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Abstract. Protocol parsing is an essential step in several networking-
related tasks. For instance, parsing network traffic is an essential step for
Intrusion Prevention Systems (IPSs). The task of developing parsers for
protocols is challenging because network protocols often have features
that cannot be expressed in a context-free grammar. We address the
problem of parsing protocols by using attribute grammars (AGs), which
allow us to factor features that are not context-free and treat them as
attributes. We investigate this approach in the context of protocol nor-
malization, which is an essential task in IPSs. Normalizers generated
using systematic techniques, such as ours, are more robust and resilient
to attacks. Our experience is that such normalizers incur an acceptable
level of overhead (approximately 15% in the worst case) and are straight-
forward to implement.

1 Introduction

Parsing application-layer protocols is a fundamental step in several networking-
related tasks. Programs that operate over application-level traffic semantics,
such as systems that investigate Email traffic and Internet attacks, use a proto-
col parser as an integral component. Parsing network traffic is also an essential
step for Intrusion Prevention Systems (IPSs) because protocols allow many rep-
resentations of the same message. Protocol normalization is meant to reverse the
transformations and obfuscations that an attacker performs on a message to a
canonical form [7]. An IPS that does not perform normalization is vulnerable
to evasion attacks [7,15,17]. In order to perform normalization, IPSs must know
certain fields in a protocol, e.g., to normalize URLs an IPS system has to extract
the URL field from HTTP traffic. In this paper we focus on protocol parsing in
the context of intrusion prevention, but the results are applicable to related areas
such as firewalls, URL filtering, and HTTP server load balancing.

At first glance implementing application protocol parsers seems like a straight-
forward task. One strategy would be to use standard parser generators such as
yacc [9] or ANTLR [14] to implement an application protocol parser. This strat-
egy often does not work, however, because many protocols have constructs that
are not context-free. For example, data fields that are preceded by their actual
length (which is common in several network protocols) cannot be expressed in a
context-free grammar [13]. In this work we consider a systematic approach to the
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problem of parsing application protocols with features that are not context-free
by using attribute grammars. We posit that a systematic approach to generating
parsers leads to more robust applications.

Formally, an attribute grammar (AG) [8,12] is a way to define attributes for
the productions of a grammar, associating these attributes to values. The evalu-
ation occurs in the nodes of the abstract syntax tree (AST), when the language
is processed by a parser. The attributes are divided into two groups: synthesized
attributes and inherited attributes. The synthesized attributes are the result of
the attribute evaluation rules, and may also use the values of the inherited at-
tributes. The inherited attributes are passed down from parent nodes. Attributes
have been used in the past for network protocol parsing [1]. They are a natural
and systematic way to represent context-sensitive features of network protocols,
such as fixed-length bodies of HTTP messages. Once we have an attribute gram-
mar for a protocol, we can use it to generate a normalizer for the protocol which
can be deployed in a IPS. This paper makes the following contributions:

– We propose using Attribute Grammars to generate parsers for common net-
work protocols. We compare parsers generated using our approach to existing
parsers for these protocols. We find that expressing the syntax of network
protocols as attribute grammars helps to clarify other tasks related to pars-
ing, such as protocol normalization.

– We demonstrate the practicality of the Attribute Grammar approach by
implementing an AG-based normalizer directly into the popular IPS Snort.
We show that our normalizer is more principled than the unmodified version
of Snort, and that our normalizers only incur a modest performance penalty
of 15.5% in the worst case. We have made our normalizer publicly available
at http://www.cs.wisc.edu/~davidson/ag_normalizer.

– We show that our approach can be adopted easily by using existing tools
such as bison and flex. These tools have the advantage of being well tested,
widely deployed, and accessible via a familiar syntax.

2 Related Work

IPS evasion was first explored by Ptacek and Newsham [15]. They pioneered
a number of techniques to transform a malicious payload to escape signature
detection. The most relevant technique to our work is the evasion attack, where
an attacker crafts packets that are accepted by an end-system but rejected by a
signature matcher. Handley, Paxson, and Kreibich [7] introduced the normalizer
as a software module to eliminate potential ambiguities in a packet stream to
detect evasion attacks. While this work operated at a lower level in the proto-
col stack than our work, it forms the foundation of protocol normalization for
signature matching.

