Computer
Sciences
Department

To CMP or not to CMP: Analyzing Packet Classification on Modern
and Traditional Parallel Architectures

Randy Smith
Dan Gibson
Shijin Kong

Technical Report #1652

February 2009

To CMP or not to CMP: Analyzing Packet Classification on
Modern and Traditional Parallel Architectures

Randy Smith Dan Gibson Shijin Kong
Department of Computer Sciences
University of Wisconsin
1210 W. Dayton Street
Madison, WI, U.S.A., 53706
{smithr,gibson,krobif@cs.wisc.edu

Abstract

Packet classification is a central component of modern nm&tfumctionality, yet satisfactory mem-
ory usage and overall performance remains an elusive cluyglat the highest speeds. The recent
emergence of chip multiprocessors and other low-cost, ighrallel processing hardware provides
a promising platform on which to realize increased classiiiy performance. In this paper we analyze
the performance of packet classification in the context odlfel, shared-memory architectures. We be-
gin with two classic algorithms—Aggregated Bit Vector an@€Hts—and parallelize each of them multiple
ways. We discuss the tradeoffs of different architectunebé context of these algorithms, and we eval-
uate the schemes on both chip multiprocessor (CMP) and symemaultiprocessor (SMP) hardware.
Our experiments show that for CMPs, resource-sharing ceglaynchronization scaling as the primary
speedup-limiting bottleneck. Further, while SMPs providere processing power core-for-core, CMPs
nevertheless provide the best overall performance wheavalilable execution contexts are employed.

1 Introduction

Packet classification is a central component of modern mé&tfumctionality and is used for a variety of
services, including routing, firewalls, and quality of deev Even so, achieving satisfactory performance
with reasonable memory usage remains an elusive challentie dighest speeds, and new techniques
continue to be proposed to advance the state of the art.da [zrt, this ongoing challenge arises due to the
tradeoffs between memory usage and execution time impogétebnature of packet classification itself,
combined with the need for very fast routines that can keepitlpever-increasing network speeds.

The recent emergence of Chip Multiprocessors (CMPs) [2nfl]@her low-cost, highly parallel archi-
tectures provide a promising platform for realizing inged performance for packet classification and for
other common tasks in the forwarding path. This naturabylketo the question: what are the consequences—
both positive and negative—of performing classificatiorparallel architectures? Increased performance is
the primary motivator, but in addition, some CMPs provideenttractive performance per unit power than
their uniprocessor or traditional multiprocessor cougitiy. In addition to a potential power advantage,
the use of multiple processing elements on a single chip igaffisant performance per unit cost advan-
tages over multi-chip systems and clusters of networkedstations [19]. On the other hand, migrating
to parallel architectures is no simple feat, and the pdizditton process gives rise to hidden pitfalls and
other constraints that limit scalability and must be adskeels These include extracting sufficient parallelism
out of existing algorithms, devising altogether new altjoris, controlling inter-processor communication
overhead, and limiting synchronization bottlenecks.

This work details our experiences in parallelizing pacKassification algorithms and evaluating them
on various multiprocessor architectures. We start with tlassic but different classification algorithms—

Aggregated Bit Vector (ABV) [1] and HiCuts [8]-and paraiiz each of them in multiple ways. We discuss
the tradeoffs inherent to different parallel architectuire the context of these algorithms, and we evaluate
their behavior on both Chip Multiprocessor (CMP) and Synoé¥lultiprocessor (SMP) hardware. We
consider the costs and benefits of parallel classificationgdhree different axes. The first axis is the degree
of parallelization, determined by number of processordlavie on the host machine. The second axis
captures the features of the parallel hardware platforedfjtincluding variables such as synchronization
and locking costs, processor topology (CMP or SMP), and mgrhierarchy differences. Third is the
classification algorithm used and its parallel variants.

Our results show that parallel classification performanepethds strongly on many factors, including
algorithm selection, hardware platform, and parallel@mascheme. In general, we find that each of the axes
above affects the performance of classification dramdyiead non-orthogonally with respect to the other
axes. More specifically, we find that for CMPs, resource-igigareplaces synchronization scaling as the
primary speedup-limiting bottleneck. Further, while SMisevide more processing power core-for-core,
CMPs nevertheless provide the best overall performance atiavailable hardware execution contexts are
employed. Finally, for intermediate numbers of allocateacpssors, performance strongly depends on the
allocation order itself. In the best cases, hardware costscanstraints are mitigated by the parallelization
scheme (and vice versa), and we observe near-linear pafm@increases as the degree of parallelization
increases.

In summary, at the very highest speeds packet classificatiyncontinue to be performed using custom
hardware and software solutions. Nonetheless, the compuidustry’s trend toward multi-core parallel
processing is clear. In this paper, we take a step towardsratahding the costs of moving packet classifi-
cation to parallel architectures and determine what benefitcan reasonably expect to obtain. Our results
suggest that parallel classification on modern CMP hardapess the door for further performance gains.

The remainder of this paper is organized as follows. SeQidefines the packet classification prob-
lem and gives the related work, and Section 3 describes tigtactural aspects relevant to our study. In
Section 4 we briefly describe the ABV and HiCuts algorithmsg &n Section 5 we present a taxonomy
of parallelization schemes for these algorithms. Sectioor@ains our experimental results, and Section 7
concludes.

2 Background and Related Work

A packet classifier compares packets to a database of rutkgeanine the lowest-cost rule matching each
packet. Packets are classified according to the values offgpigelds in their headers, which typically in-
clude source and destination addresses, source and diestiparts, and the protocol. Rules in the database
contain values for each of the five fields, a label, and a costrids in the fields of a rule may contain
explicit values (such as a specific IP address), a prefix,gerafivalues€.g.a port range of [1024:65535]),
or a wildcard to indicate that the field's value in the packeadber is of no interest in the rule. When the
lowest-cost matching rul® is found, R logically affixes its label to the packet. In the case of nogtifor
example, the label specifies the route the classified pabketid take on its next hop. In practice, a rule’s
cost is determined by its index into the table of rules, watlvér cost rules occurring first.

