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Abstract

Partial or total duplication of document content is
common to large digital libraries. In this paper, we
present a copy detection system to automate the detection
of duplication in digital documents. The system we present
is sentence-based and makes three contributions: it
proposes an intuitive definition of similarity between
documents; it produces the distribution of overlap that
exists between overlapping documents; it is resistant to
inaccuracy due to large variations in document size. We
report the results of several experiments that illustrate the
behavior and functionality of the system.

1. Introduction

In large digital libraries, of which the Internet is a
prime example, partial and/or total duplication of document
content is common. Duplication of content arises for a
variety of reasons. To name a few: data may be mirrored at
multiple sites; documents may be unknowingly submitted
multiple times; a single document in the library may be the
concatenation of several smaller documents in the library;
documents may be revisions of each other; documents may
be plagiarized versions of other documents.

Successful detection of duplicate content is important
to the long-term success of digital libraries, the Internet,
and digitally distributed media in general. Three issues
illustrate this:

» From the perspective of information retrieval,
duplication degrades the efficiency of the retrieval
process.

» From the perspective of electronic commerce,
duplicated copyrighted material is a constant source of
lost revenues for copyright holders (consider the large
amount of illegally distributed music encoded in "mp3"
format available over the Internet as a case in point).

»  From the perspective of dynamic digital libraries such
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as the Internet, duplicates provide alternative copies of

a document when an original is removed.

Copy detection systems, which automate the process of
detecting overlap between electronic documents, are a
recent addition to digital library technology. Currently,
there are three major copy detection systems: COPS,
SCAM, and KOALA. These systems share the following
weaknesses:

+ Each system struggles to measure the amount of
overlap existing between two documents.

+ Each system fails to provide any information
describing where overlap occurs between documents.

+ Two of the three systems, COPS and SCAM, are
plagued with false positives (which occur when two
documents are falsely reported to have overlap).

+  Two of the three systems, SCAM and KOALA, have
trouble detecting overlap between documents that vary
widely in size.

In this paper, we present a copy detection system that
addresses each of the preceding four weaknesses. Our copy
detection system performs copy detection using a
fingerprinting technique centered around the sentence
structure of documents. Given a document D to test, our
system hashes each sentence in D. It finds overlap by
comparing the hash values in D with the hash values
contained in a database of document hash values. Relative
positions of sentences in both the test document D and the
database documents are then used to determine the
locations where overlap occurs between documents.

Our system incorporates advantageous properties of
existing systems, leaves behind many of their weaknesses,
and contains capabilities not available in existing systems.
Specifically, our copy detection system exhibits the
following characteristics:

» It incorporates an intuitive definition of similarity
between documents. Documents with no sentences in
common are 0% similar, and identical documents are
100% similar.

+ It is able to compute both the amount of overlap that



exists between documents as well as display the

location of overlap between two or more documents.

+ It is robust over large variations in the sizes of
documents.

In addition, as part of the fingerprinting (hashing)
technique, we present a scalable, near-perfect hash function
for English sentences that can hash millions of sentences
while giving up only tens of collisions.

2. Applications and relations to conference

We present seven Internet-based applications that need

a copy detection system.

1. Internet web crawling. Broder, et. al. [4] gathered
30,000,000 web documents during 1997 and
discovered that 20% were identical copies of existing
documents [10][18]. Duplicate Linux documentation
alone had a combined file size of 4.5 gigabytes [18].
A web crawler that can determine a duplicate page can
save processing time and reduce search engine index
size.

2. Internet e-commerce. E-commerce services must
guard against losses caused by illegal distribution of a
copied electronic product. Garcia-Molina, Ketchpel,
and Shivakumar [6] give four steps to control such
illegal duplication, the central component of which is
a copy detection system.

3. Internet fault tolerance. The average World Wide Web
hyperlink lasts only 44 days [9]. "404 Document Not
Found" is a plague on retrieval efforts. Instead of not
processing duplicate pages (as in (2) above), when a
crawler determines that a page is a duplicate, the
search engine can be instructed to store the URL of the
duplicate to increase fault tolerance.

