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Modern network intrusion detection systems (NIDS) employ regular expressions as attack
signatures. Internally, NIDS represent and operate these regular expressions as finite auto-
mata. However, finite automata present a well-known time/space tradeoff. Deterministic
automata (DFAs) provide fast matching, but DFAs for large signature sets often consume
gigabytes of memory because DFA combination results in a multiplicative increase in the
number of states. Non-deterministic automata (NFAs) address this problem and are
space-efficient, but are several orders of magnitude slower than DFAs. This time/space
tradeoff has motivated much recent research, primarily with a focus on improving the
space-efficiency of DFAs, often at the cost of reducing their performance.

We consider an alternative approach that focuses instead on improving the time-effi-
ciency of NFA-based signature matching. NFAs are inefficient because they maintain a fron-
tier of multiple states at any instant during their operation, each of which must be
processed for every input symbol. We introduce NFA-OBDDs, which use ordered binary
decision diagrams (OBDDs) to efficiently process sets of NFA frontier states. Experiments
using HTTP and FTP signature sets from Snort show that NFA-OBDDs can outperform tra-
ditional NFAs by up to three orders of magnitude, thereby making them competitive with a
variant of DFAs, while still retaining the space-efficiency of NFAs.

© 2011 Elsevier B.V. All rights reserved.
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1. Introduction

Deep packet inspection allows network intrusion detec-
tion systems (NIDS) to accurately identify malicious traffic
by matching the contents of network packets against
attack signatures. In the past, attack signatures were key-
words that could efficiently be matched using string match-
ing algorithms. However, the increasing complexity of
network attacks has led the research community to investi-
gate richer signature representations (e.g., [47,54,57]),
many of which require the full power of regular expressions.
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Because NIDS are often deployed over high-speed network
links, algorithms to match such rich signatures must also
be efficient enough to provide high-throughput intrusion
detection on large volumes of network traffic. This problem
has spurred much recent research, and in particular has led
to the investigation of new representations of regular
expressions that allow for efficient inspection of network
traffic (e.g, [3,5,15,28,44,58]).

To be useful for deep packet inspection in a NIDS, any
representation of regular expressions must satisfy two
key requirements: time-efficiency and space-efficiency.
Time-efficiency requires the amount of time spent by the
NIDS to process each byte of network traffic to be small,
thereby allowing large volumes of traffic to be matched
quickly. Space-efficiency requires the size of the represen-
tation to be small, thereby ensuring that it will fit within
the main memory of the NIDS. Space-efficiency also man-
dates that the size of the representation should grow pro-
portionally (e.g, linearly) with the number of attack
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signatures. This requirement is important because the
increasing diversity of network attacks has led to a quick
growth in the number of signatures used by NIDS. For
example, the number of signatures in Snort [36] has grown
from 3166 in 2003 to 15,047 in 2009. This upward trend
will likely accelerate in the future as NIDS vendors begin
to employ automated and semi-automated methods for
signature generation [9,26,34,41].

Finite automata are a natural representation for regular
expressions, but offer a tradeoff between time- and space-
efficiency. Using deterministic finite automata (DFAs) to
represent regular expressions allows efficient matching
(0(1) lookups to its transition table to process each input
symbol), while non-deterministic finite automata (NFAs)
can take up to O(n) transition table lookups to process each
input symbol, where n is the number of states in the NFA.
However, NFAs are space-efficient, while DFAs for certain
regular expressions can be exponentially larger than the
corresponding NFAs [22]. More significantly, combining
NFAs only leads to an additive increase in the number of
states, while combining DFAs can result in a multiplicative
increase, i.e., an NFA that combines two NFAs with m and n
states has up to O(m + n) states, while a DFA that combines
two DFAs with m and n states can have up to O(m x n)
states. As a result, DFA representations for large sets of reg-
ular expressions often consume several gigabytes of mem-
ory, and do not fit within the main memory of most NIDS.

This time/space tradeoff has motivated much recent
research, primarily with a focus on improving the space-
efficiency of DFAs. These include heuristics to compress
DFA transition tables (e.g., [5,28]), techniques to combine
regular expressions into multiple DFAs [58], and variable
extended finite automata (XFAs) [44], which offer compact
DFA representations and guarantee an additive increase in
states when signatures are combined, provided that the
regular expressions satisfy certain conditions. These
techniques trade time for space, and though the resulting
representations fit in main memory, their matching
algorithms are slower than those for traditional DFAs.

In this paper, we take an alternative approach and in-
stead focus on improving the time-efficiency of NFAs. NFAs
are not currently in common use for deep packet inspec-
tion, and understandably so—their performance can be
several orders of magnitude slower than DFAs. Neverthe-
less, NFAs offer a number of advantages over DFAs, and
we believe that further research on improving their time-
efficiency can make them a viable alternative to DFAs.
Our position is supported in part by these observations:

o NFAs are more compact than DFAs. Determinizing an NFA
involves a subset construction algorithm, which can
result in a DFA with exponentially more states than
an equivalent NFA [22].

e NFA combination is space-efficient. Combining two NFAs
simply involves linking their start states together by
adding new e transitions; the combined NFA is there-
fore only as large as the two NFAs put together. This fea-
ture of NFAs is particularly important, given that the
diversity of network attacks has pushed NIDS vendors
to deploy an ever increasing number of signatures. In
contrast, combining two DFAs can result in a multiplica-

tive increase in the number of states, and the combined
DFA may be much larger than its constituent DFAs.
Smith et al. [45] formally characterize this blowup
using the notion of ambiguity. However, identifying
and eliminating ambiguity currently involves some
manual effort.

e NFAs can readily be parallelized. An NFA may contain
multiple outgoing transitions for a single input symbol
from each state, all of which must be followed when
that input symbol is encountered. An NFA simulator
can easily parallelize these operations as shown in prior
work [13,40].

Motivated by these advantages, we develop a new ap-
proach to improve the time-efficiency of NFAs. We begin
by noting that an NFA can be in a set of states (called the
frontier) at any instant during its operation. The frontier
of an NFA can contain O(n) states, each of which must be
processed using the NFA’s transition relation for each input
symbol to compute a new frontier, thereby resulting in
slow operation. Although this frontier can be processed
in parallel to improve performance, NFAs for large signa-
ture sets may contain several thousand states in their
frontier at any instant. Commodity hardware is not yet
well-equipped to process such large frontiers in parallel.

Our core insight is that a technique to efficiently apply
an NFA’s transition relation to a set of states can greatly im-
prove the time-efficiency of NFAs. Such a technique would
apply the transition relation to all states in the frontier in a
single operation to produce a new frontier. We develop an
approach that uses ordered binary decision diagrams [10]
(OBDDs) to implement such a technique. Our use of OBDDs
to process NFA frontiers is inspired by symbolic model
checking, where the use of OBDDs allows the verification
of systems that contain an astronomical number of states
[11].

To evaluate the feasibility of our approach, we con-
structed NFAs in software using HTTP and FTP signatures
from Snort. We operated these NFAs using OBDDs and
evaluated their time-efficiency and space-efficiency using
traces of real HTTP and FTP traffic. Our experiments
showed that NFAs that use OBDDs (NFA-OBDDs) outper-
form traditional NFAs by approximately three orders of
magnitude. Our experiments also showed that NFA-OBDDs
retain the space-efficiency of NFAs. In contrast, our ma-
chine ran out of memory when trying to construct DFAs
(or their variants) from our signature sets.

In addition to improving the time-efficiency of NFAs,
our approach has a number of advantages. First, construc-
tion of NFA-OBDDs from regular expressions is fully auto-
mated and does not change signature semantics. In
contrast, prior work on improved signature representa-
tions has required manual analysis of regular expressions
(e.g., to identify and eliminate ambiguity [45]) or requires
the semantics of signatures to be modified (e.g., [58]). Sec-
ond, it uniformly handles all regular expressions. Prior
techniques, especially those that convert regular expres-
sions into DFAs (or variants), often require manual
intervention when regular expressions have certain kinds
of constructs (e.g., counters; see [44,58]). Last, NFA-OBDDs
may be amenable to a hardware implementation. Both
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NFAs (e.g., [13,17,40]) and OBDDs [42,60] have individually
been implemented in hardware. It may be possible to com-
bine ideas from prior work to construct NFA-OBDDs in
hardware.

Our main contributions in this work are as follows:

e Design of NFA-OBDDs. We develop a novel technique
that uses OBDDs to improve the time-efficiency of NFAs
(Section 3). We also describe how NFA-OBDDs can be
used to improve the time and space-efficiency of NFA-
based multi-byte matching (Section 6).

Comprehensive evaluation using Snort signatures. We
evaluated NFA-OBDDs using Snort’s HTTP and FTP sig-
nature sets and observed a speedup of about three
orders of magnitude over traditional NFAs. We also
compared the performance of NFA-OBDDs against a
variety of automata implementations, including the
PCRE package and a variant of DFAs (Section 5).

The main benefit of NFA-OBDDs is in improving the per-
formance (i.e., time and space-efficiency) of deep packet
inspection by NIDS, independent of its effectiveness at
detecting attacks. We acknowledge that matching network
traffic against regular expressions is no longer sufficient to
detect a large fraction of attacks, and that additional secu-
rity mechanisms and advanced forms of signatures (e.g.,
vulnerability signatures [9,54]) are necessary. Neverthe-
less, real deployments use layered defenses, and NIDS will
remain a cornerstone of network security for the foresee-
able future. Advanced signature matching techniques also
employ regular expression matching (e.g., see [38]) and
we expect that NFA-OBDDs will benefit them as well.

