,
*LEXTRP (PREPARED FOR) TO PREPARDFOR,
*SET RV = 23
%$LIMITS command should have already had a start time greater than 2H27M.
FOR 2H27M: (JOHN LOVE MARY);
*SET(JOHN IQ) = 125,
(FRIENDS (MALES)IN LIVINGROOM);

%Could have simply put Allan in the initial list of elements for the class MALES.

*MOVE ALLAN TO MALES,

%4Tracing won't start until simulation begins execution.

*TSET ABCDE = 1000;

%Group is scheduled for 10 minutes past the beginning of the simulation.
FOR OM: *ENABLE GROUP3 IN 10M;
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9. Groups.

At this point, most programs will have included the information
discussed in the previous six sections. The $LIMITS command has set
certain system variables, the nodes and relations are defined and
given meaning, the classes are defined and initialized, exclusions are
defined, and the simulated universe is initialized.

This initial information is processed as it is reached, and the
universe and system are initialized. Now comes the program which
describes the process to be simulated, and this section is first
processed by a compiler which translates it into an internal form,
and then executed.

The simulation program is divided into units called groups. The
group is the major component of the language, and is composed of any
number of rules, loops, and switches. Rules contain actions, which
cause changes in the universe, and subrules, which interrogate the
universe, and are described beginning in chapter 10.

9.1 Scheduling and Executing Groups.

A group--but not a single rule--can be executed at user-specified
intervals according to the internal simulated-time clock. This clock
advances in steps of one basic time unit, and at each step a check is
made for groups scheduled for execution.

Groups are considered active if they have been enabled (see 16.1) or
initially declared as being ON. They may be made inactive by being
disabled (see 16.2), although they may be reactivated (enabled again).
An active group has associated with it the time it is next scheduled
for execution. The system keeps a queue of all active groups and
their associated next-execution times.

At each advance of the ciock, the queue is checked, and any
group scheduled for the current time is executed. When all such groups
have been executed, the clock advances again. If more than one group is
scheduled for a particular time, they are executed in the order in which
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they were scheduled. If at any time there are no active groups--the
queue is empty--the simulation stops, even if the end time has not
been reached.

Groups may also be called as subroutines, in which case they are
immediately executed (see 17.).

As the above description suggests, groups are used to describe the
actions to be taken at a specific instant of time. A1l actions in a
group seem to take place at the same time, and the group must be exited
from in order for time to advance. Certain groups of actions are
repetitive, and provision is made for specifying the interval at
which a group is to be repeated.

Rules in groups are normally executed sequentially, but the sequence
may be dynamically changed. Each group can be entered only at its
beginning, either by its having been scheduled for the current time or
by its having been called as a subroutine. A group is exited from only
when its end is reached, although a rule may transfer to the end of a
group (subroutines are an exception to this rule).

9.2 $GROUP and $ENDGROUP.

A group is defined by a $GROUP statement, after which follows any
number of rules, loops, and switches. Each group is terminated by an
$ENDGROUP statement.

The $GROUP statement has the following syntax:
$GROUP [,<option field>]<group name>:<time>/<initial state>;

<group name> is the name of this group (see 2.2). If it has not
already been defined, it will be made a node automatically. Groups
may be referenced only after they have been defined, the definition
occurring either in an atom 1ist or here at a group definition.

<time> is defined in 3.1.1. This specifies the interval at which
the group is to be executed, assuming the group remains active. For
example, if <time> is 24H, the group will be executed once each
simulated day, as long as it is active. If the group is disabled
and then re-enabled, the sequencing interval is reestablished with a
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starting point of the first execution time of the reactivated group.

<init{al state> is either ON or OFF. If it is ON, then the group
is initially enabled and will be executed at the starting time of the
simulation, If more than one group is initially ON, they will be
executed in the order of their appearance in the program. At least
one group must initially be ON, unless a group is enabled in the
$NETWORK section (see 8.).

<option field> is optional, and must be preceded by a comma and
have no internal blanks if it exists. This field is a sequence of the
option characters S, C, and 0, which may appear in any combination
and in any order.

S signifies that the group is synchronous, meaning it will be
executed only on even intervals of the specified <time> interval of
the group. If the group is enabled to run at a time which is not an
even multiple of the <time> interval, the next even multiple will be
used. For example, if the <time> for a group is specified as 2H, the
group will always be executed at even numbered hours, even if an
enable action specifies that 1t run at some other time.

C and 0 are options which have meaning in subrules. C is described
in 26.1.2 and 0 in 28.3. If one of these options appears in the
group's <option field>, then it is in force for all subrules in the group,
unless overridden by an <option field> at a lower (rule, switch, loop,
or subrule) level.

Each group must end with an $ENDGROUP; statement. This statement
must be reached (except in subroutines) for a group to be exited from.
It can be flowed into from an immediately previous statement, or it can
be transfered to (see 10.3). Leaving a group does not disable it,
as only a disable action (see 16.2) can do that. When the group is
left, if it is still active (it did not disabie itself) it will be
rescheduled for <time> units of time past the current time.
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9.3 Examples.
Sample $GROUP statements might be:
$GROUP GROUP1: 3H10M/OFF;
$GROUP DINNER: 24H/OFF;
$GROUP, OC MAIN: OM/ON; A <time> interval of OM is all right as long
as the group disables itself. It is often useful to have an
initialization group turned ON, with this group scheduling other
groups and turning itself off so it will never be repeated.
A complete gﬁoup would look like this:
$GROUP G7: 28M/OFF; '
$RULE: (JOHN LOVE MARY);

$RULE :
$LOOP:
$ENDLOOP;

$ENDGROUP;
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10. Rules,

It is in a rule that information is changed in the semantic network,
class membership is altered, groups are enabled and disabled, etc.

This all occurs in the action list of a rule, which is made up of any number
of actions. Each action will be described separately in subsequent
sections.

A rule may also have a subrule list, where the current state of the.
simulated universe may be tested and subrule actions may take place. The
subrule test may set probability parameters which will determine whether
the actions in the rule are executed. Subrules are described beginning in
chapter 24.

There is also a provision for looking into the future. A different
tjpe of rule is used for this purpose, and is described in chapter 29.

The disucssion of rules other than in that chapter will assume the
look-ahead capability is not being used.

Given the above description, it can be seen that rules are used to
unite associated actions and tests. Any number of rules may appear in
a group. Only groups may be scheduled for execution, and rules inside
a group are normally executed sequentially. This order may be dynamically
changed, however, by use of branch fields in the rule.

10.1 Control of Execution

When a rule is executed, testing of the universe may cause the action
list to be skipped with a certian probability. This allows past actions to
affect what will happen later, in either a deterministic or random manner.

If a rule does not have a subrule (test) list, then the rule evaluates
to True and its action list is executed, one action at a time in sequential
order. Any unconditional or true branch (the same in this case) will
be taken after the execution of the last action.

If a rule does have a subrule 1ist, then the subrules are evaluated
and a cumulative total of subrule probabilities is produced. (See 24. for
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a further description of subrule probabilities.) A random number
between 0 and 1 is then generated, and if this number is less than
or equal to the cumulative probability total, the rule evaluates to
True, the action list is executed, and the true branch is taken., If
the random number is greater than the cumulative probability, then the
rule evaluates to False, the action list is not executed, and the
false branch is taken.

If the action list is executed, all actions will be finished
before going to the next command (except in the case of subrou.ines).
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10.2 $RULE.

A rule is defined with the $RULE statement. This construct looks
as follows: '
$RULE [,<option field>][<rule name>] : [<branch part>][<action list>];

[<subrule list>]

<option field> is optional, and must be preceded by a comma and
have no internal blanks if it exists. This field may be one or both
of the option characters C and 0, in any order. € and 0O are options
having meaning in subrules. C is described in 26.1.2 and 0 in 28.3.

. If one of these options appears in the <option field> of a rule, then

it is in force for all subrules in the rule, unless overrridden by an
<option field> attached to a particular subrule.

<rule name> {s optional, and names the rule. It is necessary
if you want to transfer to this rule from another place in the group.
Rule-names are known only as labels and only in the group they are
defined in, and so may be reused (see 2.2).

<branch part> is optional, and indicates which named rule (or
switch or loop) in the group is to be executed next. It is necessary
only if you want to jump out of the normal sequential execution of rules.
The transfer is done only after the rule is finished, with the subrules
evaluated and action 1ist executed if necessary.

The <branch part> is further defined as:
(<branch field>) | one or both of T (<branch field>) and F(<branch
field>) in any order

A <branch field> in parentheses means an unconditional transfer,
and is done regardless of how the rule evaluates. A <branch field>
preceded by a T is taken if the rule evaluates to True, and one
preceded by an F is taken if the rule evaluates to False. There
may be both True and False branches in a rule.

A <branch field> is defined as:
<statement name>|$ENDGROUP | $NEXT <loop variable>
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If it is a <statement name> it must refer to a named rule, loop, or
switch in the same group. A rule may branch to itself, but it shouldn't
do so unconditionally, as that would cause an infinite loop. Also,

you can't branch to a rule inside a loop from outside of that loop

(see 23.).

A reference can be made to a <statement name> in the group even
if that statement is physically after the statement doing the referencing.
During compile time, when the end of the group is reached, a check is
made to see if all such forward references have been resolved.

If the <branch field> is $ENDGROUP, it means to branch to the end
of the group, thereby leaving the group.

If the rule is inside a loop, you may branch to the end of the loop
by using $NEXT followed by the name of the loop variable used in the
loop. The <loop variable> must be present, and allows you to go to the
end of a particular loop if the rule is inside nested loops. Loops are
described in chapter 23.

Examples of rules having branch parts are:
$RULE: T(RULENAM1) <action list>;
$RULE RULENAM1: T(RULENAM1) F(RULENAM2) <action list>;
$RULE,O: (RULENAM3) <action list>;

<action list> is optional, and is a lisf of the actions to take place
if the rule evaluates to True. If the <action list> is missing, this
rule is actually a switch (see 22.).

An ~<action list> is further defined as:
<action> {,<action>}*
and is thus any number of <action>s separated by commas. Actions
are described beginning in chapter 11.

<subrule list> is optional, and composed of any number of subrules
which test the simulated universe. If a <subrule Tist> isn't present,
the rule always evaluates to True. Subrules are described beginning
in chapter 24.
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10.3 Examples.

$GROUP WAKEUP: 1D/OFF: ]
%Loop through each of the people, P representing one person at a time.
$LOOP: P.PEOPLE;
%This is always executed.
RULE: (ALARM RINGS),

(P LOOKSAT CLOCK),

(P SILENCES ALARM);
%Half of the time P gets up and half of the time P feels sick.
$RULE: F(SICK)

(P GETS UP),
(P EATS BREAKFAST);

:.5;
%P got up, but may still be tired.
$RULE: T(SICK)

*SEC (P FEELS TIRED)(TIRED STILL);
.75.2: CLOCK LT 5H30M;
%P goes to work if over 20. Once one person goes to work, leave the loop
%by going to the end of the group.
$RULE WORK: T($ENDGROUP)

(P GOESTO. WORK);
10,-10: VAL(P AGE) GT 20;
%P goes to school, and the next person is chosen.
$RULE: ($NEXT P)

(P GOESTO SCHOOL);

9P feels sick and stays home. The next person is then chosen.
RULE SICK: (P FEELS SICK), ’

(P FALLS ASLEEP):
$ENDLOOP;
$ENDGROUP;

Note that this language (1ike FORTRAN) is not block structured, leading
to numerous branches. The number of branches should be kept to a
minimum as an aid in reading the program.
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11. Introduction to Actions.

This chapter will introduce the construct known as an action. It
will also describe the operand types used in actions. The different
actions will be described in subsequent sections.

11.1 General Description.

Actions may appear in the action lists of rules and in subrule action

lists. A1l changes to the simulated universe are effected by using
actions. These include changes to the semantic network, to class
membership information, and to lexical lists, scheduling and calling of
groups, and setting certain user and system variables.

An action list is a list of actions separated by commas. With one
exception, all actions are introduced by an asterisk followed by the
name of the action. Most actions deal with similar operands, and the
various types of operands are described below.

11.2 Operands.

An operand is composed of atoms, class, and variable names in some
prescribed format. Regardless of the type of operand, at execution
time when the operand is evaluated it will finally result in a set of
zero of more basic items--references to specific entities such as
atoms and classes.

In the definitions, the word 'atom' is used to avoid duplication
of definitions using 'node' and 'relation.' Whenever ‘atom' appears,
it may be replaced throughout the definition by the appropriate specific
atom type.

The operand types will be given in order of complexity, with the
simplest type being given first.

1. <single valued atom field>::=<atom name>|<loop variable name>
|/<class name>
| PICK(<general class reference>)
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This operand always evaluates to a single item. <loop variable name>s

are described in section 23.1. A slash before a <class name> causes
it to be taken as the atom of the same name (see 6.1). Group names
are allowed here as all groups are also defined as atoms (see 9.2).

The PICK function is a built-in system function which randomly
picks one element from its argument. If the argument has no elements
(for example, the class is empty), then the PICK function returns the
empty class as its value. The PICK function is extremely useful for
inserting randomness into a program
<specific class reference>::=<ynsubscripted class name>

|<subscripted class name>{<single valued atom field>)
This always results in the name of a specific class or specific
class-subscript pair. This type of operand may appear in either
the source or destination field of a class manipulation action.
In the source field, the contents of the class is desired; in the
destination field the class itself is acted upon by having
its caontents changed.

If a subscripted class is the destination field of an action,
then the subscript can be already defined for this class, or not
yet defined in which case it is now so defined. This permits
dynamic definition of subscripted classes. If a subscripted class
is in the source field of an action, then if the subscript does
not exist for this class, the operand evaluates to null, or the
empty class.
<general class reference>::=<specific class reference>

|<subrule variable name>
|<subscripted class name> (<general atom field>)

<subrule variable name>s are described in chapter 28.

When a <general class reference> includes one or
more subscripted classes, quite complicated combinations are allowed.
The subscript of a subscripted class may evaluate to more than one
subscript name, in which case the union of all the class-subscript
pairs is taken. Notice that the syntax allows subscripts to be
subscripted classes, to any level, in which case a union is taken
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at each level, thus providing the set of subscripts for the

next, outer level.

When a subscripted class is used as a destination field of
a class action (see 14.), the set of subscripts is determined and
then each subscript is used with the outermost class. In effect,
the action is performed once for each subscript. If a subscript
is not yet defined for the class it is now so defined.
<general atom field>::=<single valued atom field>

|<general class reference>

This is the most general type of operand, and is used when a set
of basic items is required.
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11.3 Examples.

Examples of each type of operand will be given. In all cases, it is

assumed that all atoms and classes have been previously defined, subscripted
classes being defined as such. The names used will have the obvious
definitions and meanings. :

1.

<single valued atom field>:

JOHN a node

LOVE a relation

/PEOPLE a class acting as an atom

P a loop variable

PICK(PEOPLE) one randomly chosen person

<specific class reference>: When used in a destination field, this

always refers to the specified class, and not to its elements. When

used in a source field, it refers to the items in the class, as

described with fhe examples.

PEOPLE a list of all people

FRIENDS(JOHN) a 1ist of all of Jdohn's friends

WIFE(JOHN)  the wife of John

WIVES a list of all wives; a different class than WIFE

SEXES(/PEOPLE)  the node PEOPLE acts as a subscript, and a list
of people's sexes is given

<specific class reference>: may be any of (2) above, or

FRIENDS(PEOPLE)  the friends of all the people; if a person has
no friends he is ignored

FRIENDS(PICK(PEOPLE)) the friends of a randomly chosen person

WIFE(FRIENDS(JOHN))  the wives of all the friends of John; if one of
John's friends is single, he is ignored

WIFE(FRIENDS(PEOPLE))  the wives of all of the friends of all of
the people

WIFE(PICK(FRIENDS(PEOPLE))) eventually, the wife of a randomly
chosen friend of some person

WIFE(FRIENDS(PICK(PEOPLE))) different from the preceding example,
since now you get the wives of the friends of a randomly chosen person
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This can go on to any level, with the next example an indication of
how complicated fhings can get:
FRIENDS (ENEMIES (PICK(WIFE(FRIENDS (PICK(PEOPLE))))))
In the above examples, the reference is assumed to be in a
source field. If the reference were in a destination field, the
action would be performed on the class-subscript pairs given by
the outermost class and the calculated set of subscripts.
<general -atom field>: can be any of the examples given in this section
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2. Actions Affecting the Semantic Network.

The actions described in this section can cause changes in the
emantic network. The semantic network can also be affected by
ise of the reality (RV) and hypothetical (H) values, which are described
n chapter 19 and 20, and by predicate nodes (see 13.).

2.1 The Semantic Network and Triples.

The semantic network contains the assertions made about the simulated
niverse. The network is composed of semantic triples, which
epresent the semantic deep structure of the assertions.
Each semantic triple is an ordered arrangement of atoms, having
he form: subject relation object. Subject and object are both nodes,
ith the object always being optional.
Associated with each triple is information regarding:
its times of creation and deletion, allowing you to determine
the duration of a triple in the network, as well as the time elapsed
since a triple has been negated (declared to be false). See 27.
for ways to access these times.
its numeric value (see 12.4)
its secondary triples, if any (see 12.5)
its reality value (see 19.)
its hypotheticality value (see 20.)



56
12.2 Asserting Triples.

Semantic triples are asserted in the network simply by putting the
triple in an action list. The action is of the form: <triple> where
<triple>::=(<general node field><general relation field>[<general node field>])
The first field represents the subject, the second the relation, and the
third, if present, the object. The fields are described in 11.2.

<triple> may also be (<triple variable name>) as described in 23.4,
which is used when looping through triples on a predicate list.

The assertion of a triple is very powerful, as any of the items in
the triple may be a <general atom field> (see 11.2), as long as the
list resulting from the evaluation of the field contains only atom
names of the proper type. If ahy item in the triple does evaluate to
a list, all possible combinations of triples are added to the
network. If any item in the triple evaluates to an empty list, then
no triple is added to the network.

If a triple that already exists is added, it is not put in the
network as each unique triple occurs only once in the network. However,
the other items associated with the triple (time, RV, and H) are
updated.

A1l triples added to the network or updated are printed in the change
stack, along with the simulated time of the assertion, and value if
appropriate. Any triple added may be followed with triples representing
the expansions of any predicate nodes (see 13.2).

In the examples of triples given below, assume the following:
the class MEN = JOHN FRANK,
the class WOMEN = JANE MARY LINDA,
the relation class GOODRELATIONS = LIKE FRIENDOF,
the relation class HEALTHY = TALL THIN STRONG,
and the PROFESSORS class is empty.
$RULE: (MEN LIKE TOM); puts (JOHN LIKE TOM) and (FRANK LIKE TOM)

into the network.
$RULE: (MEN GOODRELATIONS TOM); puts the above two triples
plus (JOHN FRIENDOF TOM) and (FRANK FRIENDOF TOM) into the network.
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$RULE: (MEN GOODRELATIONS WOMEN); puts 12 triples into the network.

$RULE: (MEN HEALTH); puts 6 triples into the network.

$RULE: (PROFESSORS GOODRELATIONS WOMEN); puts no triples into the
network, as one class is empty.

$RULE: (/MEN GOODRELATIONS /WOMEN); puts only 2 triples into the

~ network, as the subjects and object are class names acting as nodes.

The items in the triple may be more complicated, as demonstrated in

11.2, with the following triple action being legal:

$RULE: (FRIENDS(PICK(PEOPLE)) GOODRELATIONS WiFE(FRIENDS(JOHN)));
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12.3 Negating Triples (*NEG)

Semantic triples may also be negated (marked as no longer being
an assertion), using an action similar to the one for inserting

triples. (Triples may be negated automatically by using exclusions,
see 7.)

The syntax of this action is:
*NEG <triple>
where <triple> is described in 12.2.

