Deflating the Big Bang: Fast and
Scalable Deep Packet Inspection
with Extended Finite Automata

Randy Smith
Cristian Estan
Somesh Jha
Shijin Kong

August 20, 2008 Sigcomm 2008, Seattle, WA

—
Deep Packet Inspection

0 Packet content increasingly used to classify net traffic

Used for intrusion detection, application
identification, quality of service

Limited resources: classic time v. space tradeoff

0 In this work

Techniques that reduce both memory and execution
time by an order of magnitude or more

hlllIIIIIIIIIIIIIIIIIIIIIJ!!
Signature Matching

o Problem: find all signature occurrences that match the
payload up to the currently scanned byte

0 Example:

Signatures ={ sig,: /(.*)shadow/,
sig,: /(.*)user(.*)root/ ,
sigs: /(.")[Ppl[Aa][Ss][Ss][Ww][Dd]/ }

< Header | Payload -

CO A8 64 01| 60 19 00 15 user passwd root PASSWD

s; match! s, match! s; match!

0 Ideal: match signatures simultaneously in a single pass

3

—
Signatures

0 Regular expressions used to express signatures
Capture vulnerabilities rather than specific exploits
o Buffer overflow: /~RETR\s[~\n] {100}/
0 Format string: /~SITE\s+EXEC\s[~*\n]*%[*\n]*%/

0 Finite automata used to match signatures
Simple, well-understood model of computation

Combine using standard cross-product operation

0 But there’s a problem...

State-Space Explosion

0 State-space “explodes” under combination
Less than 100 signatures requires more than 3 GB!
0 Why? combined states = tuples of source states
Distinct state for each reachable combination

200 states just
for counting! S.b
A
2-\n / \ b
\n 5 aZ-\n-\n ” + aQ —

/ *\na[Mn]{200}/ /.*bel

—
XFAs: Extended Finite Automata

0 Introduced in IEEE Symposium on Security and Privacy
(Oakiland) 2008

0 Problem with DFAs: No distinction between DFA state
and computation state

0 Idea: extend DFAs with variables that more efficiently
track computation state

Variables reside in a small “scratch” memory
Small programs update variables during matching

—
Main Contributions

o Formal characterization of state-space explosion

0 XFA model
XFA algorithms easily adapted from DFA algorithms
Framework for systematic optimization

S ——
Outline

o State space explosion, formally
0 Optimizations

0 Experimental Evaluation

—

Ambiguity
0 What are the input sequences that lead to a state?
na] ["c] accept(sigl)
/.*ab.*cd/ ”a Q) C O 0
All input sequences leading to Input sequences leading to R
Q have the same suffix: have different suffixes:
3, aha, aloha, hiya, aaa, aba, ... ab, abe, abs, ab["c]+,...
Unambiguous Ambiguous

o A DFA is unambiguous iff all its states are unambiguous

—
Unambiguous Automata

o Property 1:
D, and D, unambiguous = D; + D, unambiguous

o Property 2:
D, and D, unambiguous = |[D; + D,| < |D,| + |D,|

0 Unambiguous automata may be freely combined with no
state-space explosion

10

No State Explosion

[~a]

/. *abc/ @—@—@—

pt(ig1)

-+

[”n]

J et M

pt(ig2)

11

No State Explosion

accept(sig1)

accept(sig1)

i\ ["an]
+ accept(sig2) =
/ . *a be/ @@L@_@" accept(sig2)

accept(sig3)

12

I b L]
Exponential Explosion

/ *ab.*cd/ | *ef *gh/

13

Adding a Bit
A

if (b1)
accept(sigl)
d

bl=true

-

b1l=false
if (b1)
accept(sigl) accept(sig2)

/ *ab.*cd/ | *ef *gh/

bl=false

b2=true
b2=false

if (b2)
accept(sig2)

h

@

14

XFAs with Counters

C__
if (c==0)
accept(sigl)

200 states just
for counting!

A
h [

@ —
accept(sigl) [™n]

/- *\na["\n]{200}/ /- *\na[\n]{200}/

¢ = invalid

15

XFAs with Counters

C__
if (c==0)
accept(sigl)

/- *\na[\n]{200}/

¢ = invalid

C__
if (c==0)
accept(sigl)

c--

if (c==0)
accept(sigl)

accept(sig2)

/. *bc/
Unambiguous!

16

Key Contribution

o Ambiguity the culprit in state-space explosion

0 XFAs provide a mechanism for controlling ambiguity

17

—
XFA Model

o Start with a DFA, add update functions to states

bl = true

If (b1)
accept(sigl)

States and transitions
o Transitions a function of states and input

Per-state update and test functions

o Variable Update a function of states and variable
values

18

Combining XFAs

/- *\na["\n]{200}/

[ctrSET,1,200, [ALT 3]]

[ctrRST 1]

\n _

[ctrDEC 1]

[ctrRST 2]

\n _

[ctrDEC 2]

[/ \nb["M\n]{150}/

[ctrRST 1]
[ctrRST 2]

[ctrSET 1,200, [ALT 3]]
[ctrDEC 2]

[ctrDEC 1]
[ctrDEC 2]

[ctrDEC 1]
[ctrSET 2,150, [ALT 7]]

oappend instructions to
corresponding states 1o

—
XFA Optimization

o XFA approach: construct individual XFAs, then combine

o Combination “collects” many variables and instructions
affects memory size, execution time, per-flow state