The rest of this article is organized as follows: Section 2
presents background material on OBDDs; Section 3 de-
scribes the construction and operation of NFA-OBDDs; Sec-
tion 4 describes the experimental setup and data sets used
in our evaluation, while Section 5 compares the perfor-
mance of NFA-OBDDs against other techniques to match
regular expressions. Section 6 extends NFA-OBDDs to mul-
ti-stride automata and presents experimental evaluation of
multi-stride NFA-OBDDs. We discuss related work in Sec-
tion 7 and conclude the article in Section 8.

2. Ordered binary decision diagrams

An OBDD is a data structure that can represent arbitrary
Boolean formulae. OBDDs transform Boolean function
manipulation into efficient graph transformations, and
have found wide use in a number of application domains.
For example, OBDDs are used extensively by model check-
ers to improve the efficiency of state-space exploration
algorithms [11]. OBDDs and their variants have also been
used in the analysis and design of intrusion detection sys-
tems and firewalls [12,18,19,21,59,60].

Formally, an OBDD represents a Boolean function
flx1,X3,...,X,) as a rooted, directed acyclic graph (DAG) that
has two kinds of nodes: non-terminals and up to two termi-
nals, which are labeled 0 and 1. Terminal nodes do not have
outgoing edges. Each non-terminal node v is associated
with a label var(?) € {x1,X2,...,X,}, and has two successors

Low(?) and HicH(v). The edges to these successors are la-
beled 0 and 1, respectively. An OBDD is ordered in the
sense that node labels are associated with a total order <.
Node labels along all paths in the OBDD from the root to
the terminal nodes follow this total order. An OBDD must
also satisfy two additional properties:

e there are no two non-terminal nodes u and » such that
vAR() = vAR( ), Low(ut) = Low( ), and HiGH(u) = HIGH( »); and
e there is no non-terminal u with row(u) = HicH(u).

In his seminal article, Bryant [10] introduced algorithms
to construct OBDDs for Boolean formulae and showed that
for a given total order of the variables of a Boolean formula,
the OBDD representation of that formula is canonical, i.e.,
for a given ordering, two OBDDs for a Boolean formula
are isomorphic. Fig. 1(b) depicts an example of an OBDD
for the Boolean formula f{x,i,y) shown in Fig. 1(a). In this
figure, the variable ordering is x <i<y. To evaluate the
Boolean formula for a given variable assignment, say
{x —1,i 0,y — 1}, it suffices to traverse the appropri-
ately labeled edges from the root to the terminal nodes;
in this case f{1,0,1) evaluates to 0. Fig. 1(c) depicts the
OBDD for f with the variable ordering i <x <y. Although
not evident from this example, the size of OBDDs is sensi-
tive to the total order imposed on the Boolean variables; it
is NP-hard to choose a total order that yields the most
compact OBDD for a Boolean function [10].

An OBDD representation of a Boolean formula offers
several advantages. First, OBDDs are often more compact
than other representations of Boolean formulae, such as
decision trees, conjunctive normal form (CNF) and disjunc-
tive normal form (DNF). Intuitively, this is because an
OBDD captures and eliminates redundant nodes in the
decision tree representation of a Boolean formula. Second,
OBDDs allow properties of Boolean functions to be checked
efficiently. For example, to determine whether a Boolean
function is satisfiable (or unsatisfiable), it suffices to check
whether the terminal node labeled 1 (respectively, 0) is
reachable from the root node. Because OBDD construction
and manipulation algorithms eliminate nodes that are
unreachable from the root, checking (un)satisfiability is a
constant-time operation.

OBDDs allow Boolean functions to be manipulated effi-
ciently. Bryant [10] describes two operations, AppLy and REs-
tricT, which allow OBDDs to be combined and modified
with a number of Boolean operators. These two operations
are implemented as a series of graph transformations and
reductions to the input OBDDs, and have efficient imple-
mentations; their time complexity is polynomial in the size
of the input OBDDs. We describe ArpLy and RestricT infor-
mally below, and refer the reader to Bryant’s article for de-
tails of these algorithms.

Arpry allows binary Boolean operators, such as A and v,
to be applied to a pair of OBDDs. The two input OBDDs,
OBDD(f) and OBDD(g), must have the same variable order-
ing. ArpLy({(op), OBDD(f), OBDD(g)) computes OBDD(f (op)
g), which has the same variable ordering as the input
OBDDs. Fig. 2(a) presents the OBDD obtained by combining
the OBDD in Fig. 1(b) with OBDD(I(i)) (Fig. 1(d)), where I is
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(a) A Boolean function f(z, 1, y).

(b) OBDD(f) with = < i < y.

(d) OBDD(1(3)), the identity

(c) OBDD(f) with i < = < y. function.

Fig. 1. An example of a Boolean formula and OBDDs with different variable orderings. Solid edges are labeled 1, dotted edges are labeled 0.

the identity function. Intuitively, ArprLy is implemented as a
simple recursive algorithm that processes the DAG repre-
senting the OBDD in layers, with each recursive step pro-
cessing a subgraph of the previous step, and finally
reducing the resulting DAG so that it satisfies the proper-
ties of an OBDD (e.g, deleting unreachable nodes, and
suitably merging nodes).

The RestricT operation is unary, and produces as output
an OBDD in which the values of some of the variables of
the input OBDD have been fixed to a certain value. That
is, Restrict(OBDD(f), X < k)= OBDD(fl(x—«)), where flx—x)
denotes that x is assigned the value k in f. In this case,
the output OBDD does not have any nodes with the label
x. Fig. 2(b) shows the OBDD obtained as the output of Res-
TRICT(OBDD(f), i+ 1), where OBDD(f) is the OBDD of
Fig. 1(b). Intuitively, the RestricT operation is implemented
by eliminating the nodes labeled i, suitably redirecting
edges from i's predecessors to point to i’s successors and
removing unreachable nodes.

Finally, Aprry and RestricT can be used to implement
existential quantification, which is used in a key way in
the operation of NFA-OBDDs, as described in Section 3. In
particular,

B f (X1, %) = FX0, .
Therefore, we have:

OBDD(3x;.f(X1,-..,Xn)) = Apply(V, Restrict(OBDD(f),
X; — 1),Restrict(OBDD(f), x; — 0)).

. 7Xﬂ)‘(xiR0) \/f(x17 s 7Xﬂ)‘(xi~1)‘

Note that OBDD(3x; - f{X1,...,X,)) will not have a node la-
beled x;.

2.1. Representing relations and sets

OBDDs can be used to represent relations of arbitrary ar-
ity. If R is an n-ary relation over the domain {0, 1}, then we
define its characteristic function fp as follows: fg(x1,...,x,) = 1
if and only if R(xq,...,X,). For example, the characteristic
function of the 3-ary relation R={(1,0,1),(1,1,0)} is
fr(X1,X2,X3) = (X1 AX2 AX3) V (X1 AX2 AX3). fr is a Boolean
function and can therefore be expressed using an OBDD.

An n-ary relation Q over an arbitrary domain D can be
similarly expressed using OBDDs by bit-blasting each of
its elements. That is, if the domain D has m elements, we
map each of its elements uniquely to bit-strings containing
[lgm] bits (call this mapping ¢). We then define a new
relation R(¢(x1),...,¢(xn)) = Q(Xq,...,X,). R is a n x [lgm]-

(a) ApPLY(A, OBDD(f),
OBDD(I(2))).

(b) RESTRICT(OBDD( f),
i — 1)

Fig. 2. Result of the AppLy and RestricT operations on the OBDD in Fig. 1(b).

ary relation over {0,1}, and can be converted into an OBDD
using its characteristic function.

A set of elements over an arbitrary domain D can also be
expressed as an OBDD because sets are unary relations, i.e., if
Sis a set of elements over a domain D, then we can define a
relation Rs such that Rg(s) = 1 if and only if s € S. Operations
on sets can then be expressed as Boolean operations and
performed on the OBDDs representing these sets. For exam-
ple, S C T can be implemented as OBDD(S) — OBDD(T)
(logical implication), while 1sew(SNT) is equivalent to
checking whether OBDD(S) A OBDD(T) is satisfiable. The
conversion of relations and sets into OBDDs is used in a
key way in the construction and operation of NFA-OBDDs,
which we describe next.

3. Representing and operating NFAs and NFA-OBDDs

We represent an NFA using a 5-tuple: (Q, 2, 4,qo,Fin),
where Q is a finite set of states, X is a finite set of input
symbols (the alphabet), 4: Q x (X U {€}) —» 2%is a transi-
tion function, qo € Q is a start state, and Fin C Q is a set
of accepting (or final) states. The transition function
A(s,i) = T describes the set of all states t € T such that there
is a transition labeled i from s to t. Note that 4 can also be
expressed as a relation 5: Q x 2 x Q, so that (s,i,t) € § for
all t € T such that A(s,i) = T. We will henceforth use 6 to de-
note the set of transitions in the NFA.

An NFA may have multiple outgoing transitions with
the same input symbol from each state. Hence, it maintains
a frontier F of states that it can be in at each step during
execution. The frontier is initially the singleton set {qo}
but may include any subset of Q during the operation of
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the NFA. For each symbol in the input string, the NFA must
process all of the states in F and find a new set of states by
applying the transition relation.

