Deflating the Big Bang: Fast and Scalable Deep Packet Inspection with Extended Finite Automata

Randy Smith
Cristian Estan
Somesh Jha
Shijin Kong

Deep Packet Inspection

- Packet content increasingly used to classify net traffic
 - Used for intrusion detection, application identification, quality of service
 - Limited resources: classic time v. space tradeoff
- In this work
 - Techniques that reduce both memory and execution time by an order of magnitude or more

Signature Matching

- Problem: find all signature occurrences that match the payload up to the currently scanned byte
- Example:

```
Signatures = { sig_1: /(.*)shadow/, sig_2: /(.*)user(.*)root/, sig_3: /(.*)[Pp][Aa][Ss][Ss][Ww][Dd]/ } 

\leftarrow Header | Payload \rightarrow

CO A8 64 01 60 19 00 15 | user passwd root PASSWD
```

Ideal: match signatures simultaneously in a single pass

s₃ match!

s₂ match!

s₃ match!

Signatures

- □ Regular expressions used to *express* signatures
 - Capture vulnerabilities rather than specific exploits
 - □ Buffer overflow: /^RETR\s[^\n]{100}/
 - □ Format string: /^SITE\s+EXEC\s[^\n]*%[^\n]*%/
- Finite automata used to match signatures
 - Simple, well-understood model of computation
 - Combine using standard cross-product operation
- □ But there's a problem...

State-Space Explosion

- State-space "explodes" under combination
 - Less than 100 signatures requires more than 3 GB!
- □ Why? combined states = tuples of source states
 - Distinct state for each reachable combination

/.*bc/

XFAs: Extended Finite Automata

- Introduced in *IEEE Symposium on Security and Privacy* (Oakland) 2008
- Problem with DFAs: No distinction between DFA state and computation state
- Idea: extend DFAs with variables that more efficiently track computation state
 - Variables reside in a small "scratch" memory
 - Small programs update variables during matching

Main Contributions

- Formal characterization of state-space explosion
- XFA model
 - XFA algorithms easily adapted from DFA algorithms
 - Framework for systematic optimization

Outline

- □ State space explosion, formally
- Optimizations
- Experimental Evaluation

Ambiguity

What are the input sequences that lead to a state?

All input sequences leading to Q have the same suffix:

a, aha, aloha, hiya, aaa, aba,...

Input sequences leading to R have different suffixes:

ab, abe, abs, ab[^c]+,...

Unambiguous

Ambiguous

A DFA is unambiguous iff all its states are unambiguous

Unambiguous Automata

- □ Property 1: D_1 and D_2 unambiguous \rightarrow $D_1 + D_2$ unambiguous
- □ Property 2:
 D₁ and D₂ unambiguous → |D₁ + D₂| < |D₁| + |D₂|
- Unambiguous automata may be freely combined with no state-space explosion

No State Explosion

No State Explosion

Exponential Explosion

Adding a Bit

XFAs with Counters

/.*\na[^\n]{200}/

/.*\na[^\n]{200}/

XFAs with Counters

Key Contribution

- Ambiguity the culprit in state-space explosion
- XFAs provide a mechanism for controlling ambiguity

XFA Model

Start with a DFA, add update functions to states

- States and transitions
 - Transitions a function of states and input
- Per-state update and test functions
 - Variable Update a function of states and variable values

Combining XFAs

/.*\na[^\n]{200}/

XFA Optimization

- □ XFA approach: construct individual XFAs, then combine
- Combination "collects" many variables and instructions
 - affects memory size, execution time, per-flow state
- Idea: borrow techniques used in compiler optimization

Optimization: Combine Independent Vars

- Analogous to register allocation used by compilers
 - Map many distinct logical vars to fewer physical vars
- Reduces instruction count (execution time) and number of variables (per-flow state)

Optimization: Code Motion

- Analogous to code motion used by compilers
- move instructions to make bits adjacent,
 merge adjacent instructions to a single operation
 - Align on word boundaries, watch out for hazards
- Reduces instruction count (execution time)

Experiment Highlights

- Sizes of combined XFAs up to 10,000x smaller than combined DFAs
 - XFAs typically smaller and faster than other methods
- Optimization techniques significantly reduce instruction lengths and per-flow state requirements

Experiment Methodology

- Extracted FTP, SMTP, and HTTP regular expressions from Snort and Cisco rule sets
 - Constructed XFAs and DFAs for each signature
 - Separately combined XFAs, DFAs per-protocol

Signature Set	Num Sigs	# States (DFA)	# States (XFA)
Cisco FTP	38	> 3.1 M	527
Cisco SMTP	102	> 3.1 M	3,879
Cisco HTTP	551	> 3.1 M	11,982
Snort FTP	72	> 3.1 M	769
Snort SMTP	56	> 3.1 M	2,415
Snort HTTP	863	> 3.1 M	15,266

Optimization: Instruction Counts

Before Optimization

After Optimization

Optimization: Per-Flow State

Table: Per-flow state (in bytes) before and after optimization

Signature	XFA Optimization	
Set	Before	After
Cisco FTP	28	10
Cisco SMTP	9	7
Cisco HTTP	24	7
Snort FTP	95	11
Snort SMTP	66	23
Snort HTTP	54	36

Summary: ∼3x reduction

Performance: Exec Time v. Memory

Cisco SMTP

Performance: Exec Time v. Memory

Snort HTTP

Conclusion

- Deep Packet Inspection increasingly important
- Ambiguity is the culprit for state-space explosion
 - Control ambiguity with XFAs
- XFA Model provides framework for optimizations to be systematically applied
 - Optimization effects are significant
- □ XFAs smaller *and* faster

Deflating the Big Bang: Fast and Scalable Deep Packet Inspection with Extended Finite Automata

Thank you

intentionally blank