4. Internet evolution. How do web pages evolve? How
frequently does a page change? How much does a
page change within a time step? How often does a
page move between servers and within a server? What
is the typical life cycle of a page? What are the access
patterns of a page? To answer these questions, a
crawler can use a copy detection system to periodically
reprocess pages to measure changes. Understanding
how Internet pages evolve leads to better servers,
crawlers, browsers, search engines, and web tools.

5. Internet paper submissions. Editors face two onerous
tasks concerning submissions. (1) Determining overlap
between a submission and previous publications. (2)
Reviewing all changes between a revision and the
original. A copy detection system automates these two
tasks. It automatically reports the submission's
similarity to previous work. It automatically lists all
sentences changed between a revision and the original.
Naturally the editor's judgment is still required, but a
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copy detection system can reduce the tedium.

6. Internet information retrieval. Search engines find
documents that match a query. Identical documents
have identical rankings. Therefore, search engines
will return a list of different URL's, which, when
retricved, turn out to be for the same document. A
copy detection system can improve information
retrieval and reduce Internet congestion by eliminating
a search engine’s unintentional listing of duplicate
documents.

7. Internet copyright enforcement. Let D be a document
whose copyrighted material is to be enforced. A
violator may have copied D in its entirety or tried to
hide the violation by taking only occasional sentences
in a non-ordered fashion. A sentence-oriented copy
detection system identifies each copied sentence, even
when in they are in a (scattered) random order.

3. Related work

This section discusses six systems and techniques used
for detecting overlap between documents. These systems
are diff, SIF, COPS, SCAM, KOALA, and Digital
Watermarking.

3.1. diff

diffapplies the longest common subsequence algorithm
to find differences between two text documents. It is
commonly used for source code, lists, and other
line-oriented files. In the context of document copy
detection, though, diff has two weaknesses. First, it is
subject to phase shifts. In a textual document, which is not
explicitly line-oriented, the addition of a few words at the
beginning of a document can cause every line to shift a few
words to the right (in order to stay within formatting
margins). Although the modified document is virtually
identical to the original document, diff'would find nothing
in common between the two documents since the shift
causes cach line in the modified document to be altered.
Second, a longest common subsequence algorithm can only
find lines that are in the same order. For an extreme
example, let D be a (line-oriented) document, all of whose
lines are unique. Let C be the same document with all the
lines of D in reverse order, ¢.g., from bottom to top. Then
although every line of C is also in D, diff reports that they
have at most one line in common.

3.2. SIF

SIF [10] was developed in 1994 as a tool useful for
finding similar files in a file system. It uses a



fingerprinting scheme developed by Rabin [14] to
characterize documents. A fingerprint of a string .S'is an
integer f(S) with the property that if S’ is even a slight
modification of S, then with very high probability f(S) and
f(S") differ. SIF generates fingerprints from randomly
selected substrings of a document. Documents are deemed
similar if the number of common fingerprints exceeds a
specified threshold. SIF was originally developed as a tool
for file management. In the scope of copy detection, it has
several weaknesses. First, its notion of similarity is not
well suited to copy detection. Second, it can't gauge the
extent of document overlap. Finally, it does not display the
locations of similar documents in which overlap occurs.

3.3. COPS

COPS [3], developed in 1995, was designed
specifically to detect plagiarism between documents. It
incorporates a hash-based registration scheme to perform
copy detection. Documents are registered by hashing each
sentence in the document and storing the hash values in a
database. Plagiarism detection is performed by comparing
the hash values of a test document to the hash values in the
database. Like SIF, COPS reports a "violation" if the
number of common hash values exceeds a given threshold.
From an evolutionary standpoint, COPS adds to SIF a
better technique for estimating similarity. Whereas SIF
compares only selected subsets of documents, COPS has the
capacity to compare cach sentence (via its hash value) of a
document with all other registered documents. COPS has
three weaknesses. First, the hash function produces a large
number of collisions, which falsely raise the amount of
similarity between compared documents. Second, COPS
can only detect plagiarism for documents that have at least
2% (10 sentences or more for their test sets) overlap.
Third, COPS' sentence disambiguation often selects
incorrect sentence boundaries, which the authors report as
the source of some incorrect matches. Our system
overcomes cach of these three weaknesses.