While non-determinism leads to frontiers of size O(|Q|)
in NFAs, it also makes them space-efficient in two ways.
First, NFAs for certain regular expressions are exponen-
tially smaller than the corresponding DFAs. For example,
an NFA for (0[1)*1(0|1)" has O(n) states, while the corre-
sponding DFA has O(2") states [22]. Second, and perhaps
more significantly from the perspective of NIDS, NFAs
can be combined space-efficiently while DFAs often can-
not. To combine a pair of NFAs, NFA; and NFA,, it suffices
to create a new state (pew, add € transitions from e, to
the start states of NFA; and NFA,, and designate e, to
be the start state of the combined NFA. This leads to an
NFA with O(]Q,| +|Qz]) states. In contrast, combining two
DFAs, DFA; and DFA,, can sometime result in a multiplica-
tive increase in the number of states because the combined
DFA must have a state corresponding to s x t for each pair
of states s and t in DFA; and DFA,, respectively. The num-
ber of states in the DFA can possibly be reduced using min-
imization, but this does not always help. For example, the
DFAs for the regular expressions ab*cd* and e f*gh* have 5
states and 6 transitions each, and the combined DFA (min-
imized) has 16 states and 16 x |X| transitions.

3.1. NFA operation using boolean function manipulation

We now describe how the process of applying an NFA'’s
transition relation to a frontier of states can be expressed
as a sequence of Boolean function manipulations. NFA-
OBDDs implement Boolean functions and operations on
them using BDDs. For the discussion below and in the rest
of this paper, we assume NFAs in which € transitions have
been eliminated (using standard techniques [22]). This is
mainly for ease of exposition; NFAs with € transitions can
also be expressed using NFA-OBDDs. Note that € elimina-
tion may increase the total number of transitions in the
NFA, but does not increase the number of states.

We now define four Boolean functions for an NFA
(Q,2,4,q0,Fin). These functions use three vectors of Bool-
ean variables: X, 7, and i. The vectors X and ¥ are used to
denote states in Q, and therefore contain [Ig|Q|] variables
each. The vector i denotes symbols in ¥, and contains
[lg|Z|] variables. As an example, for the NFA in Fig. 3, these
vectors contain one Boolean variable each; we denote
them as x, y, and i.

o T (X, 1,7) denotes the NFA's transition relation 5. Recall
that ¢ is a set of triples (s,i,t), such that there is a tran-
sition labeled i from state s to state t. It can therefore be

Fig. 3. NFA for (0|1)*1.

represented as a Boolean function as described in Sec-
tion 2.1. For example, consider the NFA in Fig. 3. Using
0 to denote state A and 1 to denote state B, 7 (x,i,y) is
the function shown in Fig. 1(a).

e Z,(i) is defined for each ¢ € X, and denotes a Boolean
representation of that symbol. For the NFA in Fig. 3,
To(i) =i (ie, i=0)and Z;(i) = i.

e F(X) denotes the current set of frontier states of the
NFA. It is thus a Boolean representation of the set F at
any instant during the operation of the NFA. For our
running example, if F={A}, F(x)=x% while if
F={A,B}, then F(x) =xVX.

¢ A(X) is a Boolean representation of Fin, and denotes the
accepting states. In Fig. 3, A(x) = x.

Note that T(X,1,¥), Z,(i) and A(X) can be computed
automatically from any representation of NFAs. The initial
frontier F={qo} can also be represented as a Boolean
formula.

Suppose that the frontier at some instant during the
operation of the NFA is F(X), and that the next symbol in
the input is ¢. The following Boolean formula, G(y), sym-
bolically denotes the new frontier of states in the NFA after
o has been processed.

G(y) = W.3[T (X,1,¥) ATs(i) A F(X)).

To see why G(¥) is the new frontier, consider the truth table
of the Boolean function 7(%,i,7). By construction, this
function evaluates to 1 only for those values of %, i, and
for which (%, 1, ¥) is a transition in the automaton. Similarly,
the function F(X) evaluates to 1 only for the values of ¥
that denote states in the current frontier of the NFA. Thus,
the conjunction of 7 (%,1,y) with Z(X) and Z,(i) only “se-
lects” those rows in the truth table of 7 (%, 7,) that corre-
spond to the outgoing transitions from states in the
frontier labeled with the symbol ¢. However, the resulting
conjunction is a Boolean formula in X, iand y. To find the
new frontier of states, we are only interested in the values
of y (i.e., the target states of the transitions) for which the
conjunction has a satisfying assignment. We achieve this
by existentially quantifying ¥ and i to obtain G(¥). To ex-
press the new frontier in terms of the Boolean variables
in X, we rename the variables in y with their counterparts
in X.

We illustrate this idea using the example in Fig. 3.
Suppose that the current frontier of the NFA is F={A,B},
and that the next input symbol is a 0, which causes the
new frontier to become {A}. In this case, 7 (x,i,y) is the
function shown in Fig. 1(a), Zo(i)=1i and F(x) = Vx.
We have T (x,i,y) AZo(i) A F(x) = (x AiAY). Existentially
quantifying x and i from the result of this conjunction, we
get G(y) = y. Renaming the variable y to x, we get F(x) = X,
which is a Boolean formula that denotes {A}, the new
frontier.

To determine whether the NFA accepts an input string,
it suffices to check that F N Fin # (). Using the Boolean nota-
tion, this translates to check whether 7 () A A(X) has a sat-
isfying assignment. In the example above with
F={A}, F(x) =X and A(x) =x, so the NFA is not in an
accepting configuration. Recall that checking satisfiability
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Network packets
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Regular efree BRI |, NFA exec Grp
expressions NFA niaco OBDD nfacbdd | Reject

Offline components

Online component

Fig. 4. Components of our software-based implementation of NFA-OBDDs.

of a Boolean function is an O(1) operation if the function is
represented as an OBDD.

3.2. NFA-OBDDs

The main idea behind NFA-OBDDs is to represent and
manipulate the Boolean functions discussed above using
OBDDs. Formally, an NFA-OBDD for an NFA (Q, X, ,qo, Fin)
is a 7-tuple (X,?,Y,OBDD( 7),{OBDD(Z,|Vo € X)},0BDD
(Fq,), OBDD(A)), where X, i, ¥ are vectors of Boolean vari-
ables, and 7, Z,, and A are the Boolean formulae dis-
cussed in Section 3.1. F,, denotes the Boolean function
that denotes the frontier {qo}. For each input symbol o,
the NFA-OBDD obtains a new frontier as discussed earlier.
The main difference is that the Boolean operations are per-
formed as operations on OBDDs.

The use of OBDDs allows NFA-OBDDs to be more time-
efficient than NFAs. In an NFA, the transition table must be
consulted for each state in the frontier, leading to
O(|8] x |F|) operations per input symbol. In contrast, the
complexity of OBDD operations to obtain a new frontier
is approximately O(sizeof (OBDD(7))xsizeof (OBDD(F))).!
Because OBDDs are a compact representation of the frontier
F and the transition relation 5, NFA-OBDDs are more time-
efficient than NFAs. The improved performance of NFA-
OBDDs is particularly pronounced when the transition table
of the NFA is sparse or the NFA has large frontiers. This is
because OBDDs can effectively remove redundancy in the
representations of ¢ and F.

NFA-OBDDs retain the space-efficiency of NFAs because
NFA-OBDDs can be combined using the same algorithms
that are used to combine NFAs. Although the use of OBDDs
may lead NFA-OBDDs to consume more memory than
NFAs, our experiments show that the increase is marginal.
In particular, the cost is dominated by OBDD(7'), which has
a total of 2 x [Ig|QJ] + [1g|Z|] Boolean variables. Even in the
worst case, this OBDD consumes only O(|Q|* x |X|) space,
which is comparable to the worst-case memory consump-
tion of the transition table of a traditional NFA. However, in
practice, the memory consumption of NFA-OBDDs is much
smaller than this asymptotic limit.

4. Experimental apparatus and data sets

We evaluated the feasibility of our approach using a
software-based implementation of NFA-OBDDs. As de-

! This is because the complexity of obtaining a new frontier is dominated
by the cost of an AppLy operation on OBDD(7) and OBDD(F), which costs
O(sizeof (OBDD(T)) x sizeof (OBDD(F))) [10].

picted in Fig. 4, the experimental apparatus consists of
two offline components and an online component.

The offline components are executed once for each set
of regular expressions, and consist of re2nfa and nfa2obdd.
The re2nfa component accepts a set of regular expressions
as input, and produces an e-free NFA as output. To do so,
it first constructs NFAs for each of the regular expressions
using Thompson’s construction [22,51], combines these
NFAs into a single NFA, and eliminates € transitions. The
nfa2obdd component analyzes this NFA to determine the
number of Boolean variables needed (i.e., the sizes of the
X,i and y vectors), and constructs OBDD(7), OBDD(A),
OBDD(Z,) for each ¢ € X, and OBDD(Fy,).

As discussed in Section 2, the size of an OBDD for a
Boolean formula is sensitive to the total order imposed
on its variables. Variable ordering also impacts the struc-
ture of OBDDs, and therefore the performance of NFA-
OBDDs. We empirically determined that an ordering of
variables of the form i< X < y yields high-performance
NFA-OBDDs. Our implementation of nfa2obdd therefore
uses this ordering for i, ¥ and y. Within each vector,
nfa2obdd orders variables in increasing order from most
significant bit to least significant bit. Section 5.6 presents
a detailed evaluation of the impact of variable ordering
on the performance of NFA-OBDDs.