The difficulty of parsing network protocols due to context-sensitive features
was first observed by Pang et al. [13]. They implemented a tool called binpac to
address this problem. Although binpac was a good first step towards addressing
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this problem, it is not as disciplined as standard parser generators (such as yacc
and ANTLR). Moreover, the syntax of the specification language of binpac is
new, so it would require users well versed in existing parser generator tools to
learn an entirely new set of constructs. A tool in a similar vein is GAPA [2],
which uses a custom protocol description language to build protocol parsers.
Unlike our tool, GAPA is meant for protocol analysis, rather than normalization.
Our approach of using attribute grammars enables us to use familiar parser
generators, which use syntax that users already know.

Chapman [5] suggested using AGs to specify network protocols. Chapman fo-
cused on formalising protocols using attribute grammars in order to characterize
protocol properties, such as deadlock proneness. Chapman did not consider the
application to protocol normalization. His attribute grammars only accept valid
input and reject invalid, they do not perform any transformation on the input
stream. Our technique is meant to be integrated into an online system that per-
forms a larger task of which parsing is a critical step, such as in an IPS. We take
inspiration from this work to use AGs as a basis for specifying network protocols.

Anderson and Landweber [1] explored extensions of AGs to specify various
network protocols. They introduced a formalism called Real-time Asynchronous
Grammars (RTAG) for specifying protocols. In RTAG, terminal symbols of a
parse tree correspond to messages sent and received by the protocol. Each pro-
duction in RTAG could have a Boolean expression over attribute values called a
start condition. In order for the production to be evaluated, the start condition
must first evaluate to true. Anderson and Landweber did not consider an appli-
cation of their technique to normalization. Our technique is a more fine-grained
approach than that taken by Anderson and Landweber, as we use tokens from
an input stream as our terminal symbols rather than messages or events.

3 Overview

We motivate our technique by explaining some of the difficulties in parsing net-
work protocols using a running example of a fragment of the HTTP protocol.
We selected this protocol as our central example because it is a popular protocol
that has historically been a vector for numerous attacks. HTTP also contains
features that exemplify the obstacles to using principled parsing techniques. In
addition to HTTP, we have also applied our techniques to the FTP and SMTP
protocols.

3.1 HTTP Protocol Characteristics

Attackers can gain unauthorized, privileged access to an HTTP server by re-
motely supplying malicious payloads designed to trigger a vulnerability in the
remote host. For example, the DNS-tools attack (CVE-2002-0613 [11]) allows
a malicious client to gain administrator privileges on a DNS server using the
DNStool version 2.0 beta 4 auto configuration system, by placing the string
shown in Figure 1 in the URL of an HTTP get request.
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Table 1. URL String Encodings in HTTP

Encoding Description Example

UL Convert lowercase letters to uppercase ATTACK

percent Replace characters with a %61%74%74%61%63%6b
corresponding hexadecimal value

percent + UL Apply percent encoding followed %61%74%74%61%63%6B
by UL encoding

UL + percent Apply UL encoding followed %41%54%54%41%43%4b
by percent encoding

double percent Apply percent decoding twice %25%36%31%25%37%34
%25%37%34%25%36%31
%25%36%33%25%36%62

dnstools.php?section=hosts&user logged in=true

Fig. 1. Attack URL string for the DNS-tools attack

Intrusion prevention systems (IPS) have arisen as a necessary layer of defense
to identify and filter out such attacks. For the exploit above, a simple signature
can identify and remove packets that carry this malicious payload and inform
an administrator of attempted attacks.

Unfortunately, writing a database of attack signatures is not straightforward.
As per the HTTP standard [6], URL strings may be alternatively encoded in
a variety of ways without changing the semantics. Table 1 shows some of these
encodings with examples over the URL string attack. In the UL encoding, low-
ercase letters are transformed to uppercase. Beyond case-sensitivity, syntactic
isomorphisms such as the percent encoding allow for further encoding, trans-
forming a character to a percent followed by two hexadecimal characters repre-
senting the ASCII equivalent of that value. Multiple encodings may be applied
to the same string and may overlap. Note that the ordering of these encodings
alters the appearance of the final URL string.

Finally, individual servers may vary from the formal HTTP specification and
allow additional semantics-preserving transformations. A bug in older versions
of Microsoft IIS causes the server to perform percent decoding routines twice
[4]. For example, %25%35%30 decodes to %50 after one pass, and %50 decodes to
P on a second pass. This transformation is shown as double percent in Table 1.
By applying all of these encodings simultaneously to the malicious URL in the
DNS-tools attack, one can transform the URL string in Figure 1 to the one
in Figure 2. Each of these alternate encodings have the same semantics and
are characteristic of the thousands of distinct, specific exploits that target this
general vulnerability.

