
Detecting and Measuring Similarity in Code Clones

Randy Smith and Susan Horwitz

Department of Computer Sciences, University of Wisconsin–Madison

{smithr,horwitz}@cs.wisc.edu

Abstract

Most previous work on code-clone detection has fo-

cused on finding identical clones, or clones that are

identical up to identifiers and literal values. However,

it is often important to find similar clones, too. One

challenge is that the definition of similarity depends on

the context in which clones are being found. There-

fore, we propose new techniques for finding similar

code blocks and for quantifying their similarity. Our

techniques can be used to find clone clusters, sets of

code blocks all within a user-supplied similarity thresh-

old of each other. Also, given one code block, we can

find all similar blocks and present them rank-ordered by

similarity. Our techniques have been used in a clone-

detection tool for C programs. The ideas could also be

incorporated in many existing clone-detection tools to

provide more flexibility in their definitions of similar

clones.

1 Introduction

Identifying code clones serves many purposes, in-
cluding studying code evolution, performing plagiarism
detection, enabling refactoring such as procedure ex-
traction, and performing defect tracking and repair.

Most previous work on code-clone detection has fo-
cused on finding identical clones, or clones that could
be made identical via consistent transformations of
identifiers and literals. However, code segments that
are similar but not identical occur often in practice,
and finding such non-identical clones can be as impor-
tant as finding identical code segments. For example,
while automated code compaction may require finding
identical clones, studies of the evolution of a codebase
over time require finding clones that vary in their sim-
ilarity.

One of the central issues with finding non-identical
clones is assessing when two pieces of code are close
enough to be considered “similar” [10, 24]. Because
this is likely to depend on the context in which the

clone-detection tool is used, we believe that such tools
should provide a quantitative measure of clone similar-
ity, leaving the ultimate decision of classification to the
user of the tool.

In this paper, we advocate the use of explicit
similarity-based clone detection, and we present tech-
niques that can be tuned to find clones of varying de-
grees of similarity. Our techniques identify clones at
the block level, based on fingerprints computed at the
statement level. At the statement level, different fin-
gerprinting algorithms can be used so that, at one ex-
treme, only identical statements have the same finger-
print, while at the other extreme, the same fingerprint
may be given to many minimally similar statements.
At the block level, sequences of statement fingerprints
are grouped into syntactically-valid hierarchical blocks
that reflect the structure of the source code. We can
then compute the similarity score and similarity dis-

tance (defined in Section 3) for a pair of blocks as
a function of the number of statements in one block
whose fingerprints match those in another block.

Our techniques are largely language-independent,
requiring only a language lexer. We have implemented
a clone-detection tool for C programs based on these
ideas that can be tuned by the user to find clones with
varying degrees of similarity. This explicit notion of
similarity enables interesting queries to be performed.
First, our tool can be used to find clone clusters: sets
of clones such that the similarity distance between any
pair of clones in a cluster is less than a user-specified
maximum. Second, for a code segment S, the tool can
be used to find all clones within a given similarity dis-
tance of S and will present them rank-ordered by de-
creasing similarity.

To illustrate, Figure 1 provides an example of four
similar code segments taken from the GNU DAP pro-
gram. All four code fragments involve finding the next
token in the input and include code to print an er-
ror message for tokens that are too long. However,
the kinds of tokens found are different, there are two
different error messages, and just two of the four seg-

f o r (; alphanum(c) ; c = dgetc (dotc , dapc , out)) {
i f (t < TOKLEN) token [t++] = c ;
e l s e {

token [t] = ’\ 0 ’ ;
f p r i n t f (s tde rr , ”dappp:%s :%d : token too long : %s \n” , dotname , l i neno , token) ;
e x i t (1) ;

}
}
unget1c (c , dotc , (out ? dapc : NULL)) ;