Negating a triple does not physically remove it from the network.
The triple is marked as having been negated but several functions (see 27.)
can still reference the triple. If a negated triple is on a predicate
Tist (see 13.), a loop through that predicate Tist (see 23.4) will include
that triple, and if a comparison of tripleson predicate lists is
made (see 26.3.2) a negated triple will be found on its list. Negated
triple are also treated as ordinary triples in all of the predicate
node actions (see 13.)

This action is not the same as asserting, for example, that John
is not fat. That assertion would have to be made by using something 1ike
JOHN NOTFAT or by using a secondary triple to modify FAT. Note that
NOT is a reserved word and cannot be used as an atom name.

Again, the items are of the form <general atom field>, so using
the example in 12.2 above, *NEG(MEN GOODRELATIONS TOM) negates four
triples in the network, and four actions are printed in the change
stack. If you try to negate a triple which is not in the network,
that triple is ignored.

The change stack lists all negated tribles, preceding the triple .
with the word 'NOT' to signify negation.
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12.4 Setting and Modifying Numeric Values (*SET).

A11 triples have numeric values associated with them. These values
may be used for any purposes, being especially useful in conjunction
with numeric lexical expression lists (see 5.2). Whenever a triple is
asserted it is given an initial value of zero.

The *SET action lets you set a triple's value or modify that
value. If a triple whose value is to be set or changed is not currently
asserted, it will be so asserted, in which case the assertion time and
RV(see 19.) and H value (see 20.) of the triple will be set. If
the triple is currently asserted, only its numeric value will change.

This action has the syntax:

*SET <triple> <assignop> <value>

<triple> specifies a triple or set of triples in the same way as
a triple or set of triples is specified in an assertion (see 12.2).

Each specified triple has its numeric value changed.

<value> is either a <triple> or a number. If it is a <triple>
which specifies more than one triple, the sum of the values of the
specified triples is used. If a specified triple is not in the network,
it is skipped. The rules for determining whether a triple is in the
network are the same as for subrule sentences, and are described in
26.1.1 and 26.1.2 (except here the C option would have to be in effect
for the rule which contains the *SET action).

<assignop>:i=  =|=+|=-|=*|=/

= is the usual assignment operator and assigns the value to
each of the specified triples. The others modify the values of
the specified triples by performing the specified arithmetic operation on
their original valués with the given <value> and then assigning the resul:
back into the original triples. For example,
<triple> =+ <value> really means <triple> = <triple> + <value>
for each specified triple. <assignop>s which have two symbols can
have no space between the symbols.
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The triples whose values are being changed are printed in
the change stack.
The examples assume the same atoms and classes as the examples
in 12.2. '
$RULE: *SET(MEN LIKE TOM) = 4;
$RULE: *SET(MEN GOODRELATIONS MARY) = 12.35;
$RULE: *SET(MEN HEALTHY) = -9.3;
$RULE: *SET(JOHN LIKE MARY) =+ 8.2; adds 8.2 to the value of the triple
$RULE: *SET(JOHN LIKE WOMEN) =* 2; for each of the three specified
triples, multiples its value by 2
$RULE: *SET(JOHN LIKE MARY) = (JOHN LIKE JANE);
$RULE: *SET(JOHN LIKE MEN) =+ (JOHN LIKE WOMEN); the value of (JOHN
LIKE WOMEN) is calculated by adding the valuesof the triples
it specifies; this value is then added to each of the triples
specified by (JOHN LIKE MEN)
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12.5 Secondary Triples.

The semantic triples discussed so far allow only subject,
relation, and object. In order to modify any or all of these items,
secondary triples are introduced. If it is not clear from context,
the triples previously disucssed will be called primary triples in
order to distinguish them from secondary triples. Otherwise, primary
triples will simply be called triples, with secondary triples always
being given their full title.

As secondary triples are used only to modify primary triples,
they are transparent to the semantic network and are accessible only
through their associated primary triples. This means that, in a
test, a secondary triple will not be found unless the primary triple
is also given (see 27.4).

Secondary triples look like primary triples, except for the added
ability of having either a node or a relation in the subject position.
Thus, secondary triples are <triple>s (see 12.2), with the first
field being any type of atom--a node or any type of relation.

Secondary triples also have the same extra information associated
with them as have primary triples (see 12.1).
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12.5.1 Assertion (*SEC).

A secondary triple is added as a modifier of a primary triple by

using the *SEC action, whose syntax is:

*SEC <primary triple> {<secondary tm‘ple>}+

Notice that this allows any number of secondary triples to be added
as modifiers of the one primary triple.

<primary triple> is a <triple> of the form given in 12.2. If the
primary triple is already in the network, then its associated items are
updated. If it is not in the network, it is put in. In fact, all rules
are as in 12.2 for addition of just a primary triple.

<secondary triple> may appear any number of time, as a primary
triple may be modified by any number of secondaries. A secondary
triple is a <triple> of the form given in 12.2, except that the subject
may be any type of atom.

If the secondary for that primary is already in the network, then
the secondary's associated items are updated. If it is not already
pointed to by the primary, then it is put in the network, but will
only be accessable through the primary.

As with assertions of primary triples, all of the items in any
triple in *SEC are of the form <general atom field>. If any
item does evaluate to a list of atoms (of the proper type), then
combinations of primary and secondary triples are asserted in the
following manner: each <secondary triple> is paired with the <primary

triple>, and ALL combinations of items for each pair of triples are asserted;

the secondary triples interact only with the primary, and not with
each other. If any item yields an empty 1ist, the triple containing .
that item will be ignored--if it is the primary triple, no action at
all will occur.

This procedure does not always yield the desired result, as
demonstrated in the examples below. This problem can be solved by
using loops (see 23.).
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The change stack lists all asserted or updated primary-secondary
triple pairs. This is done by Tisting, for each primary (there may be
only one), the primary tiple followed by all of its secondary triples.
If any of the nodes are predicate nodes, things get more complicated
(see 13.2).

For example, assume the atoms used below have the obvious meanings,
and these classes have been defined:

MEN = JOHN FRANK;
WOMEN = JANE MARY;
GOODRELATIONS = LIKE FRIENDOF;

$RULE: *SEC(JOHN LOVE MARY ) (LOVE WITH PASSION): adds one primary
_ and one secondary triple

$RULE: *SEC(JOHN LOVE MARY)(LOVE WITH PASSION) (PASSION
GREAT); adds one primary and two secondaries

$RULE: *SEC(JOHN LOVE MARY)(JOHN HANDSOME ) (MARY PRETTY);

$RULE: *SEC(MEN MEET JOHN)(MEET AT CLUB);

$RULE: *SEC(JOHN AFFECTION MARY)(MARY PRETTY);

$RULE: *SEC(MEN LOVE MARY)(MARY PRETTY); puts 2 pairs of primary
and secondary triples into the network.

$RULE: *SEC(JOHN LOVE WOMEN)(WOMEN PRETTY); puts 4 pairs into the
network, two of which, (JOHN LOVE JANE)(MARY PRETTY) and
(JOHN LOVE MARY)(JANE PRETTY) are probably not desired.
This can be solved by looping (see 23.1) through the women.

$RULE: *SEC(JOHN LOVE/WOMEN) (/WOMEN PRETTY); adds only one primary-
secondary pair, using the node WOMEN

$RULE: *SEC(MEN LOVE WOMEN) (WOMEN PRETTY); adds 8 pairs, not all
of them us;ful

$RULE: *SEC(JOHN GOODRELATIONS MARY)(MARY PRETTY) (JOHN HANDSOME),
adds two secondaries for each of two primaries

$RULE: *SEC(MEN LOVE MARY)(MARY PRETTY)(LOVE WITH PASSION) (PASSION
GREAT) (MEN HANDSOME); adds five secondaries for each of two
primaries, but the (MEN HANDSOME) triple causes problems by
mismatching MEN in two cases, a problem solvable by using loops
(see 23.) Also, the order of the secondaries might have to
be changed, according to the grammar in use, if natural
language output is desired.
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12.5.2 Negation (*NEGSEC).

Secondary triples are negated using the *NEGSEC command, which
is the secondary triple version of the *NEG command.

The *NEGSEC command is of the form:
*NEGSEC <primary triple> {<secondary trip1e>}+

<primary triple> is a <triple> (see 12.2). If a specified triple does

not exist, then the triple 1is skipped. If it does exist, it is
Teft unchanged in the network. '

<secondary triple> is like <primary triple> above, except that the
subject field may be any type of afom. If this secondary exists for
the given primary, then the secondary is negated in the network. If
it doesn't exist for the given primary, nothing happens.

Each of the items in the triples is of the form <general atom
field>, with the rules for evaluation being the same as those for
*SEC (see 12.5.1), causing primary-secondary pairs to be generated.
The change stack lists negated triples in the same way as in an
*SEC, but all listed triples are preceded by the word 'NOT'. (Note
that the primary triple will be preceded by 'NOT' but will never be
negated or affected in any way.)

If a primary triple is negated by a *NEG command, all of its
secondaries are marked as negated, as, of course, is the primary.

A reassertion of the primary does not reassert the secondaries.

Negated secondary triples can still be referenced by several
functions; see chapter 27. for details.

For examples of this command, see examples of the *SEC command
in the previous section. With both commands the same triples are
specified, but with *NEGSEC the primary is never affected, and if
a triple is not currently asserted in the network it will be skipped.
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12.5.3 Setting and Modifying Numeric Values (*SETSEC).

A1l secondary triples have numeric values associated with them,
in the same way that primary triples have numeric values. The value
of a secondary triple can be used for any purpose, being especially
useful in conjunction with numeric lexical expression lists (see 5.2).
Whenever a secondary is asserted, it is given an initial value of
zero.

*SETSEC is the secondary counterpart of *SET and uses the same
rules, except that both a primary and a secondary field must be given.
Each secondary will have its value set or modified. If a specified
primary or secondary is not currently asserted, it will be so asserted,
qnd it will have its associated items (time, RV, and H value) set.

The numeric value of a primary is not changed. A currently asserted
primary is completely unaffected; a currently asserted secondary will
have only a numeric change.

Syntax:

*SETSEC <primary triple><secondary triple><assignop><value>

<primary triple> and <secondary triple> are as in *SEC (see 12.5.1),
and for each primary-secondary combination the secondary has its value
changed.

<assignop> and <value> are described in the *SET action (see 12.4).

Examples:
$RULE: *SETSEC(JOHN LOVE MARY)(MARY DESCRIPTION) =+ 2.3,

*SETSEC(MEN LOVE MARY)(MEN AGE) = 25,

*SETSEC(/MEN IQ)(IQ TOTAL) = (MEN IQ), this sets the
value of a single secondary triple to the sum of the men's
IQs.

*SETSEC(MEN GOODRELATIONS WOMEN)(WOMEN BEAUTY) =* (SAVED BEAUTY);
this last action may assert and/or give values to some
undesirable triples, as described in similar examples in 12.5.1
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13. Actions Affecting Complex Predicate Nodes.

A number of actions are available for manipulating complex
predicate nodes (also called predicate nodes). These actions will be
described after predicate nodes are explained.

13.1 Complex Predicate Nodes.

Nodes (but not relations) may point to other triples in the network.
In this case, the nodes are said to be complex predicate nodes c»,
simply, predicate nodes. A predicate node may point to any number
of triples, but all triples must be primary triples, although they
in turn may point to secondary triples. A predicate node acts as a
list of triples, with duplicate triples not being checked for.

As the triples on a'predicate T1ist are primary triples, they exist
only once in the network. Therefore, if a triple is accessed independently
of the predicate node mechanism (for example, a triple is simply
asserted or negated, or used in a *SET action), any changes made to
the triple will be made to the only instance of that triple; if that
triple is on a predicate list, the changes will be seen on the list.

However, it is important to note that a negated triple will still
be on the predicate list, but will be marked as being negated.
Therefore, when a predicate node is specified in an action described
below, a Toop (see 23.4), or a subrule (see 26.3.2), any negated triples
on the predicate list will be used like any other triples on the 1list.

One possible function of a predicate node is as a discourse
variable. For example, the node THATJ may point to triples which
describe 'what John knows' so that the triple (JOHN KNOWS THATJ) will
refer to all that John knows.

There are commands which manipulate the triples of a predicate
node, as well as commands which search for triples having a specified
node (see 13.5) or search for predicate nodes having specific triples
on their predicate lists (see 13.6). The triples on a predicate node's
1ist can be looped through one at a time (see 23.4) and there are tests
for comparing triples (see 26.3.2).
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13.2 Predicate Nodes in the Change Stack.

The triples attached to a predicate node are printed on the change
stack whenever a triple containing that node is printed, except when
the triple is printed due to a negation. Things can get complicated,
since in an *SEC command (see 12.5.1), for example, both primary and
secondary triples may contain predicate nodes. Furthermore, the triples
of a predicate node may point to secondary triples. Finally, a triple
of a predicate node may also contain predicate nodes. (Actually, a
secondary of a triple of a predicate node may also contain predicate
nodes, but that is too much to deal with.)

Before detailing the method of expanding triples on the change
stack, secondary triples of predicate node triples will be explained.

A predicate node only points to primary triples, but these triples

act as any other primary triples and so may point to secondary triples.
A problem arises, however, when a secondary triple of a primary

triple is automatically printed out, as is the case here, since the
primary triple may have many secondaries, not all asserted at the same
time. Therefore, when a predicate node triple is printed, it will be
followed only by those secondary triples which have the same assertion time
as the primary. As primary triples have their assertion times updated
when a new secondary is added to them, this rule effectively means
that only those secondaries last added to the primary (added at the
same time, with no updating of the primary occurring at a later time)
will be printed.

So, when a triple is printed on the change stack, except when
it has been negated, it is followed by:

1. If the subject is a predicate node, get its first predicate triple.
Otherwise, go to step (5).
Print the triple.

3. Print, in reverse order, its secondary triples having the same
insertion time as the triple itself (see above discussion).
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4. Expand this triple by going to step (1). Note that secondary
triples of prediéate node triples are not expanded.

5. If here, the subject is finished, so check the object. If the
object is a predicate node it is expanded in exactly the same way
as the subject node. Otherwise, continue.

6. A triple's predicate nodes (if any) have been completely expanded.
If this triple is on a predicate node 1ist, then get the next triple
on the list and go to step (2).

7. Eventually, the predicates nodes (if any) of the originally printed
triple will have been completely expanded. The process is then
complete, unless the original triple was a primary triple of a *SEC
or *SETSEC command. In that case, each of its secondary triples
is treated exactly as the primary was, a secondary being printed
and then expanded.

While this procedure is long and complicated, in general triples
won't have secondary triples or predicate nodes, or perhaps just a
few of them. And preciate node triples won't themselves have predicate
nodes. A sample change stack is given in chapter 31.

Finally, it is possible to have a predicate node contain a triple
which contains that same predicate node. For example, if THAT is a
predicate node, it may contain the triple (JOHN KNOWS THAT), representing
the concept "John knows that John knows that ...." To avoid an
endless loop, if a predicate node is the same as one already being
expanded, a warning is printed and the node skipped.
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13.3 Inserting Triples.

Any primary triple may be added to the list of triples of a predicate
node. Any node may be a predicate node, and becomes one when a triple
is added to its predicate list. A triple so added acts like any other
primary triple in the network, and may be modified by secondary triples.
It may also contain predicate nodes, even the predicate node whose list
it is added to.

If a triple added to a predicate node is already in the network,
the triple is left unchanged. If the triple is not in the network,
it is now asserted with the important side effect that its hypothetically
(H) value (see 20.) is set to one.

Under no circumstances is any information about predicate node
actions printed in the change stack, even if a new triple needs to
be asserted in the network. ’

Several of the predicate node actions involve the use of a new
kind of operand in the source field. <predicate source field> is defined
as follows:
<predicate source fieid>::=|<trip1e>|<genera1 node field>

<triple> is defined in 12.2. If the <triple> is not already
in the network, it is added with an H value of 1, but no output
appears on the change stack.

<general node field> is as described in 11.2. For each of the
nodes, if it is not a predicate node (it currently has no predicate
list) it is ignored; if it is a predicate node, its triples are used
as the value of the field.

13.3.1 *ADDP.

This command adds the specified triples to the predicate lists of
the destination nodes. Its syntax is:
*ADDP <predicate source field> TO <general node field>
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<predicate source field> is described in 13.3. It expands to some
number of primary triples.

<general node field> is described in 11.2.

A1l of the source triples are added to the destination predicate
node lists. No output is shown on the change stack. A source triple
not already in the network (possible only for a source triple of the
form <triple>) is entered with a hypotheticality (H) value of 1.

A source triple already in the network is left unchanged.

Examples:

*ADDP (JOHN LOVE MARY) TO THAT2

*ADDP (HERO WORK) TO HEROTASK

*ADDP HEROTASK TO TASKS

*ADDP (JOHN LIKE FRIENDS(MARY)) TO THAT(FRIENDS (JOHN))

which might be used to indicate which facts about John his friends

are aware of.

13.3.2 *MOVEP. ,

This action is identical to *ADDP except that the predicate lists
of the destination nodes are erased before the source triples are added
to them. The syntax of the *MOVEP action is:

*MOVEP <predicate source field> TO <general node field>
with the fields being the same as in *ADDP.

13.3.3 *PUSHP.

This action is the same as *ADDP except that the predicate lists
of the destination nodes are treated as stacks. The source triples,
in the order they are listed (in the case of a predicate node, this is
the order of the triples on its predicate list, which may be meaningless
if that 1ist is not being used as a stack), are added one by one to the
top of the predicate stack for each destination predicate node. This
allows user ordering of the predicate list. A predicate list should not
.be used as both a 1ist and a stack at the same time since the stack
ordering may be destroyed. .

The syntax of the *PUSHP action is Tike that of the *ADDP action:
*PUSHP <predicate source field> TQ <general node field>

n
13.4 Deleting Triples.

Triples can be deleted from the predicate triple lists of
predicate nodes. The actions used to accomplish this are similar to
the actions for inserting predicate triples. A triple deleted from
a predicate list remains otherwise unchanged in the network.

13.4.1 *REMOVEP.

This action removes all occurrences of the source triples from the
destination predicate nodes. If a source triple is not on the predicate

list of a destination node, no action is taken for that case.
The syntax of this action is:

*REMOVEP <predicate source field> FROM <general node field>
<predicate source field> is described in 13.3.
<general node field> is described in 11.2.

13.4.2 *ERASEP.
This action is of the form:
*ERASEP <general node field>
and simply erases the triples from the predicate node 1ists of the
specified nodes.

13.4.3 *POPP.

If a predicate node's triple list is to be used as a stack, the
*PUSHP action should be used to place a trip]e on the stack (see
13.3.3.) and the *POPP action to remove the top element from the
stack and place it in the 1ist of another predicate node for further
reference.

The syntax of the *POPP action is:

*POPP <general node field> T0 <general node field>

Each source predicate node has the top element of its predicate

stack popped off, and all of the triple thus generated are moved to the
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predicate lists of each of the destination predicate nodes, these
destination predicate lists first having been erased. Note that the
source field can only include nodes and not triple variables or
triples, as only nodes can have predicate stacks attached to them.

If a source node is not a predicate node (it currently has no predicate
list) it is ignored.

73

13.5 Searching For Triples (*LOCATE).

This action causes a search of the network to take place. It is
sometimes useful to know where a node has been used, and this artion
finds all triples in which specified nodes have been used as either
subject or object. '

The syntax of the *LOCATE action is:

*LOCATE <general node field> TO <general node field>
where <general node field> is described in 11.2.

For each source node, the network is searched for triples which
have that node in them. Only primary triples are looked at, but all
primaries are checked, regardless of their RV or H values. All triples
which contain any source node in any position are then added to the
predicate lists of each of the destination nodes.