As this example illustrates, writing distinct signatures for each exploit quickly
becomes untenable and stresses a signature matching engine. Higher-level vul-
nerability signatures [3] can reduce the number of signatures needed in some
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cases, but the problem here stems from variations in the encoding itself rather
than in distinct vulnerabilities. Thus, an IPS typically includes a normalizer
module to decode the alternate encodings that are part of the HTTP standard
and also those encodings that are the result of bugs in popular software. The
IPS then only matches decoded strings against canonical signatures.

3.2 Normalization for Context-Free Grammars

Rather than attempting to hand-code a normalizer, we propose formalizing a
protocol using a grammar and adding normalizing transformations to the pro-
ductions of that grammar. Our motivation for this approach is that writing code
for a correct normalizer is a difficult and error-prone task. There are many com-
plications that give rise to this difficulty: The normalizer must be able to discern
which fields of the protocol are appropriate to normalize, it must be aware of
each possible encoding, and it must be able to account for multiple encodings
being applied to the same token (for example, UL and percent encoding). Also,
the normalizer must be extensible, since it may be necessary to normalize new
encodings as the standard for new protocols evolve and new bugs are found that
create unintended encodings. Dealing with normalization as a grammar pars-
ing problem allows one to create a declarative specification of the protocol and
think compositionally. This in turn ensures that the appropriate normalizations
are applied to the correct fields, and makes it easier to deal with multiple encod-
ings on the same token. As a toy example of this technique, we show a restricted
context-free grammar (CFG) for HTTP URLs, and demonstrate how the gram-
mar can be extended to achieve normalization. In the next section, we will show
that a context-free grammar is not powerful enough to recognize the syntax of
full network protocols like HTTP.

Definition 1. A CFG is a four-tuple (T, N, P, Z) where

– T is a set of terminal symbols
– N is a set of non terminal symbols
– P is a set of productions, of the form α → γ1, ..., γn where α ∈ N and

γi ∈ (T ∪ N), 1 ≤ i ≤ n
– Z ∈ N is the start symbol.

Figure 3(a) shows a CFG for URL strings that can have the UL or percent
encodings described Table 1. Many of the rules in this grammar have an intu-
itive correlation with encodings. However, a context-free grammar such as in
Figure 3(a) is unsuitable for normalization, because it has no concept of output;
it may only accept valid strings and reject invalid ones. One possible approach
would be to add output rules directly to the Context-Free Grammar, but that

dNsToOls.%25%35%30h%25%35%30?section=hosts&user logged in=true

Fig. 2. Obfuscated URL string for the DNS-tools attack
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N = {url, url char, ul, percent },
T = {%, HEX, CHAR},
Z = url,

P = {url → url url char,
url char → ul,
ul → percent,
ul → CHAR,
ul → HEX,
percent → % HEX HEX}
(a) URL string CFG

normal, synthesized value of
a normalized symbol

value, synthesized value of
a terminal symbol

(b) Attributes

〈url 〉 → 〈url〉 〈url char ↑ output(value)〉

〈url char ↑ tolower(value) 〉 → 〈ul ↑ value〉

〈ul ↑ normal 〉 → 〈percent ↑ value 〉

〈ul ↑ normal 〉 → 〈CHAR ↑ value 〉

〈ul ↑ normal 〉 → 〈HEX ↑ value 〉

〈percent ↑ 10*atoi(val1) + atoi(val2) 〉 → 〈%〉 〈HEX ↑ val1〉 〈HEX ↑ val2〉
(c) Attribution rules

Fig. 3. URL string Normalizer

approach has the disadvantage that every character needs to be represented as
a distinct symbol. The resultant explosion in symbols and productions is cum-
bersome. Instead, we extend our CFG to an attribute grammar (AG).