Segment 1

f o r (; num(c) ; c = dgetc (dotc , dapc , out)) {
i f (t < TOKLEN) token [t++] = c ;
e l s e {

token [t] = ’\ 0 ’ ;
f p r i n t f (s tde rr , ”dappp:%s :%d : token too long : %s \n” , dotname , l i neno , token) ;
e x i t (1) ;

}
}
unget1c (c , dotc , (out ? dapc : NULL)) ;

Segment 2

f o r (t = 0 ; c == ’ . ’ | | (’ 0 ’ <= c && c <= ’ 9 ’) ; c = sb s ge t c (s b s f i l e)) {
i f (t < TOKENLEN) token [t++] = c ;
e l s e {

token [t] = ’\ 0 ’ ;
f p r i n t f (s tde rr , ” sb s t r an s : b e f o r e %d : token too long : %s \n” , sb s l i neno , token) ;
e x i t (1) ;

}
}

Segment 3

f o r (t = 0 ; (’ a ’ <= c && c <= ’ z ’) | | (’A’ <= c && c <= ’Z ’) | | (’ 0 ’ <= c && c <= ’9 ’) | |
c == ’ ’ | | c == ’ . ’ ; c = sbs get c (s b s f i l e))

{
i f (t < TOKENLEN) token [t++] = c ;
e l s e {

token [t] = ’\ 0 ’ ;
f p r i n t f (s tde rr , ” sb s t r an s : b e f o r e %d : token too long : %s \n” , sb s l i neno , token) ;
e x i t (1) ;

}
}

Segment 4

Figure 1. A clone cluster from the GNU DAP project.

ments end with a call to ungetlc. Our tool can find
these four fragments as a clone cluster, or, given one
fragment, can identify the other three as being similar.

Further details about fingerprinting and how finger-
prints are used by our clone-detection tool to compute
similarity scores and similarity distances are given in
Sections 2 and 3. Section 4 describes how to use these
similarity measures to find clone clusters, and to rank-
order clones according to their similarity to a given
block of code. Section 5 discusses related work, and
Section 6 concludes.

In summary, this paper makes the following contri-
butions:

1. we advocate the use of explicit similarity-based
mechanisms for clone detection;

2. we present a clone-detection technique that can be
tuned to find blocks of code with varying degrees
of similarity;

3. we introduce the similarity score and distance as
a means for gauging similarity, and present clus-
tering and rank-ordering applications built from
them;

4. we propose a fingerprinting scheme for finding
identical or similar statements, providing another
source of tunability in our approach to clone de-
tection.

2 Similarity-Preserving Fingerprints

In this section we discuss how to use fingerprinting
to identify statements that are similar but not nec-
essarily identical. One approach would be to use a
measure like edit distance: two statements would be
considered similar if they were within some threshold
edit distance of each other. This approach would have
the advantage of being tunable, but the strong disad-
vantage of being prohibitively expensive when a large
number of statements must be compared pairwise.
Furthermore, edit distance alone may not best capture
statement similarity. For example, consider the two
pairs of if-conditions shown below (as sequences of
tokens):

Pair 1: A “function-call” condition and a “less-than”
condition

if (id (id))

if (id < id)

Pair 2: Two “bitwise-and” conditions
if ((id + id) & (id * id))

if (id & id)

The first pair has a closer edit distance than the second
pair: to transform the “function-call” condition to the
“less-than” condition requires just two deletions (of the
two parentheses) and one insertion (of the <), while for
the second pair the transformation requires eight dele-
tions. However, it might make more sense to consider
the two “bitwise-and” conditions to be more similar
than the first pair, based on the fact that they share
the same relatively rare operator. This observation is
supported by information theory: for a probability dis-
tribution Pr(T) over a domain T , the information con-
tent of an element t ∈ T increases as its probability of
occurrence decreases; i.e., the more infrequent a do-
main element is, the more important or characteristic
it becomes.