For example, *LOCATE FRIENDS{JOHN) TO /FRIENDS will find all
triples referencing a friend of John and place all of these triples
on the predicate list of the node FRIENDS.

13.6 Searching For Predicate Nodes (*MOVEPAR).

This action causes a search for predicate nodes, finding those
nodes whose predicate 1ists include any of the specified triples. Its
syntax is:

*MOVEPAR <predicate source field> T0 <general class reference>

<predicate source field> is described in 13.3.

<general class reference> is described in 11.2 and must specify

node classes.

First, the source field generates any number of triples. Then,
2ach and every nodé defined in the program is checked, and if a node
is found whose predicate 1ist contains one or more of the saurce triples,
that node is added to the destination class(es). Note that if a predicate
10de is used in the source field in order to use its triples, that
0de will be added to the destination class(es) since it obviously meets
the search criteria. The RV and H values of all triples are ignored
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during the search.

For example, *MOVEPAR (MEN LOVE MARY) TO CLASS2 would find all
nodes whose predicate lists contain one or more triples concerning a
man loving Mary, and add those nodes to CLASS2.

13.7 Extracting Atoms From Triples (*EXPAND).

This action allows you to break a triple into its component
pieces. The atoms in each specified triple are added to the appropriate
destination classes.

The *EXPAND action is of the form:
*EXPAND <predicate source field> TO <general class reference>

<general class reference> [<general class reference>]

<predicate source field> is described in 13.3.
<general class reference> is described in 11.2. The first and third
classes must be classes of nodes, and the second a class of relations.
The subjects of the source triple are added to the class(es) of the
first field and the object to the class{es) of the third field. If
a triple has an object but no object field is specified, that object
is ignored. If a triple has no object, an object field will remain
unchanged for that triple. The relations of the source triples will
be added to the second destination field.
Notice that if the <predicate source field> specifies more than
one triple, the destination classes get multiple atoms added to them.
However, as the atoms in these classes are unordered, you can't determine
which atoms were from which triples. It is therefore probably more
useful in most circumstances to expand only a single triple (probably
a triple variable), although there might be cases where you would want,
for example, a class of subjects appearing in the predicates of a
complex predicate node.
Examples (assume X is a triple varible):
*EXPAND (X) TO SUBJS RELS 0BJS
*EXPAND JOHN TO PSUBS(JOHN) PRELS(JOHN)
*EXPAND PICK(PEOPLE) TO CLASS1 CLASS2 CLASS3
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14. Actions Affecting Classes.

Elements can be added to and removed from classes, and subscripted
classes can have additional subscripts defined. Atoms may be extracted
from triples and put into classes (see 13.7) and predicate nodes
having specified triples can be found and put into classes (see 13.6).

Duplicate class elements are ignored and elements are stored
in an internal order. A1l atoms in a class must be of the same type
as the class. See chapter 6 for more information about classes.

In all of the class actions, the destination field is a
<general class reference>, which is described in 11.2, and thus may
specify a class, or one or more class-subscript pairs. If this is a
subscripted class, a new subscript for this class may be formed.

Classes do not have times, RVs, or H values associated with them.
Class actions never appear on the change stack.

14.1 Adding Elements.

Two similar actions allow elements to be added to a class. In
both cases, sourceatoms must be of the same type as the destination
field.

14.1.1 *ADD.

Syntax: *ADD <general atom field> TO <general class reference>
"Al1 members of the source field are added to the current members
of the destination class(es). k
Examples:
*ADD JOHN TO MEN
*ADD FRIENDS(JOHN) TO FRIENDS(MARY)
*ADD FRIENDS(PICK(MEN)) TO TEMP
*ADD JOHN TO FRIENDS{MEN) makes John a friend of each man
*ADD JOHN TO FRIENDS(WIFE(MEN)) make John a friend of each man's wife
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14.1.2 *MOVE.

Syntax: *MOVE <general atom field> TO <general class reference>
The destination class(es) is (are) first erased, the source atoms
then being added to the destination class(es). This is equivalent
to erasing the destination class(es) (see 14.2.2) and then adding the
source elements to it (them).
Examples:
*MOVE FRIENDS(JOHN) TO FRIENDS(MARY)
*MOVE PICK(PEOPLE) TO ENEMIES(PICK(MEN))

14.2 Removing Elements.

Specific elements can be removed from a class or a class can simply
be erased.

14.2.1 *REMOVE.

Syntax: *REMOVE <general atom field> FROM <general class reference>

A11 members of the source field are removed from the destination
class(es). If a member of the source field is not in a destination
class, no action is taken regarding that member with that class. The
source field members must be of the same type as the destination field.

14.2.2 *ERASE.

Syntax: *ERASE <general class reference>

The specified class(es) is (are) erased, leaving it (them) with
no member elements.
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15. Actions Affecting Lexical Lists.

Lexical triples can be added to the lexical lists of atoms by
using the two lexical actions. Lexical lists and lexical triples are
described in sections 4.2 and 4.2.1. While the lexical actions cannot
directly add dictionary entries to the lexical list of an‘atom, triples
of any form may be so added. For this reason, it is strongly suggested
that lexical triples be added to atoms by using the lexical actions,
rather than the lexical expression 1ists of atoms. Usually, these
lexical actions will take place in the network section (see 8.)
of a program.

Any atom, except a relation with a numeric lexical expression
list (see 5.2) may have a lexical list added which gives 'meaning'
to that atom. As group names and class names are also atoms, class
names being atoms when preceded by a special marker (see 6.1), they may
have lexical lists added unless they are of the above excepted type.

While dictionary entries cannot be directly added to a Texical
1ist, lexical triples can be added, effectively adding the lexical
lists (including dictionary entries) of the atoms of the lexical triples.
Thus, the lexical actions allow you to directly add only triples of
semantic entities (atoms) to a lexical 1ist, but the surface language
meanings associated with those semantic entities, as defined in the
atom lists (or since implicitly added by a lexical action), are
used in natural language output.

It is important to note that lexical lists of any form are
completely disregarded if the generative mechanism is not being used,
in which case only a change stack, using internal atom names, will
appear. '
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15.1 Adding Lexical Triples.

Two actions.exist for adding to an atom's lexical 1ist, but at
present there is no way to remove any atoms from a lexcial list--both
actions leave the original list intact. The two actions differ in that the
first adds specified triples while the second adds the lexical triples
of other atoms.

15.1.1 *LEXTRP.

Syntax: *LEXTRP <arbitrary lexical triple> TO <general atom field>
<arbitrary lexical triple> is a <triple> (see 12.2) composed of
one, two, or three <general atom field>s (see 11.2), with no
restrictions on the type of each atom. This allows much more freedom
than given in lexical expression lists. Even if a triple has only
one item, this action is still very different from *LEXADD, as
will be described below.
<general atom field> is described in 11.2 Relations with numeric
lexical expression lists are not allowed.
A1l of the source triples are added to the lexical 1ists of each
of the destination atoms.
Examples:
*LEXTRP (CALL UP) TO CALLUP
*LEXTRP (JOHN FAT) TO JOHN
*LEXTRP (EVIL LOOKING CREATURE) TO VILLAINS
*LEXTRP (MARY ADJECTIVES(GOOD)) TO MARY

15.1.2 *LEXADD.

Syntax: *LEXADD <general atom field> TO <general atom field>

<general atom field> is described in 11.2.

For each source atom, its lexical triples, if any, are added to
the lexical lists of each of the destination atoms. If a source atom
has a dictionary entry on its lexical 1ist, that entry is not added
to the lists of the destination atoms.

79

For example, assume that the $RELATIONS list includes:

GOODLOOKS 0 0 = 'TALL' 'HANDSOME';

and the action *LEXTRP (GOOD LOOKING) TO GOODLOOKS

has been executed. Then, if *LEXADD GOODLOOKS TO ADJECTIVES(GOOD)

is executed, the lexical lists of the atoms representing a certain
class of adjectives will have the triple (GOOD LOOKING) added to them,
but the dictionary entries of GOODLOOKS('TALL' and 'HANDSOME') will
not be so added.

A problem could arise if a source atom is the same as a destination
atom, as this could cause an infinite loop to occur. Therefore, in
this case the source atom is skipped.

Finally, there is an important difference between *LEXTRP of a
triple having a single atom and *LEXADD of that same atom. In the
*LEXTRP case, the lexical triple consisting of that atom will be added
to the destination atoms. In the *LEXADD case, the lexical triples
on the lexical list of that atom will be added to the destination
atoms. - :
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16. Actions Affecting the Scheduling of Groups.

In order for a group to be executed, it must be enabled and
scheduled for execution. Once a group is enabled, it will be executed
repeatedly according to the time interval specified with the grbup
definition. In order to deactivate a group, it may be disabled. A
group may be enabled and disabled any number of times. More details
are given in section 9.1.

16.1 Scheduling Execution (*ENABLE).

Syntax: *ENABLE <general atom field> [IN <time>]

<general atom field> is described in 11.2. The field must be
already defined, so if it is a single group name, that name must
be an atom name (see 9.2). If it is an atom name, that name must
eventually be defined as a group, else a compile-time error will be
given. During execution of the program, if a source element is not the
name of a group, that element will be skipped.

<time> is described in 3.1.1.

This action puts the specified groups on the queue of scheduled
groups and marks the groups as enabled. If no <time> is given, then
each group is scheduled for the current time (in the order in which
the elements are stored in the field). If a <time> is given, then
each group is scheduled for the current time +<time>(or possibly
later for a synchronous group). If other groups are scheduled for
the time at which a new group is now scheduled, the new group will
be executed after the original ones. If a newly enabled group is
already scheduled, only its earlier scheduled time (i.e., the time
which will cause the soonest execution of the group) will be kept, as
only one schedule entry per group is maintained on the queue. Enabling
a group does not mean that it is immediately executed; in order to
immediately execute a group, call it as a subroutine (see 17.).

Examples:

*ENABLE MAIN IN 2D4M
*ENABLE GROUPS
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16.2 Cancelling Execution (*DISABLE).

Syntax: *DISABLE <general atom field>

<general atom field> is described in 11.2 and has the same additional
eip]anation as in *ENABLE (see 16.1).

Each specified group is disabled by marking the group as being
disabled and immediately removing the group from the queue of scheduled
groups. If a group is already disabled, nothing happens to it. Note
that no <time> specification is allowed.

A group may include an action which would disable itself, which is
useful if the group is to be executed only once for each time it is
enabled.

Examples:

*DISABLE MAIN
*DISABLE GROUPS
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17. Actions Affecting Subroutine.

Two actions allow groups to be used as subroutines. These actions
will be described after the concept of subroutines is introducted.

17.1 Subroutines.

Any group may be called from any other group (including itself)
as a subroutine, in which case the called group is immediately executed
but not enabled. After execution of the called group, the calling
group is resumed.

As in other programming languages, this is convenient if there
are rules common to several groups; these rules may be put into one
group and called from the groups needing those rules. ' Also, subroutines
can be used to split a group into separate, smaller groups according
to function, for a more readable program.

Unlike most other programming languages, no parameter passing is
provided for. The called group has access to the entire data base,
and if the calling group wants to pass information to the called group
then it must first put this information into the data base, probably
using a temporary class which it could examine and erase upon return
of the called group.

A called group may itseif call a group, and so on to any level.
Each called group returns, upon completion, to the group which called
it. A group may call itself recursively, also to any level. Care
should be taken to avoid an endless circle of subroutine calls.

A group called as a subroutine need not terminate only at its
$ENDGROUP statement but may terminate anywhere in an action list.

17.2 Calling Subroutines (*CALL).

Syntax: *CALL <general atom field>

<general atom field> is described in 11.2, and has the same
additional explanation as in *ENABLE (see 16.1).
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The action calls each of the groups in the specified field. The
groups are executed one at a time, in the order in which they are
stored in the field. When a called group returns, the next group
in the field is called. When the last called group returns, the
calling group continues at the action (or statement) following the
*CALL action.

A *CALL action is not allowed in a subrule action Tist. A *CALL
action does not affect the status of a group in any way; the group
remains enabled or disabled as before the call, and the group, if
scheduled, remains scheduled for the same time.

Examples:

*CALL GROUP6
*CALL GROUPSEQUENCE

17.3 Returning From Subroutines (*RETURN).

Syntax: *RETURN

When a group is called as a subroutine, it may return to the
calling group before it reaches its $ENDGROUP statement (see 9.2).
*RETURN may appear anywhere in an action list. If it is executed in a
group that is not acting as a subroutine (the group has been scheduled,
not called), then the action will be ignored. However, if the group
has been called as a subroutine, then when *RETURN is executed the
called group will immediately terminate (the rest of the action list
will be ignored) and control will return to the calling group. If a
called group executes no *RETURN action, then it will terminate at its
$ENDGROUP statement. There may be any number of *RETURN actions in a
group.
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-~ 18. Action For Terminating the Simulation (*END).

Normally, the simulation is terminated when either no further
groups are scheduled, or the simulated time exceeds the specified
end time (see 3.1). However, the *END action may be used, in which
case the simulation will terminate immediately after all groups
scheduled for the current time are executed. This effectively
sets the end time of the simulation to the time at which the *END
action is executed. The syntax of this action is simb]y: *END
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19. Actions Affecting the RV.

A reality value (kV) is attached to every triple asserted in the

network (whether primary or secondary) including those asserted automatically

in a predicate triple action (see 13.3) or a numeric modification (see
12.4 and 12.5.3). This value is printed on the change stack.

The RV might be useful in giving a truth value to a triple, or
in setting up separate universes for different contexts. It has no
inherent meaning, and can be used for any purpose or simply ignored.
The RV of a triple can be tested in subrules (see 27.8).

RV is a global variable which is initially zero. The RV can be
changed at any time by the programmer, but is never automatically changed.
The RV attached to triple is the current RV, only one current RV
being allowed. RVs can be saved as values of triples and then reset,
however. The RV is a positive integer with a maximum value of 4095;
if a real value is assigned to the RV, the value will be truncated.

19.1 Setting the RV (*SET).

The RV is set or modified in the same way that a primary triple
has its numeric value set or modified, using the *SET action. The
syntax here is:

*SET RV <assignop><value>
where RV is a reserved word and the other fields are described in
12.4 and have the same meanings here.
Examples:
*SETRV =15
*SET RV =+ 2.3
*SET RV =* (RV OLD)
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20. Actions Affecting the Hypotheticality (H) Value.

A hypotheticélity (H) value is attached to every triple asserted
in the network (whether primary or secondary) including those asserted
automatically in a predicate triple action (see 13.3) or a numeric
modification (see 12.4 and 12.5.3). This value is printed on
the change stack with the triple.

Unlike the RV, the H value does have a meaning to the system.
The H value of a triple can either be 0, méaning the triple is always
found in the network, or 1, meaning the triple is hypothetical. In
a subrule test, a triple having an H value of 1 will not be found to
be in the network unless the test specifically allows the triple to
be hypothetical (see 26.1). The H value is ignored, however, for
negations of triples and in all constructs dealing with predicate
triples (see 13.,26.3.2, and 23.4).

Every triple asserted in the network is given an H value of 0
except in two cases:

1. if a 1 is placed in front of the subject element of the triple
(or in front of a triple variable), as in:
$RULE: (1 JOHN LOVE MARY),
*SEC(1 MEN LOVE SUE)(SUE PRETTY),
*SEC(JOHN LOVE MARY)(1 MARY PRETTY),
*SEC(1 JOHN LIKE FRIENDS(MARY))(1 JOHN HANDSOME),
*SET(JOHN 1Q) = 125, where if this triple needs to
be asserted, it will have an H value of 0
*SET(1 WOMEN IQ) = 130, where if any triple needs to
be asserted, it will have an H value of 1
*SETSEC(1 MEN LOVE MARY)(1 MARY BEAUTY) =+ 2, where
any triple which needs to be asserted will have
an H value of 1
(1 X); where X is a triple variable which is being
asserted
2. if the triple is not in the network and is asserted due to its
being specified in a predicate action which puts the triple on a
predicate 1ist (see 13.3).
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21. Actions Affecting the Random Number Generators (*JUMBLE).

The random number generators (see 3.1.2) can be reseeded during the
execution of the program. While this action will not yield different
results for different executions of the program (unless you actually
change the seed value and recompile, of course), it may be useful if,
for example, you want a second execution of a program to produce
the same results only up to a certain point.

The syntax of this action is:

*JUMBLE [one or both of P and S, in either order] = <number>
If the field following *JUMBLE contains a P, then the random number

generator used for the PICK function (see 11.2) is reseeded; if it contains

an S, then the random number generator used for subrules (see 24.) is

" reseeded; if it contains both letters (with no internal blanks) or is
absent, both random number generators are reseeded. <number> is a constant,

and it used to reseed the random number generators.
Examples:

*JUMBLE P = 17

*JUMBLE SP = 22

*JUMBLE = 4793
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22. Switches.

A switch statement is the same as a rule statement (see 10.) except

that a switch may not have an action 1ist. A switch statement can have

branching specifications and a subrule 1ist, and so is used only for

branching purposes. A rule statement with no action list may be used

in exactly the same manner as a switch, but a switch statement makes

the branching function clearer. Its syntax is:

$SWITCH [,<option field>] [<switch name>] : [<branch part>] ; [<subrule 1ist>]
A11 fields in the statement are the same as in the rule statement

(see 10.2). A switch statement without a subrule list is actually

an unconditional branch command.

Examples:
$SWITCH,C SW1: T(RULE3);
10,-10: (JOHN LOVE MARY);
$SWITCH: T(RULE2)F(LOOP4);
.7,.3: (JOHN LOVE MARY);
0,-.2: (JOHN LOVE TOM);
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23. Loops

Loops allow you to examine the contents of a set of items by
producing the elements of the set one at a time. A loop variable
is used to represent the current element. Loops may be used for
both classes and the predicate lists of complex predicate nodes. A

-1oop is delimited by $LOOP and $ENDLOOP statements, with any number

of rule, switch, and other loop statements allowed in this range.

23.1 Loop Variables. =

A loop variable is defined for each loop. For each pass through
the loop, this variable is set to the next element in the set being
examined. A loop varible name is considered to be a <single valued
atom field> if its associated set is a class, as the loop variable
then points to a single atom at any given time (see 11.2). The atomic
type of the variable is the same as the type of its class. Loop
variables may also be associated with semantic triples when looping
through the predicate lists of complex predicate nodes (see 13.1),
in which case they are considered to be <triple variable>s.

A loop variable is known only within the range of its defining
loop. A loop variable name may be used again, but only as a loop
variable name, and oniy if the previous use of the name is no longer
in effect.

A loop variable is given an initial value at the beginning of
the loop, when the $LOOP statement defining it is executed. The
variable gets a new value each time the $ENDLOOP corresponding to
its $LOOP statement is executed. If there is no new value for the
variable to get, the loop if finished and control goes to the
statement following the $ENDLOOP.
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23.2 Nesting of Loops.

A loop may contain any number of loops inside it. Each loop
must have a $LOOP and $ENDLOOP statement, and an inner Toop must be
completely within its containing loop. For example, if a loop contains
one other loop, the first (inner) $ENDLOOP is associated with the
inner (more recent) $LOOP, and the second $ENDLOOP with the outer
$LOOP. An example of multiple nesting is shown below:

$LOOP:

[ sLoop:

|_$ENpLooP;

[e——n————

$LOOP:

$LOOP:

L $ENDLOOP;

$ENDLOOP;

] ___$ENDLOOP;

There are also rules regarding the transfering of control from and
to statements inside of loops. These rules are identical to those
found in most programming languages.

A branch to a statement inside the range of a loop, which includes
its $ENDLOOP statement but not its $LOOP statement, is not allowed from
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a statement outside of the range of that loop. However, a
statement inside the range of a loop can freely transfer control to
a statement outside of the range of that loop, although the loop
variable will then no longer be defined.
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23.3 $LOOP for atom lists.