Definition 2. An attribute grammar is a 3-tuple (G, A, R), where

– G = (T, N, P, Z) is a context-free grammar.
– A is a finite set of attributes. The finite set of attributes A(X) is associated

with each symbol X ∈ T ∪N . A is partitioned into disjoint subsets I(X), the
inherited attributes, and S(X), the synthesized attributes. A is defined as

A(X)|X ∈ T ∪ N

– R is a finite set of attribution rules. A production

p : X0 → X1...Xn|(n ≥ 0, p ∈ P )

has an attribute occurrence Xi.a if a ∈ A(Xi), 0 ≤ i ≤ n. A finite set of
attribute evaluation rules Rp is associated with the production p with exactly
one rule for each synthesized attribute occurrence X0.a and exactly one rule
for each inherited attribute occurrence Xi.a, 1 ≤ i ≤ n. Thus, an attribute
of node t is synthesized if it is computed within the subtree rooted at t, and
inherited if it is computed outside of the subtree rooted at t.
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We adopt the notation used by Chapman [5] to specify our attribute grammars.
This notation replaces the productions of a CFG with attributed symbol forms,
each consisting of a (terminal or nonterminal) symbol followed by evaluation
rules for that symbol’s attributes. Evaluation rules for synthesized attributes
are preceded by ↑, inherited ones by ↓. Each attributed symbol form is enclosed
in angle brackets.

Intuitively, an AG allows the underlying value of a symbol to be carried
through the parse tree. For example, a HEX token may represent all strings
of hexadecimal digits, and an attribute val to capture the numeric value of
those digits. Attribute evaluation rules may then apply some function to trans-
fer attributes between rules. This flow of attributes corresponds naturally to
normalization. Encoded tokens can easily be represented as attributes of ter-
minal symbols and normalized tokens as attributes of nonterminal symbols. In
this way, normalization is completely embedded in the attribution rules of the
grammar. We allow the special function output(η) to occur within Rp to indi-
cate that attribute η should be output as a normalized token. The normalizing
extensions to Figure 3(a) are shown in Figure 3(c).

3.3 Normalization for Context Sensitive Grammars

Despite the advantages offered by grammar-based parsers, to our knowledge all
modern IPS normalizers are created using ad-hoc techniques; they are either
hand-coded, or they use parser generators that are not based on any abstract
data structure. This is because the syntax of network protocols is not context-
free.

As a specific example of a context sensitive behavior, consider the HTTP
Chunked-Body type. Chunked bodies allow a message to be sent in pieces called
chunks over a persistent connection [6]. This is done to improve the efficiency of
a transmission, as it allows one party to begin sending data before they know
exactly how many bytes are going to be sent, or to avoid the overhead of reestab-
lishing a connection [10]. Figure 4(a) shows the excerpt from the HTTP RFC [6]
that pertains to HTTP chunks. Each chunk symbol begins with a single line
of hexadecimal digits called the chunk-size, followed by a stream of data that
constitutes the chunk-data. The size of the chunk-data must be equal to the
value of the chunk-size. The first entry in Figure 4(b) shows a valid HTTP chunk.
Note that the chunk-size has the value 4, and the chunk-data (GOOD) is 4 bytes
long. Contrawise, The second entry is invalid, because the chunk-size has the
value 3 and the length of the chunk-data is 5. An ad-hoc parser might enforce
this condition by initializing a counter with the value of the chunk-size and
then decrementing that counter value for each byte in the chunk-data, finishing
the chunk-data when the counter has reached zero. Since there is no bound on
the value of a chunk-size, there is no practical way to represent this relationship
using a Context-Free Grammar [13].

In practice, HTTP contains many features that cannot be parsed with a
context-free grammar. Table 2 lists several such context sensitive constructs from
HTTP. In each of these examples, the value of some field being parsed affects the
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〈chunked body〉 → 〈chunk〉 〈headers〉 CRLF
〈chunk ↑ 0 〉 → 〈HEX ↑ value〉 CRLF
〈chunk ↑ length〉 → 〈chunk〉

〈chunk size ↑ length 〉 CRLF
〈chunk data ↓ length〉 CRLF

〈chunk size ↑ value〉 → 〈HEX ↑ value〉
〈chunk data ↓ 1〉 → DATA
〈chunk data ↓ length〉 → 〈chunk data ↓ (length − 1)〉 DATA
〈headers〉 → headers header CRLF
〈header〉 → CONTENT LOCATION url
〈url ↑ output(value) 〉 〈url〉 〈url char ↑ value〉
〈url char ↑ tolower(value) 〉 → 〈ul ↑ value〉
〈ul ↑ normal 〉 → 〈percent↑ value 〉
〈ul ↑ normal 〉 → 〈CHAR↑ value 〉
〈ul ↑ normal 〉 → 〈HEX↑ value 〉
〈percent ↑ 10*atoi(val1) + atoi(val2) 〉 → 〈%〉 〈HEX ↑ val1〉 〈HEX ↑ val2〉

