
Efficient Signature Matching
with Multiple Alphabet
Compression Tables

Shijin

Kong
Randy Smith
Cristian

Estan

Presented at SecureComm

2008, Istanbul, Turkey

2

Signature Matching

Signature Matching a core component of
network devices

Operation (ideal): For a set of signatures, match
all relevant sigs in a single pass over payload

Many constraints
Evolving, complex signatures
Wirespeed operation
Limited memory
Active adversary

3

Regular Expressions and DFAs

Regular expressions standard for writing sigs
Buffer overflow: /^RETR\s[^\n]{100}/
Format string attack: /^SITE\s+EXEC[^\n]*%[^\n]*%/

DFAs used for matching to input

4

12

12

12

4

2

8

2

8

25

25

25

41

41

41

5

5

State 0 State 1
12

12

12

4

4

4

8

8

State 2
25

25

25

6

41

5

41

5

State 3

input_byte=1

crt_state=1 …

DFA Operation

next_state=12

if accept(next_state)

alert

5

Matching with DFAs

Advantages
Fast – minimal per-byte processing
Composable – combine many DFAs into one

Disadvantages
States are heavyweight (1 KB each!)
State-space explosion occurs when DFAs combined

Memory exhausted with only a few DFAs!
Workaround: many DFAs matched in parallel

6

12

12

12

4

2

8

2

8

25

25

25

41

41

41

5

5

State 0 State 1
12

12

12

4

4

4

8

8

State 2
25

25

25

6

41

5

41

5

State 3

…

Key: Reduce memory usage

Reduce
size of
transition
tables

Reduce number of states

Strategy: aggressively reduce memory footprint, keep exec time low

7

Main Contribution

Multiple Alphabet Compression Tables
Lightweight, applicable to hardware or software
Compatible with other techniques
Worst case = average case

Results (in software)
4x to 70x memory reduction
35% - 85% execution time increase

8

Outline

Introduction
Alphabet Compression Tables
Interacting with D2FAs
Experimental Results

9

12

12

12

4

2

8

2

8

25

25

25

41

41

41

5

5

State 0 State 1
12

12

12

4

4

4

8

8

State 2
25

25

25

6

41

5

41

5

State 3

…

Alphabet Compression: core observation

Some input symbols are
equivalent; the transitions
on those symbols at any
state are identical.

10

12

4

2

8

2

8

25

41

41

41

5

5

State 0 State 1
12

4

4

4

8

8

State 2
25

6

41

5

41

5

State 3

input_byte=1

crt_state=1

0

0

0

1

2

3

4

5

Alphabet compression table

…

index=0

next_state=12

Alphabet Compression Tables

11

12

4

2

8

2

8

25

41

41

41

5

5

State 0 State 1
12

4

4

4

8

8

State 2
25

6

41

5

41

5

State 3
0

0

0

1

2

3

4

5

Alphabet compression table

…

Even further compression…

12

12

4

2

8

2

8

25

41

41

41

5

5

State 0 State 1
12

4

4

4

8

8

State 2
25

6

41

5

41

5

State 3
0

0

0

1

2

3

4

5

Alphabet compression table

…

Even further compression…

13

12

4

2

8

2

8

25

41

41

41

5

5

State 0 State 1
12

4

4

4

8

8

State 2
25

6

41

5

41

5

State 3
0

0

0

1

2

3

4

5

Alphabet compression table

…

Even further compression…

14

State 0 State 1 State 2 State 3

ACT 0

…

0

0

0

1

1

1

2

2

ACT 1

25

41

5

12

4

2

8

12

4

5

25

6

41

5

0

0

0

1

2

3

2

3

Multiple ACTs

How do we know which ACT to use with which state?

15

State 0 State 1 State 2 State 3

crt_act=1

next_state=12

ACT 0

…

0

0

0

1

1

1

2

2

ACT 1

0 25

1 41

0 5

0 12

1 4

0 2

0 8

0 12

1 4

0 8

0 25

1 6

1 41

0 5

crt_state=1

0

0

0

1

2

3

2

3

index=0input_byte=1

next_act=0

Multiple ACTs

16

Constructing Multiple ACTs

Partition states appropriately
for example:

{S1, S2, S3, …, Sn} { {S1, S8,}, {S2, S3, S9,}, … }

Construct single ACT for each group of states
See algorithm in paper

17

Partitioning States for ACTs

Input: number of ACTs to use m, DFA D
Output: a partition of states into m subsets

Use greedy, heuristic approach:

States = Set of all states in D;
while (m>1) {

Subset = GetEquivClassPartition(States);
AddToResult(Subset);
States = States

–

Subset;
m--;

}
return Result;

18

How many Compression Tables?

Avg

trans per state Avg

exec time

Eight ACTs is enough

19

Outline

Introduction
Alphabet Compression Tables
Interacting with D2FAs
Experimental Results

20

ACTs

and D2FAs

Two kinds of redundancy

Symbols have identical behavior
for large subsets of states

Compress with (multiple) ACTs

S1

S2

S3

S4

a,b,c

d

e

a,b,c

a,b,c

21

ACTs

and D2FAs

Two kinds of redundancy

Symbols have identical behavior
for large subsets of states

Compress with (multiple) ACTs

Symbols at many states lead
to common next states

Compress with D2FAs

S1

S2

S3

S4

a,b,c

d

e

a,b,c

a,b,c

S2

fe

S1

fe

c

c

h

h

22

12

12

12

4

2

8

2

8

25

25

25

41

41

41

5

5

State 0 State 1
12

12

12

4

4

4

8

8

State 2
25

25

25

6

41

5

41

5

State 3

…

D2FAs: core observation

Kumar et al (Sigcomm

2006); Kumar et al (ANCS 2006); Becchi

et al (ANCS 2007)

For many pairs of
states, the transitions
for most characters
are identical!