With these observations in mind, we use a finger-
printing technique that is both more efficient than edit
distance and also respects the idea that a sequence of
tokens may be best represented by its characteristic

components : those that capture its essence and distin-
guish it from other, dissimilar sequences. Given this
representation, two sequences are deemed similar if
they share the same characteristic components.

The fingerprinting algorithm that we use is an adap-
tation of one that has been used successfully to identify
similar English sentences in text documents [5,22]. For
each statement S, the algorithm computes all n-grams,
the sequences of tokens of length n that occur in S,
then produces the fingerprint for S by concatenating
the k least-frequent n-grams.1 By using the least fre-

quent n-grams, we take into account the importance
of the presence of a rare token; because each n-gram
represents n consecutive tokens, we take into account
the fact that similar token ordering should affect the
perceived similarity of two statements; and finally, by
selecting only k n-grams to represent a statement, we
allow similar but non-identical statements to have the
same fingerprint.

To illustrate our fingerprinting algorithm, Fig-
ure 2(a) shows the 4-grams of the statement
if (signum<0 || sigstr(signum, signame)!=0)

break; represented as the sequences of tokens if (id

< intlit || id (id , id) != intlit) break ;

with their frequency rankings. The rankings are taken
from the frequency distribution of all 4-grams in the
GNU bash shell source code.2 Figure 2(b) shows the
three least-frequent 4-grams for the example statement.
Each of those 4-grams is shown with its frequency and

1We mean the elements that have the lowest probability of
occurrence over all sequences, not the elements that occur least
frequently in S itself.

2For moderate to large codebases, we find that n-gram fre-
quency distributions are consistent: n-grams that are infrequent
in one codebase are typically infrequent in other codebases.

its representation as a sequence of four token numbers
(e.g., 31 is the token number for the id token). Fig-
ure 2(c) gives the statement’s fingerprint: the concate-
nation of the representations of the three 4-grams.

Choices for k and n can be used to tune the algo-
rithm according to the desired level of similarity: the
larger the values, the more likely that only identical
statements will have the same fingerprint (because the
fingerprint will encode the exact sequence of tokens).
However, larger values for k and n also increase the cost
of computing a fingerprint. Therefore, if the goal is to
have only identical statements map to the same finger-
print, we suggest more traditional techniques such as
Rabin fingerprints [11] or MD5 hashing [19].

To evaluate the effectiveness of statement finger-
printing, we tokenized and fingerprinted the entire bash
shell codebase using the following three-step process to
compute a fingerprint for each statement S in the code-
base:

1. For each n-gram in S, look up frequency(S) in a
pre-computed database of n-gram frequencies.

2. Select the k least frequently occurring n-grams in
S.

3. Concatenate the k n-grams in occurrence order in
S.

We found k=3 and n=4 to be effective for finding simi-
lar statements: not too many statements have the same
fingerprint, and those that do are likely to be consid-
ered to be similar by a human programmer. For exam-
ple, we show below two sets of non-identical statements
(expressed as sequences of tokens) where for each set
all statements have the same fingerprint.

1. Two for-loops that differ only in the initialization.

for (id=intlit; id[id] && id(id[id]); id++);

for (id=id; id[id] && id(id[id]); id++);

2. Three assignment statements with function calls
that differ only in the number of parameters.

id = id (id->id->id , id) ;

id = id (id->id->id , id , id) ;

id = id (id->id->id , id , id , id) ;

4-gram Freq 4-gram Freq
if (id < 8614 (id < intlit 6988
id < 0 || 984 < intlit || id 1008
intlit || id (420 || id (id 3050
id (sid , 117967 (id , id 77927
id , id) 64951 , id) != 532
id) != intlit 1111) != intlit) 1722
!= intlit) break 102 inlit) break ; 734

(a) all 4-grams and their frequencies

4-gram Freq Seq of Token Numbers
intlit || id (420 45:10:31:08
, id) != 532 02:31:09:27
!= intlit) break 102 27:45:09:16