In this form of a loop, a class of atoms is specified, with the
loop variable representing one atom at a time. The general form of
this statement is:

$LOOP [,<option field>] [<loop name>] : <loop variable name>
<general class reference>;

<option field> is as for rules (see 10.2). These options are in
effect for all subrules within the range of the loop, unless overridden
by an option field within the toop.
<loop name> is necessary if you want to transfer to this loop from
another place in the group (see 2.2). ‘
<loop variable name> is described in 23.1.
<general class reference> is described in 11.2. The elements in this
field are determined at entry to the loop (when the $LOOP statement
is executed) and saved. This means that if the value of this field
is changed by actions inside the loop, there will be no effect on the
order or number of loop passes made. If the <general class reference>
evaluates to the null set, the loop is skipped, with control transfering
to the statement following the $ENDLOOP statement. See 6. for details
on the order of elements in classes.
Examples:
$LOOP LOOPNMI: X.PEOPLE;
$LOOP: YLOOP . FRIENDS({ENEMIES(PICK(PEOPLE)));
$LOOP: P . PICK(PEOPLE); Note that this last example assigns one
randomly chosen element of the class PEOPLE to the loop variable
P; the same effect could be accomplished without using a loop,
using instead an unconditionally executed rule of the form:
$RULE: *MOVE PICK(PEOPLE) TO Q;
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23.4 $LOOP for Predicate Lists.

In this form of a loop, a set of nodes is specified and the
predicate 1ists (see 13.1) attached to the nodes are looped through,
with the loop variable--designated as a triple variable in this
instance--representing one predicate triple at a time. The general
form of this statement is:
$LOOP [,<option field>] [<loop name>] : <triple variable name> *

<general node field>;
<option list>, <loop name>, and <triple variable name> (which
is actually a <loop variable name>) are the same as for the other
form of a loop (see 23.3).
<general node field> is described in 11.2. For each node, its

- predicate list is determined, and a resultant list of all of the

triples of all of the predicate nodes is saved at entry to the loop.
The order of the triples is determined by the order of the nodes in
the field and the order of the triples on each node's predicate list
(which may be a stack). See 6. for details about order in classes and
13.1 and 13.3 for details about order in predicate lists. If the
resultant 1ist of triples is empty, the loop is skipped, with control
transferring to the statement following the $ENDLOOP statement.
Triples which have been negated but not explicitly removed (such as
with a *NEG) from a predicate 1ist are still on the list and
therefore will be used in a loop.

A triple variable can be used as a <triple> (see 12.2) in any
action. A triple variable can also be used as a <sentence> in a
subrule, and can thus be tested in numerous ways. When so used, the
triple is identical to a <simple sentence> (see 26.1) and can be used
independently or as an argument to one of several subrule functions.

Examples:
$LOOP LOOPNM3: Z*PEOPLE;
$LOOP: Q*FRIENDS(ENEMIES(PICK(PEOPLE)));
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23.5 $ENDLOOP.

Every loop must be terminated with an $ENDLOOP statement, as
described in 23.1. This statement is simply of the form: $ENDLOOP;

When an $ENDLOOP statement is executed, the loop variable defined
by the associated $LOOP statement is set to the next value and control
is transfered to the statement following the $LOOP statement. If the
Toop is finished--the loop variable has taken on all possible values--

control is transfered to the statement following the $ENDLOOP statement

and the loop variable is no longer defined.

An $ENDLOOP statement may be flowed into if it follows a statement
which has just been exécuted. Also, while an $ENDLOOP statement may
not have a name, it can be branéhed to (but only from a statement

within the loop) by using the $NEXT feature of a branch field, as
described in 10.2. '
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24. Introduction to Subrules.

The subrule is the last major component of the language yet to
be described. Because it is such a broad topic, it will be covered
in this and four subsequent chapters. Initially, it is possiblie to
skip the more detailed information dealing with subrule expressions,
complex sentences, and subrule variables without losing the ability
to perform almost all desired functions.

24.1 Description of Subrules.

Subrules are used to test the state of the simulated universe.
The tests cover all aspects of the simulation: the semantic network,
class membership, the simulated time, the RV and H values of a triple,
etc. Tests can be quite simple, or very complex with several things
being tested at once and with variables being defined as a result of
the ‘test.

Rules and switches are the only componénts of the language which
may have subrules, with the subrules being used to determine whether or
not a rule's action 1ist will be executed and which branch will be
taken (see 10.1).

The subrule 1ist of a rule (see 10.2) or switch (see 22.) is
defined as: '
<subrule list>::= {<subrule>;}+
meaning that a rule or switch can have any number of subrules, each
terminated by a semicolon.

During execution, when a rule or switch is reached the subrule
Tist associated with that statement is examined. (If the statement
has no subrules, it always evaluates to True.) One at a time,
according to their physical order in the program, the subrules are
evaluated. Each subrule yields a numeric probability value, either
directly as the value of the test or indirectly from the true and false
probability values associated with a subrule which returns a logical
(True or False) result. If this numeric result is positive, it adds
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to the likelihood that the statement will evaluate to True, and if it
is negative it lessens the 1ikelihood of a True result. A value

of zero would have no effect, and might be used, for example, if a
subrule's being False had no importance.

As each subrule is evaluated, its numeric result is added to the
results of the preceding subrules, a running cumulative probability
being kept. After all subrules in the subrule 1ist have been evaluated,
the subrule random number generator is called anda random number is
generated. If this random number, which is between 0 and 1, is less
than or equal to the computed cumulative probability then the rule
or switch is considered to be True, the rule's action list is executed,
and the true branch taken. Otherwise, the statement is considered
to be False arld the false branch is immediately taken.

By manipulating the probability values associated with a logical
subrule, or value generated by a numeric subrule, the execution of an
action list and the path through a program can be made random with
any desired degree of control, deterministic control also being
possible. Since the random number generated is always between 0 and
1, a cumulative probability less than or equal to 0 will always cause
a False statement evaluation, and a cumulative probability greater than
or equal to 1 will always cause a True statement evaluation.

Furthermore, the following device exists for deterministic control.
If at any time during the evaluation of the subrule 1ist the cumulative
probability becomes equal to 10 or more, or equal to -10 or less, no
further subrules in the list will be evaluated. Instead, if the
cumulative probability is greater than or equal to 10 the statement
is True, the other condition yielding a False statement. This means,
for example, that while a cumulative probability can temporarily become
greater than one only to change value later, it cannot be changed once
it becomes greater than 10 since no further subrules will be examined.
This device is useful in specifying necessary and sufficient conditions.
For example, a -10 associated with the False result of a logical subrule
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means that the tested condition is necessary; a 10 associated with the
True result means that the tested condition is sufficient.'

Finally, a subrule may have two other components. A ‘subrule may
have an action 1ist, this being almost fdentical to the action 1list
of a rule (see 10.2), and being unconditionally executed after its
associated subrule is evaluated. A subrule may also define a subrule
variable, which is associated with an item in the test and whose
resultant value is only those elements of that item which cause the
test to be True (see 28.).



98
24.2 General Syntax.

As described above, a subrule can either yield a numeric result
which is then used as its probability value, or it can be logical
subrule and therefore be either True or False, with its probability
value coming from associated numeric true and false values.

24.2.1 Llogical Subrules.

A logical subrule is one in which the test of the universe returns
a value of either True or False. Most tests return such values, as
most subrule ask questions about the current composition of the
universe, such as whether a certain triple has been asserted or if a
certain element is in a particular set.

In order to translate this logical result into a numeric one,
a subrule of this form has two numeric probability values associated
with it. A True result causes its associated <true probability value>
to be added to the cumulative probability and a False result causes
the same to be done with its <false probability value>.

The general form of a logical subrule is:
<true probability value>, <false probability value> [,<option field>]:

<subrule expression> [:<subrule action list>]

<true probability value> is an optionally signed, real or ‘ntegral
constant. It is added to the cumulative probability if the <subrule
expression> is True. It is generally a number between 0 and 1, but
may be larger or negative, with 10 and -10 having special meanings
(see 24.1).

<false probability value> is the same as the <true probability
value> above, except that it is added to the cumulative probability
if the <subrule expression> is False.

<option field>, if present, overrides any options already in effect
due to a group (see 9.2), rule (see 10.2), switch (see 22.), or loop
(see 23.3 and 23.4). It affects only the subrule to which it is
attached. The field may include one or both of the option characters
C and 0, in any order. C is described in 26.1.2 and 0 in 28.3.
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<subrule expression> is the actual test of the universe. In a
logical subrule, this expression must return a value of either True
or False. <subrule expression>s are described beginning in chapter 25,
<subrule action list> is defined as: <action> {,<action>}*. The
actions in this list are unconditionally executed after the subrule
is evaluated. Generally, subrule actions are used to save information
about subrule variables (see 28.). Any action that could be used in
a rule's action list (see 11.-21. and 32.3) can be used here, except
the *CALL subroutine action. »
Examples:
-10,-.3,C: (JOHN LOVE MARY);
.3,-10:  (JOHN GOODRELATIONS MARY);

=.6,0,C: (FRIENDS(JOHN) HATE FRIENDS(MARY));

.3,-7: {MARY GOODRELATIONS JOHN);

24.2.2 Numeric subrules.

A numeric subrule is one in which the test of the universe returns a
numeric value. The value may come from a triple, the simulated-time
clock, or may be the duration of a triple in the network, among other
possibilities. Functions which yield these numeric results are described
in chapter 27. Arithmetic operations can be performed on the value in
order to scale it for use as a probability value.

The general form of a numeric subrule is:

[,<option field>] : <subrule expression> [:<subrule action list>]
<option field> and <subrule action list> are as in logical subrules
(see 24.2.1).

<subrule expression>, for a numeric subrule, must return a numeric
value. This value may be stored in the simulated universe, it may be
the result of some computation, or it may simply be a constant. In
any case, the returned value is added to the cumulative probability.
<subrule expression>s are described beginning in chapter 25.

Examples:
VAL(JOHN 1Q)/100;

,C: (TIMER -DUR(JOHN LOVE MARY))/24H;
VAL (MARY BEAUTY);
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25. Subrule Expressions.

The various components of subrule expressions will be described in
this and the next two chapters. Basically, a subrule expression evaluates
to either a numeric or logical value, which is then used in a subrule
as described in the previous chapter. This value may come from something
as simple as a numeric constant or from a complicated test of the universe.

The basic components of a subrule expression which are used to query
the state of. the simulated universe are <sentence>s and <subrule function>s.
<sentence>s are used to test the semantic network and class membership,
and are described in chapter 26. <subrule function>s return information
associated with triples and information about the simulated time, and
are described in chapter 27.

This chapter will deal with methods of combining tests of the universe,
which is accomplished by using a number of numeric and logical operators.
While this chapter can be understood without knowing what a basic test
of the universe looks like, it may be useful to first read at least the
section on <simple sentence>s in 26.1 and look at some of the available
functions in 27.

25.1 Syntax.
The syntax of a subrule expression given below will only go as far

as the <subrule operand> level, with each operand being described separately

later. It will be concerned only with the combining of these operands,
and the syntax is simply defining the following standard conventions:

an expression in parentheses is evaluated before that expression is

used in any operation, and a unary operator has precedence over a binary
operator.

Not included in this BNF, for reasons of clarity, are two important
rules: the operands of any operator must be of the correct type for that
operator, and there is a hierarchy among the binary operators.

The syntax of a subrule expression, with the above constraints, is:
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<subrule expression>;:=<subrule factor>|<subrule expression><binary op>
<subrule expression>

<subrule factor>::=<subrule subfactor>|<unary op><subrule factor>

<subrule subfactor>::=<subrule operand>| (<subrule expression>)

<subrule operand>::=<sentence>|<subrule function>|<constant>

<binary op> is an operator taking two arguments and is described
‘in the next section, 25.2.

<unary op> is an operator taking one argument and is described in 25.3.

<sentence> tests the semantic network and is described in chapter 26.

<subrule function> retrieves information from the simulated universe
and is described in chapter 27.

<constant> is a numeric constant. It may be real or integral,
and may be signed. A <constant> may be a <time> specification, as
defined in 3.1.1, in which case <time> is converted to an integer.

A <constant> may be the entire subrule expression, allowing subrules
of the simplest form. For example, :.3; is a subrule which adds .3 to the
cumulative ‘probability: This could be useful if some action list is to
be executed with a constant probability value, as in:
$RULE : (JOHN LOVE MARY)

:.27; '
Naturally, a <constant> used in this manner should be between 0 and 1.

A <constant> may also be used in a larger subrule expression, as
shown in the syntax and demonstrated below.
$RULE: (JOHN LOVE MARY)

%The VAL function returns the value of a triple.b
.5,0: VAL(JOHN AFFECTION MARY) GT 3;
%The DUR function returns the length of time that a triple has been in the network
.4,-.1: DUR(JOHN KNOW MARY) GE 2D6H;
%The closer the ages the more likely it is that
%the rule will be True. ABS gives the absolute value of its argument.
1 - ABS(VAL(JOHN AGE) - VAL(MARY AGE))/20;
%An extra .2 is always added.
1.2
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25.2 Binary Operators.

Binary operators are used to combine subrule expressions, as defined
in the syntax of 25.1. Each <binary op> takes two arguments and results
in a single value. Although not specified in the syntax, the arguments
must be of the correct type, numeric or logical. The <binary op>s are
split into three categories, based on the type of arguments they take
and the type of values they return.

1. Arithmetic binary operators.

The operands must be numeric: The result is also numeric. There are
seven such operators: the usual arithmetic operators, + (addition),
-(subtraction), * (multiplication), / (division), ** (exponentiation),
and an operator which is generally a function in other programming
languages, MOD. .

A1l of these operators will take real or integral values as
operands, but in all cases (except exponentiation to an integral power)
the operands are converted to real values before the operation takes
place. This means that division of integers will not result in a loss
of the fractional part of the result, as is the case in FORTRAN.

If a negative number is raised to a real power or if zero is
raised to the zero power, or if division by zero is attempted, an
error message will be printed and a result of zero will be used.

Where Z=X MOD Y, the MOD operator returns the smallest possible
positive value Z such that (X-Z)/Y = n where n is an integer. This
means that the result is the smallest positive number that must be
subtracted from the first argument in order to make it exactly divisible
by the second argument. For example, 9 MOD 4 returns 1, and -9 MOD 4
returns -3.

2. Relational binary operators.

The operands must be numeric. The result is logical: True or False.
There are the usual six operators of this type, five of which may be written
in either mathematical notation (if two characters are required there can be
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no space between the characters) or by using an abbreviation of the operator,
as in FORTRAN.

The six operators are: EQ or =, returning True if the two operands
are equal; NE (no equivalent mathematical notation), returning True
if the two operands are not equal; LT or <, returning True if the first
operand is less than the second; LE or <=, returning True if the first operand
is less than or equal to the second; GT or >, returning True if the
first operand is greater than the second; and GE or >=, returning True
if the first operand is greater than or equal to the second.

For example, if (JOHN AFFECTION MARY) = 2.5 and the curréent CLOCK
time is 3H10M, then:
VAL (JOHN AFFECTION MARY) GT 2.5 is False, and
CLOCK <= 5H22M  is True.

3. Logical binary operators.

The operands must be logical, and the result is logical. There are
two logi€a1 operators: AND returns True if both operands are True; OR
returns True if either operand is True.

For example, if (JOHN KNOW MARY) is not in the network, and (JOHN
AGE) = 25, then:

(JOHN KNOW MARY) AND VAL(JOHN AGE) GT 20
(JOHN KNOW MARY) OR VAL(JOHN AGE) GT 20

It is important to note that, except in expressions in which subrule
variables appear (see 28.), the evaluation of expressions with these
operators is optimized. This means that once a result can be determined,
the rest of the expression is ignored. For example, in the first example
above, the first operand of AND is False so the second operand is not
evaluated; in the second example, the first operand is False so the
second is evaluated.

There is a hierarchy among binary operators which defines the
order of operations in a situation such as:
opl <binary op> op2 <binary op> op3
This hierarchy is the same as that for most programming languages. Pro-

is False, but
is True.
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ceeding from highest priority to lowest, it is: **, * and / and MOD, +
and -, all relational operators, AND, OR.

Operators of higher priority will be performed before operators
of lower priority. If operators of equal priority follow one another,
evaluation will proceed from left to right. Parentheses can always
be used to change the order of evaluation (or just to clarify the
expression), with any expression inside parentheses always being
evaluated first.

Examples (the ops are always assumed to be of the correct type):
opl AND op2 OR op3 opl and op2 ANDed, result ORed with op3
opl AND (op2 OR op3) op2 and op3 ORed, result ANDed with opl
opl + op2 * op3 LE op4 op2 and op3 multiplied, result added to opl, result

compared with op4
op2 LE opl AND opl LE op3 tests to see if op2<opl<op3; note that opl must
be repeated

opl + op2 ** op3 / op4 exponentiation, then division, then addition
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25.3 Unary operators.

Unary operators are used in subrule expressions in accordance with the
syntax in 25.1. Each <unary op> takes one operand. Although not specified
in the syntax, the operand must be of the correct type. There are six
unary operators:

1. unary +, always optional and requiring and returning a numeric value.

2. unary -, requiring and returning a numeric value.

3. ABS, requiring a numeric operand and returning a numeric result equal
to the absolute value of the operand.

4. ENTIER, requiring a numeric operand and returning a numeric result
equal to the integral part of the operand. ENTIER -26.28 returns -26.

5. FLOAT, requiring a logical operand and returning a numeric result equal
to 1.0 for a True operand and 0.0 for a False operand.

6. NOT, requiring a logical operand and returning the opposite logical
value.

A unary operator is always used on its operand before any binary operator
is used on that operand. For example, in
NOT opl AND op2 NOT is applied first, and in
-opl**op2 -opl is raised to the op2 power.

This rule may be effectively overridden by using parentheses, so in
NOT(opl AND op2) the AND is performed first.

Ifyunary operators are adjacent to one another, the evaluation
proceeds from innermost (closest to operand) operator to outermost.
FLOAT NOT op1  NOT is applied first
NOT FLOAT opl s illegal, since NOT requires a logical operand
ABS ENTIER -26.28 = ENTIER ABS -26.28 = ABS ENTIER (-26.28)

= ABS ENTIER -(26.28) = ... = -26.
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26. Subrule Sentences.

Subrule sentences are used to query the semantic network in order
to determine if triples are in the network or test the intersection of

classes. A sentence may stand alone in a subrule, be connected to other items

by using subrule operators (see 25.), or be an argument to one of a
variety of subrule functions (see 27.) which test various aspects of
the triples specified by the sentence.
A1l syntactic forms, descriptions, and eiamp]es in this chapter will
ignore the use of subrule variables, which are described in chapter 28.
A sentence can be one of three types:
<sentence> ::= <simple sentence>|<complex sentence>|<class sentence>
<simple sentence>s specify triples and are described in 26.1.
<complex sentence>s are more powerful versions of <simple sentence>s
and are described in 26.2.
<class- sentence>s deal with the intersection of classes and are

described in 26.3.
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26.1 Simple Sentences.

A <simple sentence> specifies a semantic triple or group of triples in
the same way as a <triple> is specified in an action asserting triples
(see 12.2).

The appearance of a <simple sentence> in a subrule expression causes
the specified triples to be looked up in the network.

A <simple sentence> must specify only primary triples, except in
certain functions in which a <simple sentence> may specify secondary
triples (see 27., in particular those functions having the letters SEC
as part of their names).

One form of a <simple sentence> is:
(<general atom field><general relation field> [<general atom field>])

<general atom field> is described in 11.2. It must be a <general
node field> when a primary triple is being specified. The object field
is optional.

<general relation field> is described in 11.2.

A single triple is specified if all of the field are atoms. If any
field returns a set of items, all possible combinations of triples are
constructed, as described in 12.2. Each triple is searched for in the
network, according to the rules given in the next two sections.