The online component, exec_nfaobdd, begins execution
by reading these OBDDs into memory and processes a
stream of network packets. It matches the contents of
these network packets against the regular expressions
using the NFA-OBDD. To manipulate OBDDs and produce
a new frontier for each input symbol processed, this com-
ponent interfaces with Cudd, a popular C++-based OBDD li-
brary [46]. It checks whether each frontier & produced
during the operation of the NFA-OBDD contains an accept-
ing state. If so, it emits a warning with the offset of the
character in the input stream that triggered a match, as
well as the regular expression(s) that matched the input.?
Note that in a NIDS setting, it is important to check whether
the frontier F obtained after processing each input symbol
contains an accepting state (rather than after processing
the entire input string, which is the traditional operating
model for finite automata). This is because any byte in the
network input may cause a transition in the NFA that trig-
gers a match with a regular expression. We call this the
streaming model because the NFA continuously processes
input symbols from a network stream. This model is

2 Multiple regular expressions may trigger a match on an input symbol;
these regular expressions can be identified using the set of states that
appear in the conjunction F(X) A A(X).
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equivalent to using regular expressions to find all matching
substrings within a string, as the characters in the string are
presented to the matching algorithm one at a time.

4.1. Signature sets and network traffic

Signature Sets. We evaluated our implementation of
NFA-OBDDs with three sets of regular expressions, de-
scribed below. All three sets of regular expressions include
client-side and server-side signatures.

(1) HTTP/1503. The first set was obtained from the
authors of the XFA paper [44], and contains 1503
regular expressions that were synthesized from the
March 2007 snapshot of the Snort HTTP signature
set.

(2) HTTP/2612. The second set, numbering 2612 regular
expressions, was synthesized from the October 2009
snapshot of the Snort’s HTTP signature set as fol-
lows. The October 2009 snapshot has 4288 rules
for HTTP traffic, of which 1658 have uricontent
fields (1387 after eliminating duplicates) and 3078
have pcre fields (some rules have both fields). We
excluded pcre fields that contain non-regular con-
structs, such as back-references and subroutines
because these constructs are not regular and there-
fore cannot be implemented in NFA-based models,
which eliminated 1853 pcre fields (leaving us with
1225 regular expressions extracted from these
fields). This resulted in a total of 2612 unique regular
expressions synthesized from the Snort’s HTTP sig-
nature set. Although extracting just pcre and uri-
content fields from individual Snort rules only
captures a portion of the corresponding rules, it suf-
fices for our experiments, because our primary goal
is to evaluate the performance of NFA-OBDDs
against other regular-expression based techniques.

(3) FTP/98. The third set of signatures was synthesized
from Snort’s signatures for FTP traffic. We used 27
regular expressions extracted from the pcre fields
of FTP rules from the October 2009 rule set. We com-
bined these regular expressions with 71 regular
expressions for FTP traffic, synthesized by the
authors of the XFA paper [44], leaving us with a total
of 98 regular expressions for FTP traffic.

We have made these regular expression sets available
for use by other researchers [56].

HTTP traffic. We evaluated the performance of HTTP sig-
natures by feeding three sets of HTTP traffic traces to
exec_nfaobdd:

(1) Rutgers traces. We recorded HTTP traffic at the Web
server of the Rutgers Computer Science Department
for a one week period in August 2009. This traffic
was collected using tcpdump, and includes whole
packets of port 80 traffic from the Web server. The
traffic observed during this period consisted largely
of Web traffic typically observed at an academic
department’s main Web server; most of the traffic
was to view and query Web pages hosted by the

department. Overall, this week-long trace contained
connections from 18,618 distinct source IP
addresses. It contained a total of 10,069,369 network
packets, amounting to 1.24 GB worth of data, with
the payloads in the network packets ranging in size
from 1byte to 1460 bytes, with an average of
126 bytes (standard deviation of 271). Table 1 pre-
sents statistics that characterize various other
aspects of the trace.’

(2) DARPA traces. We used publicly available traces from

the 1999 DARPA intrusion detection evaluation data
sets [29]. Privacy concerns preclude us from releas-
ing the network traces collected in our department.
We therefore report experimental results with the
DARPA traces to ensure that our experiments can
be repeated independently by other researchers.
We acknowledge that the DARPA traces are no
longer in popular use for intrusion detection
research. Indeed, researchers have even argued that
they are inadequate for the purpose that they were
originally developed (to test the effectiveness of
intrusion detection systems at detecting attacks;
e.g., see [31,48]). Nevertheless, they suffice as an
independent data point for our experiments because
our goal is to measure the performance of regular
expression matching, and not to test their effective-
ness at detecting real attacks.
We used traces from weeks two, four and five of the
DARPA data set (only the traffic from these weeks
contain actual instances of attacks). These traces
contain 53,174,585 network packets, amounting to
about 11.7 GB worth of data, and contain connec-
tions from 8331 distinct source IP addresses. The
payloads in the network packets ranged in size from
2 bytes to 1460 bytes, with an average size of
351 bytes (standard deviation of 576).

(3) Synthetic trace. Because of the relatively small sizes
of payloads in the above traces, we additionally
included a synthetic trace. We generated this trace
by crawling URLs appearing on Twitter using an in-
house crawler built by extending the tweepy python
library. As we crawled URLs, we used the tcpdump
tool to record the generated HTTP traffic. The result-
ing trace contained 1.3 GB worth of data in
2,135,578 network packets. The payloads in the net-
work packets were 1202 bytes on average (standard
deviation of 472).

FTP traffic. We evaluated the FTP signatures using two
traces of live FTP traffic (from the command channel), ob-
tained over a two week period in March 2010 from our
department’s FTP server; these FTP traces contained
19.4 MB and 24.7 MB worth of data. The traffic consisted
of FTP requests to fetch and update technical reports
hosted by our department. We observed traffic from 528

3 The total number of matches triggered shown in Table 1 is not
indicative of the number of alerts produced by Snort because our signature
sets only contain patterns from the pcre and uricontent fields of the
Snort rules. The large number of matches is because signatures contained
patterns common in HTTP packets.
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Table 1

Statistics characterizing various aspects of the HTTP traces used in our experiments. The “matches triggered” columns show the total number of signature
matches that were triggered (note that a single network packet may trigger multiple signature matches) as well as the number of distinct signatures that

matched.
Trace Number of HTTP commands Matches triggered: total number (# distinct sigs.)
GET POST HEAD HTTP/1503 HTTP/2612
Rutgers 653,670 137,737 3504 1576 1,816,410 (47) 17,107,588 (120)
DARPA 1,333,469 36,386 450,480 126,824 37,952,078 (121) 190,662,579 (205)
Synthetic 107,436 8220 10,078 15,529 27,948,418 (47) 28,350,698 (135)
Table 2
Statistics showing the number of commands observed in the FTP traces used in our experiments.
Command CWD LIST MDTM MKD PASS PORT PWD
Number of Instances 62,561 3098 613 89 14,701 232 453
Command QUIT RETR SIZE STOR TYPE USER -
Number of Instances 12,244 7676 1110 1401 12,201 14,834 -

distinct source IP addresses during this period. Statistics on
various FTP commands observed during this period appear
in Table 2 (commands that were not observed are not re-
ported). This traffic triggered 9656 and 15,976 matches
in the FTP/98 signature set, corresponding to matches on
6 and 5 distinct signatures, respectively. The payload sizes
of packets ranged from 2 to 402 bytes with an average of
40 bytes (standard deviation of 44).

Because our primary goal is to study the performance of
NFA-OBDDs, we assume that the HTTP and FTP traces have
been processed using standard NIDS operations, such as
defragmentation and normalization. We fed these traces,
which were in tcpdump format, to exec_nfaobdd.

4.2. Experimental setup

All our experiments were performed on a Intel Core2 Duo
E7500 Linux-2.6.27 machine, running at 2.93 GHz with 2 GB
of memory (however, our programs are single-threaded,
and only used one of the available cores). We used the Li-
nux/proc file system to measure the memory consumption
of nfa2obdd and the Cudd ReadMemorylnUse utility to obtain
the memory consumption of exec_nfaobdd. We instrumented
both these programs to report their execution time using
processor performance counters. We report the perfor-
mance of exec_nfaobdd as the number of CPU cycles to pro-
cess each byte of network traffic (cycles/byte), i.e., fewer
processing cycles/byte imply greater time-efficiency. All
our implementations were in C++; we used the GNU g+ +
compiler suite (v4.3.2) with the 06 optimization level to
produce the executables used for experimentation.

Table 3
NFA-OBDD construction results.

5. Experimental evaluation

This section reports the performance of NFA-OBDDs,
and compares them against the performance of NFAs, the
PCRE package, which is a popular library for regular
expression matching, and variants of DFAs. Our experi-
ments show that NFA-OBDDs:

(1) outperform traditional NFAs by up to three orders of
magnitude while retaining their space-efficiency
(Section 5.2);

(2) outperform or are competitive in performance with
the PCRE package (Section 5.3);

(3) are competitive in performance with variants of
DFAs while being drastically less memory-intensive
(Section 5.4).

We also present a detailed performance breakdown of
NFA-OBDDs in terms of OBDD operations (Section 5.5)
and the impact of OBDD variable ordering on NFA-OBDD
performance (Section 5.6).