(b) the 3 least frequent 4-grams in order of occurrence

45:10:31:08:02:31:09:27:27:45:09:16

(c) the final fingerprint

Figure 2. Fingerprint construc-
tion for the tokenized statement
if (id < intlit || id (id , id) != intlit) break ;

3 Block-level Similarity

Our tool uses the fingerprints computed for each
statement to compute similarity scores and distances
for pairs of blocks of code. This means that we identify
code clones at the block level. One issue with this ap-
proach is that duplicated code that constitutes a small
part of otherwise disparate blocks may not be read-
ily identified. There are several advantages, though.
First, blocks provide natural and reasonable bound-
aries intrinsic to the source language for comparing
code. Other such boundaries tend to be either too
coarse (e.g., function bodies) or too fine (e.g., state-
ments). Second, blocks reflect code structure without
the need to invoke full parsing. Finally, blocks pro-
vide a well-defined structure over which we can quan-
tify similarity and provide tunable measures.

For C programs, a block is a sequence of statements
delimited by a matching pair of curly braces. If one
block contains another, we consider both as distinct
objects. To avoid the fruitless task of comparing a
block with its own components, we keep track of each
block’s starting and ending position in the source code.

The similarity score for a pair of blocks is an ordered
pair containing the number of fingerprints common to
both blocks divided by the size of each block, respec-
tively; i.e., for two blocks of code S1 and S2 it is defined
as follows:

sim(S1, S2) = 〈
|S1 ∩ S2|

|S1|
,
|S1 ∩ S2|

|S2|
〉

The first term in the ordered pair is the fraction
of fingerprints in the first block that is common to
both blocks, and the second term is the fraction of fin-
gerprints in the second block common to both blocks.
We argue that similarity as defined here is naturally
binary-valued and presents a better picture of the re-
lationship between code blocks than a single number
does. Specifically, the binary-valued structure of the
similarity score can be interpreted as assessing the rel-
ative containment of one block inside another. For
example, a score of 〈1.0, .333〉 indicates that the first
block is wholly contained within the second, and that
roughly a third of the second is contained in the first.

Nevertheless, binary-valued similarity scores are not
appropriate when a total ordering of scores is needed.
This is the case, for example, when the goal is to find
all blocks that are similar to a given block, and to
present them rank-ordered by similarity. Simply re-
taining one part of the similarity score is not a good
solution when one block is much larger than the other.
For example, retaining only the first component of the
score 〈1.0, .333〉 fails to distinguish it from the score
〈1.0, 1.0〉. Therefore, we transform a similarity score
to a single-valued similarity distance when necessary.
The similarity distance for a similarity score 〈s1, s2〉 is
defined as follows:

sim dist(〈s1, s2〉) = 1 −

√

(s1)
2

+ (s2)
2

2

Geometrically, s1 and s2 are treated as the two sides of
a right triangle with sim dist related to the length of
the hypotenuse, normalized to a value between 0 and
1. Other measures such as a simple arithmetic mean
may be used, but in practice we prefer the proposed
definition, since it results in a lower (better) similarity
distance for similarity scores with at least one large
component than the arithmetic mean does.

One of the consequences of our definitions of simi-
larity score and distance is that statement order is ir-
relevant to clone identification. This has both positive
and negative consequences: clones whose statements
have been reordered are readily identified at the pos-
sible cost of introducing false matches due to blocks
whose statements match but logically are not clones.
One could use order-preserving techniques [20], but in
practice, we have found our lack of ordering to have
negligible effect in clone identification.

4 Code Clustering and Rank-Ordering

We briefly describe how our tool uses similarity
scores and distances to perform code clustering and
rank ordering.