A <simple sentence> may also be: (<triple variable name>)
where the variable (see 23.4) takes on the value of a triple and thus
acts as a <simple sentence>, in whose place it may always be used.

As the triple is a specific network triple, the sentence only specifies
one triple in this case.
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26.1.1 Rules for Testing the Network.

For each triple specified in a subrule sentence, the network is
searched. If the triple is not in the network as it has never been

asserted, or having been asserted has since been negated and not reasserted,

then a value of False is returned.

However, even if the triple is in the network, it may seem to not
be there and yield the same result as if it had not been there at all.
There are three conditions which would cause this to happen.
1. If the triple was as§erted in the network at the same simulated time
at which the test is occurring (specifically, if the assertion time of
the triple equals the current time), then the triple is considered not
to be in the network. This rule can be overridden with the subrule option
C (see 26.1.2).
2. Secondary triples are transparent to the network and a triple used
only as a secondary triple will not be found. Secondary triples can be
tested by using the SEC function (see 27.4).
3. If a triple has a hypotheticality (H) value (see 20.) of 1, it is
not considered to be in the network unless a 1 precedes the triple
in the sentence. If a 1 does precede the triple, then the triple will be
found regardless of its H value. For example, (1 JOHN LOVES MARY)
will be True if (JOHN LOVES MARY) is in the network with an H value
of either 0 or 1, while the sentence (JOHN LOVES MARY) will be True
only if the triple is in the network with an H value of 0. The digit
1 may precede a triple variable if it is being used as a sentence.

26.1.2 Subrule Option C.

The subrule option C can be used to override rule (1) in the above
section. This option may appear in an <option field> in a group (see

9.2), rule (see 10.2), switch (see 22.), loop (see 23.3 and 23.4) or subrule

(see 24.2). If this option is in effect for a particular subrule,
those triples whose assertion times are the same as the current time
will be found in the network. This option is useful if, for example,

-
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a subrule in a group tests a triple which may have been asserted into
the network by that same group. This option does not affect classes
as they have no times associated with them.

26.1.3 Evaluation.

At this point, it has been described how a subrule sentence
generates triples which are then searched for in the network. The value
returned by a subrule sentence is now determined.

A logical value is always returned. The value is True if any
of the specified triples are in the network, and False if none of
them are in the network. If there are no subrule variables (see 28.)
in the sentence, then as soon as any triple is found to be in the network,
no further triples are examined and a value of True is returned. If you
want to see if all of the specified triples are True, you must either
use a complex sentence (see 26.2), or subrule variables (see examples
in 28.4).
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26.1.4 Examples.

For examples of simple sentences assume the following are
class definitions: MEN = JOHN FRED; WOMEN = MARY JANE;
GOODRELATIONS = LIKE LOVE;

In all cases, the determination of whether a triple is found in
the network follows the rules of section 26.1.1 and section 26.1.2.
The numeric probability values are describeq in chapter 24.

$RULE: *SEC(EXAMPLE DEMONSTRATING LIST)(LIST SUBRULE);
.3,-.5:  (JOHN LOVE MARY); tests for one triple
10,0: (MEN LIKE JANE); if either man 1ikes Jane, the action list is

immediately executed
if none of the four specified triples is in
the network (including triples inserted at
the current time), then the action list is skipped
.6,-.4: (1 WOMEN GOODRELATIONS MEN); eight triples are searched for,

' their H values being disregarded
.2,0: (/MEN LIKE MARY); one triple is searched for (see 6.1)
.3,-.1: (MEN FAT); two triples are searched for
-.24,.368: (FRIENDS(ENEMIES(PICK(MEN))) GOODRELATIONS

ENEMIES(FRIENDS (PICK(SPOUSE(WOMEN)))))s

.4,-10,C: (MEN LOVE WOMEN);

:.25;

In the second subrule above, (MEN LIKE JANE), if either man likes Jane
a True value is returned. If you want to see if all men like Jane, and
you know the elements in MEN, then you could use (JOHN LIKE JANE) AND
(FRED LIKE JANE). However, you genefa]]y don't know what the elements
of MEN will be during execution, so this method won't work. In general,
a complex sentence (see 26.2) or subrule variables (see examples in
28.4) will solve the problem.

Finally, using the operators described in chapter 25, the following
subrule 1ist is possible. The functions NUM, VAL, DUR, and TIMER
are described in chapter 27.

10,0:
:.15;

m

*SEC(JOHN LOVE MARY)(LOVE FINALLY);
((JOHN LIKE MARY) OR (MARY LIKE JOHN)) AND NOT (JOHN HATE MARY);
VAL(JOHN AGE) GE VAL(MARY AGE) + 3;
(JOHN AFFECTION MARY) AND (MARY AFFECTION JOHN);
ABS(VAL(JOHN 1Q) - VAL(MARY 1Q)) LE 25 AND
(VAL(JOHN 1Q) + VAL(MARY 1Q))/2 GE VAL(PEOPLE IQ)/NUM(PEOPLE);
(1 JOHN BADRELATIONS FRIENDS(MARY)) OR
(1 FRIENDS(MARY) BADRELATIONS JOHN);
(3*VAL(JOHN NUMBERDATES MARY) - 2*VAL(JOHN NUMBERDATES WOMEN))/
VAL (JOHN NUMBERDATES WOMEN);
- FLOAT(VAL(MARY NUMBERDATES FRED) GT 3) * VAL(MARY AFFECTION
FRED)/3;
DUR(JOHN KNOW MARY)/(VAL(JOHN AGE) * 1D * 365.25);
VAL (SIMULATION ENDTIME) - TIMER LE 1H20M;
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26.2 Complex Sentences.

The complex sentence is an extension of the simple sentence
(see 26.1). A complex sentence differs from a simple sentence only
in that the complax sentence may have an expression for the relation
field. This <relation field expression> is composed of relations,
functions and constants joined by operators, in the same way that
subrule expressions are composed of sentences, functions, and constants
joined by operators (see 25.1). Complex sentences have many use-,
with the main ones being discussed below in 26.2.3,

26.2.1 Syntax.
The syntax of a complex sentence is appropriately complex:
<complex sentence>::= (<general atom field> <relation field expression>
[<general atom field>])

<relation field expression>::=<relation field factor>|<relation field expression>

<binary op> <relation field expression>
<relation field factor>::= <relation field subfactor>|
<unary op> <relation field expression>

<relation field subfactor>::= <relation field operand>|(<relation field expression>)

<relation field operand>::= <single valued relation field>|<subrule relation
function>|<constant>

The first rule says that a <complex sentence> is identical in form to a
<simple sentence> (see 26.1), except for the relation field.

Rules two, three, and four describe the <relation field expression>,
which is shown to be equivalent to a <subrule expression> (see 25.1), with
the <relation field operand> of a <relation field expression> being used in
place of the <subrule expression>'s <subrule operand>. See 25.2 and 25.3 for
information concerning the use of operators in joining operands and for
the definitions of <binary op> and <unary op>.

The <relation field operand> is the basic item that actually appears
in the relation field, either alone or connected to other <relation field
operand>s by various operators. Since this is the relation field of a
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sentence, a <relation field operand> can naturally be a relation, but
only of the form <single valued relation field> (see 11.2). This
allows single relation names and loop variables, but does not allow
classes of relations (this means that every <simple sentence> is not
a <complex sentence> since <simple sentence>s allow classes of
relations).

A <relation field operand> may also be a <subrule relation function>.
These functions are described in 26.2.4 and are similar to the
<subrule function>s of <subrule expression>s. An operand may also
be a <constant>, as described in 25.1, except that here a <constant>
may not appear by itself.
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26.2.2 Evaluation.

Complex sentences are evaluated in much the same way as simple
sentences (see 26.1.3), and the determination of whether a specified
triple is in the network follows the rules given in 26.1.1 and 26.1.2.

The key difference in evaluation is that the <relation field
expression> determines the type of a complex sentence, whereas simple
sentences always return logical results. However, the appearance
of a numeric value in the expression (as would be the case when using
the VAL function or a duration function; see 26.2.4) does not assure
a numeric complex sentence, as in (JOHN VAL(AGE)GT 20) and (JOHN
VAL(AFFECTION)LT 2.5 MARY), which are both logical complex sentences.
0f course, (JOHN VAL{AFFECTION)* 2 - 3 MARY) is a numeric complex
sentence.

It is very important to note that if more than one triple is
specified by a logical complex sentence (its subject or object, or
both, fields are classes), the entire relation expression is evaiuated
for each:subject-object pair. For example, if MEN = JOHN FRED, then
(MEN LIKE AND NOT LOVE MARY) checks to see if (JOHN LIKE MARY) is in the
network and if (JOHN LOVE MARY) s not; if both of these conditions
are met then the sentence returns a value of True. Otherwise, the same
two conditions are then checked for the subject FRED.

When multiple triples are specified in a numeric complex sentence,
the value of the entire relation expression is determined for each
subject-object pair, with these values then being added together for
the final result. ’

Note that it is probably wrong to put, in one relation expression,
a relation which takes an object and one which doesn't, since the object
will be used in all tested triples.
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26.2.3 Uses.

A list of reasons for using complex sentences is given below.
In some cases, complex sentences provide the only means of getting a
desired result, while in other cases complex sentences are alternatives
to other, possibly not as convenient, methods.
1. In a simple sentence, a True value is returned if any of the
specified triples are found in the network.
a. If the subject or the object is a class, in order to determine
if all of the specified triplies are in the network you can reverse
the test condition and see if any of the triples are not in the network.
For example,
(MEN LOVE JANE) 1is True if any man loves Jane and False if none love her,
NOT(MEN LOVE JANE) is True if no man loves Jane and False if any man
loves here, but
(MEN NOT(LOVE)JANE) is True if any man doesn't love Jane and False
if all men do love her.
The same test can be constructed with subrule variables (see examples
in 28.4).
b. If the relation is a class, method (a) won't work since the relation

field of a complex sentence may not have any classes of relations. Naturally,

if you know all of the elements of the class, you can AND simple
sentences together, but this knowledge is unlikely. The best solution
is to use subrule variables (see examples in 28.4).

c. If two fields are classes, things get complicated. For example,
(MEN LOVE WOMEN) is True if any man loves any woman.

(MEN NOT(LOVE)WOMEN) is False if each man loves every woman.

However, to test if every man loves at least one woman, or if every
woman is loved by at least one man, subrule variables are usually necessary
(see examples in 28.4). Finally, how do you test for the existence

of at least one man who loves every woman? In this last case, and for
other similar tests, and when all three fields are classes, the only
solution seems to be to use loops and ask the question for each member
of the class, reducing the test to where it has fewer classes in it.
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2. In a simple sentence, a value can be returned if a function (see 27.)
is used, the value being the sum of the values of the specified triples.
When a complex sentence returns a numeric result, the same rule applies.
For example (see 26.2.4 for subrule relation functions),

(MEN VAL(SALARY) - VAL(TAXES)) gives the same results as

VAL(MEN SALARY) - VAL(MEN TAXES).

However, a simple sentence in a numeric function, combined with an
operator and another value to produce a logical result, allows you to
determine only if the sum is of the desired value. Thus, VAL(MEN SALARY)
GT 20000 is True if the sum of the men's salaries is greater than 20000.
So, to determine if at Teast one man's salary is greater than 20000, a
simple sentence won't work, but yo& can use the complex sentence (MEN
VAL (SALARY) GT 20000). If you want to determine if all of the men's
salaries satisfy the condition, reverse the test and use
(MEN VAL (SALARY)LE 20000), which if False if they all earn over 20000,
(As in (1a) above, this last result could also be achieved by using

the test (MEN NOT(VAL(SALARY)GT 20000)), but the first method is obviously

clearer.)

This method applies to all functions which take a sentence as an
argument and return a numeric result. If this result is to be tested
for each triple, instead of testing the sum of the results from the
triples, the subrule version of the function might be used (see 26.2.4
and 27.).

3. In a sentence in which subrule variables are defined, a complex
sentence may be necessary in order to insure that the subrule variables
will get the proper values (see 28.).

4. Two simple sentences ORed together in a subrule expression, such as
(JOHN LIKE MARY) OR (JOHN LOVE MARY), could be combined into one

simple sentence by, for example, placing LIKE and LOVE into the relation
class GOODRELATIONS and then using (JOHN GOODRELATIONS MARY). However,
it may not be convenient to place them in such a class, in which case
the complex sentence (JOHN LIKE OR LOVE MARY) is more readable than the

n7

two separate sentences. Remember, however, that classes of relations
are not allowed in complex sentences.

5. The subrule expression (MEN LIKE MARY) AND (MEN DATE MARY) is True
if any man 1ikes Mary and any man dates Mary, the two men not
necessarily being the same. However, the complex sentence

(MEN LIKE AND DATE MARY) is True only if at least one particular

man both 1ikes and dates Mary. This problem can also be solved by
using subrule variables (see examples in 28.4), which will work even
if the relations are classes.

6. The only way to ask certain questions may be to use some combination
of simple sentences, complex sentences, subrule variables, and loops.
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26.2.4 Subrule Relation Functions.

The subrule relation functions allow retrieval of certain information
associated with triples, information about the simulated time, and class
size and membership. They are very similar in effect to the subrule
functions (see chapter 27) of the same names, where they are more fully
explained.

A complex sentence with a subrule relation function is evaluated
in the usual way (see 26.2.2), with the entire relation field expression
being evaluated for each subject-object pair. Subrule relation functions
are most useful in those cases when subrule functions do not allow certain
questions to be asked; see 26.2.3 for examples, putting appropriate
subrule relation functions in the given relation fields.

Five of the subrule relation functions are identical to their
subrule function counterparts. These functions may not appear alone
in the relation field as they do not represent relations but only return
numeric values. These functions are evaluated without regard to the
subject and object fields of a sentence in which they appear. They are
used in conjunction with other items in the relation field, with
relational binary operators (see 25.2) generally being used. The
five functions are: CLOCK (see 27.1 for more details), TIMER (see
27.1), RANDOM (see 27.2), NUM (see 27.3), NUMP (see 27.3).

For example, (JOHN DUR(LOVE) GT TIMER/2 WOMEN) would be True if
John loved any women for more than half of the current simulated time.

A subrule relation function is necessary here, since DUR(JOHN LOVE WOMEN)
GT TIMER asks a different question. '

(JOHN VAL(AFFECTION) GT RANDOM WOMEN) is True if John's affection
for any woman is greater than a randomly generated number (a new number
is generated for each subject-object pair). Again, VAL (JOHN AFFECTION
WOMEN) GT RANDOM asks a different question.

It is not easy to find reasonable uses for the NUM and NUMP subrule
relation functions. However, if NUMLIKE is a relation which is used
in triples whose values are the number of peopie liked by the triples’

119

subjects, then (MEN VAL(NUMLIKE) GT NUM(PEOPLE)/2) is True if any man
1ikes more than half of the people.

The next five subrule relations functions do use the subject and
object fields of the sentences they appear in and can stand alone in a
relation field since they specify relation names and thus allow complete
triples to be formed.

There are two important differences between these functions and
their subrule function counterparts: the subrule relation function has
only a relation as an argument whereas the subrule function has a sentence
as its argument, and the argument for a subrule relation function may
only be a <single valued relation field> (see 11.2) while a subrule
function can have a relation class in the relation field of its sentence.

The five functions are: DUR (see 27.5 for more details), DEL
(see 27.6), EVER (see 27.7), RVAL (see 27.8), and VAL (see 27.9).

For example, (JOHN DUR(LIKE) GT .5 * DUR(KNOW) MARY) is True
if John has liked Mary for more than half of the time he has known
her. Two simple sentences could be used to give the same result,
although simple sentences could not ask the question (JOHN DUR(LIKE)

GT .5 * DUR(KNOW) WOMEN) since here the relation expression is evaluated

for each pairing of John and one woman. Note that if the relation expression
evaluates to a numeric result the values are added, so (JOHN VAL(LIKE)

WOMEN) is the same as VAL(JOHN LIKE WOMEN).

Other examples of the usefulness of subrule relation functions are:
(MEN EVER(LIKE) AND EVER(DATE) FRIENDS(MARY))

(MEN VAL(LOVE) GT RANDOM * 2.3 MARY)
(MEN DUR(LOVE) GT TIMER/2 AND DEL(ARGUEWITH) GE 2H4M

AND (RVAL(LOVE) s OR VAL (AFFECTION) GE (RANDOM -.5)*2)

AND WANTMARRY MARY)

Finally, it is possible to use <atom class function>s (EQL and NEQ,
see 26.3.1) and <predicate class function>s (EQLP and NEQP, see 26.3.2)
in the relation field expressions of complex sentences. If one of these
functions appears alone in a relation field, the sentence is a class
sentence (see 26.3) and no relation is specified. In a complex sentence,
these functions can appear only in expressions in which a relation is
somewhere specified.
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Due to the way complex sentences are evaluated, these functions
have somewhat different effects here than they have in class
sentences; this is because here the entire relation field expression
is evaluated for each subject-object pair. A subject and object are
EQL if they are the same atom, and are otherwise NEQ. Two nodes are
EQLP if any triple on one node's predicate list is identical to any
triple on the other node's predicate list, and are otherwise NEQP.

For example, (PEOPLE HATE AND EQL PEOPLE) is True only if some
person hates.himself. (PEOPLE LOVE AND NEQ PEOPLE) is True only if some
person loves someone other than himself. (JOHN LOVE AND EQLP MARY)

is True if John loves Mary and at least one predicate is common to the predicate

lists of the nodes JOHN and MARY. While the last result could be
accomplished with simple sentences, (MEN LOVE AND EQLP MARY) requires
a complex sentences (or a loop or subrule variables) to ask if at
Teast one man meets the criteria set for John in the preceding example.

26.2.5 Eiamples.

$RULE:  _(JOHN LOVE MARY);
.3,-10:  (JOHN LOVE AND NOT (HATE OR DISLIKE) MARY);
: (JOHN VAL (AFFECTION)/3 MARY);
.4,-.2:  (JOHN DUR(LIKE) GT 3W4D OR DUR(LOVE) GT 2WSD10M MARY);
-.3,0: (JOHN NOT LIKE FRIENDS(MARY));
.15,-.2: (1 JOHN VAL(AFFECTION) LT 2 OTHERWOMEN);
-.2,.05: (OTHERMEN DUR(DATE) GT 2W MARY);
-.3,.2:  (MARY LOVE AND EVER(MARRY) OTHERMEN);

The first three subrules could be changed to a combination of
simple sentences, but the last four are easiest to ask with complex
sentences although loops or subrule variables could be used instead.
Loops or subrule variables would have to be used, for example, to see
if John's affection toward Mary is more than his affection toward any
other woman.
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26.3 Class Sentences. ‘

These sentences are used to test for class intersections, either
for classes of atoms or for predicate lists of complex predicate
nodes. The description of the sentence depends upon the type of
class being tested, where
<class sentence>::= <atom class sentence>|<predicate class sentence>

The class functions described in this section can also be used,
with somewhat different results, in the relation expression of complex
sentences (see 26.2.4).

Class sentences always return logical values.

26.3.1 Atom Class Sentences.

An <atom class sentence> compares the atoms in two classes, using
the EQL and NEQ functions.
<atom class sentence>::= (<general atom field><atom class function>

<general atom field>)

<general atom field> is described in 11.2. If the two such
required fields are of different atom types they can never have
elements in common.

<atom class function>::= EQL|NEQ

EQL tests for the non-empty intersection of the specified fields.
A11 possibie pairs of elements in the two fields are compared, any
as soon as any element in one field is found to be the same as an
element in the other field, evaluation stops and TRUE is returned.
If the two fields have no elements in common, FALSE is returned.