5.1. NFA-OBDDs: construction and performance

We used nfa2obdd to construct NFA-OBDDs from e-free
NFAs of the regular expression sets. Table 3 presents statis-
tics on the sizes of the input NFAs, the size of the largest of
the four OBDDs in the NFA-OBDD (OBDD(7)), and the time
taken and memory consumed by nfa2obdd. For the NFA-
OBDDs corresponding to the HTTP signature sets, the vec-
tors X and y had 18 Boolean variables each, while the vector

Signature set #Reg. exps. Size of the input NFA |OBDD(T)| Construction
#States #Transitions #Nodes Time/memory
HTTP (March 2007) 1503 159,734 3,986,769 659,981 3055/176 MB
HTTP (October 2009) 2612 239,890 5,833,911 989,236 4535/176 MB
FTP (October 2009) 98 26,536 5,927,465 69,619 246 s/34 MB
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i had 8 Boolean variables to denote the 256 possible ASCII
characters. For the NFA-OBDD corresponding to the FTP sig-
nature set, the vectors ¥ and y had 15 Boolean variables each.
We also tried to determinize these NFAs to produce DFAs,
but the determinizer ran out of memory in all three cases.
Fig. 5 depicts the performance of NFA-OBDDs. Fig. 5(a)
and (b) show the performance for the HTTP traces, while
Fig. 5(c) shows the performance for the FTP traces. Table 4
presents the raw throughput and memory consumption of
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Fig. 5. Comparing memory versus processing time of NFA-OBDDs,
traditional NFAs, the PCRE package, and different MDFAs for the Snort
HTTP and FTP signature sets. The x-axis is in log-scale. Note that Fig. 5(b)
and (c) only report the performance of MDFAs with 2604 and 95 regular
expressions, respectively.

NFA-OBDDs observed for each signature set. The through-
put and memory consumption of NFA-OBDDs varies slightly
across different traces for each signature set. This difference
was most pronounced for the HTTP/2612 signature set,
where the Rutgers trace was processed almost 1.8 x faster
than the DARPA trace. The variance in performance can be
attributed to the size and shapes of OBDD(F) (the OBDD
of the NFA’s frontier) observed during execution.

5.2. Comparison with NFAs

We compared the performance of NFA-OBDDs with an
implementation of NFAs that uses Thompson’s algorithm.
This algorithm maintains a frontier F, and operates as fol-
lows. For each state s in the frontier F, fetch the set of tar-
gets T; of the transitions labeled ¢ (the input symbol), and
compute the new frontier as F = | JscrIs. The performance
and memory consumption of our NFA implementation
(as also the PCRE package and DFA variants in Sections
5.3 and 5.4) was relatively stable across all the traces for
each signature set. Fig. 5 therefore reports only the aver-
ages across these traces.

As Fig. 5 shows, NFA-OBDDs outperform NFAs for all
three sets of signatures by approximately three orders of
magnitude for the HTTP signatures, and two orders of mag-
nitude for the FTP signatures. In Fig. 5(a), for example, NFA-
OBDDs are approximately 1600x-1800x faster than NFAs
while consuming almost the same amount of memory. The
difference in the performance gap between NFA-OBDDs
and NFAs for the HTTP and FTP signatures can be attributed
to the number and structure of these signatures. As dis-
cussed in Section 3.2, the benefits of NFA-OBDDs are more
pronounced if larger frontiers are to be processed. Since
there is a larger number of HTTP signatures, the frontier
for the corresponding NFAs are larger. As a result, NFA-
OBDDs are much faster than the corresponding NFAs for
HTTP signatures than for FTP signatures. Nevertheless, these
results clearly demonstrate that OBDDs can improve the time-
efficiency of NFAs without compromising their space-efficiency.

5.3. Comparison with the PCRE package

We compared the performance of NFA-OBDDs with that
of the PCRE package, which is a popular library for regular
expression matching that is used by a number of tools,
including Snort and Perl. PCRE represents regular expres-
sions using a tree-like structure. For a given input string,
this algorithm iteratively explores paths in this structure
until it finds an accepting state; if so, it declares a match.
If it fails to find an accepting state in one path, it backtracks
and tries another path until all paths have been exhausted.

Fig. 5 reports three numbers for the performance of the
PCRE package, corresponding to different values of config-
uration parameters of the package.* In both Fig. 5(a) and

4 These parameters determine whether PCRE must process input in the
ASCII or Unicode formats, and whether the matching algorithm must
terminate after finding the first matching substring or all matching
substrings. Of the four possible configurations based upon these two
parameters, we were able to experiment with only three because the PCRE
package crashed under one of the configurations.
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Table 4

Raw performance numbers for the charts shown in Fig. 5.
Signature set Processing time Memory
NFA-OBDDs
HTTP/1503 6844-7582 cycles/byte 58 MB
HTTP/2612 22,968-41,588 cycles/byte 61 MB
FTP/98 5095 cycles/byte 8 MB
NFAs
HTTP/1503 1.3 x 107 cycles/byte 53 MB
HTTP/2612 2.1 x 107 cycles/byte 73 MB
FTP/98 5.6 x 10° cycles/byte 29 MB
PCRE
HTTP/1503 2.1 x 10°-6.2 x 10° cycles/byte 3.6 MB
HTTP/2612 1.3 x 107-2.8 x 107 cycles/byte 3.9 MB
FTP/98 2210-6185 cycles/byte 5.9-6.2 MB
MDFA (partial signature sets in Fig. 5(b) and (c))
HTTP/1503 1000-15,951 cycles/byte 71-232 MB
HTTP/2604 15,891-49,296 cycles/byte 335-426 MB
FTP/95 1160-1386 cycles/byte 54-82 MB

(b), NFA-OBDDs outperform the PCRE package. The through-
put of NFA-OBDDs is about an order of magnitude better
than the fastest configuration of the PCRE package for the
set HTTP/1503. The difference in performance is more pro-
nounced for the set HTTP/2612, where NFA-OBDDs outper-
form the most time-efficient PCRE configuration by
approximately 300x-500x. The poorer throughput of the
PCRE package for the second set of signatures is likely be-
cause the backtracking algorithm that it employs degrades
in performance as number of paths to be explored in the
NFA increases. However, in both cases, the PCRE package is
more space-efficient than NFA-OBDDs, and consumes about
4 MB memory.

For the FTP signatures (Fig. 5(c)), NFA-OBDDs are about
2.5x slower than the fastest PCRE configuration. However,
unlike NFA-OBDDs which report all substrings of an input
packet that match signatures, this PCRE configuration only
reports the first matching substring. The performance of
the PCRE configurations that report all matching substrings
is comparable to that of NFA-OBDDs.

Note that in all cases, the PCRE package outperforms
our NFA implementation, which use Thompson'’s algorithm
[51] to parse input strings. Despite this gap in perfor-
mance, Cox [14] shows that Thompson’s algorithm per-
forms more consistently than the backtracking approach
employed by PCRE. For example, the backtracking ap-
proach is vulnerable to algorithmic complexity attacks,
where a maliciously-crafted input can trigger the worst-
case performance of the algorithm [43].

5.4. Comparison with DFA variants

5.4.1. Multiple DFAs

We compared the performance of NFA-OBDDs with a
variant of DFAs, called multiple DFAs (MDFAs), produced
by set-splitting [58].> An MDFA is a collection of DFAs rep-
resenting a set of regular expressions. Each DFA represents a
disjoint subset of the regular expressions. To match an input

5 We were unable to compare the performance of NFA-OBDDs against
DFAs because DFA construction ran out of memory. However, prior work
[45] estimates that DFAs may offer throughputs of about 50 cycles/byte.

string against an MDFA, each constituent DFA is executed
against the input string to determine whether there is a
match. MDFAs are more compact than DFAs because they re-
sult in a less than multiplicative increase in the number of
states. However, MDFAs are also slower than DFAs because
all the constituent DFAs must be matched against the input
string. An MDFA that has a larger number of constituent
DFAs will be more compact, but will also have lower time-
efficiency than an MDFA with fewer DFAs.

Using Yu et al.’s algorithms [58], we produced several
MDFAs by combining the Snort signatures in several ways,
each with different space/time utilization. Each point in
Fig. 5 denotes the performance of one MDFA (again, aver-
aged over all the input traces), which in turn consists of a
collection of DFAs, as described above.

Producing MDFAs for the HTTP/2612 and FTP/98 signa-
ture sets was more challenging, primarily because these
sets contained several structurally-complex regular
expressions that were difficult to determinize efficiently.
For example, they contained several signatures with large
counters (i.e., sequences of repeating patterns) often used
in combination with the choice (i.e., req|re;) operator. Our
determinizer frequently ran out of memory when attempt-
ing to construct MDFAs for such regular expressions. As an
example, consider the following regular expression in
HTTP/2612:

/. * \x2FCSuserCqT \ x2Eexe \ x3FLogout \ x2B["
\ 8]96 /i.

Our determinizer consumed 1.6 GB of memory for this reg-
ular expression alone, before aborting. Producing a DFA for
such regular expressions may require more sophisticated
techniques, such as on-the-fly determinization [47] that
are not currently implemented in our prototype. We there-
fore decided to exclude problematic regular expressions,
and constructed MDFAs with the remaining ones (2604
for HTTP/2612 and 95 for FTP/98). Note that the MDFAs
for these smaller sets of regular expressions may be more
time-efficient and much more space-efficient than corre-
sponding MDFAs for the entire set of regular expressions.