3.4. SCAM

SCAM [15][16][17], developed in 1996, uses
information retrieval techniques to perform word-based
copy detection. For small documents, SCAM identified
more overlap than COPS, but it also had more false
positives. SCAM has the following four characteristics:
First, SCAM is geared towards small documents that
average 5KB in size [19]. Additionally, no performance
analysis is given for larger documents. Second, the
similarity measure used (which is a modified cosine
similarity measure) is ill-defined; it can report
non-identical documents as being 100% similar. Third,
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SCAM cannot provide the location of overlap between
documents. Finally, its storage requirements are high.
Storage requirements for each processed document range
from 30% to 65% of the size of the original document.

3.5. KOALA

KOALA [8], developed in 1996, specifically targeted
plagiarism. It struck a compromise between SIF's random
fingerprinting and COPS' exhaustive fingerprinting by
selecting substrings of a document based on their usage
frequency. The result of this is a reduction in storage
requirements without sacrificing the accuracy of the system.
Although KOALA provides high levels of accuracy even in
the presence of small amounts of overlap between
documents, it does have the following two weaknesses:
First, it provides only document-level similarity; it can not
report the location of overlap between two documents.
Second, it is not robust over documents of widely varying
sizes.

3.6. Digital watermarking

Digital watermarking refers to the technique of lacing
digital documents with additional information. Digital
watermarks may be easily applied to audio, video, and still
image data, and may be cither visibly noticeable or
imperceptible to the naked eye. In the realm of textual
document copy detection, digital watermarking uses
techniques such as line-shift coding, word-shift coding, and
feature coding to imperceptibly place additional
information in a document. Although a considerable
amount of work has been done on how to protect
watermarks from attack [1][2]]12], digital watermarking of
text documents has two weaknesses. First, it offers no
protection when the formatting of the document is
removed. Second, it cannot reliably detect partial overlap
between documents.

4. Test collections

At the core of our copy detection system is a
sentence-based hash function. In the process of developing
a hash function, we identified the following three
requirements: first, the hash function must have
near-perfect behavior (see Section 5). Second, it must be
scalable. Third, it must be resistant to changes in
document genre. Consequently, we neceded sets of
documents that allowed us to test these criteria.

Our first attempt was to build a 400-megabyte
document collection by hand using the Internet for source
material. We failed for two reasons: first, web documents



are not necessarily sentence-based. They often contain
formatting, html, JavaScript functions, lists, tables, and
hyperlinks. Second, we observed that the textual content of
web documents averages 5 kilobytes in length. Obtaining
a 400-megabyte collection of data would require us to
manually examine 80,000 documents for suitability.

For our tests, we created four document collections that
average approximately 400 megabytes per collection. The
first three collections, wsj, ap, and zd, were created from
data used for the TREC conferences [22]. The fourth
collection, gutenberg, was created from resources compiled
from The Gutenberg Project [21]. Descriptions of the
collections are as follows:

« wsj (Wall Street Journal articles, 1987-1992),

2,911,293 sentences, 435 megabytes.

* ap (Associated Press newswire articles, 1988-1989),

3,575,343 sentences, 452 megabytes.

*  zd (Ziff-Davis technically oriented computer material,

1989-1990), 2,356,795 sentences, 290 megabytes.

»  gutenberg (from Project Gutenberg [20] 1996-1998),

4,113,089 sentences, 412 megabytes.

We used Campbell's syntactic sentence algorithm [5]
to disambiguate the documents into their component
sentences [13].

5. A Near-perfect hash function for English
sentences

Our copy detection is centered around a sentence-based
hash function. This hash function bears the burden of
accuracy and performance. While many existing hashing
algorithms  tolerate collisions to obtain a uniform
distribution of hash wvalues, hash collisions in a copy
detection system are a serious problem. In a copy detection
system, hash collisions are false positives; they assert that
sentences are identical when in fact they are distinct.

We define a hash function to be near-perfect if and
only if it averages no more than one collision for every
100,000 sentences. In addition, a copy detection system
demands that the hash function be scalable and resistant to
changes in document genre. We consider a hash function
to be scalable if the ratio of the number of collisions to the
number of sentences tends to a constant as the number of
sentences grows. For our purposes, we require scalability
to millions of sentences.