(a) HTTP Chunk EBNF fragment

Data Stream chunk-size chunk-data valid

4\r\nGOOD\r\n 4 GOOD Yes
3\r\nNOTSO\r\n 3 NOT No

(b) HTTP Chunk examples

Fig. 4. HTTP Chunk

interpretation of fields to appear later in the token stream, which prevents the
use of a CFG. In order to properly represent these constructs, we have selected
Higher-Order Attribute Grammars (HAGs) [18] as our formalism. Intuitively, a
HAG is an Attribute Grammar in which attributes can appear in the left-hand
side of a production. This extension allows a grammar to select amongst syn-
tactically equivalent rules based on the value of an attribute from earlier in the
parse. This extension is necessary for constructs like the chunk-data symbol of
Figure 4(a) , where the productions

〈chunk data ↓ 1〉 → DATA

〈chunk data ↓ length〉 → 〈chunk data ↓ (length− 1)〉DATA

are only distinguishable based on the value of the length attribute.
In our experience, this extension is sufficient for parsing the context sensi-

tive features of network protocols. Our strategy for creating network protocol
normalizers is as follows:

1. Create a Context-Free Grammar for as much of the protocol as possible.
In our experience, most network protocols are largely context-free, with a
smattering of context sensitive features.

2. Extend the Context-Free Grammar to an Attribute Grammar. Since the sym-
bols of the underlying Context-Free Grammar are in close correspondance
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Table 2. Context Sensitive Constructs of HTTP

Construct Context Sensitive
Aspect

HTTP chunk length of field specified
in a preceding field

fixed length body length of field specified
in a preceding field

HTTP mime type field delimiter specified
in a preceding field

with the normalizations, this step consists of adding attribute evaluation
rules that specify how the attributes of encoded symbols are transformed
into normalized ones. For tokens that are completely normalized, the special
attribute output is added to denote that the attribute may be placed in the
output stream of the normalizer. As an example of the output attribute,
consider the url token of Figure 4(a). Since all normalizations are applied
in sub-rules, if a url token is produced, it is in fully normalized form.

3. Extend the Attribute Grammar to a Higher-Order Attribute Grammar. Pang
et. al. observed that they syntax of most protocols does not require lookahead
in the grammar [13]. This observation, in practice, means that the rules that
most context sensitive features of network protocols can be captured by
simple attribute evaluation rules in the left-hand side of a production.

4 Technical Details

In this section, we explain how a network protocol normalizer can be specified
using a HAG. We demonstrate that a practical implementation of a HAG-based
normalizer can be achieved using the parser generator bison. We use the running
example of an HTTP Chunked-Body to demonstrate the need for a HAG, since
it is one of the context-sensitive feature of HTTP.

Higher-Order Attribute Grammars

In a conventional attribute grammar, no part of the structure of the parse tree
may be defined by means of an attribute value, and vice-versa[18]. For languages
with context-free syntax but context sensitive semantics, this boundary does not
present a limitation (C is such a language, as variables need to be declared with
a type before they are used). Protocols like HTTP have a different form; the
syntax of fields is altered by preceding fields. One way to recognize fields of this
form is to allow the left hand side of a production to have a attribute in the
defining position. This extension allows productions to be applied to an input
stream based on the value of attributes. These extensions classify our attribute
grammar as a HAG.
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〈chunked body〉 → 〈chunk〉 〈headers〉 〈CRLF ↑ output(value) 〉
〈chunk ↑ 0 〉 → 〈HEX ↑ output(value)〉 〈CRLF ↑ output(value) 〉
〈chunk ↑ length〉 → 〈chunk〉

〈chunk size ↑ length 〉 〈CRLF ↑ output(value) 〉
〈chunk data ↓ length 〉 〈CRLF ↑ output(value) 〉