Fig. 5 show that in many cases NFA-OBDDs can provide
throughputs comparable to those offered by MDFAs while
utilizing much less memory. For example, the fastest
MDFA in Fig. 5(b) (constructed for a subset of 2604 signa-
tures) offered about 50% more throughput than NFA-
OBDDs, but consumed 7x more memory. The remaining
MDFAs for this signature set had throughputs comparable
to those of NFA-OBDDs, but consumed 270 MB more mem-
ory than NFA-OBDDs. The performance gap between NFA-
OBDDs and MDFAs was largest for FTP signature set, where
the MDFAs (for a subset of 95 signatures) were about 4x
faster than the NFA-OBDD; however, the MDFAs consumed
46 MB-74 MB more memory.

These results are significant for two reasons. First, con-
ventional wisdom has long held that traditional NFAs oper-
ate much slower than their deterministic counterparts. This
is also supported by our experiments, which show that the
time-efficiency of NFAs is three to four orders of magni-
tude slower than that of MDFAs. However, our results
show that OBDDs can drastically improve the performance
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of NFAs and even make them competitive with MDFAs, which
are a deterministic variant of finite automata. We believe
that further enhancements to improve the time-efficiency
of NFA-OBDDs can make them operate even faster than
MDFAs (e.g., by relaxing the OBDD data structure, and
thereby eliminating several graph operations in the AppLy
and RESTRICT operations).

Second, NFA-OBDDs were produced automatically from
regular expressions. In contrast, processing the set of regu-
lar expressions to produce compact yet performant MDFAs
is a non-trivial exercise, often requiring time-consuming
partitioning heuristics to be applied [58]. Some of the parti-
tioning heuristics described by Yu et al. also require modifi-
cations to the set of regular expressions, thereby changing
their semantics. Our own experience in attempting to
construct MDFAs for HTTP/2612 and FTP/98 shows that this
process is often challenging, especially if the regular expres-
sions contain complex structural patterns. In contrast, NFA-
OBDDs can be constructed in a straightforward manner
from regular expressions, including those with counters
and other complex structural patterns, and are yet compet-
itive in performance and more compact than MDFAs.

5.4.2. Hybrid finite automata

Finally, we also attempted to compare the performance
of NFA-OBDDs with a variant of DFAs, called hybrid finite
automata (HFA) [4]. HFAs are a hybrid of NFAs and DFAs,
and are constructed by interrupting the determinization
algorithm when it encounters structurally-complex pat-
terns (e.g., large counters and .x patterns) that are known
to cause memory blowups when determinized. We used
Becchi and Crowley’s implementation [4] in our experi-
ments, but found that it ran out of memory when trying
to construct HFAs from our signature sets. For example,
the HFA construction process exhausted the available
memory on our machine after processing just 106 regular
expressions in the HTTP/1503 set. It may be possible to
construct a collection of HFAs in a manner akin to MDFAs,
but we did not consider this design in our experiments.

5.5. Deconstructing NFA-OBDD performance

We further analyzed the performance of NFA-OBDDs to
understand the time consumption of each OBDD operation.
The results of this analysis can motivate techniques to
optimize OBDD packages to further improve the efficiency
of NFA-OBDDs. The results reported in this section are
based upon the HTTP/1503 signature set; the results with
the other signature set were similar.

Table 5 shows the fraction of time that exec_nfaobdd
spends performing various OBDD operations as it pro-

Table 5
Fraction of time spent performing OBDD
operations.
Operation Fraction (%)
ANDABSTRACT 50
AnD 39
Map 4
Acceptance check 7

cesses a single input symbol. These include the
operations needed to compute a new frontier and those
needed to check if the frontier contains an accepting
configuration.

As discussed earlier, exec_nfaobdd uses the Cudd package
to manipulate OBDDs. Although Cudd implements the
OBDD operations described in Section 2, it also implements
composite operations that combine multiple Boolean oper-
ations; the composite operations are often more efficient
than performing the individual operations separately. ANDA
bstract is one such operation, which allows two OBDDs to
be combined using an Anp operation followed by an exis-
tential quantification. ANpDABsTRACT takes a list of Boolean
variables to be quantified, and performs the OBDD trans-
formations needed to eliminate all these variables. The Mapr
operation allows variables in an OBDD to be renamed, e.g.,
it can be used to rename the y variables in G(y) to X vari-
ables instead.

We implemented the Boolean operations required to
obtain a new frontier (described in Section 3.1) using one
set of Anp, AnpAsstrAcT and Map operations. Each AnpA
bstract step existentially quantifies 26 Boolean variables
(the % and ?variables). To check whether a frontier should
be accepted, we used another Anp operation to combine
OBDD(F) and OBDD(A); the cost of an acceptance check
appears in the last row of Table 5.

Table 5 shows that the cost of processing an input sym-
bol is dominated by the cost of the AnpAsstracT and AND
operations to compute a new frontier. This is because the
sizes of the OBDDs to be combined for frontier computa-
tion are bigger than the OBDDs that must be combined
to check acceptance. Moreover, computing new frontiers
involves several applications of AppLy and REstricT, as op-
posed to an acceptance check, which requires only one Ap-
rLy, thereby causing frontier computation to dominate the
cost of processing an input symbol.

These results suggest that an OBDD implementation
that optimizes the AnpAssTrACT and AND operations (or a re-
laxed variant of OBDDs that allows for more efficient ANDA
bstract and Anp operations) can further improve the
performance of NFA-OBDDs.

5.6. Impact of variable ordering on NFA-OBDD performance

As mentioned in Section 2, the size of an OBDD is sensi-
tive to the total order imposed on its variables. Bryant [10]
showed that it is NP-hard to determine whether a particu-
lar variable ordering minimizes the size of an OBDD for a
Boolean function. Variable order also impacts the structure
of OBDDs, and in our experience the order of the variables
in the vectors ?, X and ¥ influences the performance of
NFA-OBDDs.

We experimented with various total orders to empiri-
cally determine their impact on the size and throughput
of NFA-OBDDs before settling on one of the total orders
that yielded the best performance (i < % < ¥) for the num-
bers reported earlier in this section.

Fig. 6 compares the performance of NFA-OBDDs con-
structed using seven total orders (all four constituent
OBDDs of each NFA-OBDD use the same total order):



L. Yang et al./ Computer Networks 55 (2011) 3376-3393 3387

(1) i<&<jy: the variables within each vector are
arranged in increasing order from most significant
bit (MSB) to least significant bit (LSB);

(2) X <i<jy: in-vector order is similar to the case
above;

(3) ¥ <X <i- in-vector order is similar to the case
above;

(4) i< Interleave[X < j]: variables in the vector Tappear
before the variables in X and y. The variables in X and
y appear interleaved, with a variable in X appearing
before the corresponding variable in . The variables
in each vector increase from MSB to LSB;

(5) i< Interleave[y < X]: similar to the case above,
except that variables in y appear before their coun-
terparts in X;

(6) Interleave[% < y] < i: as above, except that the inter-
leaved variables of X and y appear in the total order
before the variables of 7;

(7) Interleave[y < X] < i: as above, with the variables in
preceding their counterparts in X.

The above variable orders are only a tiny fraction of the
set of possible total orders, which is exponential in the
number of variables. However, they provide insight into
which orders empirically provide high-performance NFA-
OBDDs. We considered NFA-OBDDs for HTTP/1503, HTTP/
2612 and FTP/98 to determine whether the performance
NFA-OBDDs for different signature sets is sensitive to the
order imposed on the variables. As before, we used exec_n-
faobdd to feed network traces to these NFA-OBDDs. For
these experiments, we only used the network traces col-
lected at Rutgers.

Fig. 6 presents the results of these experiments, show-
ing both the throughput and overall memory consumption
of exec_nfaodd. It shows that the total order i < ¥ < J per-
forms consistently well across all three signature sets,
but consumes more memory than the most compact
implementation. The total order i < Interleave[x < j] also
provides competitive performance for the NFA-OBDDs of
all three signature sets. However, the performance gap be-
tween the best and the worst total orders (¥ < X < i) is al-
most four orders of magnitude. We used the orderi<® < y
for the experiments reported earlier in this section, though
we could have used i < Interleave[X < y] as well, with a
slightly smaller memory consumption for the FITP/98
NFA-OBDD.

This figure also shows that there is no direct correlation
between the size and performance of exec_nfaobdd for dif-
ferent variable orders. Although the time complexity of
algorithms such as AepLy and RestricT asymptotically
depends on the size of their input OBDDs, factors such as
the structure of the OBDDs also affect the number of graph
operations, and therefore the performance of the corre-
sponding NFA-OBDDs.

These experiments lead us to conclude that the perfor-
mance of NFA-OBDDs is indeed sensitive to the total order
imposed on its variables. The vast search space of total or-
ders diminishes hopes of a tractable algorithm to identify
the total order that would yield the best-performing
NFA-OBDD for a given signature set. Nevertheless, in
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Fig. 6. Impact of OBDD variable ordering on the performance of NFA-
OBDDs.

practice, experiments with a few total orders (such as the
ones in Fig. 6) can help empirically determine high-perfor-
mance NFA-OBDDs. Future work could develop heuristics
that leverage the structure of the regular expressions in
the input signature set to determine “good” total orders.

6. Matching multiple input symbols

The preceding sections assumed that only one input
alphabet is processed in each step. However, there is grow-
ing interest to develop techniques for multi-byte matching,
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i.e.,, matching multiple input symbols in one step. Prior
work has shown that multi-byte matching can improve
the throughput of NFAs [6,8]. In this section, we present
one such technique, k-stride NFAs [8], and show that
OBDDs can further improve the performance of k-stride
NFAs.