Conceptually, a classifier compares a packet's header stgaach rule in sequence until a match is
found. But practically this approach is unacceptably slswgce rule databases often contain hundreds to
thousands of entries, and classification must be perfornadra-speed to avoid creating a bottleneck.
Further constraining the space of solutions, Lakshman ditiddss [10] showed that packet classification
is an instance of a space-time trade-off [3], requiringemith(log n*~') time or O(n*) space fom rules
andk header fields. Thus, proposals for efficient packet classifin center on novel ways for achieving
acceptabldrade-offsbetween time and space. Rather than describe the myriadigees in detail, we
refer the reader to available summaries [7, 15, 17] and pragkcribe here the higher-level qualitative and
structural differences between them.

Most classification techniques can be divided along two :aseffware vs. hardware (TCAM), and
decomposition-based vs. heuristic approaches. Alongdfieare—hardware axis, software-based classifi-
cation is the most flexible and enables more sophisticatmmhcamplexity at the cost of slower execution
time. TCAM-based approaches, on the other hand, use spedalircuitry to classify a packet against all
rules in parallel. TCAMs are fast but require large amourfifgawver and physical space and are expensive
compared to commodity hardware. In addition, they havetéichimatching capabilities, since port ranges
cannot be directly matched and must first be converted wdigbrefixes requiring extra capacity. A detailed
summary of the trade-offs involved between software and Wid#ased approaches can be found in [6, 15].

Along the decomposition vs. heuristic axis we can see thaanfie of the space-time trade-off. De-
composition techniques perform classification by subdigdhe problem into smaller, easier-to-compute
components and combining the partial results in subseqleges of the computation. From a paralleliza-
tion perspective, these approaches are comparativelglsti@ward to parallelize since the work performed
by each subtask is relatively constant and easy to deteranpriri. In contrast, heuristic approaches use
decision trees [8, 14, 18], prefilters [6], and other techegjto find the lowest-cost matching rule as quickly
as possible. For these techniques, the amount of work pd&epsaaries depending on the contents of the
packet’s fields and the structure of the heuristic. Paiaitej these approaches is more difficult, since
balancing the work of each processor is not as straightfiwrwa

In relation to these paradigms, our work investigates saféabased techniques and rests on the as-
sumption that multi-core processors with large numbersh&fap, lightweight cores may become viable
platforms upon which classification is executed. For ouregixpents we parallelize and evaluate both a
decomposition-based algorithm (Aggregrated Bit Vectdy find a heuristic decision-tree based approach
(HiCuts [8]). We describe both of these techniques in Sactio

With regard to network processing architectures, Yi andd@20] have recently explored the applica-
bility of extending network processing architectures vBimultaneous Multi-Threaded (SMT) capabilities.
They evaluated all nine applications (none include packessification) in the NetBench suite [13], con-
cluding that simultaneously executing applications fraffecent layers in the protocol stack gave the great-
est performance improvement. In contrast, we study padkssification in detail and examine the effect
that processor architecture has on parallelization schemdevice-versa. In earlier work along these lines,
Crowley et al. [5] found that SMT processors outperformed CMPs, Fine4@a@iMulti-Threaded proces-
sors (FGMT) and other architectures. While there are mafigrdinces, our results are roughly consistent
with theirs.

Finally, recent work has looked at approaches to paraliiajipacket classification itself. In [21], Zheng
et. al. propose a TCAM-based technique that uses chip level pbsallé exploitincreased performance. In
[22], the authors parallelize hyartitioning the rule setand running multiple decision tree-based classifiers
in parallel. Each tree covers a distinct subset of the ruld® purpose of our work is not to propose new
parallel classification algorithmser se although we do parallelize some classic algorithms. htsteve
focus on the costs and behaviors of parallelization witrarégo the architectures they are run on in an
attempt to better guide current and future parallelizagtiarts.

3 Architecture Preliminaries

We study packet classification algorithms in the contextwai shared-memaory architectureSymmetric
Multiprocessors(SMPs) employ multiple processirghipsto provide a parallel execution environment.
Each such chip is allocated a single processor and a lariyaigrcache. In contrasghip Multiprocessors
(CMPs) integrate multiple processors onto a single chipyrmonly sharing cache resources as well. While
SMPs and CMPs present identical programming interfacgsicagions will see very different performance
characteristics due to architectural differences.

SMPs devote the vast majority of the area of a particular thip single processor and its cache hi-
erarchy. The SMPs in this study provide a great deal of ressuto a single execution contexliread,

including large unshared caches that greatly reduce a@arsgnory access latency. The consequence of
this chip allocation is that inter-thread (and, in this ¢aster-processor) communication must cross at least
two sets of pins, which incurs latency comparable to a caciss or longer. While this operation is log-
ically transparent to the programmer by virtue of cache oahee, it is costly, especially if it occurs with
regularity.

In contrast, inter-thread communication is much less gadatla CMP environment. Communication
between two threads residing on the same chip does not esguyroff-chip data movement and is therefore
fast. The threads in our CMPs share a single unified (L2) caokehip which reduce communication time
to only a few processor cycles. As a result, applications @@ sensitive to inter-thread communication
time are well-suited to a CMP environment. Unlike the SMRyé&weer, the CMP must share some on-chip
resources with other threads. Notably, additional corektaread-private caches consume chip area and
effectively reduce the performance of an individual thresidolation. Ideally, this reduction in single-thread
performance can be ameliorated by use of additional thyethdsigh many applications do not trivially
exhibit abundant thread-level parallelism.