Idea: store only one
copy

23

12

12

12

4

2

8

2

8

25

25

25

41

41

41

5

5

State 0 State 1
12

12

12

4

4

4

8

8

State 2
25

25

25

6

41

5

41

5

State 3

…

D2FAs: core observation

For many pairs of
states, the transitions
for most characters
are identical!

Idea: store only one
copy

Kumar et al (Sigcomm

2006); Kumar et al (ANCS 2006); Becchi

et al (ANCS 2007)

24

2

8

2

12

12

12

4

4

4

8

8

State 0 State 1

25

25

25

41

41

41

5

5

State 2

6

5

41

State 3

input_byte=1

crt_state=1 next_state=12

…

2 0

D2FAs

Default transitions

Issue:
 good compression,

potentially heavy run-
 time cost

25

ACTs

and D2FAs Together

Combine ACTs and D2FAs to address both kinds
of redundancy

Procedure:
1.

Apply D2FA compression to DFAs
2.

Apply multiple ACT compression to D2FA results

Only slight modification to ACT construction
Add “not handled here” symbol
Deal with default transitions

26

2

8

2

12

12

12

4

4

4

8

8

State 0 State 1

25

25

25

41

41

41

5

5

State 2

6

5

41

State 3

…

2 0

ACTs

+ D2FAs

Default transitions

27

2

8

2

12

4

8

State 0 State 1

25

41

5

State 2

6

5

41

State 3

…

2 0

ACTs

+ D2FAs

ACT 0
0

0

0

1

1

1

2

2

28

0 2

0 8

0 2

0 12

1 4

0 8

State 0 State 1

0 25

1 41

0 5

State 2

1 6

0 5

1 41

State 3

…

0 2 1 0

ACTs

+ D2FAs

ACT 0
0

0

0

1

1

1

2

2

ACT 1
0

0

0

1

2

3

4

0

29

0 2

0 8

0 2

0 12

1 4

0 8

State 0 State 1

0 25

1 41

0 5

State 2

1 6

0 5

1 41

State 3

…

0 2 1 0

ACTs

+ D2FAs

ACT 0
0

0

0

1

1

1

2

2

ACT 1
0

0

0

1

2

3

4

0

crt_act=1
crt_state=1

index=0

input=1

next_state=12

next_act=0

index=0

30

Outline

Introduction
Alphabet Compression Tables
Interacting with D2FAs
Experimental Results

31

Experimental Setup

1550 HTTP, SMTP, FTP signatures
Grouped by protocol and rule set (Snort or Cisco)

DFA Set Splitting (Yu, 2006) to cluster DFAs
Provide memory bound a priori
Heuristically combine into as few DFAs as possible

Experiment Environment
10 GB traces, run on 3.0 GHz P4
Exec time measured with cycle-accurate counters

32

Memory vs

Time

4000 States
114 DFAs

8000 States
82 DFAs

16000 States
45 DFAs

ide
al

33

Memory vs

Time

Snort HTTP Cisco IPS HTTP

Lowest mem, highest exec!

34

Memory vs

Time

Snort SMTP Cisco IPS SMTP

Lowest mem, highest exec!

35

Conclusion

Multiple alphabet compression tables
Lightweight
Applicable to hardware or software platforms
Compatible with other techniques

Provides better time vs. space performance
4x to 70x memory reduction
35% to 85% execution time increase

Best technique a function of time, memory limits
ACTs add superior design points

36

Efficient Signature Matching with Multiple
Alphabet Compression Tables

Thank you

37

intentionally blank

38

Regular Expressions and DFAs

Regular expressions standard for writing sigs
Buffer overflow: /^RETR\s[^\n]{100}/
Format string attack: /^SITE\s+EXEC[^\n]*%[^\n]*%/

DFAs used for matching to input

Match sig

2!

Payload Header

C0 A8 64 01 site exec % retr

% S1

S2

r

e [^\n]

[^\nrs]

\n

t r

\n

s

[^\n]…

i t e

\n

S3

S2

%…

39

Memory Usage

DFA ACT D2FA ACT + D2FA

Snort HTTP 74 8.1 8.8 4.3

Snort SMTP 98 5.7 42 3.4

Snort FTP 94 4.9 9.2 3.9

DFA ACT D2FA ACT + D2FA

Cisco HTTP 116 30 4.7 17

Cisco SMTP 110 29 3.0 18

Cisco FTP 83 5.1 1.7 1.9

All results reported in megabytes (MB)

40

Memory vs

Time

Snort FTP Cisco IPS FTP

	Efficient Signature Matching with Multiple Alphabet Compression Tables
	Signature Matching
	Regular Expressions and DFAs
	DFA Operation
	Matching with DFAs
	Key: Reduce memory usage
	Main Contribution
	Outline
	Alphabet Compression: core observation
	Alphabet Compression Tables
	Even further compression…
	Even further compression…
	Even further compression…
	Multiple ACTs
	Multiple ACTs
	Constructing Multiple ACTs
	Partitioning States for ACTs
	How many Compression Tables?
	Outline
	ACTs and D2FAs
	ACTs and D2FAs
	D2FAs: core observation
	D2FAs: core observation
	D2FAs
	ACTs and D2FAs Together
	ACTs + D2FAs
	ACTs + D2FAs
	ACTs + D2FAs
	ACTs + D2FAs
	Outline
	Experimental Setup
	Memory vs Time
	Memory vs Time
	Memory vs Time
	Conclusion
	Efficient Signature Matching with Multiple Alphabet Compression Tables
	Slide Number 37
	Regular Expressions and DFAs
	Memory Usage
	Memory vs Time