We consider a hash function to be resistant to changes
in document genre if the hash function suffers little
degradation over different document genres (such as
technical papers, newspaper articles, magazine articles, and
literary works.)

We comment that perfect hash functions are not
applicable to our system. Although perfect hash functions
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are often used in building information retrieval systems,
they are best suited for a static key (sentence) set. With a
dynamic key set, each addition of a key (sentence) to the set
of keys requires that the hash values for the entire set be
re-computed. This requires at best O(mn) time (1 is the
mumber of sentences, # is the number of additions over
time) with the constant coefficients quite large.
Furthermore, a perfect hash function gives us better results
than we need; it suffices for us to make the occurrence of
collisions rare provided we can handle them efficiently
when they are encountered.

Evolution of our near-perfect hash function went
through five stages. In each of the following functions, let
S'be a sentence.

5.1. Hash 1

Our first hash function was based on Heintze's algorithm
[8]. It converts S to lower case; removes all
non-consonants from S and returns the first four remaining
consonants. When applied to 400,000 sentences, 20,000
buckets contained collisions.

5.2. Hash 2

Our second hash function was based on classical
multiplication and modulo arithmetic hash functions [11].
It converts .S to lower case, removes all non-alphabetic
characters from S, divides S into 4-character substrings,
and returns a hash value as follows:

hash = 0;
FOR i =1 TO length (S) in steps of 4 DO
hash = (hash +1 * (S, * 26° + S, * 26° +
Sz * 26" + §,.9)):
RETURN (hash MOD 1299827);

The number 1299827 is a prime number larger than
the number of sentences applied to the test. When applied
to 400,000 sentences, 31,000 buckets contained collisions.

5.3. Hash 3

Our third hash function was based on the 4-grams of
a sentence. The set of 4-grams of a sentence .S is the set of
all substrings of length 4 in S. For example, the 4-grams of
the string "great expectations" is the set {grea, reat, cate,
atex, texp, expe, xpec, pect, ecta, ctat, tati, atio, tion, ions}
(space ignored).

We gathered, tallied, and sorted over 615,000,000
4-grams. The hash function for a sentence simply returned
the three least frequent 4-grams in the sentence



4-Gram Hashing Collision Growth

gutenberg collection

5000 /

® 4500 /l‘—

S 4000 -

% 3500 ,/ spacing = 1

Q ——

= 3000 -

= / spacing = 2

2 2500

8 -

%’ 2000 / spacing = 3
_;M

_8 1500 Ma .

= e spacing = 4

S 1000 e

** 500 //- _/ e e

I N

O./é‘:;

0 50000 100000 150000 200000 250000 300000 350000
# of sentences
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constraints.

concatenated in order of appearance, as determined by the
statistics we generated for the 615,000,000 4-grams. When
applied to 400,000 sentences, only 6000 buckets had
collisions.

Hash 3 had another important trait: it provided us with
some ability to control the behavior of the distribution. For
example, the addition of a fourth 4-gram to the hash
function would produce a distribution that is strictly better
(i.e., closer to uniform) distribution (or, at least it will not
create a distribution that is any worse than just using three
4-grams). This is the property that is exploited to further
drive development of the hash function that we use.

5.4. Hash 4

Our fourth hash function was based on the three least
frequent 4-grams in a sentence concatenated in their order
of appearance that also satisfied imposed spacing
constraints. In particular, we required that the least
frequent 4-grams comprising the hash function be
separated by at least d characters in the sentence. We
gathered voluminous experimental data as d ranged from
1 to 4. The value 3 was found to produce optimal results:
when applied to 400,000 sentences, 500 buckets had
collisions. Figure 1 shows the reduction in collisions for a
portion of the gutenberg collection that occurs as the
spacing constraints are increased (note that although a
spacing of d=4 produces fewer collisions, it is the
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beginning of diminishing returns in which higher values of
d impact the hash function in other undesirable ways).