The CMPs in our study also emplagultithreaded processarsvhich greatly increase the number of
available hardware threads by time-sharing each proggssire at a fine granularity, but has the tendency
to further reduce single-threaded performance. Spedifiad increasingly more thread contexts are used,
the performance of each individual thread suffers as thestitis timeshare of its CPU is further reduced.

To illustrate these costs, consider the code se-

Thread 1 Thread 2 guences in Figure 1, depicting a synchronized criti-
L. Tock(); L.Tock(); cal section. Thread 1 writes two cache lines (A and
A = 27 S=A+B: B) which are protected by lock L. Thread 1 then
B = 10: L. unl ock(): performs W units of independent work requiring
L. unl ock(): dowor k(W ; no communication. At a later time, Thread 2 ac-
dowor k(W ; quires lock L and then reads cache lines A and B.

Suppose Threads 1 and 2 execute in an SMP envi-
ronment {.e. on Chip 1 and Chip 2, respectively).

Figure 1: Simple synchronized code segment Data requests for L, A, and B must all travel from

Chip 2 to Chip 1 in the common case, and the data
must then return to Chip 2. Each of these round-trip accessgsrequire hundreds of processor cycles to
complete, incurring a large execution latency for a shontcsyonized section of code. However, if Threads
1 and 2 execute on the same chip, therinter-chip traffic occurs, resulting in much faster exegntiSince
the threads in question share a common on-chip cache, coiation time is reduced from comparable to
a cache miss to comparable to a cache hit.

The whole of the execution does not consist of communicatlone, however. For SMPs, work W is
typically performed faster overall than on CMPs due to thgesior single-thread performance of the SMPs.
Hence, thdrequency of communicatidmecomes a vital indicator of SMP- or CMP-affinity. Simply put
when communication dominates CMP-based systems will tera@utperform SMPs. Conversely, SMPs
tend to outperform CMPs when computation.

4 Classification Algorithms

We parallelize two distinct types of packet classificatitgoathms: the Aggregated Bit Vector [1] algo-
rithm, which is decomposition-based, and HiCuts [8], whisles decision trees. We briefly describe each
algorithm to provide context for the parallelization we cidéise later.

4.1 Aggregated Bit Vector

The Aggregated Bit Vector (ABV) scheme is itself an extensdd the Lucent Bit Vector approach (LBV)
[10]. LBV is a classic divide-and-conquer algorithm thabdivides the classification problem, solves the

subtasks, and combines the intermediate results to conagfital answer. To perform the decomposition,
LBV partitions the rule database by projecting along eaclhefk fields in the rules. In each of the
resulting sets, LBV then constructs a trie from the binapresentation of the values in the rules for the
given field. Values in a field that are ranges are converteddbixes prior to trie construction. Each node
in the tries contains a bitmap whose length is equal to thebeurof rules. For field;, bit ¢ is set in the
bitmap at a nodeV of trie j if the path from the root of the trie t&/ matches the prefix in fielgd of rule 7.
Altogether, the bitmap aV denotes the set of rules that match the prefix traced by tletpat.

When a packet arrives for classification, each okiteader fields is classified independently by follow-
ing the associated tries as far as possible, resultirkghitmaps which give the set of rules that match each
field independently. To combine these subresults, LBV tégrsects thé: bitmaps and looks for the set
bit whose rule has the lowest cost. If rules are ordered aaogito cost, the algorithm needs only to find
the first bit that is set in the intersected bitmap.

The ABV algorithm extends LBV by drawing on the observatibattthe intersected bitmap is large and
sparse, leading to a large number of unnecessary memorgsascand wasted cycles when looking for a
set bit. In the extension, a small aggregate bitmap is alsocésted with each trie node that summarizes the
regular bitmap. If A is the aggregate size, abig set in the aggregate bitmap if there is at least one bit in
therangdi- A, (i+1)- A) thatis set in the regular bitmap. During classification,aggregated bitmaps are
intersected and examined first. When a set bit is observed;dtresponding bits in the intersected regular
bitmap are then examined. ABV reduces the number of bits &xiaenined from R| (the number of rules)
to |R|/A, which can lead to large decreases in memory accessesdenialues of A. Further improvements
are possible by extending the aggregation beyond a singdetiecreate a multi-level hierarchy of aggregate
bitmaps.

4.2 Hierarchical Intelligent Cuttings (HiCuts)

Hierarchical Intelligent Cuttings (HiCuts) [8] is a heuits decision-tree [4] based procedure for performing
classification. In this technique, nodes in a decision tezeesas filters that successively reduce the number
of matching rules until a small enough number of rules rem&im which linear search is feasible. Geo-
metrically, rules can be viewed as points ig-@limensional hypercube, where as befbris the number of
header fields involved in the classification. Nodes in thadi@e tree correspond to planes that recursively
subdivide the hypercube into smaller subcubes that clag®frules they contain. The goal of the decision
tree problem is to provide a good partition of the rules whilaultaneously performing as few cuts as pos-
sible (thus reducing the height of the tree). Determinirglibst possible decision tree is NP-Complete [17],
so heuristics with reasonable performance are used to ®ippeite an exact solution.