A k-stride NFA matches k symbols of the input in a sin-
gle step. Given a traditional (i.e., 1-stride) e-free NFA
(Q,Z,4,q0,F), a k-stride NFA is a 5-tuple (Q,Z* I',qo,F),
whose input symbols are k-grams, i.e., elements of .
The set of states and accepting states of the k-stride NFA
are the same as those for the 1-stride NFA. Intuitively,
the transition function I" of the k-stride NFA is computed
as a k-step closure of 4, ie., (s,01,02,...,0,t) e I if and
only if the state t is reachable from state s in the original
NFA via transitions labeled ¢4,05,...,0% The algorithm to
compute I' from A4 must also consider cases where the
length of the input string is not a multiple of k. Intuitively,
this is achieved by padding the input string with a new
“do-not-care” symbol, and introducing this symbol in the
labels of selected transitions. We refer the interested read-
er to prior work [6,8] for a detailed description of the
construction.

Fig. 7 presents an example of a 2-stride NFA corre-
sponding to the NFA in Fig. 3. The do-not-care symbol is
denoted by a “e”. Thus, for instance, an input string 101
would be padded with e to become 101e. The 2-stride
NFA processes digrams in each step. Thus, the first step
would result in a transition from state A to itself A (because
of the transition labeled 10), followed by a transition from
A to B when it reads the second digram 1e, thereby accept-
ing the input string.

A k-stride NFA (Q, =% I',qo,F) can readily be converted
into a k-stride NFA-OBDD using the same approach de-
scribed in Section 3. The main difference is that the input
alphabet is ¥ (plus a new symbol “e”); the vector i would
therefore contain k times as many Boolean variables. How-
ever, two additional details must be addressed when
applying k-stride NFAs (and the corresponding NFA-
OBDDs) to the problem of matching traffic patterns in a
NIDS, namely, (i) adapting k-stride NFAs to work in the
streaming model; and (ii) reducing the space consumption
of k-stride NFAs. These are discussed next.

6.1. Adapting to the streaming model

When operating a 1-stride NFA to process a stream of
inputs, the frontier of states must be checked after process-
ing each input symbol to determine whether the input

00, 01, 10,
11, 0e, 1¢

01,11, 1¢
01,11, 1¢

00, 01, 10, O

Fig. 7. 2-stride NFA for Fig. 3.

triggered a match. However, this technique does not suf-
fice for k-stride NFAs in the streaming model. To see
why, consider how the NFAs in Figs. 3 and 7 would process
the input 10. The 1-stride NFA would trigger an alert after
the first symbol has been processed (because the frontier
F={A,B} contains an accepting state). In contrast, the
2-stride NFA would process the entire input 10 in one step,
resulting in the frontier F = {A}, which does not contain the
accepting state. Therefore, for k-stride NFAs, it does not
suffice to simply check F to determine acceptance.

To address this problem, the algorithm to convert a
1-stride NFA into a k-stride NFA must “remember” that
an accepting state of the 1-stride NFA was encountered
when computing the k-step closure of the transition rela-
tion 4 of the 1-stride NFA. One way to compute k-stride
NFAs that achieve this goal is by adding a new accepting
state to the k-stride NFA. This algorithm adds incoming
transitions to the new accepting state suitably from other
states in the k-stride NFA to “remember” that a substring
of the input k-gram would have triggered a match in the
1-stride NFA. The resulting k-stride NFA (Q*, XX I'*,qo,F*)
has the same semantics as the 1-stride NFA in the stream-
ing model (i.e., they both accept the same set of strings),
but adds a state to the 1-stride NFA. We refer the reader
to prior work [6,8] for details on this algorithm.® This k-
stride NFA can be converted into an NFA-OBDD using the
same technique presented in Section 3, and operated in
the same way.

Fig. 8 presents an example of this approach applied to
the 2-stride NFA in Fig. 7. The new transition from state
A to accepting state C on input 10 uses the state C to
remember that the substring 1 of 10 triggered a match in
the corresponding 1-gram NFA. The state C will therefore
be in the frontier when an input 10 is processed at state
A, thereby triggering a match when the OBDD operation
to check acceptance is performed. However, there are no
outgoing transitions from C. This state is therefore re-
moved from the frontier when the next digram is
processed by the 2-stride NFA (unless that digram also
triggers acceptance).

6.2. Reducing space consumption using alphabet compression

The transition table of a k-stride NFA can have
0(|Q| x |Z|¥) entries, each of which can be of size 0(|Q|)
(to store the set of “next” states, which can be 0(|Q|)),
which can result in a memory utilization of 0(|Q|* x |Z[¥).
However, this asymptotic limit is rarely reached in prac-
tice, and transition tables encountered in practice are gen-
erally sparse. In particular, there may be several transitions
labeled with the same set of symbols from the alphabet =¥,
That is, if for any state s € Q, and input symbols ¢ and o5,
if I'(s,01) = I'(s,02), then the symbols ¢, and ¢, can poten-
tially be merged into an equivalence class. This idea is
called alphabet compression [2,5,8,24,27].

The output of an alphabet compression algorithm is a
partition of Z* into equivalence classes. Each equivalence

5 This algorithm can also be adapted easily to identify the regular
expression that matched the input.
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00, 01, 10,
11, 0%, 1*

01,11, 1°
01,11, 1¢

00, 01, 10, 0=

Fig. 8. The NFA in Fig. 7 adapted for streaming.

class is assigned a symbol, thereby yielding a new alphabet
£ with fewer elements than >*. An alphabet compression
algorithms also outputs an encoding function m: X* — &
that translates elements in Z* to elements in &. In the
above example, m(o¢) = m(og,). The transitions of an alpha-
bet-compressed NFA would also be appropriately relabeled
to use symbols from & instead. Similarly, symbols in the in-
put would also have to be appropriately translated using m
before they are passed to the NFA for matching. An alpha-
bet-compressed NFA can also be converted into an NFA-
OBDD using the same techniques described in Section 3,
and operated in the same way.

We implemented the alphabet compression algorithm
described by Brodie et al. [8] for 2-stride NFAs and empir-
ically found that an alphabet compression reduces the
memory consumption of 2-stride NFAs. However, this
alphabet compression algorithm itself is quite resource-
intensive because it operates on the transition relation of
the entire (2-stride) NFA, thereby causing the algorithm
to exhaust the available memory on our machine. For
example, we found that Brodie et al.’s algorithm frequently
ran out of memory when processing 2-stride NFAs ob-
tained by combining more than 200 regular expressions
from the HTTP/1503 and HTTP/2612 signature sets.

Algorithm: Combine_Compressed_Alphabet (X,Y)
Input: X={X;,...,X,} and Y={Y3,...,Yy}, the
compressed alphabet of NFAyx and NFAy
Output: Z, the compressed alphabet of
NFA, = NFAx U NFAy

1 Z=XUY

2 Z=0

3 foreach (A< Z)do

4 split = false

5 foreach (B € Z such that B # A) do
6 if(AN B # () then

7 7 =7 U(ANB)U(A—B)U(B—A);
8 split = true

9 —if (split == false) then Z/ =Z' UA;
10 if (Z# Z') then

11 z=7

11 |_goto line 2;

13 return Z;

We therefore developed a scheme (Algorithm 1) that
applies Brodie et al.’s algorithm to smaller NFAs (thereby
limiting the algorithm’s memory consumption), and
merges the results to obtain a compressed alphabet for
the combination of the smaller NFAs. Our scheme is based

upon the following fact: if two symbols ¢, and ¢, appear in
the same equivalence class of the compressed alphabet of
each of two NFAs (say, NFAy and NFAy), then they will ap-
pear in the same equivalence class of the NFA (say NFAz)
obtained by merging the set of states and transitions of
NFAy and NFAy. Algorithm 1 uses this observation to com-
bine the compressed alphabet X and Y of NFAx and NFAy
and produce the compressed alphabet Z of the NFA;. It pro-
ceeds by combining X and Y into a set Z, and iteratively
refining Z (in line 7) so that if any two symbols ¢; and o,
appear in the same equivalence class in the output set Z,
then they also appear in the same equivalence classes in
both X and Y.

Our experiments confirm the scalability of Algorithm 1.
For example, we were able to use this algorithm to com-
press the alphabet of the 2-stride NFA representing the
2604 signatures from the HTTP/2612 set.” We did so by
first splitting these signatures into 61 smaller subsets,
applying Brodie et al.’s alphabet compression to the 2-stride
NFAs representing these subsets, and combining the com-
pressed alphabet pairwise using Algorithm 1. The size of
the compressed alphabet of the 2-stride NFA was 11,119.
In contrast, Brodie et al’s algorithm ran out of memory
when processing the 2-stride NFA representing set of 2604
signatures in its entirety.

6.3. Performance of k-stride NFA-OBDDs

To evaluate the performance of k-stride NFAs and k-
stride NFA-OBDDs, we used a toolchain similar to the one
discussed in Section 4, but additionally applied alphabet
compression. Although our implementation accepts k as
an input parameter, we have only conducted experiments
for k = 2 because our alphabet compression algorithm ran
out of memory for larger values of k.

The setup that we used for the experiments reported
below is identical to that described in Section 4. However,
we only used two sets of Snort signatures in our measure-
ments: (1) HTTP/2604, a subset of 2604 HTTP signatures
from HTTP/2612 and (2) FTP/95, a subset of 95 FTP signa-
tures from FTP/98 (we omitted three signatures for the rea-
son discussed in Footnote 7).

