## CS 367 - Introduction to Data Structures Thursday, March 31, 2016

Homework 7 due 10 pm tomorrow, April 1st
Program 4 due 10 pm Sunday, April 17th

## Last Time

Binary Search Tree (BST)

- BSTnodes
- BST class
- implementing print
- implementing lookup, insert, delete
- complexities of BST methods

CS Options/Courses

## Today

Classifying Binary Trees
Balanced Search Trees
Red-Black Trees

- tree properties
- print, lookup
- insert


## Next Time

Read: start Graphs
Finish Red-Black Trees
ADTs/Data Structures Revisited
Graphs

- terminology


# Classifying Binary Trees 

## Full

## Complete

Height-balanced

## Balanced

## Practice - Classifying Binary Trees

$\rightarrow$ Identify which trees below are full, complete and/or height balanced.







## Balanced Search Trees

## Goal:

Idea:

AVL

BTrees

## Red-Black Trees (RBT)

## RBT:

## Example:

## Red-Black Tree Properties

root property
red property
black property

## Red-Black Tree Operations

print
lookup
insert
delete

## Inserting into a Red-Black Tree

Goal: insert key value K into red-black tree T
and $\qquad$ .

## If $T$ is Empty

## If $T$ is Non-Empty

- step down tree as done for BST
- add a leaf node containing K as done for BST, and $\qquad$ -
$\rightarrow$ Which of the properties might be violated as a result of inserting a red leaf node? root property black property red property

Non-Empty Case 1: K's parent $P$ is black

## Non-Empty Case 2

Non-Empty Case 2: K's parent $P$ is red

## Fixing an RBT

Tri-Node Restructuring is done if P's sibling $S$ is null

Recoloring is done if P's sibling $S$ is red

## Practice

$\rightarrow 1$. Starting with an empty RBT, show the RBT that results from inserting 7 and 14 .
$\rightarrow$ 2. Redraw the tree from above and then show the result from inserting 18.
$\rightarrow$ 3. Redraw the tree from above and then show the result from inserting 23.
$\rightarrow 4$. Redraw the tree from above and then show the result from inserting 1 and 11.
$\rightarrow 5$. Redraw the tree from above and then show the result from inserting 20.

## More Practice!

$\rightarrow 6$. Redraw the tree from the previous page and then show the result from inserting 29.
$\rightarrow 7$. Insert the same list of values into an empty BST: 7, 14, 18, 23, 1, 11, 20, 29
$\rightarrow$ What does this demonstrate about the differences between a BST and RBT?

## More Practice?

$\rightarrow 8$. Show the result from inserting 25 in the RBT below.

$\rightarrow 9$. Redraw the tree from above and then show the result from inserting 27.


## Cascading Fixes

## Fixing an RBT UPDATED!

Recoloring is done if P's sibling S is red


1. change $P$ \& $S$ to black
2. if $G$ is the root - done otherwise change $G$ to red

Tri-Node Restructuring is done if P's sibling S null $\qquad$


## RBT Complexity

print
lookup
insert