〈chunk size ↑ value〉 → 〈HEX ↑ value〉
〈chunk data ↓ 1〉 → 〈DATA ↑ output(value) 〉
〈chunk data ↓ length〉 → 〈chunk data ↓ (length − 1)〉 〈DATA ↑ output(value) 〉
〈headers〉 → 〈headers〉 〈header〉
〈header〉 → 〈CONTENT LOCATION ↑ output(value)〉 url 〈CRLF ↑ output(value) 〉
〈url〉 → 〈url〉 〈url char ↑ output(value)〉
〈url char ↑ tolower(value) 〉 → 〈ul ↑ value 〉
〈ul ↑ normal 〉 → 〈percent ↑ value 〉
〈ul ↑ normal 〉 → 〈CHAR ↑ value 〉
〈ul ↑ normal 〉 → 〈HEX ↑ value 〉
〈percent ↑ 10*atoi(val1) + atoi(val2) 〉 → 〈%〉 〈HEX ↑ val1〉 〈HEX ↑ val2〉

(a) Attribution rules

Fig. 5. HTTP Grammar Fragments for the HTTP Chunked-Body

Figure 5 shows an excerpt from RFC 2616 showing the structure of the HTTP
Chunked-Body, represented by the symbol chunked body. A chunked body is
made up of a sequence of 1 or more chunk symbols followed by a sequence
of 0 or more header symbols. Each chunk symbol begins with a single line of
hexadecimal digits called the chunk-size, followed by a stream of data that
constitutes the chunk-data. The context-sensitive aspect of the chunk is that
the length of the chunk-data must be equal to the value of the chunk-size.

A naive normalizer might skip over a sequence of chunk symbols entirely, since
no terminal in the sequence requires normalization. This approach is insufficient
because a normalizer must be able to recognize the headers symbol, which does
may include url normalizations. Note that this is handled in the normalizer shown
here by parsing the chunk structure, and simply applying the output function
at every terminal symbol.

4.1 Evaluation Strategy

A traditional HAG is used for parsing features of context sensitive languages,
so the primary challenge of this work is to embed the task of normalization in
the productions, attributes and symbols of an attribute grammar. We detail our
evaluation strategy by stepping through the example of parsing the context-
sensitive HTTP Chunked-Body construct.

Symbols: There are two types of symbols in a Higher-Order Attribute Gram-
mar:

– Terminal symbols of our HAG correspond to unnormalized symbols from
the input stream. We rely on a lexical analysis to determine how to tokenize
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characters. The chunk can have three different terminals in its subtree:
CRLF, denoting the carriage-return and line-feed combination, HEX, de-
noting a hexadecimal value, and DATA to represent any single byte.

– Nonterminal symbols represent a normalized construct in the protocol. We
parse input streams in a bottom-up fashion, so when a symbol is added to
the tree, it represents a normalized form of an underlying symbol. Consider
the ul symbol, which represents a lowercase symbol that may appear in a
uri.

Attributes: We use the attributes of a HAG for three purposes:

– Attributes reduce the number of symbols in the grammar. For example,
rather than using a separate symbol for each ASCII character, an ASCII
token is given a value attribute denoting that ASCII value. The net result
of reducing the number of symbols is to make the grammar more concise
and reduce the memory needed by the parser.

– Attributes can represent the normalized value of a token. For example, the
ul nonterminal has an attribute normal to denote that value of a symbol in
lowercase form.

– Attributes on the left-hand side of a production can be used to guide the syn-
tactic interpretation of terminal symbols. For example, the length attribute
of a chunk size symbol controls the number of tokens that can exist in a
sequence of chunk data symbols. When the first element in the sequence
is parsed, it inherits the length attribute from the preceding chunk size
symbol. Every other element in the sequence gets the attribute from the
preceding chunk data in the sequence, decremented by 1. If length is greater
than 1, a DATA token is parsed and another chunk data symbol is expected
as the next symbol in the parse. If the length attribute is 1, a DATA token is
parsed, and the next token expected is a CRLF to end the chunk.

Productions: Productions in our HAG provide two purposes:

– Productions specify the flow of attributes between symbols. The rule

〈chunk size ↑ value〉 → 〈HEX ↑ value〉
specifies that the synthesized attribute value of the nonterminal symbol
chunk size gets the value of the synthesized attribute value from the terminal
symbol HEX.

– Productions specify normalizations. Consider the following production:

〈url char ↑ tolower(value)〉 → 〈ul ↑ value〉
This production specifies that a url char symbol has the lowercase value of
the ul symbol. This production corresponds to decoding the UL encoding
for URLs.