HiCuts uses heuristics that seek to balance the space aaddists and are based on providing the best
balance based on locally optimal criteria. Large trees ase lhut require large amounts of storage space,
whereas small trees can use very little space but are slave $irey result in nodes with large number of
rules to be linearly matched. Tunable heuristics guide tresttuction of tree to some acceptable footprint
between either extreme. Once the decision tree is consttyperforming classification is simple. A packet
is classified by traversing the tree, evaluating the nodesdipates in succession and following the appro-
priate child pointers. When a leaf node is reached, the ifileisBnearly scans the rules contained in the
node and affixes the label of the lowest cost rule to the packet

5 Parallel Classification: Techniques and Analysis

Packet Classification is computation-bound from a highgreréince linespeed networking perspective, but
it is lightweight in comparison to many traditional parigoblems such as large scale scientific simula-
tions. Communication overhead can be relatively, and wstdeding inter-thread communication cost is key
to achieving high-performance packet classification vialie software. We considered and implemented
many parallelization schemes for the ABV and HiCuts aldyonis, including data parallel, control parallel,

and pipelined parallel approaches. Each of these schentiesizgs a different trade-off between various
parallelization overheads. We describe each approaciwviadavell as specific implementation issues.

5.1 Data Parallel Approaches

The simple data parallel approach is analogous
to theSingle Instruction Multiple Data (SIMDgx-
ecution model. In this approach, the classification Incoming
algorithm is fully replicated onto each processor, packets
and packet headers are multiplexed to an arbitrary
processor for parallel classification. This method
is straightforward and scales reasonably well, as
virtually no inter-thread communication is required
when classifying two separate packets. Initializa-
tion tasks that construct data structures are performed
prior to the replication, and a smgle_\ copy of theSEi ure 2: Data parallel Aggregated Bit Vector. Each
and other read-only data structures is shared amoné .

. . processor executes the complete algorithm.
all instances of the algorithm.

Figure 3 illustrates the data parallel approach for the ABYyoethm; the HiCuts data-parallel imple-
mentation is structured identically. A shared queue holtskpts that have been received from the network
and are awaiting classification, and a mutual exclusion [pe#rds the queue and arbitrates access to it
among the competing processors. As with all our parallgbna, this lock simulates the synchronization
that must occur when retrieving a packet from the networ&riace. On each processor, the classification
cycle consists of three steps: busy-waiting to acquire dlog, Iretrieving a header from the queue (more
generally, retrieving a set a¥ headers), and classifying and outputing the headeiN(beaders).

There are two primary advantages to data parallel schemhs.fiist is simplicity: parallelizing the
algorithm requires only the addition of a lock and some lagithe entry point of the algorithm to synchro-
nize the queue. The steps involved in the classificationritfgns themselves remain intact; no surgery is
required to extract the parallelism out of an algorithm. @elly, this approach minimizes the dependencies
between processors, which is not true of the other parzdlétin schemes we consider. Here, processors
classify packets independently and do not need to execuighihsynchrony. Each processor can classify
packets as fast as its capabilities allow, without regattiécspeed or duty cycle of other processors.

The primary disadvantage of this approach is the use of #esiock guarding the shared queue. As char-
acterized by Mellor-Crummy and Scott [12], this constraotlimits scalability for even small numbers of
processors, especially on traditional parallel architext such as SMPs that have high communication costs
(Figure 12). Only one processor can hold the lock at a timd,aquiring the lock becomes a chokepoint
as the number of processors increases. As we show laterxparimental results are generally consistent
with those described in [12], although the bottleneck idgated somewhat in CMPs, where locking costs
are cheaper.

There are many variants to the data parallel approach,dimgtechniques that subdivide the computa-
tion tasks into smaller components and summarily optimireeduling of subtask®(g, a master thread or
use of multiple thread-private queues). These techniqrestop increase the communication time overhead
in addition to having the same locking problems as above.

5.2 Control Parallel Approaches

In contrast to data-parallelismepntrol parallelismsubdivides aralgorithminto multiple subparts that
can be executed in parallel. Control-parallel approacha® well on algorithms that repeat the same tasks
for different data values. For subparts that cannot be lediradd, such as bitmap intersection in the ABV
algorithm, all processors performing tasks leading up odérial subpart must communicate their results

10On most machines, no inter-thread communication is negesggen threads share cacheable data in a read-only manner.

6

to a designated processor. When a designated processoedwged all the partial results, it executes
the algorithm subpart serially until a parallelizable satigs again reached. Thus a control-parallelized
algorithm is often characterized by alternating paraltel aerial components.

At first, control parallelization seems to be a

good fit for the decomposition-based ABV algo- T > Aﬁggs L

rithm. Trie traversals over header fields offer in-

dependent operations can be performed on distinct L L [AgBits | |
27-52

processors, and analysis of the aggregate bitmap,'.f,coming
and rule bitmaps can be allocated among severalackets
AgBits

processors as well. Figure 4 depicts a control pam» T3 O 5378 —»Q»D:I:D
allel scheme for the ABV algorithm that leverages

two parallel components, each followed by a serial AgBits

component. The first component parallelizes trie L™ 79-104] Select lowest
traversal so that each header field’s best matching : cost rule
prefix is identified on a distinct processor. Next, the > T5 — She 1%3'_31'238—

aggregation bitmaps from each trie are intersected
together in a serial operation. In the second parallel
phase, the intersected bitmap is divided among the
available processors and aggregation is performed,:igure 3: Control-parallel Aggregated Bit Vector.
Finally, a single processor selects the lowest cost

rule from each of the partial results produced.

Unfortunately, this parallelization has serious shortoags. First, there is a heavy synchronization cost,
as tight synchrony is required at all serialization poirtidiwing the parallel phases, and barriers must be
employed to ensure that serial phases do not execute umt#@éndencies have communicated their results.
Time is lost as processors idle while waiting for a previotecpssor to reach the synchronization point and
communicate its results. Second, the parallelization do¢scale gracefully to more than five processors,
since this is the limit of the available parallelization hetfirst phase of the ABV algorithm. Combined
together, these two costs yield an unworkable solution,iaitid! results demonstrated that a performance
slowdownoccurs as the number of processors is increased. Furtleddi@uts algorithm admits no obvious
amenity to such parallelization, since each node in thesd®ctiree is dependent on its parent.

