Homework 4 due 10 pm Friday, February 19th
Program 2 due 10 pm Sunday, March 6th

Last Time
LinkedList Class
Linked List Variations
• header node
• tail reference
LinkedListIterator Class
Iterable and For-Each Loops

Today
Iterable and For-Each Loops (from last lecture)
More Linked List Variations
• double linking
• circular linking
Complexity
• concept
• big-O notation
• analyzing algorithms practice
• analyzing Java code
• practice analyzing Java code

Next Time
Read: finish Complexity
Complexity
• best/worst cases
• significance of scaling
• complexity caveats
Comparing ArrayList vs LinkedList
• shadow array - improving array resizing
Double and Circular Linking

Doubly-Linked Chains of Nodes

Circular Singly-Linked Chains of Nodes

Circular Doubly-Linked Chains of Nodes
Analyzing Algorithm Efficiency

Complexity

If problem size doubles and the number of operations:
Example: Giving a Toast
N vs. N\log(N) vs. N^2

Complexity Analysis:

•

•
Big-O Notation

Concept

some growth rate functions:

Simplifying Equations

Formal Definition

⭐
Complexity of Java Code

Basic operations

Sequence of statements

statement1;
statement2;
...
statementk;

If-else

if (cond) {
 //if sequence of statements
}
else {
 //else sequence of statements
}
Complexity of Java Code (cont.)

Basic loops
→ What is the problem size based on?

```java
for (i = 0; i < j; i++) {
    // sequence of statements
}
```

Nested loops
→ What is the problem size based on?

```java
for (i = 0; i < N; i++) {
    for (j = 0; j < M; j++) {
        // sequence of statements
    }
}
```

Loops with nested method calls (assume problem size based on N)

```java
for (i = 0; i < N; i++) {
    f1(i);  // assume O(1)
}
```

```java
for (i = 0; i < N; i++) {
    f2(N);  // assume O(N)
}
```

```java
for (i = 0; i < N; i++) {
    f3(i);  // assume O(i)
}
```
Practice - Complexity of Java Code

method1

What is the problem size based on?

```java
public void method1(int[] A) {
    for (int i = 0; i < A.length - 1; i++)
        method2(A, i);
}
```

method2

```java
public void method2(int[] B, int s) {
    for (int i = s; i < B.length - 1; i++)
        if (B[i] > B[i+1])
            method3(B, i, i+1);
}
```

method3

```java
public void method3(int[] C, int x, int y) {
    int temp = C[x];
    C[x] = A[y];
    C[y] = temp;
}
```
method4

What is the problem size based on?

```java
public void method4(int Q) {
    int sum = 0, R = 1000;
    for (int i = Q; i >= 1; i--)
        for (int j = 0; j < R; j++)
            sum += j;
}
```

method5

What is the problem size based on?

```java
public void method5(int X) {
    int tmp, arr[];
    arr = new int[X];
    for (int i = 0; i < X; i++)
        arr[i] = X - i;
    for (int i = 0; i < X - 1; i++) {
        for (int j = i; j < X - 2; j++) {
            if (arr[j] > arr[j+1]) {
                tmp = arr[j];
                arr[j] = arr[j+1];
                arr[j+1] = tmp;
            }
        }
    }
}
```