NEQ is a rather strange functions and is not often useful.
NEQ returns FALSE only if the two specified fields are identical
and each field has only one element in it. If either field has
more than one element, then NEQ always returns TRUE; this is because
it will be True that at least one element from one field is different
from at least one element in the other field.
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Examples:
(JOHN EQL FRIENDS(MARY)) True if John is a friend of Mary
(PEOPLE EQL FRIENDS(MARY)) True if any person is a friend of Mary
(PICK(FRIENDS(MARY)) EQL JOHN) True if the single randomly picked

(JOHN NEQ HERO)

friend of Mary is John
if HERO is a class having one element then this is
True if John is not that element and False if
JOHN is that element; if HERO has more than one
element then this sentence is True.

123
26.3.2 Predicate Class Sentences.

A <predicate class sentence> compares the predicates in the predicate
lists of the specified nodes, using the EQLP and NEQP functions. Predicate
nodes are described in chapter 13.
<predicate class sentence>::= (<predicate 1ist operand><predicate class

function><predicate 1ist operand>)
<predicate Tist operand>::= <general node field>|<triple variable>
<general node field> is described in 11.2. If a set of nodes is specified,
all of the predicates of all of the nodes are considered.
<triple variable> is described in 23.4.

<predicate class function>::= EQLP|NEQP

EQLP tests for the non-empty intersection of the specified
predicate fields. As soon as any predicate in one field is found to be
the same as a predicate in the other field, evaluation is terminated
and True returned. If the two fields have no predicates in common,

False is returned.

NEQP is tricky and should be used carefully. If a field specifies
a set of nodes, the nodes are examined one at a time, independently of
each other; if both fields are sets of nodes, all combinations of nodes
are tested. The result is True if any predicate list of one field
(the 1ist may have one member in the case of a <triple variable>, or
it may be the predicate 1ist of one of the specified nodes) has an
empty intersection with any predicate list of the other field.

Examples:

(JOHN EQLP MARY) True if John and Mary have one predicate in common

(JOHN EQLP PEOPLE) True if one of John's predicates is also on the
predicate 1is% of any person; obviously true if John is in the class
PEOPLE

(JOHN EQLP PRED) if PRED is a triple variable, True if PRED is on
John's predicate 1list. :

(JOHN NEQP WOMEN) True if the predicate lists of John and any women
have an empty intersection.
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27. Subrule Functions.

Subrule functions are used to retrieve certain information associated
with triples, information about the simulated time, and class size. These
functions are built in to the system and are used as subrule operands
(see 25.1). Many of these functions can also be used as relation field
operands in complex sentences, in which case they generally apply to
different arguments (see 26., especially 26.2.4).

The two functions which return information about the current simulated
time, TIMER and CLOCK, take no arguments. The two functions giving the
number of elements in a class or predicate list, NUM and NUMP, take a
single argument. The other functions give information about triples
and thus each takes either a primary triple for an argument, or for
a second form of the function (having SEC in its name), a primary
triple followed by a secondary triple as arguments.

It is important to note which functions return numeric results
and which return logical results, as this affects the type of operators
(see 25.2 and 25.3) a function can be an operand of, or if the function
stands alone in the subrule the type of subrule (see 24.2) it is and
thus the requirement as to probability values.

Except for one function all of the functions which take triples
as arguments allow only simple sentences (see 26.1) or triple variables
(which act as simple sentences, see 23.4). If the argument acts as a
primary triple, the sentence must have the form of a primary triple;
if it acts as a secondary triple, the sentence must have the form of a
secondary triple (see 12.5). The exception is the function SEC, which
tests to see if a secondary triple exists in the network and which can have
a complex sentence (see 26.2) for its primary sentence.

In all cases the determination of whether a specified triple is
in the network follows the rules of 26.1.1 and 26.1.2, and a 1 may
precede a sentence in order to find hypothetical triples (see 20.).
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27.1 Simulated Time.

There are two functions which take no arguments and which return
information about the current simulated time. The time returned is
converted into an integer equal to a number of basic time units, so
that 2W19H27M is returned as 21327 (see 3.2 for changing the units of
time. Therefore, the number returned can be used with the various
numeric operators (see 25.2 and 25.3).

27.1.17 TIMER.

The TIMER function returns the current simulated time, such as
3H10M which is returned as 190 for the ordinary units of time. The
subrule expression DUR(JOHN LOVE MARY) GT TIMER/2 is True if John
has loved Mary for more than half of the current time; assuming the
simulation started at time zero, TIMER/2 is actually half of the
elapsed simulation time.

27.1.2 CLOCK.

The CLOCK function returns the time of day by calculating the current
time modulo 1440 (or modulo the number of basic time units in your
"day"; see 3.2). The subrule expression CLOCK LE 5H30M is True if it is
earlier than 5:30 in the morning, and CLOCK GT 14HIOM is True if it is
later than 2:10 in the afternoon.

27.2 Random Number (RANDOM).

The RANDOM function takes no arguments and returns a randomly
generated number between 0 and 1. (It uses the same random number
generator as used in subrules; therefore, the insertion and execution
of this function will cause results from the rest of the program to
differ from results gotten before this function reference was added.)
So, VAL(JOHN IQ) GT 1.5 * RANDOM will be True or False depending on
the generated random number, as will also be the case in the subrule
expression NUM(PEOPLE)/5 LE RANDOM + 2.
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27.3 Size of Class or List (NUM and NUMP).

These functions each take one argument and return a number equal
to the number of elements in the given class or the number of triples
on the predicate list (see 13.1) of a complex predicate node. See
11.2 for a description of the argument types.

A call to the NUM function is of the form:
NUM(<general class reference>)
The value returned is the number of elements specified by the argument,
which may be a specific class or may specify a union of class. For
example, if currently PEOPLE = JOHN MARY FRED, then NUM(PEOPLE) = 3
and NUM(FRIENDS (PEOPLE)) = the total number of (different) friends of
John, Mary, and Fred.

A call to the NUMP function is of the form:
NUMP(<general node field>)
The value returned is the number of triples on all of the predicate lists
of the specified nodes. A specified node may have no predicates. No
check is made for duplicates, so the same triple may be counted more than
once. The subrule expression NUMP(JOHN) EQ NUMP(MARY) is True if both
nodes have the same number of predicates. NUMP(PEOPLE)/2 LE 6 first
calculates the number of predicates contained on the predicate 1lists
of all of the nodes in the class of people.
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27.4 Secondary Triples in Network (SEC).

The SEC function causes the specified secondary triples of the
specified primary triples to be looked up in the network. It is of the
form:

SEC <simple or complex sentence><simple sentence>

The first sentence specifies the primary triple(s) and can either have
a single relation (see 26.1) or a relation expression (see 26.2). The
second sentence specifies the secondary triple(s) and must be a simple
sentence, although as a secondary triple it may have a relation in the
first position.

The SEC function looks up triples in the same way that the *SEC
action (see 12.5.1) asserts them. For each primary triple specified
(more than one if one or more fields are class references) all of the
specified secondaries are searched for to see if they are pointed to
by the primary (see 26.1.1 for an explanation of how the primary
triple is searched for). This process stops and returns True as soon
as any secondary is found on a primary's list of secondaries.

Both the primary and the secondary triple may be a triple variable
(see 23.4). Either one (or both triples) may have an H value of 1
specified, as described in 26.1.1, item 3.

Some examples of the SEC function, using simple primary sentences
are:

SEC(JOHN LOVE MARY)(MARY PRETTY) looks up one secondary

SEC(MEN LOVE MARY)(1 MARY PRETTY) True if one man loves a Mary who is,
perhaps hypothetically, pretty

SEC(MEN LOVE WOMEN) (WOMEN PRETTY) True if any man loves any
woman who is pretty. As with *SEC, some meaningless tests
are made; for example, (JOHN LOVE MARY){SUE PRETTY) would be
searched for.

SEC(MEN GOODRELATIONS MARY)(MARY PRETTY)

SEC(MEN MEET JOHN)(MEET AT GAME)
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The problem in the third example above (as well as the more important
problem with *SEC) due to looking up all possible combinations of
primary and secondary triples could be solved by using loops and
putting a Toop variable in the place of a class reference.

Finally, the primary triple in the SEC function may be a complex
sentence. In this case, the evaluation depends upon the item in
question in the relation expression, where:

1. If an item in the relation expression is a relation, the specified
secondary triple(s) are examined for the primary having that relation.
The value returned from looking up the secondary(ies) is the value
of the relation in the relation expression.

2. If an item in the relation expression is a call to a subrule
relation function (see 26.2.4), the secondary triple is ignored
and the value returned by the function is based only on the
primary triple.

Some examples of this complicated construction are:

SEC(JOHN.LOVE OR LIKE MARY)(MARY PRETTY) True if either primary

triple has the given secondary

SEC(MEN LOVE OR DUR(KNOW) GT 5H AND LIKE MARY)(MARY PRETTY)

the DUR function looks only at the triple (JOHN KNOW MARY)
SEC(MEN VAL(LIKE) GT RANDOM MARY)(MARY PRETTY)

the secondary triple is ignored inthis case, following -“ule

(2) above; obviously, the function shouldn't have been used,

as no stand-alone relation appears in the primary sentence.
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27.5 Duration In Network (DUR and DURSEC).

These functions Took up the specified triple(s) and determine the
length of time since it was (they were) last asserted in the netowrk.
(various actions update assertion times; see the sectionson the particular
actions.) DUR is used for durations of primary triples and DURSEC
for durations of secondary triples. In both cases, only simple
sentences (see 26.1) or triple variables (see 23.4) can be used as
arguments.

The rules for finding primary triples in the network are given in
26.1.1. DURSEC looks for secondaries in the same way that the *SEC
action (see 12.5.1) asserts them. For each primary triple specified,
all of the specified secondaries are searched for to see if they are
pointed to by the primary. In both functions, an H value may be
specified in a sentence (see 26.1.1, item 3).

The value returned is treated as a number. If a specified triple
is not currently asserted in the network it is skipped. If more
than one specified triple is found, the value returned is the sum of
the durations of the triples.

The syntax of these functions is:

DUR<simple sentence>

DURSEC<simple sentence><simple sentence>
Examples:

DUR(JOHN LOVE MARY)

DUR(T MEN GOODRELATIONS FRIENDS(JOE))

DURSEC(JOHN LOVE MARY)(MARY PRETTY)

DURSEC(MEN RELS(POSITIVE) MARY)(MARY PRETTY)

27.6 Duration Since Deletion From Network (DEL and DELSEC).

These functions look up the specified triple(s) and determine the
length of time that has passed since it was (they were) last negated
in the network. The value returned is numeric. If multiple triples
are specified, the sum of the times is returned. See DUR (27.5) for
more details of the method of evaluation.
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Syntax:
DEL<simple sentence>
DELSEC<simple sentence><simple sentence>
Examples:
DEL (JOHN LOVE MARY)
DEL (FRIENDS (JOHN) KNOW FRIENDS(MARY))
DELSEC(1 JOHN LOVE MARY)(1 MARY PRETTY)
DELSEC(MEN LOVE FRIENDS (MARY))(FRIENDS(MARY) PRETTY) but watch out
for extra, probably meaningless, tests as describeu in
the examples of SEC (see 27.4)

27.7 Existence in Network at Any'Time (EVER and EVERSEC).

These functions look up the specified triple(s) and determine
if it was (they were) ever asserted in the network. The value returned
is True if any one of the specified triples was ever asserted into
the network, even if that triple has since been negated. Triples are
looked up for EVER and EVERSEC in the same way as for DUR and DURSEC
(see 27.5), but a logical value is turned.

Syntax:
EVER<simple sentence>
EVERSEC<simple sentence><simple sentence>

Examples:
EVER(JOHN LOVE FRIENDS(MARY)) True if John loves, or once loved,

a friend of Mary's

EVERSEC{FRIENDS (JOHN) LOVE MARY)(MARY PRETTY)

27.8 RV (RVAL and RVALSEC).

The RV (reality value) is described in chapter 19. These functions
Took up the specified tripie(s) and determine its (their) RV. If multiple
triples are specified the value returned is the sum of the RV's. If a
specified triple is not found, it is skipped. Triples are searched for
in the same way as in DUR and DURSEC (see 27.5).
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Syntax:
RVAL <simple sentence>
RVALSEC <simple sentence><simple sentence>
Examples:
RVAL (FRIENDS(JOHN) LOVE FRIENDS(MARY))
RVALSEC {JOHN LOVE MARY)(MARY PRETTY)
RVALSEC (MEN GOODRELATIONS MARY)(MARY 1Q)

27.9 Numeric Value of a Triple (VAL and VALSEC).

These functions look up the specified triple(s) and determine
its (their) numeric value(s). The value returned is numeric. If
multiple triples are specified, the sum of the value is returned.
VAL and VALSEC are evaluated in the same way as DEL and DELSEC
(see 27.5). See 12.4 and 12.5.3 for rules concerning the numeric
values of triples.
Syntax:
VAL<simple sentence>
VALSEC<simple sentence><simple sentence>
Examples:
VAL (JOHN IQ)
VAL(1 MEN AFFECTION WOMEN)
VALSEC(JOHN LOVE MARY)(MARY BEAUTY)
VALSEC(MEN KNOW WOMEN)(WOMEN IQ) where extra, probably meaningless,
tests will be made, as described in the examples of SEC (see 27.4)
Since the VAL function is used quite often, and generally with other
terms in subrule expressions, some specific examples follow.
Assume the following: (JOHN AFFECTION MARY) = 3.5, (FRED
AFFECTION MARY) = 4.2, (JOHN CAREFOR MARY) = 9, (JOHN IQ) = 150,
(FRED IQ) = 100, (MARY IQ) = 120 is hypothetical, MEN = JOHN FRED,
GOODRELATIONS = AFFECTION CAREFOR LOVE and PEOPLE = MEN MARY JANE.
Again, sections 26.1.1 and 26.1.2, and chapter 24 give the pertinent
rules. Chapter 25 describes the simple arithmetic operators used to
assure reasonable numeric results.
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*SEC(EXAMPLE DEMONSTRATING LIST)(LIST SUBRULE);
VAL (JOHN.AFFECTION MARY)/10; returns .35 (3.5/10)

(VAL(MEN AFFECTION MARY) - 7) **2;

returns .49 ((3.5+4.2-7)2)

-1/AVAL(PEOPLE IQ) - 200); returns -.02 (-1/(150+100-200))
VAL(1 PEOPLE 1Q)/1000; returns .37 ((150+100+120)/1000)

VAL (MEN GOODRELATIONS PEOPLE)-16;

returns .7 (3.5+4.2+9+ten0's-16)
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28. Subrule Variables.

Subrule variables are local variables known only within the
subrule Tist (see 24.1) in which they are defined. Although all previous
descriptions of subrules have not considered subrule variables, the
rules and syntax given in those descriptions remain valid as subrule
variables consitute an extension to the power of subrules.

Subrule variables have two main uses:

1. They store those values of a field in a sentence which make that
sentence True. These values may be permanently saved by making
use of subrule actions.

2. They allow certain questions to be asked which could either not
otherwise be asked, or which could be asked in a difficult and
less natural way using previous constructs.

Subrule variables may be used in any of the three types of
sentences (see 26.). The first time a subrule variable is used in a
subrule list it must be defined. Subrule variables can be quite useful,
and if the next two sections seem confusing, numerous examples are given
in 28.4.

28.1 Definition and Use of Variable.

A subrule variable must be defined as such and given an initial
set of elements the first time it is used in a subrule list. A subrule
variable can be defined anyplace a <general class reference> can be
used in a sentence, namely: 1. the subject, relation, and object
fields in a simple sentence (see 26.1), and 2. the subject and object

fields in a complex sentence (see 26.2) or a class sentence (see 26.3).

subrule variable can be defined only once in a subrule list.

Once a subrule variable has been defined, it may be used in any
sentence in the same subrule 1ist by just using its name anywhere
a <general class reference> is allowed. Subrule variables may
also appear in subrule actions, again appearing anywhere a <general
class reference> is allowed, except where its appearance would cause

A
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a change to be made to the value of the subrule variable; specifically,
subrule variables cannot appear as the destination field of class
actions or the *EXPAND action, or in the *ERASE action.
A subrule variable is defined as follows:
<subrule variable definition>::= <subrule variable name>.<general class reference>
A <subrule variable name> is a variable name (see 2.2)
which must not have been previously in this subrule 1ist and which
can subsequently be used only in the subrule list in which it is
defined. A <subrule variable name> is deleted as a name after the
subrule 1ist in which it is used is finished, and therefore may
later be used again in another subrule list.
is described in 11.2.

<general class reference>
If this is itself a subrule variable, it is
used only for its list of elements and doesn't otherwise act as a
subrule variable.

Upon definition, the subrule variable gets as its value the set
of elements in the related <general class reference>. From here on,
no new elements may be added to the subrule variable; instead, elements
are deleted from the variable in the following way: each time the
variable is used in a logical primary sentence, either in its initial
definition or in later use, the only elements allowed to remain in
the subrule variable are those which cause the sentence to be True.

A more detailed description of this rule is given in the next section.
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28.2 Effects of Use.

1. In a simple sentence (see 26.1), or in a complex sentence yielding
a logical result (see 26.2), the only elements allowed to remain
in any subrule variable(s) used in the sentence are those which, in
at least one context, make the sentence True; any other values in
the variable(s) will be deleted.

2. When a subrule variable is in a primary sentence which is an
argument to a function (see 27.) which yields a logical result
(SEC, EVER, EVERSEC), the variable keeps only those elements which
allow the function to be True.

3. Whenever a subrule variable appears in a logical sentence or function
(see (2) above), all combinations of elements in that sentence
will be tested instead of just testing until the first True is
found. This is necessary to correctly update the variable. Also,
if that sentence appears in a subrule expression, the sentence will
always be evaluated even if its evaluation isn't necessary to determine
the outcome of the éxpression (as could be the case when using an
OR in the expression). This last part can be overridden; see the
next section.

4. In a numeric complex sentence, or in a sentence used as an argument
to a numeric function, subrule variables may be used but their
values will not be updated and their presence will not affect
the evaluation of the sentence or expression (rule (3) is not
followed).

5. Subrule variables can be used in secondary sentences (as arguments
to functions) but the variables won't be updated and won't affect
the evaluation o% the sentence or expression (rule (3) is not
foliowed).

6. For a class sentence there are four cases:

a. In a sentence using EQL, a subrule variable keeps the elements
in the intersection of the two specified fields. If both
fields use subrule variables, the variables will be equal
after the sentence is evaluated.
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5. A subrule variable in an EQLP sentence keeps those
nodes which are in an EQLP relationship (have non-empty
predicate 1ist intersections) with at least one node
of the other field.

¢. In a sentence using NEQ, a subrule variable keeps the
elements which are difference from at least one node in
the other field; that is, those nodes which are NEQ
to at least one node in the other field. This is
probably not too useful.

d. In a NEQP sentence, a subrule variable keep those nodes
which are in a NEQP relationship (have empty predicate
list intersections) with at least one node of the other
field. ’

7. If a logical sentence or function (see (2) above) returns False
as its value then all subrule variables in the sentence are erased-all
of their elements are deleted.

8. Because subrule variables are concerned only with the sentences
they appear in and not with the rest of the subrule expression,
it is sometimes more useful to use complex sentences instead of
simple sentences, effectively moving the expression into the
sentence and thus having it affect the subrule variables.

28.3 Subrule Option 0.

The subrule option 0 can be used to override rule (3) in the
above section. This option may appear. in an <option field> in
a group (see 9.2), rule (see 10.2), switch (see 22.), loop (see 23.3
and 23.4), or subrule (see 24.2). If this option is in effect for a
particular subrule, then that subrule is evaluated in an optimized
way in that the presence of subrule variables does not cause the second
part of rule (3) in 28.2 to be followed. In other word, in an expression,
a sentence will not be evaluated if its evaluation isn't necessary to
determine the outcome of the expression, even if the sentence has subrule
variables. This means that some subrule variables in the subrule may not
be updated, although the subrule will naturally return the correct result.
This option could be used to speed up execution where possibie.
Naturally, if the subrule doesn't contain any subrule variables,
the option has no effect.
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28.4 Examples.

For the first set of examples, all of the subrules are assumed to
be in a single, long subrule Tist in order to show the cumulative effects
of using subrules. Probability values are not shown, but would be
required in an actual program. Also, assume that PEOPLE = JOHN JACK MARY,
WOMEN = MARY SUE, MEN = JOHN JACK, HOWLIKES = LIKES LOVES ADORES,
(JOHN LIKES MARY), (JOHN LOVES MARY), (JACK LIKES MARY), (JACK LOVES
SUE).

a. (P.PEOPLE LIKES MARY); P retains JOHN and JACK
b. (R. PEOPLE LIKES MARY) AND (R LOVES MARY); R first retains
JOHN and JACK, but is then reduced to just JOHN
c. (S. PEOPLE LIKES AND LOVES MARY); same result as in (b)
d. (R2. PEOPLE LIKES WOMEN) AND {R2 LOVES WOMEN); R2 first
retains JOHN and JACK, then continues as JOHN and JACK
e. (S2. PEOPLE LIKES AND LOVES WOMEN); S2 keeps only JOHN;
this is not the same result as in (d)
f. (1 T.PEOPLE V.HOWLIKES MARY); T retains JOHN and JACK, and
' V retains LIKES and LOVES; the 1 is an H value (see 20.)
g. (W.PEOPLE LIKES AND NOT LOVES MARY); W retains only JACK
h. (X.PEOPLE LIKES MARY) AND NOT (X LOVES MARY); X retains only
JOHN because, unlike in (g), the 'NOT' is outside of the
second sentence and doesn't affect the value of X; also note
that this subrule returns a value of False, whereas in
(g) the subrule returns True.
i. (1 WV MARY); since W = JACK, V is reduced to LIKES
j. (W V Y.PEOPLE); W = JACK and V = LIKES, so Y retains only MARY
(Y Z.HOWLIKES A.PEOPLE); Y = MARY, but since she doesn't like
anyone in any manner, Y, Z, and A are all erased
1. (B.PEOPLE DUR(LIKES) EQ DUR(LOVES) MARY); assuming equal
durations of 1iking and loving, B retains JOHN
m. (D.PEOPLE EQL C.MEN); C keeps JOHN and JACK and D retains those
same elements



138
(JACK EQL C) or (V EQL LOVES); C is reduced to just JACK,

and since V = LIKES, V is erased; if the subrule option 0 were
in effect, V would be unchanged
(F.PEOPLE NEQ MEN) or (C NEQ G.MEN) or (W NEQ JACK); F keeps all
three people and its sentence automatically returns True;
since C = JACK which is an element of MEN, G loses JACK, leaving
€ = JACK and G = JOHN; since W = JACK, this sentence is False
and W is erased.
(H.PEOPLE I.HOWLIKES J.PEOPLE): *MOVE H TO TMPCLSI,
*MOVE I TO TMPCLS2,
*MOVE J TO TMPCLS3;
H retains JOHN and JACK, I retains LIKES and LOVES, and J retains
only MARY; then the contents of these three variables are saved
in three classes which can then be used outside of this subrule
list, even in the action list of the rule having this subrule
list since the subrules are evaluated before the actions take place
In the next set of examples, the numbers on the right refer to

section 26.2.3 on complex sentences, and it is shown how subrule variables

can be used to ask questions either otherwise requiring complex sentences
or otherwise not possible to ask easily.

la.

1b.

Tc.

(A.MEN LOVE JANE) AND NUM(A) EQ NUM(MEN);
love Jane

(JOHN LOVE B.WOMEN) AND NUM(B) EQ NUM(WOMEN);
women are loved by John

(JOHN C.GOODRELATIONS JANE) AND NUM(C) EQ NUM(GOODRELATIONS);
True if John has all of the good relations with Jane

(D.MEN LOVE WOMEN) AND NUM(D) EQ NUM(MEN);
man loves at least one woman

(MEN LOVE E.WOMEN) AND NUM(E) EQ NUM(WOMEN);
woman is loved by at least one man

(F.MEN LOVE G.WOMEN) AND NUM(F) EQ NUM(MEN) AND NUM(G) EQ NUM(WOMEN);
True if every man and every woman has at least one lover

(H.MEN LIKE MARY) AND (H DATE MARY) True if at least one particular
man both likes and dates Mary

True if all men

True if all

True if every

True if every
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The next set of examples shows how subrules are updated when used
in sentences which are arguments to logical functions.

SEC(A.MEN LOVE MARY)(MARY PRETTY);
who like a pretty Mary

SEC(MARY LIKE B.PLACES)(PLACES PRETTY);
pretty places which are liked by Mary

SEC(MARY SEE JOHN)(SEE IN B);
places, but B is not updated

EVER(C.MEN LOVE D.WOMEN);
loved a women, and D retains those women who were ever loved
by a man

A retains only those men

B retains only those

B is used to specify some

C retains those men who have ever

Finally, two other useful examples of subrule variables are:
(A.CLASS1 EQL CLASS2) AND NUM(A) EQ NUM(CLASS1);
which is True if CLASS1 is a subset of CLASS2, and
(B.CLASST EQL CLASS2) AND NUM(B) EQ NUM(CLASS1) AND NUM(B) EQ
NUM(CLASS2);
which is True if CLASS] is identical to CLASS2.
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29. The Look-Ahead Rule. 141
29.1 Syntax.

It is possible to temporarily save the state of the simulated

universe, look ahead into the future for a specified amount of time, The syntax of the look-ahead rule is:

use what happened during the look-ahead to determine later actions, RULE [,<option field>]{<rule name>] : [<branch part>] <pre-actions>;
and then return to the original state and continue the actual simulation. [<post-actions>]; {<subrule>;}

While this feature probably won't fit into most programs, it could be It differs in two ways from an ordinary rule (see 10.2):

used to formulate plans for the future or perhaps in time-travel 1.
stories. 2.

<action list> is replaced by <pre-actions>; [<post-actions>]

In a <subrule> (see 24.2), instead of a single optional <subrule
Since this construct is not often used, its syntax has been or:tted action 1ist> being allowed after the <subrule expression>, an
optional <subrule action field> is used, where:

<subrule action field> ::= :{[<look-ahead options>,] <subrule action list>;}*

from all other chapters in this manual and is instead described
independently here. Therefore, any forms which don't seem to fit into
previous descriptions are used only for the look-ahead rule. The

look-ahead rule may be used anywhere an ordinary rule can be used. The syntax of the look-ahead rule must meet the following conditions:

The <pre-actions> must somewhere include a *LOOK action. This
action is of the form: *LOOK <time> and specifies the duration

In brief, the look-ahead rule works by saving the universe 1.
(on a temporary file) and then continuing the simulation beginning

with the group which is first on the queue of scheduled groups. When of the look-ahead. Look-aheads may also be terminated by
the look-ahead terminates, the subrules of the look-ahead rule are execution of an *END action (see 18.) or by exhaustion of
evaluated, and specified actions are taken. The original system scheduled groups.

state is restored, and the simulation continues in the normal way. 2. The <pre-actions> may somewhere include a *SAVE action.

This action is of the form: *SAVE {<class name>}' where
the class names are separated by blanks and subscripted class
names are not permitted. The contents of the specified classes
are not restored after the look-ahead finishes, and thus keep
the values they had during the look-ahead.

3. Both the <pre actions> and the <post-actions> are defined
as: <action> {,<action>}* where any action is allowed in
either field, except the *LOOK and *SAVE actions discussed
above, which can occur only in the <pre-actions>.

4. The <subrule action field> of a subrule can have any
number of <subrule action list>s (see 24.2), each list having
its own set of <look-ahead options>. The lists are separated
by semicolons.
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5. The <look-head options> can be one of these three fields:
a. the single letter I, meaning immediate execution of the
<subrule action 1ist>,
b. the single letter D, meaning delayed execution of the
<subrule action list>, or
c. the combination ID, meaning both immediate and delayed
execution of the list.

These options control the time of execution of the subrule
actions, where immediate QXecution means execution in the look-ahzad
environment and delayed execution means execution in the restored
environment.

These options may also be specified in $RULE, $SWITCH, $LOOP,
and $GROUP commands, and in the <option field> of a subrule, along
with the other possible options. The usual notions of extent apply
to the I and D options, where an option field at a lower level overrides
one at a higher level.

If no look-ahead option is in effect for a particular <subrule
action 1ist> because one wasn't specified in the <look-ahead options>
and no surrounding option field specified a look-ahead option, then
the D option is assumed.
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29.2 Execution.

The syntax rules only make sense when the execution of the look-ahead

is explained, so what follows is a detailed step by step description

of the execution of the look-ahead rule. These steps are followed

whenever a rule which had a *LOOK action in its <pre-actions> is
encountered during execution.

1. The current environment (simulated universe) is saved (on a
temporarily file).

2. The <pre-actions> are executed. The *LOOK action is naturally
skipped, and a *SAVE action, if present, is noted but causes no
changes in the universe.

3. The simulation continues for the time specified on the *LO0OK
action. When the look-ahead begins, control is given to the
group which is first on the queue of scheduled groups (it would
be the group normally executed after the group having the look-ahead
rule finished). This means no rules in the group which initiated
the look-ahead (except the look-ahead rule itself) are ever
executed during look-ahead. Furthermore, if a group containing
a look-ahead rule is encountered during the look-ahead, that
entire group is skipped.

It is very important to note that just because some action
is taken during the look-ahead, it does not necessarily follow
that the same action will later occur during the actual simulation.
In other words, the look-ahead is not a perfect predicter. This
is because the random number generators are used during the
look-ahead and so generate different numbers during the actual
simulation tham they generated during the look-ahead. Also, due
to the rules in the above paragraph, slightly different parts of
the program may be executed in the actual simulation. Of course,
if all rules executed during the look-ahead are deterministic, the
results will be the same in the actual simulation and the future
will be seen perfectly.
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The look-ahead is terminated when it has run for the time specified
in the *LOOK action, due to the execution of an *END action
(see 18.), or when there are no longer any groups scheduled. The
END time of the actual simulation (see 3.1.1) is ignored during
look-ahead.
After termination of the look-ahead, the subrules of the look-ahead
rule are evaluated in the look-ahead environment. Subrule actions
specified for immediate execution are executed in the look-ahead
environment. These actions are unconditionally executed when
their subrules are reached, so an action can effect a subsequent
subrule.
The original environment is now restored, destroying all memory
of what occurred during the look-ahead, with the exception that
classes specified in the *SAVE action keep the values they had
in the look-ahead environment.

A11 subrule actions specified for delayed execution are now unconditionally

executed in the original environment.
If the look-ahead rule evaluates to True (based on the evaluation
of its subrules in (5)), the <post-actions> are executed. The

<branch part> then has the usual meaning, and the simulation continues

in the normal way.

145

29.3 Example.

Although the Took-ahead rule seems quite complicated, it is likely
that you would use only some of its features in any particular look-ahead.
An example is given below, although it should be noted that it is meant
for clarification of the rules of syntax and doesn't necessarily make
any sense.
$RULE,CI FUTURE: T(RULE3)

*LOOK 5D3H10M,
*SAVE MARRIED ENGAGED, <pre-actions>
*ADD MARY TO FRIEND(JOHN),
(MARY LIKE JOHN);
(MARY MARRY JOHN), <post-actions>
*MOVE MARY TO WIFE(JOHN); :}
.2,-.3: (JOHN LOVE MARY): I, (MARY HAPPY), (JOHN HAPPY);
D, *SET (LOOKAHEAD EXECUTED) =+ 1;
0,0 : (P.PEOPLE HAPPY): D, *MOVE P TO TEMPCLSI;
-1.5,0: (JOHN KILL MARY);
4,0 : NUM(CHILDREN(MARY)) GT 0;
-.3,0 : EVER(JOHN HIT MARY);
¢ VAL(JOHN SALARY)/50000;
-.5,.1:  EVERSEC (JOHN SEE OTHERWOMEN)(SEE SECRETLY);
.15;
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30. Using the Simulation System.
This chapter will describe the control cards needed for using the

simulation system, the use of SAVE and RESTORE, which allow saving the
compilation of a program for future use, and the actions *SAVESYS and

*RESTORSYS, which allow saving the state of a simulation for future use.

As noted several times, this manual does not include information on the
generative mechanism, and so that part of the system will not be
considered here.

30.1 Control Cards.

After the usual GRUN card required of all jobs, an @XQT card
with the file name that the system currently resides on is used to
begin execution of the system. For example, if the executable version
of the system were on SYS*A.B, then @XQT SYS*A.B would be used.

This card is followed by your program, which generally begins
with a $LIMITS command (see 3.) and always ends with an $END command
(see 2.1).

Any number of @XQT-program sets may be included in one job.

If the same program is to be executed several times, use the
JUMBLE or CLOCK option in the $LIMITS command in order to get
differing results (see 3.1.2). A user's program may also be on
a file, in which case it is accessed via an @ADD card.
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30.2 SAVE and RESTORE Options.

The SAVE option in the $LIMITS command (see 3.1.4) causes the
result of the compilation of your program {an internal representation
of the program in a form ready for execution) to be saved on a file.
This allows further use of that program without recompilation, compilation
generally being far more costly than execution for anything other than
small programs. The program is saved on a temporary file named 20.
and can be used elsewhere in the same job. If you want to keep this file
for later use, then 20. should be made the internal USE-name of a
catalogued file (see examples in 30.4).

Once the program having the SAVE option has been executed (the
SAVE option doesn't stop the execution of a program, it
just saves it), the saved compiled version may be executed any number
of times by using the RESTORE option in the $LIMITS command. This
says that the program can be found on file 20. (which may be the
internal USE-name of another file) and should be executed using any
other instructions in the $LIMITS command. This means that when executing
a program by using the RESTORE option, the $LIMITS and $END commands can
constitute the entire program. Note that the $LIMITS command can have
its usual information, causing the saved program to produce different
results each time it is executed.

As stated above, when using the RESTORE option the entire program
can consist of just two commands, in which case the saved program is
executed. However, it is often the case that you want to add to a
saved program (you can't change it without recompiling it), especially
if you are constructing your program in an incremental manner and
testing each piece before adding a new one. Therefore, a saved program
can be added to by following the $LIMITS command (which has the RESTORE
option) with any additions you want made to the saved program.

Any component may be added to a saved program: atoms, classes,
exclusions, more $NETWORK actions, and most importantly, new groups.

As these new items will be added to the saved program to create one new,
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larger program, it should be clear that, for example, an added node can't
have the same name as an original node or relation.

In order for a new group to be activated, there are several
possibilities: it could be turned ON initially; while it could
not have been referenced by name in an old action (that would have
caused an error in the saved program), an old action could enable
or call a class, one of whose members (in anticipation) is the name of the
new group; using the $NETWORK section, the name of the new group could
be added to a class which is called or enabled by an old action.

Finally, as the result of adding new components to a saved program
will be a new program, the compiled version of this program can also be
saved. To do this, use both the SAVE and the RESTORE options in the
$LIMITS command. Unfortunately, however, this will cause the old
saved program to be destroyed since the new saved program will be written
onto the same file; until a new version of the system solves this problem,
one possible solution (if you still want the old saved program) is to
first copy the old saved program onto a second file.
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30.3 Saving and Restoring the System During Execution (*SAVESYS and

*RESTORSYS).

These actions allow you to save the state of the program during
its execution and to restore a saved state during execution. This is
a more general and more powerful capability than the SAVE and RESTORE
options discussed above, since here it is not only the compiled version
that can be saved but a partially run program which can be saved and
restored at any time by using program actions.

(These actions are not yet implemented, and the exact details
of the actions have not yet been determined.)
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30.4 Examples.

1.

2.

3.

The simplest case is executing a single program.

GRUN. ..

@XQT  SYS*A.B

$LIMITS  START = 2D, END = 5D;

(program)

$END;

@FIN ,
A program can be executed several times, being compiled and saved
the first time. The saved version can be used only in this job.
@RUN. ..

@XQT  SYS*A.B

$LIMITS  SAVE, START = 2D, END = 5D;

{program)

$END;

8XQT  SYS*A.B

$LIMITS  RESTORE, CLOCK, START = 2D, END = 5D;

$END;

@XQT  SYS*A.B

$LIMITS  RESTORE, START = 1D, END = 10D;
$END;

BFIN
A program can be executed, its compiled version being saved
permanently.

BRUN. ..

@CAT  YOURFILE.

@ASG,A YOURFILE.

BSAVE,S  YOURFILE.

@USE  20.,  YOURFILE.

@XQT  SYS*A.B

$LIMITS  SAVE,...

(program)

$END;

@FIN
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4. After job (3) above is run, the saved program can be executed

as often as desired.
@RUN. ..
@ASG,AX  YOURFILE.
@USE 20., YOURFILE.
@XQT  SYS*A.B.
$LIMITS  RESTORE,...
$END;
OFIN
A saved program can be added to and executed. The new program
can be saved, which destroys the original saved version.
@RUN. ..
@ASG,AX  MYFILE.
GUSE 20.,  MYFILE.
@XQT  SYS*A.B
$LIMITS SAVE, RESTORE,...
(additional program components)
$END;
OFIN
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31. OQutput From the System. 4.

If the NOLIST option (see 3.1.3) is not in effect, then all
of the output described below will be produced. If the NOLIST option
is used, then beginning with the command following the $LIMITS
command having NOLIST the user's source program will no longer be
listed. If NOLIST is in effect at the end of the program, the
information regarding the initial state of the system won't be printed.
As this initial information is usually not very useful, you can get a
program 1isting by first using a $LIMITS command without NOLIST and then
ending your program with a $LIMITS command having NOLIST (followed by
$END as always). Another way of just printing a program listing is by
putting the program on a file andrlisting the file in a separate operation,
and then using NOLIST when executing the program.

The program listing is just a copy of your source program, including
comment cards. The cards are numbered sequentially, and these card
numbers are referred to should an error occur. Interspersed with the
listing are messages describing any errors which may have occurred 7.
(see 32.1).

Following the program listing, if NOLIST is not in effect, are
Most of this information
is not too useful as it concerns values of internal system pointers.
The items listed, and their useful associated information, are:
1. A description of the time units (see 3.1.1 and 3.2) used: the

number of basic time units in a simulated day, followed by the

lists of various items used in the simulation.

number of basic units in each of the defined units of time.

2. If the generative mechanism is being used, the input grammar and
the dictionary list are printed.

3. The node index, which is a 1ist of all nodes (see 4.) which have
been defined, either explicitly in a nodes list or implicitly as a
class or group name. The column labelled NODGRP will be non-zero
if the node is also a group name, and the column labelled NODFLD will
be non-zero if the node is also a class name.

during compilation.
terminated, although a program will run if only warnings were given.

values are given.
regarding class manipulation, and triples involved in predicate actions,
are not shown in the change stack.
for more details.
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The relation (see 5.) index, which is similar to the above node
RTYPE is 1 for a transitive relation and is otherwise 0.
RELGRP and RELFLD are non-zero for relations used as group names

index.

and class names, respectively.

If the generative mechanism is being used, a synonym list is printed.
The class list, which lists each class {see 6.) along with its

If CFLG is 1, the class is subscripted. Each
class has a pair of parentheses following its name: if a class

initial elements.

is not subscripted there will be nothing inside the parentheses;

if a class is subscripted with particular subscripts, the class

will be listed with each of its subscripts; if a class is subscripted
but given no initial subscripts, an asterisk will appear in the

The initial elements of each class are listed in the
order in which they are stored. This 1ist represents the state of the
classes after any initial actions in the $NETWORK section have

been executed.

If there are any exclusions (see 7.), pointers relating to the

parentheses.

exclusion list are printed.
At this point, the NOLIST option has no further effect and the

remaining output is always produced.