From another perspective, the poor behavior can be unaet$tpconsidering the communication costs
involved. For the ABV algorithm, our experiments have shdhat, on average, 12-14 nodes are accessed
during trie traversal, most of which reside in the cache, s the computation time for the first paral-
lelizable subtasks is fairly small compared to the aggiegatteps. As a result, the communication costs
are comparatively high, but these do not contribute to tigeréhm and count as overhead. Control par-
allelization works well for tasks that have large, balancethputation times, unlike the disparity between
ABV'’s trie traversal and aggregation steps. Thus, we catelhat control-parallel schemes are unsuitable
for packet classification.

Point

5.3 Pipelined Parallelism

Pipelined techniques are a special case of control pasafiakstricted to an assembly-line model for
data movement. Here, the classification task is partitianemmultiple stages; processors are connected
together in sequence, and each processor is assigned aicsgtagje to execute. Small queues between each
processor decouple the read and write operations of adjpcecessors in the pipe and allow for a limited
amount of buffering. During operation, each processorsvait data on its input queue, reads in the data
when it arrives, executes its assigned stage(s), and plaeé@stermediate results in its output queue for the
next processor in the chain.

T1-T3 T4-T5 Ag Bits Ag Bits Ag Bits
1-42 43-85 86-128

Incoming
packets

Figure 4: Pipelined Aggregated Bit Vector algorithm. Eachgessor completes a portion of the task and
hands off the intermediate results to the next processor.

The chief advantage of the pipelined approach is reducdddoatention. Each intermediate queue be-
tween processors has a lock that regulates access to the'sjgentents. Since these queues are shared by
only two processors, contention for the lock is considerabtiuced compared to data-parallel approaches.
In principle, throughput can be higher than a data parafipt@ach since lock manipulation and wait time
can be much lower in a pipelined implementation. The chistatle to this approach is that overall through-
put is throttled by the worst-performing task in the pipeliThus, in practice, increased throughput depends
strongly on a balanced workload among all the processorsipipeline.

Figure 4 shows a pipelined parallelization of N
the ABV algorithm for five processors. Alock guards
access to each intermediate queue. Stage 1 busy- ~----------T7-"---------
waits for packets to be received from the network,
and Stages 1 and 2 together perform the trie traver- .
als. The remaining three stages perform the tasks | //() 1Stage 2
of intersecting the bitmaps from the tries and find- emmeeees s '
ing the lowest cost matching rule. We scale the >
parallelization up to higher numbers of threads by "'V/Ié“r“x&; _____ .
spreading the tries among distinct processors and
by dividing the bitmap evaluation step into smaller Rt Stiine S S .
subranges. In our implementation, to avoid expen-

sive (and unnecessary) copies of intermediate re-

sults, packet headers along with their intermediafd9ure 5: Pipelined HiCuts. Processors in the pipeline
results are maintained in globally visible memory'f‘re assigned to distinct levels in the decision tree.

and pointers to their location in memory are communicatdad/éen processors.

With regard to packet classification, our experience has liest decomposition-based techniques such
as ABV are easy to parallelize since they can be decompogedrimaller tasks that are relatively determin-
istic in their execution time, leading to well-balancedgdipes. Designing a pipelined parallelization (or
a more general control parallelization) for heuristic aygmhes is not as straightforward. The overarching
requirement is to produce a well-balanced decompositiah ¢hn keep all processors utilized. However,
heuristic decision-tree based algorithms such as HiCu¢sl@ave evaluation of different fields at all lev-
els of the tree, rendering ABV-style decompositions imgmes An alternative approach, and the one we
employ, is to decompose the decision tree so that each levtkeitree is assigned to a distinct processor.
Figure 5 depicts this technique for the first three levels tka. In addition, when available we dedicate
one or more processors to performing the linear traverdatsealeaves. As above, a small queue with a
lock sits between each level. When the processing at anyHagdeen completed, the processor places the
intermediate results along with a child node identifier @roiitput queue.

(9]
—
o))
«Q
(0]
N

dport < 1024 dport > 49151
il Vdi A

O
O
O

Server Sun T2000 (CMP)| SunFire v880 (SMP)) N -
Processors 8 UlraSPARC-T1| 8 UltraSPARCAIIT = Throughput as a function of synchronization primitive
Threads 32 8 2 3.2 I T T T

Chips 1 8 g 25} 2.35

L1-I 16 KB 32 KB < 2 r

L1-D 8 KB 64 KB o 137

L2 3 MB(on chip,shrd)| 8 MB(off chip, prvt) g 05¢F

Interconnect Crossbar Shared Bus K 0 - X -
Main Memory 16 GB 32 GB Conditon Var Mutex/Spin CAS/Spin

Synchronization Primitive

Figure 6: Characteristics of CMP and SMP platformsgjq,,re 7: Relative classification throughput for

T_he Sun T2000 (Nlagara) pro_wdes a CMP execution ez, i s locking mechanisms. Using the CAS

vironment; the SunFire v880 is an SMP. instruction with busy-waiting yields the highest
throughput.

6 Experimental Results

We implemented data-parallel and pipelined paralleloragiof both the ABV and HiCuts algorithms and
evaluated them on CMP and SMP hardware, repeating all ofxqperanents for processing quantum sizes
ranging from 1 to 100 packet headers. We briefly summarizdiodings as follows:

e Processor AllocationOn CMPs, resource-sharing is the primary speedup-limitiogleneck. Further,
thread/processor allocation order can significantly affesformance for intermediate numbers of allo-
cated threads.

e Synchronization CostsSynchronizatiorscalingcosts did not produce significant bottlenecks on either
platform, although SMP communication costs limited sciéitgtand far outweighed CMP communica-
tion costs.

e Parallelization Schemedn part because of the above, Data Parallel approachesvacti@se to ideal
speedups, whereas workflow imbalances restrict pipelinemeance.

e PerformanceCore for core, SMPs provide superior performance. Whenvailable processor resources
are used, though, CMPs yield the best overall performance.

