CS 367 - Introduction to Data Structures Thursday, February 25, 2016

Midterm Exam 1

- Tuesday, March 1, 5:00 pm
- Lec 1: room 3650 of Mosse Humanities Building
- Lec 2: room 1351 of Chemistry Building
- Lec 3: room 6210 of Social Sciences Building
- UW ID required
- See posted exam information and sample question on Learn@UW
- Email has been sent to those requesting a makeup/accommodation

Homework 5 due 10 pm tomorrow, February 26th **Program 2** due 10 pm Sunday, March 6th

Last Time

Complexity Caveats
Comparing ArrayList vs LinkedList
Shadow Array - improving array resizing
Stack ADT

- concept
- array implementations
- chain of nodes implementations

Today

Queue ADT (from last time)

- concept
- chain of nodes implementations

Circular Array Data Structure

Tree Terms

Priority Queue ADT

- concept
- operations
- implementation options

Next Time

Exam mechanics Sample questions solution

Implementing a Queue ADT using Circular Array

Concept		
enqueue(item)		
dequeue()		
expand()		

Tree Terminology

- 1. Which is the **root**?
- 2. How many **leaves** are there?
- 3. How many nodes are in the right **branch/subtree** of B?
- 4. Which is the **parent** of G?
- 5. How many **children** does E have (**degree** of E)?
- 6. Which is the **sibling** of E?
- 7. How many **descendants** does B have?
- 8. What are the **ancestors** of C?
- 9. What is the **length** of the **path** from B to D?
- 10. What is the **height** of the tree?
- 11. What is the **depth/level** of J?

Priority Queue ADT

Priorities		
Concept		
goal:		
Operations		

Options for Implementing a Priority Queue ADT

data structure	insert	removeMax
unordered array		
ordered array		
unordered chain of nodes		
ordered chain of nodes		