5.5. Hash 5

Our final hash function was based on concatenating the
three least frequent 4-grams (with a spacing of d=3) with
a second two-byte hash value that represents other sentence
characteristics. When applied to 400,000 sentences, only
2 buckets had collisions. We tested Hash 5 on our four
400-megabyte gutenberg, wsj, zd, and ap collections.
Figure 2, scaled to 2.3 million sentences, shows that Hash
5 hashed millions of sentences while suffering only tens of
collisions. Table 1 shows the results for the full-sized
collections. We observed that Hash 5 performed less well
on the ap collection, which is composed of news stories.
Since news stories frequently access the same sources and
borrow liberally from each other, we conjectured that the ap
collection contained many more "nearly identical"
sentences than the other three collections. This conjecture
was confirmed by Experiment 1 in Section 9.

In conclusion, we found Hash 5 to be suitable for our
copy detection system. In particular, Hash 5 satisfies the
three requirements of near-perfect behavior: only tens of
collisions for millions of sentences, scalability to millions
of sentences, and robustness over multiple document
genres.
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over the four document collections.

Table 1 Collision behavior of Hash 5 applied to the four document collections.

Collection # of hashable sentences # of collisions
gutenberg 4,113,089 21
wsjf 2,911,293 15
ap 3,575,343 358
zd 2,356,795 36

6. Copy detection

For our work, we have defined a measure for similarity
that measures and reports the amount of overlap between
two documents independently of the application in
question. In other words, rather than measure our data
according to specific results for which we are looking (i.c.
plagiarism or subset), we measure the relatedness of two
documents strictly according to the amount of similarity
that exists between them. We then determine the suitability
of two related documents to a given application through
analysis of their similarity score and overlap distribution.

6.1. Measuring Similarity

Our similarity definition is as follows: given two
documents d, and d,, let |d; n d,| denote the number of
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sentences common to both d; and d,. Let |d,| denote the
number of sentences in document d,, and let |d,| denote the
number of sentences in document d,. We define sim(d,,d,),
the similarity that exists between documents d; and d,, to be
the ordered pair

d, 0 d,| |d,n d
AIA

The first term computes the number of sentences common
to d,; and d, divided by the number of sentences in d,. It
represents the fraction of d, contained in d,. The second
term computes the number of sentences common to d; and
d, divided by the number of sentences in d,. It represents
the fraction of d, contained in d,. We alternatively refer to
the ordered pairs produced by sim(d,d,) as the similarity
score of d; and d,, and we refer to the individual values in
the ordered pair as terms.

sim(d,,d,) =



As an example, consider two documents d; (120
sentences) and d, (160 sentences) such that 4, and d, have
80 sentences in common. sim(d,,d,) returns <0.667,0.500>
as the similarity measure between d; and d,, indicating that
two-thirds of the sentences in d, are found in &, and half
the sentences in ¢, are found in d,. Note that sim(d,d,)
measures the subset relationship between d; and d,.

This correspondence to the subset relationship explains
why the similarity measure returns a pair instead of a single
number. Knowing that document d, contains sentences in
document d, does not tell us about d,'s relationship to
d~we need information about d,'s relationship to ¢, and
d,'s relationship to d;. Dropping either term or combining
the terms into a single number results in a loss of
information.

We give three reasons that our similarity measure is
intuitive. First, the terms in the ordered pair are properly
scaled. Identical documents are 100% similar (in both
directions), and documents with no sentences in common
report a similarity of <0.00, 0.00>, Partial overlap is
reflected by an ordered pair that contains the amount of
overlap that occurs between the documents.

Second, our similarity measure is easily computable.
For any pair of documents o, and d,, the user can verify the
values in the ordered pair returned by the measure simply
by counting the number of sentences common to both d,
and d,, and dividing this count by |d,| and |d,|, respectively.

Third, our definition of similarity has a direct
correspondence to the well-understood concept of subset.
The definition and "meaning" of our similarity definition
is intuitive and well-understood to the same extent that the
notion of a subset between two sets is intuitive and
well-understood.

6.2. Location of Overlap

The copy detection system draws on the sentence-based
structure of a document to report the overlap
distribution—the location within a document in which
overlap occurs. An overlap distribution is generated for
each of the two documents involved in the comparison.