4.0.1 Clone Clusters

It is often useful to find clusters of clones that are mutu-
ally similar. Formally, a set of blocks forms a cluster if
and only if every pair of blocks in the set is within some
user-supplied similarity threshold. Thus clustering re-
quires an O(n2) step to compute the similarity score for
each pair of blocks. Fortunately, we can significantly
reduce the runtime of this step if we avoid comput-
ing similarity scores for blocks with no fingerprints in
common. This is done by maintaining an inverted in-
dex keyed on fingerprint values that maps them to the
blocks in which they are found. For a block B with
fingerprints fB, we compute similarity scores only for
those blocks that also contain some fingerprint in fB .

Once the set of similarity scores is computed, we
convert the results to a graph and find all maximal
cliques. Blocks are graph nodes, and an edge is placed
between two nodes if the similarity distance for the
corresponding two blocks is less than the threshold.
We then find the maximal cliques using the algorithm
in [23], which produces sets of blocks in which each
block in a set is within the threshold of every other
block in the set. Figure 1 shows a cluster of four similar
clones found with a threshold of 0.5.

4.0.2 Rank Ordering

One common use of clone-detection tools is to find
all clones of a given code segment S. With similar-
ity scores we can generalize this operation to produce
a rank-ordered sequence of similar clones ordered by
decreasing similarity. Operationally, the procedure is
similar to that for clone clusters, except that an all-
pairs comparison is replaced with an O(n) comparison
of S to all other blocks. As before, we use an inverted
index to significantly reduce the number of compar-
isons. After the similarity scores are computed, we
rank-order the blocks according to decreasing similar-
ity (i.e., increasing similarity distance). Figure 3 gives
a partial example: Figure 3(a) contains a code segment
S, and Figures 3(b), (c), and (d) show successively less-
similar clones with their similarity scores and similarity
distance values computed with regard to segment S in
Figure 3(a).

5 Related Work

Many techniques have been proposed for perform-
ing code clone detection, ranging from lightweight line-
and token-based syntactic techniques [2, 7–9, 17] to
heavier-weight approaches that emphasize semantics
[3, 12, 16], to metric-based techniques that indirectly
measure similarity [13, 18]. Due to limited space, we
refer to existing summaries [4,14] and focus on related
work as it pertains explicitly to similarity.

i f (! r e c u r s i v e (NL CURRENT (LC TIME, D FMT))) {
i f (∗ decided == lo c) r eturn NULL;
e l s e rp = rp backup ;

} e l s e {
i f (∗ decided == not &&

strcmp (NL CURRENT(LC TIME, D FMT) , HERE D FMT))
∗decided = lo c ;

want xday = 1 ;
break ;

}
∗dec ided = raw ;

(a)

i f (! r e cu r s i v e (NL CURRENT(LC TIME, T FMT AMPM))) {
i f (∗ dec ided == lo c) re turn NULL;
e l s e rp = rp backup ;

} e l s e {
i f (∗ dec ided == not &&

strcmp (NL CURRENT(LC TIME, T FMT AMPM) ,
HERE T FMT AMPM))

∗decided = loc ;
break ;

}
∗decided = raw ;

(b) sim((a), ·) = 〈0.83, 0.71〉, sim dist=0.22

i f (! r e c u r s i v e (NL CURRENT (LC TIME, T FMT))) {
i f (∗ decided == lo c) r eturn NULL;
e l s e rp = rp backup ;

} e l s e {
i f (strcmp (NL CURRENT(LC TIME, T FMT) ,

HERE T FMT))
∗decided = lo c ;

break ;
}
∗dec ided = raw ;

(c) sim((a), ·) = 〈0.67, 0.57〉, sim dist=0.38

const char ∗ fmt = NL CURRENT(LC TIME, ERA T FMT) ;

i f (∗ fmt == ’\0 ’) fmt = NL CURRENT(LC TIME, T FMT) ;
i f (! r e cu r s i v e (fmt)) {

i f (∗ dec ided == lo c) re turn NULL;
e l s e rp = rp backup ;

} e l s e {
i f (strcmp (fmt , HERE T FMT)) ∗decided = lo c ;
break ;

}
∗decided = raw ;

(d) sim((a), ·) = 〈0.50, 0.33〉, sim dist=0.58

Figure 3. (a) shows a user-supplied code segment. (b)-(d) show successively less-similar clones.