– Productions specify the structure of a parse tree. This is consistent with the
purpose of a parse tree in a Context-Free Grammar.
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4.2 Implementation Details

We have implemented proof-of-concept normalizers for HTTP, SMTP, and FTP
using unmodified versions of the parser generator bison and the lexer generator
flex. Although bison is capable of representing AGs, it does not have a built-
in facility for parsing context-sensitive features in the way that they may be
presented by a HAG. We simluate the ability to evaluate attribute rules on the
left-hand side of a production by manipulating a global variable context. The
value of context is checked every time the lexer parses a rule, and maps to a
given start condition, which in turn selects a subset of the lexical rules.

Conceptually, this gives a user the ability to switch tokenizers whenever a
token is matched. The intended use of start conditions is to allow the lexer to
switch modes when an incoming symbol indicates some type of modifier to the
character stream. An example in the C language is that the string int should
be tokenized as a single token, but if it is within a comment, it should not be
tokenized at all. A flex specification to reflect this might contain a start condition
for the “normal” int token, and another start condition for rules to discard any
sequence of characters within a comment. We allow the start condition to be set
from within the parser by providing a shared switch that the parser sets and the
lexer checks. Recall the example of an HTTP chunk. Our parser can prompt the
lexer to match a string of hexadecimal digits terminated by a carriage return
and newline, then initialize a counter with the value of that number. It will then
switch the start condition to a accept any byte, and create new nodes in the
manner suggested above until a node is created with a length of 0. Then the
lexer can be switched to a text-oriented start condition to match the footer of
the chunk.

Our experience has shown that this dynamic tree-building ability is sufficient
for covering context-sensitive details of protocols that would be impossible or
nonintuitive for a context-free grammar.

5 Evaluation

We have evaluated whether HAGs are an appropriate way to express protocol
parsing tasks such as protocol normalization. We were particularly interested in
answering the following questions about this technique:

1. Is it feasible to represent a protocol using a HAG? Limiting the expressive
capabilities of protocol abstraction from the level of source code to the level
of a grammar eases the burden of writing a protocol specification. However,
it is crucial that the grammar be able to express all of the features of popular
protocols. In Section 5.1, we discuss our implementations of parsers gener-
ated using HAGs for three widely known protocols: FTP, SMTP, and HTTP.
Our implementation proves that HAGs are expressive enough to represent
these protocols in sufficient detail to perform common parsing tasks.

2. How efficiently can a HAG-based normalizer execute? In order to deter-
mine if our technique is practical, we undertook a case study to compare
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the normalizers built into the popular IPS Snort. We tested the running
time of Snort’s HTTPInspect normalizing preprocessor, SMTP dynamic nor-
malizing preprocessor, and FTPTELNET normalizing dynamic preprocessor
against our own normalizers automatically generated from HAG grammars.
We foundthat in the worst case, our normalizers incur only 15.5% overhead
versus the Snort normalizers, even with the added burden that our normal-
izers kept track of additional fields that Snort did not. When we restricted
our normalizers to only those fields for which Snort checked for a signature,
our overhead was reduced to approximately 7%. We explain the details of
our performance evaluation in Section 5.2.

3. Is a HAG based normalizer robust against syntax transformations? An IPS
is often the last line of defense in a security infrastructure. For this rea-
son, it is critical that the IPS normalizer modules be robust against syntax
transformations. We used our normalizers in Snort and tested the number
and type of alerts that Snort generated against the alerts that an unmodified
version of Snort raised. We found that our version caught all of the malicious
requests that were caught by Snort, several of which have eluded previous
versions of the Snort normalizers [16,17]. Details of this comparison are in
Section 5.2.

5.1 Feasibility Study

To evaluate our approach, we built normalizers for three common protocols -
HTTP, SMTP, and FTP - for which the Snort IPS also has normalizers.

The first protocol for which we have implemented an attribute grammar parser
is HTTP. Our attribute grammar implements parsing for requests with fixed-
length bodies, chunked bodies over a persistent connection, and variable length
bodies. We have not integrated normalization for multipart message bodies in
our grammar. We handle messages of this type by simply ignoring the message
body. This treatment fits with the intention that HTTP treats the body of a
multipart messages as a payload, rather than information with a special semantic
meaning to the protocol itself. However, we believe that our methodology could
be extended for deep inspection of these payloads with subgrammars being used
to parse whatever MIME type the message specifies. Although HTTP is not
parseable using context-free grammars because of the chunked body content
type, and fixed length HTTP bodies, those features can be captured with an
attribute grammar so that normalization can be performed. Our Higher-Order
Attribute Grammar for HTTP was developed in one week by a single graduate
student, concurrently with our overall approach for parsing context-sensitive
grammars. We are confident that a developer well-versed in HTTP would be
able to re-create a parser similar to ours in a matter of days.