A bit vector B tracks the overlap of each document D.
(B[] corresponds to the i* sentence in D.)

Determining the location of overlap between two
documents d, and d, proceeds as follows: let document d,
have bit vector B; and document d, have bit vector B,. Let
S be the set of sentences common to d; and d,. Then, for
each sentence s<5S, let i; denote the position of s in ¢, and
J, denote the position of s in d,. To record the location of
overlap in document d; and d,, set both B,[i]=1 and
Bylj1=1.

The data in the bit vector contains the information for
displaying the overlap distribution. We have implemented
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two types of output. Our first output is simply the bit vector
itself: the character "1" is output if the entry has value 1,
and the character "0" is output if the entry has value 0. For
small documents, this first approach works well, but for
large documents the output becomes long and difficult to
read.

Our second output is for large documents: it partitions
the bit vector into k-length clusters of contiguous entries (%,
the granularity, denotes the number of entries in a cluster).
During output, a single number is displayed for each cluster
(the number of bit vector entries within the cluster that
have the value 1).

7. System architecture

In this section, we briefly discuss the document
registration, copy detection, and database components of
our component-based system, depicted in Figure 3.

1. Document Registration Component. Given a document
for input, the document registration component divides
the document into its component sentences, hashes
each sentence, and inserts each hash value (along with
other information) into a database. The execution time
of this procedure is dominated by the hashing
involved. On a 350 MHz Intel Pentium IT processor
running Solaris x86, the unoptimized hash function
(written in PERL) hashed 4.1 million sentences in 12
hours, which translates to roughly 100 sentences per
second.

2. Copy Detection Component. To find the overlap
between a test document and the database of registered
documents, the copy detection system divides the test
document into its component sentences and hashes
each sentence. We then apply algorithms to quickly
compare each hash value of the test document to the
database. Each matching hash value in the database is
retriecved, sorted, and grouped according to its
document id. The output data is a visual distribution of
the matches, the similarity score, and a list of the
matching sentences.

3. Database Component. The database component
contains several tables and operations necessary to
support two types of queries on a hash value X:

1. Return all (document id, sentence-based offset

relative to the document) pairs whose hash value
is X.

2. Return all sentences whose hash value is X.

The tables are indexed and stored in a manner that

provides fast, efficient access. Unlike the other

components, the database component is not directly
visible to the user. The two queries above are posed by
the other components during processing.
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Figure 3 High level architecture of the copy detection system

8. Experiments

In this section, we report on three of the many
performed experiments [22].

8.1. Experiment 1

On April 15, 1999, a man entered the Mormon
Church's Family History Library in Salt Lake City, began
firing randomly, and killed three people. That evening we
retrieved from various web sites seven news articles that
reported the shooting. We entered the articles in our copy
detection system and compared one of the articles, which
we named abcnews.txt, with the other six documents.
Table 2 shows the results of these comparisons (with
granularity of k=5). Each of the pairwise comparisons
along with their similarity scores and overlap distributions
are displayed, showing the portions of the documents that
are found to be identical.

This experiment helped us understand our hash
function's performance on the ap collection, which contains
several closely related newspaper articles.

0-7695-0659-3/00 $10.00 © 2000 IEEE

8.2. Experiment 2

Let D, be the concatenation of the entire Federalist
Papers (7570 sentences); let D, be Federalist Paper #51 (76
sentences), taken from a different source. Table 3 vividly
demonstrates our copy detection system's robustness in the
face of documents whose sizes differ by a factor of 100.

8.3. Experiment 3

Research / is the i™ version of a research paper, i=1 to
i=8. Table 4 shows the results of comparing successive
versions of the paper. The similarity scores and overlap
distributions illuminate the evolution of the successive
drafts. Table 4 illuminates both where revisions occur and
the density of the revisions.

9. Future work

We have identified six areas for future work:
*  Currently, Hash 5's footprint is 14 bytes per sentence.
We can add straightforward compression techniques to



Table 2 Comparison of the file abcnews. txt with registered documents covering the same story. The

overlap granularity is set to &=5.