To the best of our knowledge, similarity-preserving
fingerprints and similarity scores were first used for de-
tecting and quantifying similarity in text documents
[5,22]. That work applied similarity fingerprints to in-
dividual sentences and calculated similarity scores be-
tween documents represented as sequences of finger-
prints. At a high level, our work can be thought of as
an application of those ideas to source code.

Early syntactic techniques such as Dup [2] defined
parameterized clones, allowing for variation between
code sequences as long as a consistent substitution of
identifiers existed. Token-based techniques operate on
lexemes and are thus resilient to differences in white
space. However, these techniques do not quantify sim-
ilarity as we do.

Semantics-based techniques use representations
such as abstract syntax trees [3] and program depen-
dence graphs (PDGs) [12,16] to find semantically iden-
tical clones whose original source code may contain ex-
traneous or reordered statements. These techniques
cannot quantify similarity as we can.

Cordy et al. [6] and Roy and Cordy [20] propose a
technique for finding “near-miss”’ clones, with some as-
pects that are similar to our own. As with us, they em-
ploy a token-based system and use lightweight mecha-
nisms for ensuring syntactic validity of potential clones.
In addition, their methods for measuring similarity be-
tween clones resembles our own similarity score, al-
though they do not seem to utilize it to the extent
that we do or to make it a user-controlled parameter.

Unlike them, we do not enforce statement order when
measuring similarity between blocks of code. Finally,
our use of similarity fingerprints for statements is dis-
tinct.

Li et al. [17] have proposed CP-Miner for identi-
fying copy-paste bugs in large systems. In their ap-
proach, code sequences are transformed so that com-
mon subsequences can be identified using data mining
techniques. Like us they fingerprint statements, al-
though their fingerprints do not preserve similarity. As
with other techniques, they do not quantify the degree
of similarity that exists between potential clones.

Finally, techniques for detecting plagiarism deal
with code sequences that are by their nature similar but
not typically identical. The Moss system [1,21], for ex-
ample, uses a winnowing algorithm to select fragments
of source code to be fingerprinted and then calculates
a similarity percentage based on the set of common
fingerprints. Because its goals are different than ours,
Moss operates at a coarser level of granularity than we
do and cannot produce the same level of detail that we
can. On the other hand, their storage requirements are
smaller than ours.

In summary, even for those techniques that can iden-
tify similar clones, there is typically no mechanism for
quantifying the degree of similarity: code segments are
similar or they aren’t. In contrast, one of our main
goals is to identify non-identical clones and quantify
the amount of similarity present.

6 Conclusion

We posit that identifying and quantifying similarity
is important for many applications of clone detection
and that similarity should be intrinsic to the definition
of clones. We have presented a framework and imple-
mentation for similarity detection that operates at two
levels. At the lower level, we propose a tunable state-
ment fingerprinting scheme that tends to preserve simi-
larity across the fingerprinting function so that similar
statements have the same fingerprint. At the higher
level, we present a lightweight mechanism operating on
language blocks over which we can quantify the amount
of similarity. We illustrate the utility of this approach
by describing two applications – code clustering and
rank-ordering – that our approach enables. There is
considerable future work to be done, but we are op-
timistic that similarity-based approaches such as ours
can provide additional power to clone detection.

Acknowledgements

This work was supported by NSF grant number CCF-
0701957.

References

[1] A. Aiken. Moss: A system for detecting software pla-
giarism. http://www.cs.stanford.edu/∼aiken/moss/.