0 Idea: borrow techniques used in compiler optimization

20

Optimization: Combine Independent Vars

o Analogous to register allocation used by compilers
Map many distinct /ogical vars to fewer physical vars

0 Reduces instruction count (execution time) and number
of variables (per-flow state)

[ctrRST 1] [Mn] [ctrSET 1,200, [ALT 3]]
[ctrRST 2] [ctrDEC 2]

A

a

@ \n LY >
b
[Mnab] \n \n @

[ctrDEC 1] [Mn] [ctrDEC 1]
[ctrDEC 2] [ctrSET 2,150, [ALT 7]]

[ctrSET 1,200, [ALT 3]]

[ctrSET 1,150, [ALT 3]]

21

—
Optimization: Code Motion

o Analogous to code motion used by compilers

0 move instructions to make bits adjacent,
merge adjacent instructions to a single operation

Align on word boundaries, watch out for hazards

0 Reduces instruction count (execution time)

move merge

[bitSET 2] [bitSET 2]—””’,,,:»[bitMSK 0,2]
[bitTST 4, ...] [bitSET 3] [bitTST 4, ...]
[bitRST 67] [DitTST 4, ...] [bitRST 4]
[bitRST 4] [bitRST 4] [bitMSK 2,40]
[bitSET 3] ItRST

[bitRST 69] [bitRST 691 hazard

22

—
Experiment Highlights

0 Sizes of combined XFAs up to 10,000x smaller than
combined DFAs

XFAs typically smaller and faster than other methods

0 Optimization techniques significantly reduce instruction
lengths and per-flow state requirements

23

—
Experiment Methodology

0 Extracted FTP, SMTP, and HTTP regular expressions
from Snort and Cisco rule sets

Constructed XFAs and DFAs for each signature
Separately combined XFAs, DFAs per-protocol

Signature Set Num Sigs # States (DFA) # States (XFA)
Cisco FTP 38 >3.1M 527
Cisco SMTP 102 >3.1M 3,879
Cisco HTTP 551 >3.1M 11,982
Snort FTP 72 >3.1M 769
Snort SMTP 56 >3.1M 2,415
Snort HTTP 863 >3.1M 15,266

24

hll!!!

Optimization: Instruction Counts
Signature Set: Snort HTTP

10000 —
1000 —
Before § 1
Optimization * 0
1_\ A I N B S|
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Instructions per State
10000 —
1000 —
Q
After = 100
Optimization *® 0

10 12 14 16 18 20 22 24 26 28 30 32
Instructions per State

25

—
Optimization: Per-Flow State

Table: Per-flow state (in bytes) before and after optimization

Signature XFA Optimization

Set Before After
Cisco FTP 28 10
Cisco SMTP 9 7/
Cisco HTTP 24 7
Snort FTP 95 11
Snort SMTP 66 23
Snort HTTP 54 36

Summary:

26

Performance: Exec Time v. Memory

Cisco SMTP
'I T T T T TT T T T T TT | T T T T TT | T

le+09F +—+ Multiple DFAs|

n << D2FASs -
O ¥k XFAs 1
3 le+08 = =
2, - :
= I i
§Ie+07’ = =
=) - i@ E E :
gﬂr1 06 : _
w 1e+U0E =
= *pre—opt
g i]
g le+05E =
> - post-opt -
10000 DFA Exex. | | E

10 1(}0 1000 10000

Processing time (cycles/byte logscale)

27

Performance: Exec Time v. Memory

Snort HT'TP
T T T T TT T T T T TT | T T T T TT | T

le+09F +—+ Multiple DFAs|

- O D2FAs -

) - *k XFAs T

'S le+08¢ =

Z, - :

= i i

i le+07 = * %w =

< - pre-opt .

1 L _
=14

Z let06= * post-opt E

" C]

g i]

g le+05¢ =

> - -

10000 DFA Exe:c. | | E

10 1(}0 1000 10000

Processing time (cycles/byte logscale)

28

—
Conclusion

0 Deep Packet Inspection increasingly important

0 Ambiguity is the culprit for state-space explosion
Control ambiguity with XFAs

0 XFA Model provides framework for optimizations to be
systematically applied

Optimization effects are significant

0 XFAs smaller and faster

29

—
Deflating the Big Bang:
Fast and Scalable Deep Packet Inspection
with Extended Finite Automata

Thank you

30

intentionally blank

31

	Deflating the Big Bang: Fast and Scalable Deep Packet Inspection with Extended Finite Automata
	Deep Packet Inspection
	Signature Matching
	Signatures
	State-Space Explosion
	XFAs: Extended Finite Automata
	Main Contributions
	Outline
	Ambiguity
	Unambiguous Automata
	No State Explosion
	No State Explosion
	Exponential Explosion
	Adding a Bit
	XFAs with Counters
	XFAs with Counters
	Key Contribution
	XFA Model
	Combining XFAs
	XFA Optimization
	Optimization: Combine Independent Vars
	Optimization: Code Motion
	Experiment Highlights
	Experiment Methodology
	Optimization: Instruction Counts
	Optimization: Per-Flow State
	Performance: Exec Time v. Memory
	Performance: Exec Time v. Memory
	Conclusion
	Deflating the Big Bang:�Fast and Scalable Deep Packet Inspection�with Extended Finite Automata
	Slide Number 31