First comes a count of the number of warnings and errors found
If there are any errors the program will now be

Then, for each moment of simulated time in which some group is

active, there is a listing of the change stack - all of the changes
made in the semantic network at that time.
stack, its assertion time, RV(see 19.),

For each triple in the
H(see 20.) and numeric

A negated triple is preceded by 'NOT'. Information
See specific actions (chapter 12.)

Also, to the left of each triple in the change stack there are

three numbers (which follow the sequence number of the triple)
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which explain how the triple got in the stack. SRC stands for

source, LEX for lexical level, and PAR for parent.

When there is no expansion of predicate nodes, things are very
simple: a primary triple has three zeros; asecondary triple's PAR
is the sequence number of its primary triple, and its SRC is 4 to

mark it as a secondary.

When predicate nodes are expanded (see 13.2) the numbers are used
as follows: PAR is the sequence number of the triple which caused
the triple having that PAR value to be printed; SRC is 1 for a tiiple
which came from the expansion of the parent triple's subject node,
SRC is 3 for a triple which came from the expansion of the parent
triple's object node, and SRC is 5 for a triple which is a secondary
triple of a parent which is a predicate triple; and LEX tells how many
levels of expansion have occurred to produce the triple - a LEX of 2
means that this triple came from the expansion of a node whose triple
itself came from the expansion of a node.
A sample change stack (time, RV, etc., are Teft off) may clarify

things:

' SRC
1 0
2 4
3 4
4 0
5 3
6 5
7 3
8 3
9 3

10 5

n 3

12 )

LEX

O = NN = = - - O C OO

PAR

H 00 0 P A Oe O - -0

(JOHN LOVE MARY)
(MARY PRETTY)

(LOVE WITH PASSION)
(JOHN KNOW THAT2)
(MARY DATED TOM)
(DATED TWICE)

(MARY LOVE HIM)
(MARY KNOW THAT3)
(JOHN LOVE HER)
(LOVE WITH PASSION)
(MARY PRETTY)

(KNOW DEFINITELY)

primary triple

secondary of above primary
another secondary for triple #1
primary triple

predicate of THAT2

secondary of above predicate
another predicate of THAT2

a third predicate of THAT2
only predicate of THAT3
secondary of above predicate
a fourth predicate of THAT2
secondary of triple #4
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As a further clarification, if this change stack were to come out

in English, it might, with an appropriate grammar, come out as:
John knows definitiely that Mary
dated Tom twice, that Mary loves him, that Mary knows that John

John loves pretty Mary with passion.

loves her with passion, and that Mary is pretty.

If any traces (see 32.3.1) are active, their output will be shown
preceding their associated change stacks. If the generative mechanism
is being used, its natural language.output is shown for each change
stack listing, following that listing.

The end of the simulation, and the cause of its ending (reached
the time limit, no more active groups, or reached an *END action;

see 3.1.1 and 18.) is noted before execution terminates.



156

32. Debugging and Tracing.

While the system tries to give helpful hints when an error is
found, it does not always succeed. There are basically two types of
errors: syntax errors found during compilation, and errors found
during execution. Syntax errors are by far the more common and will
be discussed first. If a problem is seemingly inexplicable, there are
traces which can give complete details about the execution of the
simulation.

32.1 Syntax Errors.

Syntax errors are written out with the program listing, usually
within a line or two of where the error occurred. The error message
will give the card number on which that error occurred, a column on
that card, and a message describing the error and giving any other
pertinent information. Generally, the message given is enough to find
the error; however, the information is not always completely reliable
for several reasons:

1. One error may cause the system to think there are other errors,
even if there aren't. Sometimes, error messages are given for
correct lines that are 5 or more lines past a real error (which
has caused an accurate error message). Therefore, if you find
an inexplicable error message, especially one which just says
"syntax error" and which is not far from another error, this
second {and sometimes there are multiple inaccurate messages)
error will often disappear if the first, real error is corrected.

2. The card number is generally correct, but it is possible for a
previous card to be the real source of the error, as would be
the case if a necessary semi-colon were left off.

3. The column number is sometimes not exact, pointing to the item
following the incorrect one, pointing to a wrong item, or simply
pointing to the end of the line.
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4. The messages are generally correct, but the message "syntax error"
is often given and is not very helpful. Look for a missing or
incorrect delimiter, although the cause could be many other things.
5. If the error seems to make no sense, and was not caused by another
error (see (1) above), then it is quite possible that the bug is in
the system and not in your program.

32.2 Execution Errors.

These errors occur during the execution of a program and are printed
out when they occur. The simplest type is actually a warning, typical
warnings being for division by zero, or having a loop while expanding
predicate nodes (see 13.2). If the message specifies an error and
not just a warning, then although execution may continue the results may
be undefined. Execution errors are of two types: an internal array
has overflowed, or a syntax error which was undetected during compilation
has now caused an impossible situation. In either case, the system
program must be examined. If there are more than 50 warnings or more than
10 errors execution will be terminated.

One final note: execution errors are sometimes of the form
STOP <number>. This indicates a system error and the program is
immediately terminatedi
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32.3 Actions for Debugging and Tracing.

The five actions described in this section are very useful when
trying to determine why a program produced the results that it did.
It is often the case that a program will have no error in it as far
as the system is concerned, but will still yield incorrect and mystifying
output. The execution of the program can be traced, items can be printed,
and specified portions of the network can be dumped by using the
five actions described below. These actions are used as any other
actions, and can thus appear in the <action list> of a rule or subrule.

32.3.1 Tracing (*TSET, *TSTOP, and *TSTART).

A trace is used to describe exactly what is occurring during the
execution of a program. There are five different traces, each of which
can be turned on and off during the simulation by using the three
tracing actions.

Each type of trace is used to be describe one or more specific
operations which take place during execution. Each type has a letter
associated with it, and the five types are independent of each other,
allowing you to trace only those operations which you are interested
in.

The five traces, and what they produce messages for, are:

A: new time cycle; time group is scheduled or unscheduled for;
entry into group, rule, switch, and loop; values a loop variable
will take on

B: execution of all actions; assertion, negation, and setting of a
triple, showing its associated values; results of class actions,
showing lists of elements involved

C: Cumulative numeric value of subrule list; value of generated random
number for subrule list
Value of each operand in a subrule

E: Result of network look-up in a subrule, giving status of triple
and its associated values
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The output produced by a trace is compacted to save space but
still is generally easy to read. It gives the trace involved, a
message, the appropriate information, and the location of the
traced operation in the program (for example, its card number and
subrule number, the name of a rule, etc.).

In a large simulation a trace can produce an enormous amount
of output, so care should be taken in using traces. Since traces can
be turned on and off dynamically, it might be possible to trace
just that portion of a simulation that you are interested in, instead
of tracing the entire simulation.

The actions which are used to activate and deactivate the traces
all have an operand designated as <trace letters>. This consists of
any of the five trace letters, in any order, with no embedded spaces.
Each letter named is involved in the specified action. The three
actions are:

1. *TSET <trace letters> = <line count>

This action initializes the line count of the specified traces.
The <1ine count> specifies the number of times the trace can be used,
and is useful in limiting the output produced by a trace. This action
must be executed before a trace can be activated, as the line count
for each trace is initially zero. In addition, if the <line count>
is postive, the trace will be turned on. If the <line count> is negative
the trace will initially be off, and the absolute value of the
<line count> will be used. A <line count> of zero disables a trace.

Examples:

*TSET A = 100 trace A can be used 100 times and is turned on
*TSET BC = -9999 traces B and C can be used 9999 times and are
ﬁnitially of f
*TSET ABCDE = 1000 all traces are on and can produce a lot of output
2. *TSTOP <trace letters>
This action is used to stop (turn off) the'specified traces.
The line counts for the traces are not affected.
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Examples: 32.3.2 *PRINT.
*TSTOP B stops trace B This action is used to print a message or to print the value of
*TSTOP ABCDE  stops all tracing a specified field. Its form is;
3. *TSTART <trace letters> *PRINT [(<maximum count>)] <print argument>

This action is used to start (turn on) the specified traces, where
and is used after a *TSTOP or an initially negative line count. A o <print argument> :;= <general class reference> | <quoted string>
trace will start only if it has a non-zero line count. <maximum count> is optional, and specifies the maximum number

Examples: of times this particular print action can be executed during the simulation.
*TSTART B If not given, the number 32767 is used.
*TSTART ABCDE ‘ <general class reference> is described in 11.2. The current

value of the field is printed, giving its constituent atoms.

Finally, a trace action should probably be in a rule by itself <quoted string> is any string enclosed by single quotes
in order to assure that it will be executed (a rule with subrules (apostrophes), and is simply printed as given. It is useful in constructing
might not have its actions executed) and to allow the trace action your own personalized traces.
to be easily removed when it is no longer needed. The $NETWORK Examples:
section (see 8.) is often a convenient place for a trace action, although *PRINT (50) 'JUST ENTERED GROUP MAIN'
tracing won't start until the simulation actually begins. *PRINT (100) X (X might be a loop variable)

*PRINT PEOPLE
*PRINT FRIENDS(JOHN)
*PRINT (75) FRIENDS(ENEMIES(PEOPLE))

32.3.3 *DUMP.

This action is used to print the specified portion of the
semantic network. Its form is:

*DUMP [(<maximum count>)][<general node field>]

The <maximum count> is used as in *PRINT above. If the <general
node field> (see 11.2) is present, for each. node in the field all of
the primary triples in the network which have that node as a subject
are printed. If this field is omitted, all nodes are examined,
meaning that the entire network will be printed, which could be
quite expensive.

Examples:

*DUMP JOHN

*DUMP FRIENDS(JOHN)
*DUMP(30) PEOPLE
*DUMP



162

A. Comparison With Older Versions.

Since it began, the system has evolved in a somewhat ad hoc manner,
with new constructs being added to fit the requirements of particular
programs. The writing of this manual has given us a chance to review
the entire system, to tie loose ends together, and provide for an
internal consistency that has been lacking. Therefore there has been
something of a revolution, and old programs and descriptions are no Tonger
valid.

In order to show how the system has changed, the version used for
the Murder Mystery and the Propp and Levi-Strauss models will be
considered the base system. The significant changes to this base will
be described section by section, although it will be clear that some changes
have had profound effects on the entire system, while other changes are
either additions or local simplifications.

5. Relations used to be typed according to whether or not they took
objects, and whether or not they were numeric. Now only the

furthermore,

any triple may now have a numeric value, not just those with numeric

relations.

transitive type remains, which greatly simplifies things.

This change affects the entire system and is probably
the most important difference between the old and new versions.

5.2 Any relation can have a numeric Texical expression 1ist, which has
a minor syntactic change. Maximum and minimum values for the relation
are no longer used.

6. A class of relations can contain any relation, instead of a single
type of relation. The type of class had been specified by a number
preceding the class name. A class name may now be used as a

node.

12.1 A1l triple have numeric values and times, whereas an old numeric

relation was necessary for a value but precluded a time. An object
is always optional now. RV's and H values are new.

12.2 The assertion action now requiresparentheses around the triple.

No numeric information can be specified here as used to be the

case, being allowed now only in the new *SET actions.

12.3

12.4

12.5.1
12.5.2

12.5.3
13.1

13.3.1
13.3.2,
13.4
13.5,

14.

15.
19.,
23.4

26.1,

26.2.4
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*NEG was done by using the keyword NOT in an assertion. Triples
are no jonger actually removed from the network, but are just
marked as negated.
*SET is new, as numeric modification was done in assertions.
The use of <assignop>s, and a <value> which can specify triples
instead of just constants, is an important addition.
*SEC was *INSERT.
*NEGSEC was *DELETE.
the network.
*SETSEC is new, following from *SET.
Predicate nodes existed, but only in a rudimentary state, so much

Triple are no longer actually removed from

of this chapter deals with new features.

*ADDP expands upon the old *DISCADD.

13.3.3 *MOVEP and *PUSHP are new.

Only *DISCLEAR existed, which was a simpler version of *ERASEP.
13.6, 13.7 *LOCATE, *MOVEPAR, and *EXPAND are new actions.

The major change in class actions is that the destination field
can be a <general class reference> instead of just a <specific
class reference>.

Some minor syntax changes were made.

20. The RV and H value are new.

Looping through predicate lists is new, as are triple variables.
This addition affects network actions and subrules, as triple
variables can be used as triples and sentences.

26.2 There is a major change here due to the delection of numeric
relations. In the old version, a sentence having a numeric
relation would return a numeric result, with no function being
necessary. Aiso, the object field is always optional now.

There are some name changes, as described below for subrule
functions. Multiple elements can now be specified in the subject
and object fields when a function is being.used, instead of just
allowing single elements in all fields.
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26.3.2 EQLP and NEQP are new.
27.3 NUMP is new. NUM was once called LENGTH.
27.4 SEC was VAL, which is confusing since there is a new, completely
unrelated VAL function. As with sentences, SEC now always
returns a logical value. A1l of the SECondary functions have
had an outer set of parentheses around their arguments dropped.
27.5 DURSEC was DURVAL. In this and the following functions, all fields
can now have multiple elements. .
27.6,27.7, 27.8 DEL, EVER, and RVAL are new.
27.9 VAL is new (not to be confused with the old VAL, which is now
SEC) and is needed because there are no numeric relations.
29. The look-ahead rule is new.
30.2 Adding new components during a RESTORE is new.
30.3 *SAVESYS and *RESTORSYS are new actions.
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B. Possible Additions to the System.

The system will continue to evolve, and these additions are

only suggestions for the future. The numbers are the sections where

the additions would have their major effects.

6. User-specified ordering of the elements of classes, possibly by using
a system defined class of integers and having PREDecessor and
SUCCessor functions.

12.4,12.5.3, 19.1 [value] field of *SET having secondary triples.

13.1 Predicate relations as well as predicate nodes.

13.2 Some parameter which would control the expansion of predicate
nodes on the change stack.

" 14. Intersection, union, NUM, and NUMP actions.

15. Deleting lexical items from atoms.

17. Passing parameters to subroutines.

23. Looping through secondary triples.

27. Getting at all deletion and assertion times, not just the last ones.

28. Triple subrule variables for use in predicate class sentences.

30.2,30.3 Ability to SAVE a program on a particular file, so that
saved version can be RESTORED.

There are also three major additions which would greatly enhance
the power of the entire system: separate universes for different people,
meta-compiling, and parsing. The latter two of these items are
currently being implemented.
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Index to Commands, Actions, Functions, and Syntactic Entities.

<action list> 10.2

*ADD 14.1.1

*ADDP 13.3.1

AND 25.2

<arbitrary lexical triple> 15.1
<assignop> 12.4

<atom class function> 26.3.1
<atom class sentence> 26.3.1
<binary op> 25.2

<branch field> 19.2

<branch part> 16.2

C option 26.1.2

*CALL 17.2 :

Change Stack 31.

<class name> 6.1, 6.3, 2.2
<class sentence> 26.3
SCLASSES 6.3

CLOCK function 27.1, 26.2.4
CLOCK option 3.1.2

<complex predicate node> 13.
<complex sentence> 26.2 .
<constant> 25.1

D option 29.1

DEL 27.6, 26.2.4

DELSEC 27.6

<dictionary entry> 4.2
*DISABLE 16.2

*DUMP 32.3.3

DUR 27.5, 26.2.4

DURSEC 27.5

*ENABLE 16.1

END 3.1.1

$SEND 2.1

*END 18.

SENDGROUP 9.2, 10.2

$ENDLOOP 23.5

ENTIER 25.3

EQ 25.2

EQL 26.3.1, 26.2.4

EQLP 26.3.2, 26.2.4

*ERASE 14.2.2

*ERASEP 13.4.2

Errors 32.

EVER 27.7, 26.2.4

EVERSEC 27.7

$EXCLUSIONS 7. o
*EXPAND 13.7

<false probability value> 24.2.1
FLOAT 25.3
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FOR <time> 8.1

GE 25.2

<general atom field> 11.2
<general class reference> 11.2
<grammar number> 4.1

$GROUP 9.2

<group name> 9.2, 2.2

GT 25.2

H (Hypotheticality) wvalue 20., 26.1.1
I option 29.1

IN <time> 16.1

<initial member list> 6.3
<initial state> 9.2

JUMBLE 3.1.2

*JUMBLE 21.

LE 25.2

LEX 31.

*LEXADD 15.1.2

<lexical expression list> 4.2
<lexical triple> 4.2.1, 15.
*LEXTRP 15.1.1

SLIMITS 3.1

*LOCATE 13.5

*LOOK 29.1

' <look-ahead options> 29.1

<look-ahead rule> 29.

$LOOP 23.

<loop name> 23.3, 2.2

<loop variable> 23.1

<loop variable name> 23.3, 2.2
LT 25,2 .

MOD 25.2

*MOVE 14.1.2

*MOVEP 13.3.2

*MOVEPAR 13.6

NE 25.2

*NEG 12.3

*NEGSEC 12.5.2

NEQ 26.3.1, 26.2.4

NEQP 26.3.2, 26.2.4

SNETWORK 8.1

SNEXT 10.2

<node name> 4.1, 2.2

$NODES 4.1

NOLIST 3.1.3, 31.

NOT (function) 25.3

NOT (in change stack) 12.3, 12.,5.2
NUM 27.3, 26.2.4

<numeric lexical expression list> 5.2
NUMP 27.3, 26.2.4
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O option 28.3

OFF 9.2

ON 9.2

<option field> 9.2, 18.2 g?gRT 313,1.1

OR  25.2 STOP <number> 32.2

PAR 3i~ <subrule> 24,2

EICK 1.2 <subrule action field> 29.1
POPP 1?-4-3 <subrule action list> 24,2.1
:gg:f;ig?;::if 2§9i1 : <subrule expression> 25.1
<predicate class function> 26.3.2 sSuprute function’ 27

<subrule list> 24.1
<subrule operand> 25.1
<subrule relation function> 26.2.4

<predicate class sentence> 26.3.2
<predicate list operand> 26.3.2
<predicate node> 13.

. . <subrule variable> 28.
<prgd1cate sour ce field> 13.3 <subrule variable name> 28.1, 2.2
iprlmary triple> 12.2 <subscript> 6.2, 6.3
PRINT 32.3.2 <subscripted class name> 11,2, 6.2
*PUSHP 13.3.3 $SWITCH 22.
RANDOM 27.2, 26.2.4 itch > 22., 2.2
Reality Value 19. ¢switch name '

<time> 3.1.1

$TIME 3.2

TIMER 27.1, 26.2.4

<trace letters> (A, B, C, D, E) 32.3.1

<relation field expression> 26.2
<relation field operand> 26.2
<relation name> 5.1, 2,2
<relation type> 5.1

<triple> 12.2
$ROLATIONS = 5.1 <triple variable> 23.4, 12.2, 26.1
*Egﬁgggp 14i§'i 1 <triple variable name> 23.4, 2.2
. e ili > 24.2.1
RESTORE 3.1.4, 30.2 <true probability value

*TSET 32.3.1

*RESTORSYS 30.3 *TSTART 32.3.1

*RETURN 17.3

e 15 *TSTOP 32.3.1

. > 25.
RVAL  27.8, 26.2.4 0SEoname. 30.2
RVALSEC 27.8

VAL 27.9, 26.2.4

SRULE 16.2, 29.1 VALSEC 27.9

<rule name> 19.2

<value> 12.4
@QRUN _30.1 . Warnings 32.
S option 9.2 exqQT 38.1
SAVE 3.1.4, 30.2 )
*SAVE 29.1 ’
*SAVESYS  30.3 ’
SEC 27.4

*SEC 12.5.1

<secondary triole> 12.5
<{sentence> 26.

*SET 12.4, 19.1

*SETSEC 12,5.3

<simple sentence> 26.1

<single valued atom field> 11.2
Slash (/) 6.1 '
<specific class reference> 11.2