[2] B. Baker. On finding duplication and near-duplication
in large software systems. In Working Conf. on Re-

verse Engineering, 1995.
[3] I. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and

L. Bier. Clone detection using abstract syntax trees.
In ICSM, 1998.

[4] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and
E. Merlo. Comparison and evaluation of clone detec-
tion tools. IEEE Trans. Software Eng., 33(9):577–591,
2007.

[5] D. M. Campbell, W. R. Chen, and R. D. Smith. Copy
detection systems for digital documents. In Advances

in Digital Lib., 2000.
[6] J. R. Cordy, T. R. Dean, and N. Synytskyy. Practical

language-independent detection of near-miss clones. In
CASCON ’04: Proceedings of the 2004 conference of

the Centre for Advanced Studies on Collaborative re-

search, pages 1–12. IBM Press, 2004.
[7] S. Ducasse, M. Rieger, and S. Demeyer. A language

independent approach for detecting duplicated code.
In ICSM ’99.

[8] J. Johnson. Identifying redundancy in source code
using fingerprints. In Proc. of the IBM Centre for

Advanced Studies Conferences, 1993.
[9] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: A

multilinguistic token-based code clone detection sys-

tem for large scale source code. IEEE Trans. on Soft-

ware Engineering, 28(7):654–670, July 2002.
[10] C. Kapser, P. Anderson, M. W. Godfrey, R. Koschke,

M. Rieger, F. V. Rysselberghe, and P. Weißgerber.
Subjectivity in clone judgment: Can we ever agree?
In Koschke et al. [15].

[11] R. Karp and M. Rabin. Efficient randomized pattern-
matching algorithms. IBM Jnl of Research and Devel-

opment, 31(2):249–260, 1987.
[12] R. Komondoor and S. Horwitz. Using slicing to iden-

tify duplication in source code. In Symp. on Static

Analysis, pages 40–56, July 2001.
[13] K. Kontogiannis, R. Demori, E. Merlo, M. Galler, and

M. Bernstein. Pattern matching for clone and con-
cept detection. Automated Software Engineering, 3(1–
2):77–108, 1996.

[14] R. Koschke. Survey of research on software clones. In
Koschke et al. [15].

[15] R. Koschke, E. Merlo, and A. Walenstein, editors.
Duplication, Redundancy, and Similarity in Software,
volume 06301 of Dagstuhl Seminar Proc. Interna-
tionales Begegnungs- und Forschungszentrum fuer In-
formatik (IBFI), Schloss Dagstuhl, Germany, 2007.

[16] J. Krinke. Identifying similar code with program de-
pendence graphs. In Working Conf. on Reverse Engi-

neering, pages 301–309, Oct 2001.
[17] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. Cp-miner:

Finding copy-paste and related bugs in large-scale
software code. IEEE Trans. Software Eng., 32(3):176–
192, 2006.

[18] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on
the automatic detection of function clones in a soft-
ware system using metrics. In ICSM, 1996.

[19] R. Rivest. The md5 message digest algorithm. RFC
1321, April 1992. Network Working Group.

[20] C. K. Roy and J. R. Cordy. Nicad: Accurate detection
of near-miss intentional clones using flexible pretty-
printing and code normalization. In ICPC, pages 172–
181, 2008.

[21] S. Schleimer, D. S. Wilkerson, and A. Aiken. Winnow-
ing: local algorithms for document fingerprinting. In
SIGMOD ’03, 2003.

[22] R. Smith. Copy detection systems for digital docu-
ments. Master’s thesis, Department of Computer Sci-
ence, Brigham Young University, 1999.

[23] S. Tsukiyama, M. Ide, H. Ariyoshi, and I. Shirakawa.
A new algorithm for generating all the maximal inde-
pendent sets. SIAM Journal of Computing, 6(3):505–
517, September 1977.

[24] A. Walenstein, N. Jyoti, J. Li, Y. Yang, and A. Lakho-
tia. Problems creating task-relevant clone detection
reference data. In WCRE, 2003.