6.1 Execution Environment

Figure 6 provides the details of the CMP and SMP platformsunstudy. We used a Sun T2000 server
(Niagara) for our CMP environment, which has 8 cores and diviare threads per core for a total of 32
independent hardware contexts (threads). We used a Sw@8@efor the SMP platform containing 8 chips
for a total of 8 hardware contexts. For some experiments |sgeeanployed an older Sun E6000 16 processor
SMP system as a comparison point. All experiments were pagd on idle machines and repeated twice
with the best result retained. We use the teuantumto refer to the number of packets processed between
locking events. Unless otherwise noted, we use a quantumfedrlour tests, we used synthetic classifiers
and traces produced with the Classbench [16] framework.

One implicit degree of freedom in each of the algorithms waligtd is the choice of synchronization
primitive. We considered three distinct synchronizatioectmanisms: condition variables, pthread mutexes
using busy-wait loops, and the atontismpare-and-swap (CASPARC instruction. The relative through-
put achieved using each of these mechanisms is given ind-iguCondition variables are the most expensive
since they communicate synchronization via signals reldlgeugh the operating system. Using busy-wait
loops with pthreads eliminates much of the OS-signallingrbgad and gives a 70% relative improvement.
Finally, using the CAS instruction with busy-wait loops thugr reduced lock acquisition time and yielded
135% improvement over condition variables. Consequeathyur experiments use an inline CAS-based
macro for synchronization in lieu of condition variabledibrary-provided locking.

20 20

CMP Tiled + CMP Tiled +
18 FCMP Striped X ! 18 [CMP Striped X 1
SMP * SMP *
16 f 1 16t
14 | : 14 |
5 12 ‘ 5 12}
o] go]
o 10 ® 10f
Q, Q,
“ g “ g
6 6
4 4
2 2 F ‘ ‘ ‘ ‘ ‘ ‘ ‘
1 4 8 12 16 20 24 28 32 1 4 8 12 16 20 24 28 32
Execution Contexts # Execution Contexts
Figure 8: Data Parallel ABV Figure 9: Data Parallel HiCuts
Parallel.| Algorithm | Platform # Performance (pps) Speedup
Scheme 1 8 32 8 32
Data ABV CMP (Striped)|| 50,004 388,115 651,87p7.76x 13.03«
Parallel SMP 51,933 374,226 -+ 7.21x -
HiCut CMP (Striped)|| 113,523 888,203 1,777,0197.82x 12.67x
SMP 211,444 1,283,264 + 6.07x -
Pipe ABV CMP (Striped)|| 43,448 200,460 195,0064.61x 4.49x
Parallel SMP 45,990 150,463 -+ 3.27x -
HiCut CMP (Striped)|| 100,908 149,838 383,0241.60x 2.76x
SMP 166,088 28,900 <+ 0.17x -

Table 1: Raw performance (in packets per second) and speéolup, 8, and 32 concurrent threads.

6.2 Data Parallel Results

Figures 8 and 9 depict the speedup of the data-parallel ABM-AGuUts algorithms, respectively. The dashed
line shows the ideal speedup as a reference. On the CMPrpaifice increases for intermediate thread
counts {.e. less than 32) strongly depend on the order in which threazlalibcated. Ailed allocation uses

all threads in the current core before allocating a threathfanother core. Thstripedallocation scheme,
on the other hand, balances thread allocation among als dyrallocating threads so that they are spread
across all cores as evenly as possible. Since threads oaitie &re share resources, striped allocations
that do not share resources outperform their tiled couatésgor intermediate thread counts. As expected,
the distinct allocations converge at full utilization.

For both algorithms, CMP speedup is near the ideal for eigféwer striped threads (each on a distinct
core) and gradually falls off as threads on the same core etamipr processor resources and become
increasingly constrained. For CPU-intensive workloadslFCscalability is limited by CPU performance
saturation rather than communication costs. Note that erfSP platform, scalability falls from the ideal
in both algorithms. We attribute this to the relatively iaased communication cost of the SMP architecture.
Further, since HiCuts is a more efficient algorithm than AB\é tatio of communication to computation
is higher and the fall-off from the ideal is larger in Figuretttan in Figure 8. Table 1 shows the raw
performance numbers in packets per second and the ressiteegups.

10

CMP Tiled + .
5.5 FCMP Striped X F'R 4.5 f N
SMP * / Fone KX Hone WK KX
L \ L ***"¥f He K y]
i . ¥k 26X Koseze X
i FHH e I

Speedup
[\

r 3 CMP Tiled
W alg CMP Striped (Qntm 1)
HEEEE CMP Striped (Qntm 100)
SMP (Qntm 1)
SMP (thm 1902

o =N w0

[1% X +

Speedup
w
[©2 B \C R G IR OV) BT 1 BN G 1 BN € 1 B e
——

1 4 8 12 16 20 24 28 32 12 4 6 8 1012141618 202224 2628 3032

Execution Contexts # Execution Contexts

Figure 10: Pipelined ABV Figure 11: Pipelined HiCut

6.3 Pipelined Parallel Results

Pipelined parallelizations exhibit characteristicaliffetent behavior as shown in Figures 10 and 11 (Fig-
ure 11 also shows behavior for larger quantum sizes as disduis the next section). Most significantly,
the observed speedup is quite modest compared to datagbaggdroaches, due to both increased commu-
nication costs and processor load-balancing issues. dsitrg the number of threads increases the number
of synchronization points that must be traversed; evenghanly two threads contend for a given lock,
the frequency of communication is larger and thus commtioicacosts contribute larger overhead. Sub-
dividing the algorithm into small enough pieces so that it b& spread among the available processors
further increases relative communication costs, althabghcan be addressed somewhat by increasing the
processing quanta. At some point, tasks are broken dowrtheio smallest “atomic units”, which do not
necessarily have uniform processing requirements. Thimlance in the processing loads of the pipeline
constrains overall performance to that of the slowest threBuch imbalance manifests itself partially as
non-monotonic architecture-specific “sweet spots” shawthe figures.