Table 6 presents the size of the 1-stride and 2-stride
NFA-OBDDs, and the size of the compressed alphabet. In
each case, the alphabet compression algorithm took over
a day to complete, and consumed about 1.6 GB memory.
Fig. 9(a) and (b) compare the performance of 1-stride
NFA-OBDDs with the performance of 2-stride NFA-OBDDs
(using the traces described in Section 4). As expected, these
figures show that matching multiple bytes in the input
stream improves the performance of NFA-OBDDs, roughly
doubling the throughput in each case. In fact, the 2-stride
NFA-OBDD of the HTTP/2612 signature set more than dou-

7 We excluded 8 signatures from the HTTP/2612 signature set because
alphabet compression ran out of memory for these 8 signatures. These 8
signatures contained complex structural patterns that caused Brodie et al.’s
compression algorithm to run out of memory for 2-stride NFAs represent-
ing each of these signatures (so Algorithm 1 was never invoked). Further
research is needed to develop alphabet compression algorithms that can
handle such complex signatures.
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Table 6
2-stride NFA-OBDD construction results.

Signature set #States

#Transitions in NFA (1-stride | 2-stride)

#Alphabet symbols

HTTP/2604 237,972
FTP/95 15,266

5,567,317
3,361,065

136,212,770 11,119
5,136,420 848
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Fig. 9. Memory versus throughput for 1-stride and 2-stride NFA-OBDDs.
Fig. 9(b) also shows the performance of the corresponding 1-stride and 2-
stride NFAs.

bled (2.26x) the throughput of the 1-stride NFA-OBDD on
the DARPA trace.

These experiments also demonstrate that the use of
OBDDs allows 2-stride NFA-OBDDs to be more space-effi-
cient than NFAs. While we were able to create and operate
a 2-stride NFA-OBDD for the HTTP/2604 signature set, the
2-stride NFA for this signature set exhausted the memory
available on our machine. We were able to create a 2-stride
NFA for the FTP/95 signature set; Fig. 9(b) depicts the per-
formance of both the 1-stride and 2-stride NFAs for this
signature set. As this figure shows, the memory utilization
of the 2-stride NFA-OBDD is about two orders of magni-
tude smaller than that of the 2-stride NFA, and is also
about two orders of magnitude faster.

These results lead us to conclude that 2-stride NFA-
OBDDs are drastically more efficient in time and space than
2-stride NFAs. Further investigation of the benefits of k-
stride NFAs (for higher values of k) is a topic for future work.

7. Related work

Early NIDS exclusively employed strings as attack sig-
natures. String-based signatures are space-efficient, be-
cause their size grows linearly with the number of
signatures. They are also time-efficient, and have O(1)
matching algorithms (e.g., Aho-Corasick [1]). They are ide-
ally suited for wire-speed intrusion detection, and have
been implemented both in software and hardware
[16,30,49,50,52,53]. However, prior work has shown that
string-based signatures can easily be evaded by malware
using polymorphism, metamorphism and other mutations
[20,25,35,39]. The research community has therefore been
investigating sophisticated signature schemes, such as ses-
sion signatures [37,47,57] and vulnerability signatures
[9,54], that require the full power of regular expressions.
This in turn, has spurred both the research community to
develop improved algorithms for regular expression
matching, as well as NIDS vendors, who are increasingly
beginning to deploy products that use regular expressions
(e.g., Tipping Point,® LSI Corporation® and Cisco!®).

DFAs provide high-speed matching, but DFAs for large
signature sets often consume gigabytes of memory.
Researchers have therefore investigated techniques to im-
prove the space-efficiency of DFAs. These include, for
example, techniques to determinize on-the-fly [47];
MDFAs, which combine signatures into multiple DFAs (as
discussed in Section 5) [58]; D?FAs [28], which reduce
the memory footprint of DFAs via edge compression; and
XFAs [44,45], which extend DFAs with scratch memory to
store auxiliary variables, such as bitmaps and counters,
and associate transitions with instructions to manipulate
these variables. Some DFA variants (e.g., [7,28,32,45]) also
admit efficient hardware implementations.

These techniques use the time-efficiency of DFAs as a
starting point, and seek to reduce their memory footprint.
In contrast, our work uses the space-efficiency of NFAs as a
starting point, and seeks to improve their time-efficiency.
We believe that both approaches are orthogonal and may
be synergistic. For example, it may be possible to use
OBDDs to also improve the time-efficiency of MDFAs.

Our approach also provides advantages over several
prior DFA-based techniques. First, it produces NFA-OBDDs

8 See http://www.tippingpoint.com.

9 Tarari RegEx content processor: http://www.tarari.com.

10 See the 10S terminal services configuration guide: http://tinyurl.com/
2eouvq.


http://www.tippingpoint.com
http://www.tarari.com
http://tinyurl.com/2eouvq
http://tinyurl.com/2eouvq

L. Yang et al./ Computer Networks 55 (2011) 3376-3393 3391

from regular expressions in a fully automated way. This is
in contrast to XFAs [44], which required a manual step of
annotating regular expressions. Second, our approach does
not modify the semantics of regular expressions, i.e., the
NFA-OBDDs produced using the approach described in Sec-
tion 3 accept the same set of strings as the regular expres-
sions that they were constructed from. MDFAs, in contrast,
employ heuristics that relax the semantics of regular
expressions to improve the space-efficiency of the result-
ing automata [58]. Last, because these techniques operate
with DFAs, they may sometimes encounter regular expres-
sions that are hard to determinize. For example, Smith
et al. [44, Section6.2] present a regular expression from
the Snort data set for which the XFA construction algo-
rithm runs out of memory. In contrast, our technique oper-
ates with NFAs and therefore does not encounter such
cases.

Research on NFAs for intrusion detection has typically
focused on exploiting parallelism to improve performance
[13,23,33,40]. NFA operation can be parallelized in many
ways. For example, a separate thread could be used to sim-
ulate each state in an NFA's frontier. Else, a set of regular
expressions can be represented as a collection of NFAs,
which can then be operated in parallel. FPGAs have been
used to exploit this parallelism to yield high-performance
NFA-based intrusion detection systems [13,23,33,40].

Although not explored in this paper, OBDDs can poten-
tially improve NFA performance in parallel execution envi-
ronments as well. For example, consider a NIDS that
performs signature matching by operating a collection of
NFAs in parallel. The performance of this NIDS can be im-
proved by converting it to use a collection of NFA-OBDDs
instead; in this case, OBDDs improve the performance of
each NFA, thereby increasing the throughput of the NIDS
as a whole. Finally, NFA-OBDDs may also admit a hardware
implementation. Prior work has developed techniques to
implement OBDDs in CAMs [60] and FPGAs [42]. Such an
implementation of NFA-OBDDs can be used to improve
the performance of hardware-based NFAs as well.

8. Summary and future work

Many recent algorithms for regular expression match-
ing have focused on improving the space-efficiency of
DFAs. This paper sought to take an alternative viewpoint,
and aimed to improve the time-efficiency of NFAs. To that
end, we developed NFA-OBDDs, a representation of regular
expressions in which OBDDs are used to operate NFAs. Our
prototype software-based implementation with Snort sig-
natures showed that NFA-OBDDs can outperform NFAs
by almost three orders of magnitude. We also showed
how OBDDs can enhance the performance of NFAs that
match multiple input symbols in a single step.

There are several avenues of future work to improve the
results reported in this article. We outline three promising
directions below.

(1) Implementing NFA-OBDDs in hardware. NIDS vendors
are increasingly beginning to deploy hardware-
based deep packet inspection products. While this

article explored the potential of NFA-OBDDs using
a software-based implementation, a hardware-
based solution would be required to provide raw
matching speeds approaching multiple gigabit/s.
Although OBDDs [42,60] and NFAs [13,40] have each
been individually implemented in hardware (such as
FPGAs and CAMs), further research is needed to
investigate the possibility of a hardware-based
NFA-OBDD implementation. The key challenge in
implementing NFA-OBDDs in hardware is to devise
techniques that would allow OBDDs to be modified
within hardware, e.g., to allow OBDD(F) to be mod-
ified efficiently as each input alphabet is processed.

(2) Relaxed variants of OBDDs. NFA-OBDDs improve the
performance of NFAs because OBDDs are a compact
way to represent the transition relation and frontier
sets. OBDDs were primarily developed to provide a
canonical representation of Boolean functions, i.e.,
they satisfy the property that for a fixed total order
of variables, two OBDDs representing the same Bool-
ean function are isomorphic. Algorithms such as Ar-
pLy and Restrict include several steps that ensure this
property, which in turn affects the raw performance
of NFA-OBDDs. Future work could investigate
relaxed variants of OBDDs that do not satisfy this
property, yet provide fast and space-efficient regular
expression matching.

(3) Beyond regular expressions. NFA-OBDDs provide fast,
space-efficient matching of regular expressions.
However, modern intrusion detection systems also
include a significant fraction of patterns that are
extensions of regular expressions (e.g., back-refer-
ences). Packages such as PCRE use backtracking
algorithms to match traffic against such patterns,
which may result in inefficient and memory-inten-
sive operation. Future work could investigate
whether OBDDs can improve the time- and space-
efficiency of algorithms to match such regular
expression extensions.

In summary, the main contribution of this paper is in
showing that the use of OBDDs drastically improves NFA
performance and brings them within the realm of feasible
use in intrusion detection systems. In the light of this con-
tribution and the space-efficiency of NFAs, we conclude
with a call for further research on the use of NFAs to repre-
sent signatures.
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