Document Pairs # of matching Similarity Score Overlap Distribution
sentences

abcnews.txt (test document) |51515]5]5]5]
________________________ 30 <1.00, 1.00> T T Tttt T

abcnews.txt 51515[5[55]

abcnews-2.txt 0]4]4|4]4[5]4|
________________________ 25 <0.74, 0.83> T T Tttt T

abcnews.txt 414]3|4(55]

cbsnews.txt (0100211
________________________ 4 <0.13,0.13> T T Tttt T

abcnews.txt [0]0]21]0[1]

cnn.txt 0]3]4(3|5[5]0]
________________________ 20 <0.65, 0.67> T T Tttt T

abcnews.txt [014]4(3[5(4|

deseretnews.txt [0]0]0|1]1]0]0|0]0[0]0]0|0]0[O]O]
________________________ 2 <0.03, 0.07> T T Tttt T

abcnews.txt [1]1]0/0/0[0|

mshbc.txt 313]3]012[2]4
________________________ 17 <0.49, 0.57> T T Tttt T

abcnews.txt 313]3[41212|

saltlaketribune.txt 2[3]4]2/4(3]1]
________________________ 19 <0.61, 0.63> T T Tttt T

abcnews.txt [2143|3[512|

the hash function to reduce the footprint by 35% (to 9
bytes per sentence). How much further can we
compress the hash values, and how does this affect the
performance of the system?

System processing time is dominated by the document
registration process in which documents are
decomposed into sentences, hashed, and placed in a
database. Our platform can perform registration at a
rate of 100 sentences/second. What can we do to
increase this rate?

Currently, our hash function is designed to group
identical sentences, not just similar ones. A hash
function that can properly group similar sentences
would provide for broader comparisons between
documents to be made. Such a similarity-based hash
function should accept a parameter to control the
amount of similarity that is desired.

Our analysis of our hash function is largely empirical.
Future work includes developing a theoretical model
for Hash 5 that can predict, among other things, its
scalability limits.

The current implementation of our system is
text-based. How should our line-oriented overlap
distribution display be extended to a GUI to assist

0-7695-0659-3/00 $10.00 © 2000 IEEE

human evaluation of overlap significance? ([7] has
given us some initial ideas.)

Our current system is oriented towards sentence-based
documents. However, many documents (including web
documents) are not sentence-based in that they contain
more phrases and sentence fragments than full
sentences. Our system must be extended to detect
overlap of non-sentence data.

10. Conclusion

system for digital

This paper presented our sentence-based copy detection
documents and discussed five

contributions:

an intuitive definition of
documents;

the ability to display the location of overlap between
documents;

the creation of a hash function which is robust over
documents of different genres;

the creation of a hash function which averages only
tens of false positives for millions of sentences;

the creation of a hash function which scales (at least)

to millions of sentences.

similarity between



Table 3 Results of the comparison between documents of widely varying sizes. The large document
contains all of the Federalist Papers; the small document contains just one of the Federalist Papers. The

distribution granularity is set to k&=20.

Document Pairs # of matching Similarity Score Overlap Distribution
sentences
Federalist Paper #51 (small document) [19|20]18|15]|
—————————————————————————————————— 72 <0.99, 0.01> e
Combined Federalist Papers (large doc.) |0]0...0]17]20]18|18J0]0...0|0J*