Second, CMP performance does not converge at 32 threaddtes dase for the data parallel results.
This behavior stems from the variable synchronizationstisdt occur between pipeline stages. Stages that
reside on different cores will have different communicatmosts than those that reside on the same core.
These costs lead to significant speedup differences evemalhigrocessors are utilized since different paths
between the threads and cores are followed.

Finally, SMP behavior varies widely between the two aldoris. Pipelined ABV loosely follows the
pipelined CMP trend, but no significant speedup is observitl pipelined HiCuts. This stark contrast
between SMP and CMP behavior comes (again) from the relatieavy synchronization costs for SMPs
compared to CMPs as well as the shared on-chip L2 cache onMiire When combined with the reduced
computation requirements of HiCuts over ABYV, the resultinigh communication to computation ratio of
HiCuts on SMPs effectively constraints any speedups.

6.4 Varying the Quantum Size

As alluded to earlier, varying the quantum size—the numib@ackets processed between synchronization
events—lowers the communication to computation ratio amdoositively affect performance. We examined
the impact of this by executing the algorithms as the quarsize varies from 1 packet to 100 packets per
synchronization event. Table 2 summarizes these resultghd table, the second column contains the
best performance with quantum 1 using the maximum numbehretitls available to the platform. The

11

Performance Max Best
Algorithm & Platform | (Quantum 1) Perf. Quantum| % Improv.
ABV DP CMP 651,879 743,559 70 14.1%
ABV DP SMP 374,226 427,908 60 14.3%
ABV PIPE CMP 195,006 232,875 50 19.4%
ABV PIPE SMP 150,463| 198,303 40 31.8%
HiCuts DP CMP 1,777,019| 2,024,021 70 13.9%
HiCuts DP SMP 1,283,264/ 1,622,839 40 26.5%
HiCuts PIPE CMP 383,024 476,740 100 24.5%
HiCuts PIPE SMP 188,840 240,248 100 27.2%

Table 2: Performance improvements obtained when the nunflimocessed headers

event (Quantum) is increased.

ABV DP old SMP +

per synchronization

45

HiCut DP

sMP

A [}
T
L ABV pipelined old SMP X y] S 40 | X HiCut DP CMP 2
8 . g
x” 3 + ABV DP CMP K
7r 9 351 ABV DP SMP g
’ ~ ¥ ABV Pipe CMP_"
5 30¢ Jo) X
s | i) . L
£ g o) X
5 7 2 o5 | K L
% st 8 2 X
2 s X ol 6 x
?oar 1 D s X
X " L I
5 < + + +—— E 15 S x /—4——4——*/'_'_*—'"_"
o 10 F4 X . i
£ VAN
2 I S 5
S 5¢X o
. . . . L L dat, S MO ‘ ‘ ‘

12 16 20

Execution Contexts

6 8 10 24 28 32

Execution Contexts

14 1 4 8

Figure 12: Pipelined ABV vs. Data Parallel ABV Figure 13: Comparing the relative performance of
on an older E6000 SMP. Lock contention restricts ABV and HiCuts using various parallelizations.
data parallel scalability, whereas the pipelined ap-

proach readily scales.

third column contains the best overall performance we ofeskrusing the same number of threads, as
the quantum is varied. The fourth column contains the quargize at which the best performance was
observed, and the rightmost column shows the percentageveipent.

Overall, the best improvements come from the HiCuts algoritRelatively high communication over-
head is a natural consequence of the increased efficiendyabfatgorithm; increasing the quantum size
provides an easy way to reduce the overhead. Somewhatsinghyi performance does not monotonically
rise with continued quantum size increases, as indicategubaytum sizes that are less than 100. As the
guantum size grows, the amount of buffering (and copyingyvben processors increases. Further, pipeline
imbalances can lead to full buffers that may induce blockindng processing. Thus, the best quantum size
is not the largest possible, but rather the size that mirémthe total throughput delay.

Despite these improvements, the trends in Figure 11 put th@erspective: increased quantum size can
improve performance, but it does not fundamentally tip ttedes in favor of one algorithm or architecture
over another. Further, it is not clear whether the delayonhiiced by batch-processing up to 100 packets
at a time falls within acceptable bounds. Thus, varying thanqum size is better employed to enhance
performance rather than as a selection factor.

12

6.5 Discussion

Classification Performance.Our experiments have focused on the scalability of pareléedsification algo-
rithms rather than the raw performance as a means for gatiggngotential of CMP and SMP architectures
and also to ensure an even evaluation. Looking specificalpedormance, Figure 13 summarizes the re-
sults for many configurations normalized for display pugmot the slowest configuration (ABV pipelined).
Our results confirm others [17] that indicate HiCuts outperf® ABV. Further, SMPs provide superior per-
formance thread-for-thread. At eight threads, SMP perforoe dominates CMP performance on the target
platforms. However, we find that when all computational teses are employed, data-parallel HiCuts CMP
provides the best overall performance even in the presemesaource-sharing.