Another protocol that we have modeled is the Simple Mail Transfer Protocol
(SMTP). SMTP can include runs of white space that are ignored by SMTP
servers when processing commands. Our grammar can recognize these runs in
all SMTP commands. We do not recognize limits in the length of the command,
header, or response line, but integrating a simple counter into the grammar would
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not be a difficult extension. SMTP is an example of a relatively simple protocol
that requires little normalization. Creating an attribute grammar required just
one day for one graduate student.

The File Transfer Protocol (FTP) is used to transfer data over a network. Our
Attribute Grammar FTP parser can recognize all valid FTP commands, and is
sensitive to injected telnet escape sequences. As with SMTP, the extra expres-
sive powers of an Attribute Grammars are not strictly necessary: a context-free
grammar would be sufficient. However, the convenience of our method shows
that an attribute grammar can readily be constructed in a simple, straightfor-
ward way. As with the SMTP parser, the FTP grammar was completed in a
single day by one graduate student.

5.2 Snort Case Study

Snort is a popular, open-source IPS that performs analysis and normalization for
several protocols. We chose to implement our normalizers as modules in Snort
because it is widely used, open source, and is designed for pluggable, modular
preprocessors.

Performance Evaluation: We tested three different versions of Snort for our
experiments. The first is an uninstrumented version of Snort that uses the ex-
isting HTTPInspect preprocessor for HTTP normalization, the smtp dynamic
preprocessor for SMTP normalization, and the ftptelnet dynamic preproces-
sor for ftp normalization. We ran Snort in it’s default configuration. The second
version of Snort, listed as AG-Maximal, implements the full set of normaliza-
tions described above. The final version of Snort, listed as AG-Minimal, uses
our attribute grammar method to normalize only those protocol fields that are
relevant to a signature in Snort’s database. For example, the HTTPInspect pre-
processor does not do any normalization on HTTP fixed-length bodies, so the
AG-Minimal grammar includes no normalization rules for those message bodies.

We performed our modifications on Snort version 2.8.0.2. Our tests used a
trace of 795,488 packets (approximately 2 gigabytes) that we collected from a
campus web server. Our experiment uses average numbers from Snort’s perfor-
mance profiling module, which measures at fine granularity the total time for
packet processing.

The results of performance profiling on these versions of Snort are summarized
in Table 6(a). Not shown are differences in compilation time, which are negligible
for our attribute grammar normalizers versus the uninstrumented version of
Snort. In the worst case for AG-Maximal, our normalizer incurs 15.5% overhead
versus the Snort normalizers. The AG-Minimal normalizers, which are more
consistent with Snort’s behavior, reduce the overhead to 7.16%.

Robustness Evaluation: To test the robustness of our normalizers, we crafted
obfuscated packets by hand. For the HTTP normalizer, we used the following
obfuscations:

– Uppercase to lowercase transformation
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Name Total Packet Processing Time Overhead (%)

Snort 2.8.0.2 50.53 -

AG-Minimal 54.15 7.16

AG-Maximal 58.36 15.50

(a) Performance summary

Fig. 6. Performance Evaluation

– Percent encoding
– Double percent encoding
– ASCII to Unicode encoding

Our packets included both malicious signatures known to the Snort database,
and benign traffic that was obfuscated in a similar way to the malicious traf-
fic. We found that our system correctly normalized all encoded traffic, and did
not make changes to any traffic that was already decoded. We observed similar
results for SMTP traffic and FTP traffic.

6 Conclusion

We introduced the notion of using a higher order attribute grammar (HAG) to
parse many modern protocols for which using context-free grammars are imprac-
tical or impossible. We believe that the small decrease in performance that these
tools display when compared with ad-hoc approaches is more than outweighed
by the gains in ease of use.

We plan to investigate the use of our tool for binary protocols and study
the use of systems that directly support attribute grammar parsing, rather than
relying on existing tools that are not meant for online parsing speed. We believe
that a tool specifically geared towards network protocol parsing would provide
even more competitive performance numbers than our existing approach, and
may even yield a performance boost.
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