*With a granularity k=20, the 7570 sentences in the large document requires several lines to display. In the table, the overlap
is abbreviated to show only the clusters in which overlap occurs. The actual overlap distribution is as follows:
|0/0]0|0]0]0]0|0]0]0|0]0|0]0]0]0]0|0]0]0]0|0]0]0]0|0|0]0]0]0]0|0]0]0]0|0]0]0|0]0|0]0]0]0]0|0]0]0]0|0]0]0|0|0|0]0]0]0|0]0]0|0|0| 0]0|0|0]0j0
|0]0]0|0]0]0]0|0]0]0|0|0|0]0]0]0]0|0]0]0]0|0]0]0|0|0|0]0]0]0|0]0]0]0]0|0]0]0]|0]0|0]0]0]0|0]0|0|0]0|0]0]0]0|0|0]0|0]0|0]0|0]0|0| 0
|0/0]0|0]0]0]0|0]0]0|0]0|0]0]0]0]0|0]0]0]0|0]0|0|0|0|0]0]0]0]0|0]0|0]0|0]0]0|0|0|0]0]0]0|0|0]0]0]0|0]0]0|0|0|0]0]0]0|0]0]0|0|0| 0]0|0|0|0j0
|0|0|0]0|0]0|0|0]0|0]0|0|0]0|0]0|0|17]20| 18| 18|0|0]0|0]0|0|0]0|0]0|0|0]0]0]0|0|0]0|0]0|0|0]0]0]0|0|0]0|0]0|0|0]0|0]0|0|0]0|0]0|0|0]Oj0]0
|0/0]0|0]0]0]0|0]0]0|0]0|0]0]0]0]0|0]0]0]0|0]0]0]0|0|0]0]0]0]0|0]0]0]0|0]0]0|0|0|0]0]0]0]0|0]0]0]0|0]0]0|0]0|0]0]0]0|0]0]0|0]0| 0]0|0|0]0j0
|0/0]0|0]0|0]0|0]0|0]0]0|0]0]0]0|0]0|0|0]0|0]0]0]0|0]0]0|0]0|0]0|0]0|0]0]0|0|0|0[0]O|

Table 4 Pair-wise comparison of successive drafts of the research paper, with the last row containing a
comparison between the first draft and the final revision. The granularity is set to £=20.

Document Pairs # of matching Similarity Score Overlap Distribution
sentences
research-1.txt |20/18|15|20]19]20|19|02|
“““““““““ 133 <0.93, 0.58> T T T T T T T T T T T T T T T T T T T T T T TTTTTT T
research-2.txt |20]16]15|19]19|20|18]06|00|00|00|00|
research-2.txt |17|20|20|20]19|20|20|20|20|19|20|08|
“““““““““ 223 <0.98, 0.82> T T T T T T T T T T T T T T T T T T T T T T TTTTTT T
research-3.txt |11]20|20|20]19|20|20|20|20]18|00|02|20]13|
research-3.txt [11]12]10|10]13]|08|14(13|16]12|16|17|15|10]|
“““““““““ 177 <0.65, 0.60> T T T T T T T T T T T T T T T T T T T T T T TTTTTT T
research-4.txt [12]10|09]|08|14|07|09|14]13|16|11|16]|17|14|07|
research-4.txt |20|20|20|20]20]20|20|20]20|20|07|13]|13|14{13|
“““““““““ 260 <0.88, 0.87> T T T T T T T T T T T T T T T T T T T T T T TTTTTT T
research-5.txt |20|20|20|20]20]20|20|20]20|20|07|11]15|09|18|
research-5.txt [19]19|19|20]20]20|20|20]20|20|20|19]20|20|20|
“““““““““ 296 <0.99, 0.99> T T T T T T T T T T T T T T T T T T T T T T T T
research-6.txt [19]19|19|20]20]20|20|20]20|20|20|19]20|20|20|
research-6.txt |14/09|06|07|03|06|00]00]03|03|00|01]|05|01|06|
“““““““““ 64 <0.21, 0.24> T T T T T T T T T T T T T T T T T T T T T T T T
research-7.txt |14/08|07|07|04|05|00|01]05]00|03|03|04/|03|
research-7.txt |20|20|20|20|20]20]15|17]19]20|17|19|20]|04|
“““““““““ 251 <0.95, 0.95> T T T T T T T T T T T T T T T T T T T T T T T T
research-8.txt |20|20|20|20|20]20|16|17]19]20|17|19|20]|03|
research-1.txt |04/05|00|01]|04|00]00|00|
“““““““““ 14 <0.10, 0.05> T T T T T T T T T T T T T T T T T T T T T T T T
research-8.txt |04/04/01|01]|02]02|00|00]00]00|00|00|00|00|

We generated four large test sets drawn from different

types of data sources, and we observed good results when

we applied the test sets to our system. At a high level, we (1]
described the architecture of the system. Finally, we
reported the results of several experiments that illustrate the
behavior, robustness, and scalability of our system.
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