Parallelization techniques. Given that data parallel approaches consistently outpertbeir pipelined
counterparts, one may ask—what value are pipelined apipes@cHistorically, synchronization scaling [12]
has been a bottleneck to obtaining speedups for even modegiears of processors. Figure 12 shows
a comparison of data parallel and pipelined ABV parallgla@s on an older Sun E6000 16-processor
SMP. Here, synchronization scaling becomes a bottlenedk agtfew as four processors, and pipelined
approaches are needed to obtain linear speedups. In dpotrasurrent results show that for this problem,
the engineering constants impeding synchronizationrsg&iave changed, and that data parallel approaches
are acceptable for larger numbers of processors.

7 Conclusion

This work details our experiences in parallelizing packassification algorithms and evaluating them on
Symmetric Multiprocessor (SMP) and Chip MultiprocessoM) architectures. We find that although the
CMP architecture provides the best overall performanarethre many significant factors that influence the
overall behavior. First, for smaller number of executiomisxts, SMPs may provide the best performance.
In addition, resource-sharing replaces synchronizattatirsg as a speedup-limiting bottleneck, and CMP
performance is sensitive to processor allocation orderfikdéefurther that extracting sufficient parallelism
from the classification algorithms is challenging, and tetia-parallel algorithms provide the easiest path
to improved performance.

CMPs are a promising environment for high-performance lfdrpacket classification in software.
While the highest-performing links will likely still be c&sified with hardware methods, CMPs offer attrac-
tive performance per watt and performance per unit costghdalread-level parallelism. The CMP’s natural
tolerance for inter-thread communication optimizes theassarily small computation time per packet, and
does not mandate the processing of many packets at a timewigl@rscalability.

References
[1] Florin Baboescu and George Varghese. Scalable packssification. I'SIGCOMM '01 pages 199-210, 2001.

[2] Luiz A. Barroso, Kourosh Gharachorloo, Robert McNamakadreas Nowatzyk, Shaz Qadeer, Barton Sano, Scott Smith,
Robert Stets, and Ben Verghese. Piranha: a scalable attinéebased on single-chip multiprocessing.I$CA '00: Pro-
ceedings of the 27th annual international symposium on @oen@rchitecture pages 282—293, 2000.

[3] Paul Beame and Erik Vee. University of washington tinpaee tradeoffs site. Available at
http: //ww. cs. washi ngt on. edu/ hones/ beane/ projects/tinespace. htm .

[4] Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. St@lassification and Regression Tre&¥adsworth, 1984.

[5] Patrick Crowley, Marc E. Fiuczynski, Jean-Loup Baerddrian N. Bershad. Characterizing processor architestiwe
programmable network interfaces. @S, pages 54—65, 2000.

[6] Qunfeng Dong, Suman Banerjee, Jia Wang, and DheerajweairaWire speed packet classification without tcams: a few
more registers (and a bit of logic) are enoughSIGMETRICSpages 253-264, 2007.

[7]1 P. Gupta and N. McKeown. Algorithms for packet classtiima. IEEE Network 15(2):24—-32, March 2001.
[8] Pankaj Gupta and Nick McKeown. Classifying packets wkigrarchical intelligent cuttingsEEE Micro, 20(1):34—41, 2000.

[9] Poonacha Kongetira, Kathirgamar Aingaran, and Kunlakdfun. Niagara: A 32-way multithreaded sparc processor.
25(2):29-35, Mar/Apr 2005.

13

[10] T. V. Lakshman and D. Stiliadis. High-speed policy-apacket forwarding using efficient multi-dimensionalgamatch-
ing. InProceedings of the ACM SIGCOMIdages 203-214, New York, NY, USA, 1998. ACM Press.

[11] James Laudon. Performance/watt: The new server faamputer Architecture News (CANB3(4), 2005.

[12] John M. Mellor-Crummey and Michael L. Scott. Algoritlsrfor scalable synchronization on shared-memory multigssors.
In ACM Trans. on Computer Systems. February 1991, pp. 211651.

[13] Gokhan Memik, William H. Mangione-Smith, and Wendong.HNetbench: a benchmarking suite for network processars. |
ICCAD '01: Proceedings of the 2001 IEEE/ACM internationaherence on Computer-aided desigages 39—-42, 2001.

[14] Sumeet Singh, Florin Baboescu, George Varghese, an@/dng. Packet classification using multidimensional egttiln
SIGCOMM 2003.

[15] David E. Taylor. Survey and taxonomy of packet clasatfin techniquesACM Comput. Sury37(3):238-275, 2005.

[16] David E. Taylor and Jonathan S. Turner. Classbench:cigialassification benchmark. INFOCOM, pages 2068-2079,
2005.

[17] George VargheseNetwork Algorithmics, An Interdisciplinary Approach to $dgning Fast Networked DevicedViorgan
Kaufmann, 2005.

[18] Thomas Y. C. Woo. A modular approach to packet clasgifioa Algorithms and results. INFOCOM, pages 1213-1222,
2000.

[19] David A. Wood and Mark D. Hill. Cost-effective parallebmputing.|IEEE Computer28(2):69-72, 1995.

[20] Kyueun Yiand Jean-Luc Gaudiot. Architectural supgorinetwork applications on simultaneous multithreadinggessors.
In IPDPS pages 1-10, 2007.

[21] Kai Zheng, Hao Che, Zhijun Wang, Bin Liu, and Xin Zhangpg2-re: Tcam-based distributed parallel packet classidica
with range encodinglEEE Trans. Computer$5(8):947-961, 2006.

[22] Kai Zheng, Zhiyong Liang, and Yi Ge. Parallel packetsslification via policy table pre-partitioning. IRroceedings of
GLOBECOM '05: Global Telecommunications Conference 20@6 2005.

14

