CS 367 - Introduction to Data Structures Thursday, April 7, 2016

Midterm Exam 2

- Tuesday, April 12, 5:00 pm 7:00 pm
- Lec 1: room 272 of Bascom Hall
- Lec 2: room 1351 of Chemistry Building
- Lec 3: room 6210 of Social Sciences Building
- UW ID required
- See posted exam information
- exam makeup emails sent
- GET A GOOD NIGHT'S REST MONDAY NIGHT!

Homework 8 due 10 pm tomorrow, April 8th

Program 4 due 10 pm Sunday, April 17th

Last Time

Red-Black Trees

• insert

Today

ADTs/Data Structures Revisited (from last time) Graphs

- terminology
- implementation
- edge representations

Next Time

Exam mechanics Sample questions solution

Graph Terminology

Implementing Graphs

Graph ADT Ops

Graph Class

Graphnode Class

Representing Edges

Adjacency Matrix

Given the following graphs:

 \rightarrow Show the adjacency matrix representation of the edges for each of the graphs:

Graph 1

Graph 2

Representing Edges

Adjacency Lists

Given the following graphs:

 \rightarrow Show an adjacency list representation of the edges for each of the graphs:

	Graph 1		Graph 2
0:		A :	
1:		В:	
2:		C:	
3:		D:	
4:		E:	

Using Edge Representations

→ Write the code to be added to a Graph class that computes the degree of a given node in an undirected graph.

1. Adjacency list:

public int degree(Graphnode<T> n) {

2. Adjacency matrix:

public int degree(Graphnode<T> n) {

Comparison of Edge Representations

Ease of Implementation

Space (memory)

AM

AL

Time (complexity of ops)

node's degree?

AM

AL

edge exit between two given nodes?

AM

AL