
Copyright 2014-2016 Jim Skrentny CS 367 (S16): L6 - 1

CS 367 - Introduction to Data Structures
Thursday, February 4, 2016

Homework 2 due 10 pm tomorrow, February 5th
Homework 3 assigned by Monday, February 8th, possibly sooner

Program 1 due 10 pm Sunday, February 14th, TIME IS RUNNING OUT!

Assignment questions? Post on Piazza or consult with a TA during scheduled hours.

Use the 367 Forms to report any exam conflicts or McBurney exam accommodations.

Email your instructor by tomorrow, Friday, 2/5, if you participate in religious observances
that might interfere with course requirements. Include your name, UW ID#, date and explanation.

Last Time

Handin using the 367 Forms
Exceptions Review

• throwing

• handling

• execution

• practice with exception handling

Today
Exceptions Review (from last lecture)

• throws and checked vs. unchecked

• defining
Java Primitives vs. References Review
Chains of Linked Nodes

• Listnode class

• practice with chains of nodes

Next Time
Read: continue Linked Lists
Chains of Linked Nodes

• more practice with chains of nodes
Java Visibility Modifiers
LinkedList Class

Copyright 2014-2016 Jim Skrentny CS 367 (S16): L6 - 2

Primitive vs. Reference Types: Assignment

Primitives

assume code is in main() Call Stack
int x, y, z;

x = 11;

y = x;

z = x;

z = 33;

y = 22;

���� What does each variable contain after the code above executes?

A.) x has y has z has

B.) x has y has z has

C.) x has y has z has

�

References

assume code is in main() Call Stack | Heap
ArrayList<String> x, y, z;

x = new ArrayList<String>();

y = x;

z = x;

y = new ArrayList<String>();

z.add("Computer");

y.add("Science");

���� What does each ArrayList contain after the code above executes?

A.) x’s ArrayList has y’s ArrayList has z’s ArrayList has

B.) x’s ArrayList has y’s ArrayList has z’s ArrayList has

C.) x’s ArrayList has y’s ArrayList has z’s ArrayList has

���� What do x, y and z contain?

�

Copyright 2014-2016 Jim Skrentny CS 367 (S16): L6 - 3

Primitive vs. Reference Types: Parameter Passing

Primitives

 Call Stack | Heap
Given:

 void mod1(int x) {

 x = 42;

 }

Execute code in main():

 int x = 11;

 int[] y = {11, 22, 33};

 mod1(x);

 mod1(y[2]);

���� What does variable x and array y in main contain

 after the code above executes?

A.) x has y’s array has

B.) x has y’s array has

C.) x has y’s array has

���� What happens if we call mod1(y) in main?

Copyright 2014-2016 Jim Skrentny CS 367 (S16): L6 - 4

Primitive vs. Reference Types: Parameter Passing

References

 Call Stack | Heap
Given:

 void mod2(int[] x) {

 x[0] = 21;

 }

 void mod3(int[] x) {

 x = new int[x.length];

 x[0] = 42;

 }

Execute code in main():

int x = 11;

int[] y = {11, 22, 33};

mod2(y);

 mod3(y);

���� What does variable x and array y in main contain

 after the code above executes?

A.) x has y’s array has

B.) x has y’s array has

C.) x has y’s array has

���� What happens if we call mod2(x) in main?

Copyright 2014-2016 Jim Skrentny CS 367 (S16): L6 - 5

Programmer’s Memory Model for Java

Call Stack

contains

birth

death

Heap

contains

birth

death

Static Data

contains

birth

death

Copyright 2014-2016 Jim Skrentny CS 367 (S16): L6 - 6

New Data Structure - Chain of Linked Nodes

The Data Structure

Array vs. Chain of Nodes

Goal

Copyright 2014-2016 Jim Skrentny CS 367 (S16): L6 - 7

Listnode Class

class Listnode<E> {

 private E data;

 private Listnode<E> next;

 public Listnode(E d) {

 this(d, null);

 }

 public Listnode(E d, Listnode<E> n) {

 data = d;

 next = n;

 }

 public E getData() { return data; }

 public Listnode<E> getNext() { return next; }

 public void setData(E d) { data = d; }

 public void setNext(Listnode<E> n) { next = n; }

}

Copyright 2014-2016 Jim Skrentny CS 367 (S16): L6 - 8

Practice: Using Listnodes

���� Draw a memory diagram corresponding to the given code:

assume code is in main() Call Stack | Heap

Listnode<String> n1 = null;

���� Write the code that results in:

