
Improving NFA-based Signature Matching
using Ordered Binary Decision Diagrams?

Liu Yang∗, Rezwana Karim∗, Vinod Ganapathy∗, Randy Smith†

∗Rutgers University †Sandia National Laboratories

Abstract. Network intrusion detection systems (NIDS) make extensive use of
regular expressions as attack signatures. Internally, NIDS represent and operate
these signatures using finite automata. Existing representations of finite automata
present a well-known time-space tradeoff: Deterministic automata (DFAs) pro-
vide fast matching but are memory intensive, while non-deterministic automata
(NFAs) are space-efficient but are several orders of magnitude slower than DFAs.
This time/space tradeoff has motivated much recent research, primarily with a
focus on improving the space-efficiency of DFAs, often at the cost of reducing
their performance.
This paper presents NFA-OBDDs, a symbolic representation of NFAs that retains
their space-efficiency while improving their time-efficiency. Experiments using
Snort HTTP and FTP signature sets show that an NFA-OBDD-based representa-
tion of regular expressions can outperform traditional NFAs by up to three orders
of magnitude and is competitive with a variant of DFAs, while still remaining as
compact as NFAs.
Key words: NIDS, signature matching, ordered binary decision diagrams.

1 Introduction

Deep packet inspection allows network intrusion detection systems (NIDS) to accu-
rately identify malicious traffic by matching the contents of network packets against
attack signatures. In the past, attack signatures were keywords that could efficiently
be matched using string matching algorithms. However, the increasing complexity of
network attacks has lead the research community to investigate richer signature rep-
resentations, which require the full power of regular expressions. Because NIDS are
often deployed over high-speed network links, algorithms to match such rich signatures
must also be efficient enough to provide high-throughput intrusion detection on large
volumes of network traffic. This problem has spurred much recent research, and in par-
ticular has lead to the investigation of new representations of regular expressions that
allow for efficient inspection of network traffic (e.g., [1,2,3,4]).

To be useful for deep packet inspection in a NIDS, any representation of regular
expressions must satisfy two key requirements: time-efficiency and space-efficiency.
Time-efficiency requires the amount of time spent by the NIDS to process each byte
of network traffic to be small, thereby allowing large volumes of traffic to be matched

? Supported in part by NSF grants 0831268, 0915394, 0931992 and 0952128. L. Yang and
R. Karim contributed equally, while R. Smith contributed while at the University of Wisconsin.

2 Liu Yang, Rezwana Karim, Vinod Ganapathy and Randy Smith

quickly. Space-efficiency requires the size of the representation to be small, thereby en-
suring that it will fit within the main memory of the NIDS. Space-efficiency also man-
dates that the size of the representation should grow proportionally (e.g., linearly) with
the number of attack signatures. This requirement is important because the increasing
diversity of network attacks has lead to a quick growth in the number of signatures used
by NIDS. For example, the number of signatures in Snort [5] has grown from 3,166 in
2003 to 15,047 in 2009.

Finite automata are a natural representation for regular expressions, but offer a
tradeoff between time- and space-efficiency. Using deterministic finite automata (DFAs)
to represent regular expressions allows efficient matching (O(1) lookups to its transition
table to process each input symbol), while non-deterministic finite automata (NFAs) can
take up to O(n) transition table lookups to process each input symbol, where n is the
number of states in the NFA. However, NFAs are space-efficient, while DFAs for cer-
tain regular expressions can be exponentially larger than the corresponding NFAs [6].
More significantly, combining NFAs only leads to an additive increase in the number
of states, while combining DFAs can result in a multiplicative increase, i.e., an NFA
that combines two NFAs with m and n states has up to O(m+ n) states, while a DFA
that combines two DFAs with m and n states can have up to O(m × n) states. DFA
representations for large sets of regular expressions often consume several gigabytes of
memory, and do not fit within the main memory of most NIDS.

This time/space tradeoff has motivated much recent research, primarily with a focus
on improving the space-efficiency of DFAs. These include heuristics to compress DFA
transition tables (e.g., [2,7]), techniques to combine regular expressions into multiple
DFAs [4], and variable extended finite automata (XFAs) [3,8], which offer compact
DFA representations and guarantee an additive increase in states when signatures are
combined, provided that the regular expressions satisfy certain conditions. These tech-
niques trade time for space, and though the resulting representations fit in main memory,
their matching algorithms are slower than those for traditional DFAs.

In this paper, we take an alternative approach and instead focus on improving the
time-efficiency of NFAs. NFAs are not currently in common use for deep packet inspec-
tion, and understandably so—their performance can be several orders of magnitude
slower than DFAs. Nevertheless, NFAs offer a number of advantages over DFAs, and
we believe that further research on improving their time-efficiency can make them a
viable alternative to DFAs. Our position is supported in part by these observations:
• NFAs are more compact than DFAs. Determinizing an NFA involves a subset con-

struction algorithm, which can result in a DFA with exponentially more states than
an equivalent NFA [6].
• NFA combination is space-efficient. Combining two NFAs simply involves linking

their start states together by adding new ε transitions; the combined NFA is therefore
only as large as the two NFAs put together. This feature of NFAs is particularly
important, given that the diversity of network attacks has pushed NIDS vendors to
deploy an ever increasing number of signatures. In contrast, combining two DFAs
can result in a multiplicative increase in the number of states, and the combined
DFA may be much larger than its constituent DFAs.

Improving NFA-based Signature Matching using OBDDs 3

• NFAs can readily be parallelized. An NFA can be in a set of states (called the
frontier) at any instant during its operation, each of which may contain multiple
outgoing transitions for an input symbol. States in the frontier can be processed in
parallel as new input symbols are encountered [9,10].
Motivated by these advantages, we develop a new approach to improve the time-

efficiency of NFAs. The frontier of an NFA can containO(n) states, each of which must
be processed using the NFA’s transition relation for each input symbol to compute a new
frontier, thereby resulting in slow operation. Although this frontier can be processed in
parallel to improve performance, NFAs for large signature sets may contain several
thousand states in their frontier at any instant. Commodity hardware is not yet well-
equipped to process such large frontiers in parallel.

Our core insight is that a technique to efficiently apply an NFA’s transition relation
to a set of states can greatly improve the time-efficiency of NFAs. Such a technique
would apply the transition relation to all states in the frontier in a single operation to
produce a new frontier. We develop an approach that uses Ordered Binary Decision
Diagrams [11] (OBDDs) to implement such a technique. Our use of OBDDs to process
NFA frontiers is inspired by symbolic model checking, where the use of OBDDs allows
the verification of systems that contain an astronomical number of states [12]. NFAs
that use OBDDs (NFA-OBDDs) can be constructed from regular expressions in a fully
automated way, and are robust in the face of structural complexities in these regular
expressions (e.g., counters [8, Section 6.2]).

To evaluate the feasibility of our approach, we constructed NFAs in software using
HTTP and FTP signatures from Snort. We operated these NFAs using OBDDs and eval-
uated their time-efficiency and space-efficiency using HTTP and FTP traffic obtained
from our department’s network. Our experiments showed that NFA-OBDDs outperform
traditional NFAs by approximately three orders of magnitude—about 1645× in the best
case. Our experiments also showed that NFA-OBDDs retain the space-efficiency of
NFAs. In contrast, our machine ran out of memory when trying to construct DFAs (or
their variants) from our signature sets.

Our main contributions are as follows:
• Design of NFA-OBDDs. We develop a novel technique that uses OBDDs to improve

the time-efficiency of NFAs (Section 3). We also describe how NFA-OBDDs can be
used to improve the time and space-efficiency of NFA-based multi-byte matching
(Section 5).
• Comprehensive evaluation using Snort signatures. We evaluated NFA-OBDDs

using Snort’s HTTP and FTP signature sets and observed a speedup of about three
orders of magnitude over traditional NFAs. We also compared the performance of
NFA-OBDDs against a variety of automata implementations, including the PCRE
package and a variant of DFAs (Section 4).

2 Ordered Binary Decision Diagrams

An OBDD is a data structure that can represent arbitrary Boolean formulae. OBDDs
transform Boolean function manipulation into efficient graph transformations, and have
found wide use in a number of application domains. For example, OBDDs are used

4 Liu Yang, Rezwana Karim, Vinod Ganapathy and Randy Smith

x i y f(x, i, y)
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

(a) A Boolean function

f(x, i, y).

x

ii

yy

1 0

(b) OBDD(f) with

x < i < y.

x

ii

0 1

y

(c) APPLY(∧, OBDD(f),

OBDD(I(i))).

x

y

10

(d) RESTRICT(OBDD(f),

i ← 1).

Fig. 1. An example of a Boolean formula, its OBDD, and various operations on the OBDD.
Solid edges are labeled 1, dotted edges are labeled 0.

extensively by model checkers to improve the efficiency of state-space exploration al-
gorithms [12]. In this section, we present an informal overview of OBDDs, and refer
interested readers to Bryant’s seminal article [11] for details.

An OBDD represents a Boolean function f(x1, x2, . . . , xn) as a rooted, directed
acyclic graph (DAG). The DAG has two terminal nodes, which are labeled 0 and 1, and
have no outgoing edges. Each remaining non-terminal node is associated with a label ∈
{x1, x2, . . ., xn}, and has two outgoing edges labeled 0 and 1. An OBDD is ordered in
the sense that node labels are associated with a total order<. Node labels along all paths
in the OBDD from the root to the terminal nodes follow this total order.1 To evaluate
the Boolean formula denoted by an OBDD, it suffices to traverse appropriately labeled
edges from the root to the terminal nodes of the DAG. Figure 1(b) depicts an example
of an OBDD for the Boolean formula f(x, i, y) shown in Figure 1(a) with the variable
ordering x < i < y.

OBDDs allow Boolean functions to be manipulated efficiently. With OBDDs, check-
ing the satisfiability (or unsatisfiability) of a Boolean formula is a constant time oper-
ation, because it suffices to check whether the terminal node labeled 1 (respectively,
0) is present in the OBDD. The APPLY and RESTRICT operations [11], described be-
low, allow OBDDs to be combined and modified with a number of Boolean operators.
These two operations are implemented as a series of graph transformations and reduc-
tions to the input OBDDs, and have efficient implementations (their time complexity is
polynomial in the size of the input OBDDs).

APPLY allows binary Boolean operators, such as ∧ and ∨, to be applied to a pair of
OBDDs. The two input OBDDs, OBDD(f) and OBDD(g), must have the same variable
ordering. APPLY(OP, OBDD(f), OBDD(g)) computes OBDD(f OP g), which has the
same variable ordering as the input OBDDs. Figure 1(c) presents the OBDD obtained
by combining the OBDD in Figure 1(b) with OBDD(I(i)), where I is the identity func-
tion. The RESTRICT operation is unary, and produces as output an OBDD in which
the values of some of the variables of the input OBDD have been fixed to a certain
value. That is, RESTRICT(OBDD(f), x ← k) = OBDD(f |(x←k)), where f |(x←k) de-
notes that x is assigned the value k in f . In this case, the output OBDD does not have

1 DAGs denoting OBDDs satisfy additional properties, as described in Bryant’s article. How-
ever, they are not directly relevant for this discussion, and we elide them for brevity.

Improving NFA-based Signature Matching using OBDDs 5

any nodes with the label x. Figure 1(d) shows the OBDD obtained as the output of
RESTRICT(OBDD(f), i←1), where OBDD(f) is the OBDD of Figure 1(b).

APPLY and RESTRICT can be used to implement existential quantification, which is
used in a key way in the operation of NFA-OBDDs, as described in Section 3. In partic-
ular, ∃xi.f(x1, . . . , xn) = f(x1,. . . , xn)|(xi ← 0) ∨ f(x1,. . . , xn)|(xi ← 1). Therefore,
we have: OBDD(∃ xi.f(x1, . . . , xn)) = APPLY(∨, RESTRICT(OBDD(f), xi ← 1),
RESTRICT(OBDD(f), xi ← 0)). Note that OBDD(∃ xi.f(x1, . . . , xn)) will not have
a node labeled xi.

Representing Relations and Sets. OBDDs can be used to represent relations of
arbitrary arity. If R is an n-ary relation over the domain {0, 1}, then we define its
characteristic function fR as follows: fR(x1, . . . , xn) = 1 if and only if R(x1, . . . , xn).
For example, the characteristic function of the 3-ary relation R = {(1, 0, 1), (1, 1, 0)} is
fR(x1, x2, x3) = (x1 ∧ x̄2 ∧ x3) ∨ (x1 ∧ x2 ∧ x̄3). fR is a Boolean function and can
therefore be expressed using an OBDD.

An n-ary relation Q over an arbitrary domain D can be similarly expressed using
OBDDs by bit-blasting each of its elements. That is, if the domain D has m elements,
we map each of its elements uniquely to bit-strings containing dlgme bits (call this
mapping φ). We then define a new relation R(φ(x1), . . . , φ(xn)) = Q(x1, . . . , xn). R
is a n × dlgme-ary relation over {0, 1}, and can be converted into an OBDD using its
characteristic function.

A set of elements over an arbitrary domain D can also be expressed as an OBDD
because sets are unary relations, i.e., if S is a set of elements over a domain D, then
we can define a relation RS such that RS(s) = 1 if and only if s ∈ S. Operations
on sets can then be expressed as Boolean operations and performed on the OBDDs
representing these sets. For example, S ⊆ T can be implemented as OBDD(S) −→
OBDD(T) (logical implication), while ISEMPTY(S ∩ T) is equivalent to checking
whether OBDD(S) ∧ OBDD(T) is satisfiable. The conversion of relations and sets
into OBDDs is used in a key way in the construction and operation of NFA-OBDDs,
which we describe next.

3 Representing and Operating NFAs

We represent an NFA using a 5-tuple: (Q, Σ, ∆, q0, Fin), where Q is a finite set of
states, Σ is a finite set of input symbols (the alphabet), ∆: Q × (Σ ∪ {ε}) → 2Q is a
transition function, q0 ∈ Q is a start state, and Fin ⊆ Q is a set of accepting (or final)
states. The transition function ∆(s, i) = T describes the set of all states t ∈ T such
that there is a transition labeled i from s to t. Note that ∆ can also be expressed as a
relation δ: Q×Σ ×Q, so that (s, i, t) ∈ δ for all t ∈ T such that ∆(s, i) = T . We will
henceforth use δ to denote the set of transitions in the NFA.

An NFA may have multiple outgoing transitions with the same input symbol from
each state. Hence, it maintains a frontier F of states that it can currently be in. The
frontier is initially the singleton set {q0} but may include any subset of Q during the
operation of the NFA. For each symbol in the input string, the NFA must process all of
the states in F and find a new set of states by applying the transition relation.

6 Liu Yang, Rezwana Karim, Vinod Ganapathy and Randy Smith

While non-determinism leads to frontiers of size O(|Q|) in NFAs, it also makes
them space-efficient in two ways. First, NFAs for certain regular expressions are expo-
nentially smaller than the corresponding DFAs, e.g., an NFA for (0|1)∗1(0|1)n has
O(n) states, while the corresponding DFA has O(2n) states [6]. Second, and perhaps
more significant from the perspective of NIDS, NFAs can be combined space-efficiently
while DFAs cannot. To combine a pair of NFAs, NFA1 and NFA2, it suffices to create a
new state qnew, add ε transitions from qnew to the start states of NFA1 and NFA2, and
designate qnew to be the start state of the combined NFA. This leads to an NFA with
O(|Q1|+ |Q2|) states. In contrast, combining two DFAs, DFA1 and DFA2, results in a
multiplicative increase in the number of states because the combined DFA must have a
state corresponding to s × t for each pair of states s and t in DFA1 and DFA2, respec-
tively. The number of states in the DFA can possibly be reduced using minimization, but
this does not always help. For example, the DFAs for the regular expressions ab∗cd∗

and ef∗gh∗ have 5 states and 6 transitions each, and the combined DFA (minimized)
has 16 states and 22 transitions.

NFA Operation using Boolean Functions. We now describe how the process
of applying an NFA’s transition relation to a frontier of states can be expressed as a
sequence of Boolean function manipulations. NFA-OBDDs implement Boolean func-
tions and operations on them using BDDs. For the discussion below and in the rest of
this paper, we assume NFAs in which ε transitions have been eliminated (using standard
techniques [6]). This is mainly for ease of exposition; NFAs with ε transitions can also
be expressed using NFA-OBDDs. Note that ε elimination may increase the total number
of transitions in the NFA, but does not increase the number of states.

Fig. 2. NFA for (0|1)∗1.

We now define four Boolean functions for an
NFA (Q, Σ, δ, q0, Fin). These functions use three
vectors of Boolean variables: x, y, and i. The vec-
tors x and y are used to denote states in Q, and
therefore contain dlg |Q|e variables each. The vec-
tor i denotes symbols in Σ, and contains dlg |Σ|e
variables. As an example, for the NFA in Figure 2,
these vectors contain one Boolean variable each;
we denote them as x, y, and i.
• T (x, i, y) denotes the NFA’s transition relation δ. Recall that δ is a set of triples

(s, i, t), such that there is a transition labeled i from state s to state t. It can therefore
be represented as a Boolean function as described in Section 2. For example, consider
the NFA in Figure 2. Using 0 to denote state A and 1 to denote state B, T (x, i, y) is
the function shown in shown in Figure 1(a).

• Iσ(i) is defined for each σ ∈ Σ, and denotes a Boolean representation of that sym-
bol. For the NFA in Figure 2, I0(i) = ī (i.e., i = 0) and I1(i) = i.

• F(x) denotes the current set of frontier states of the NFA. It is thus a Boolean repre-
sentation of the set F at any instant during the operation of the NFA. For the example
in Figure 2, if F = {A}, F(x) = x̄, while if F = {A, B}, then F(x) = x ∨ x̄.

• A(x) is a Boolean representation of Fin, and denotes the accepting states. In Figure 2,
A(x) = x.

Improving NFA-based Signature Matching using OBDDs 7

Note that T (x, i, y), Iσ(i) and A(x) can be computed automatically from any rep-
resentation of NFAs. The initial frontier F = {q0} can also be represented as a Boolean
formula. Suppose that the frontier at some instant during the operation of the NFA is
F(x), and that the next symbol in the input is σ. The following Boolean formula, G(y),
symbolically denotes the new frontier of states in the NFA after σ has been processed.

G(y) = ∃ x.∃ i.[T (x, i,y) ∧ Iσ(i) ∧ F(x)]
To see why G(y) is the new frontier, consider the truth table of the Boolean function
T (x, i, y). By construction, this function evaluates to 1 only for those values of x, i,
and y for which (x, i, y) is a transition in the automaton. Similarly, the function F(x)
evaluates to 1 only for the values of x that denote states in the current frontier of the
NFA. Thus, the conjunction of T (x, i, y) with F(x) and Iσ(i) only “selects” those
rows in the truth table of T (x, i, y) that correspond to the outgoing transitions from
states in the frontier labeled with the symbol σ. However, the resulting conjunction is a
Boolean formula in x, i and y. To find the new frontier of states, we are only interested
in the values of y (i.e., the target states of the transitions) for which the conjunction has
a satisfying assignment. We achieve this by existentially quantifying x and i to obtain
G(y). To express the new frontier in terms of the Boolean variables in x, we rename the
variables in y with the corresponding ones in x.

We illustrate this idea using the example in Figure 2. Suppose that the current fron-
tier of the NFA is F = {A, B}, and that the next input symbol is a 0, which causes the
new frontier to become {A}. In this case, T (x, i, y) is the function shown in Figure 1(a),
I0(i) = ī andF(x) = x∨ x̄. We have T (x, i, y) ∧ I0(i) ∧ F(x) = (x∧ ī∧ ȳ). Existentially
quantifying x and i from the result of this conjunction, we get G(y) = ȳ. Renaming the
variable y to x, we get F(x) = x̄, which is a Boolean formula that denotes {A}, the new
frontier.

To determine whether the NFA accepts an input string, it suffices to check that
F ∩ Fin 6= ∅. Using the Boolean notation, this translates to check whether F(x)
∧ A(x) has a satisfying assignment. In the example above with F = {A}, F(x) = x̄
and A(x) = x, so the NFA is not in an accepting configuration. Recall that checking
satisfiability of a Boolean function is an O(1) operation if the function is represented
as an OBDD.

NFA-OBDDs. The main idea behind NFA-OBDDs is to represent and manipulate the
Boolean functions discussed above using OBDDs. Formally, an NFA-OBDD for an
NFA (Q, Σ, δ, q0, Fin) is a 7-tuple (x, i, y, OBDD(T), {OBDD(Iσ | ∀σ ∈ Σ)},
OBDD(Fq0), OBDD(A)), where x, i, y are vectors of Boolean variables, and T , Iσ ,
and A are the Boolean formulae discussed earlier. Fq0 denotes the Boolean function
that denotes the frontier {q0}. For each input symbol σ, the NFA-OBDD obtains a new
frontier as discussed earlier. The main difference is that the Boolean operations are
performed as operations on OBDDs.

The use of OBDDs allows NFA-OBDDs to be more time-efficient than NFAs. In
an NFA, the transition table must be consulted for each state in the frontier, leading
to O(|δ| × |F |) operations per input symbol. In contrast, the complexity of OBDD
operations to obtain a new frontier is O(SIZEOF(OBDD(T)) × SIZEOF(OBDD(F))).
Because OBDDs are a compact representation of the frontier F and the transition rela-
tion δ, NFA-OBDDs are more time-efficient than NFAs. The improved performance of

8 Liu Yang, Rezwana Karim, Vinod Ganapathy and Randy Smith

NFA-OBDDs is particularly pronounced when the transition table of the NFA is sparse
or the NFA has large frontiers. This is because OBDDs can effectively remove redun-
dancy in the representions of δ and F .

NFA-OBDDs retain the space-efficiency of NFAs because NFA-OBDDs can be
combined using the same algorithms that are used to combine NFAs. Although the
use of OBDDs may lead NFA-OBDDs to consume more memory than NFAs, our ex-
periments show that the increase is marginal. In particular, the cost is dominated by
OBDD(T), which has a total of 2× dlg |Q|e + dlg |Σ|e Boolean variables. Even in the
worst case, this OBDD consumes only O(|Q|2 × |Σ|) space, which is comparable to
the worst-case memory consumption of the transition table of a traditional NFA. How-
ever, in practice, the memory consumption of NFA-OBDDs is much smaller than this
asymptotic limit.

4 Implementation and Evaluation

We evaluated the feasibility of our approach using a software-based implementation
of NFA-OBDDs. As depicted in Figure 3, the implementation consists of two offline
components and an online component.

The offline components are executed once for each set of regular expressions, and
consist of re2nfa and nfa2obdd. The re2nfa component accepts a set of regular expres-
sions as input, and produces an ε-free NFA as output. To do so, it first constructs NFAs
for each of the regular expressions using Thompson’s construction [13,6], combines
these NFAs into a single NFA, and eliminates ε transitions. The nfa2obdd component
analyzes this NFA to determine the number of Boolean variables needed (i.e., the sizes
of the x, i and y vectors), and constructs OBDD(T), OBDD(A), OBDD(Iσ) for each
σ ∈ Σ, and OBDD(Fq0).

It is well-known that the size of an OBDD for a Boolean formula is sensitive to the
total order imposed on its variables. For the NFA-OBDDs used in our experiments, we
empirically determined that an ordering of variables of the form i < x < y yields the
best performance for NFA-OBDDs. For example, we found that an implementation of
NFA-OBDDs that uses the variable ordering x < i < y operates more than an order of
magnitude slower than one that uses the ordering i< x< y; we therefore used the latter
ordering in our implementation. Within each vector, nfa2obdd uses a simple sorting
scheme to order variables. Although it is NP-hard to choose a total order that yields the
most compact OBDD for a Boolean function [11], future work could develop heuristics
that leverage the structure of the input regular expressions to determine orderings that
yield high-performance NFA-OBDDs.

The online component, exec nfaobdd, begins execution by reading these OBDDs
into memory and processes a stream of network packets. It matches the payloads of
these network packets against the regular expressions using the NFA-OBDD. To manip-
ulate OBDDs and produce a new frontier for each input symbol processed, this compo-
nent interfaces with Cudd, a popular C++-based OBDD library [14]. It checks whether
each frontier F produced during the operation of the NFA-OBDD contains an accept-
ing state. If so, it emits a warning with the offset of the character in the input stream
that triggered a match, as well as the regular expression(s) that matched the input. Note
that in a NIDS setting, it is important to check whether the frontier F obtained after

Improving NFA-based Signature Matching using OBDDs 9

Fig. 3. Components of our software-based implementation of NFA-OBDDs.

processing each input symbol contains an accepting state. This is because any byte in
the network input may cause a transition in the NFA that triggers a match with a regular
expression. We call this the streaming model because the NFA continuously processes
input symbols from a network stream.

Data Sets. We evaluated our implementation of NFA-OBDDs with three sets of regu-
lar expressions [15]. The first set was obtained from the authors of the XFA paper [8],
and contains 1503 regular expressions that were synthesized from the March 2007 snap-
shot of the Snort HTTP signature set. The second and third sets, numbering 2612 and 98
regular expressions, were obtained from the October 2009 snapshot of the Snort HTTP
and FTP signature sets, respectively. About 50% of these regular expressions were taken
from the uricontent fields of the signatures, while the rest were extracted from the
pcre fields. Although extracting just pcre fields from individual Snort rules only cap-
tures a portion of the corresponding signatures, it suffices for our experiments, because
our primary goal is to evaluate the performance of NFA-OBDDs against other regular-
expression based techniques. All three sets of regular expressions include client-side
and server-side signatures. For all sets, we excluded Snort signatures that contained
non-regular constructs, such as back-references and subroutines (which are allowed by
PCRE [16]), because these constructs cannot be implemented in NFA-based models. In
all, we excluded 1837 HTTP and 41 FTP signatures due to non-regular constructs.

To evaluate the performance of HTTP signatures, we fed traces of live HTTP traffic
obtained from our department’s network to exec nfaobdd. We collected this traffic
over a one week period in August 2009. This traffic was collected using tcpdump, and
includes whole packets of port 80 traffic from our departmental Web server and our
lab’s machines.

The traffic observed during this period consisted largely of Web traffic typically
observed at an academic department’s main Web server; most of the traffic was to view
and query Web pages hosted by the department. Overall, we observed connections from
18,618 distinct source IP addresses during this period, with 653,670 GET, 137,737
POST, 3,504 HEAD, and 1,576 PUT commands. This traffic triggered 1,816,410 and
17,107,588 matches in the HTTP/1503 and HTTP/2612 signature sets, corresponding
to 47 and 120 distinct signatures, respectively.2 The payloads in these packets ranged
in size from 1 byte to 1460 bytes, with an average of 126 bytes (standard deviation

2 These numbers are not indicative of the number of alerts produced by Snort because our signa-
ture sets only contain patterns from the pcre and uricontent fields of the Snort rules. The
large number of matches is because signatures contained patterns common in HTTP packets.

10 Liu Yang, Rezwana Karim, Vinod Ganapathy and Randy Smith

of 271). However, we partitioned this traffic into 33 traces of various sizes, containing
between 5.1MB–1.24GB worth of data. We did so because the the NFA and PCRE-
based implementations discussed in this section were too slow to process the weeklong
traffic trace. The size distribution of these traces was as follows: 21 traces of 5.1-7.2MB,
9 traces of 10.3-20.1MB, and one trace each of 227.2MB, 575.8MB, and 1.24GB.

We evaluated the FTP signatures using two traces of live FTP traffic (from the com-
mand channel), obtained over a two week period in March 2010 from our department’s
FTP server; these FTP traces contained 19.4MB and 24.7MB worth of data. The traffic
consisted of FTP requests to fetch and update technical reports hosted by our depart-
ment. We observed traffic from 528 distinct source IP addresses during this period.
Statistics on various FTP commands observed during this period appear in the table
below (commands that were not observed are not reported). This traffic triggered 9,656
and 15,976 matches in the FTP/98 signature set, corresponding to matches on 6 and
5 distinct signatures, respectively. The payload sizes of packets ranged from 2 to 402
bytes with an average of 40 bytes (standard deviation of 44).

Command CWD LIST MDTM MKD PASS PORT PWD QUIT RETR SIZE STOR TYPE USER
Number 62,561 3,098 613 89 14,701 232 453 12,244 7,676 1,110 1,401 12,201 14,834

We also used synthetic traces during our experiments, but do not report these results
in the paper because they are substantially similar to those obtained using real traffic.
Because our primary goal is to study the performance of NFA-OBDDs, we assume
that the network traces have been processed using standard NIDS operations, such as
defragmentation and normalization. We fed these traces, which were in tcpdump format,
to exec nfaobdd.

Experimental Setup. All our experiments were performed on a Intel Core2 Duo
E7500 Linux-2.6.27 machine, running at 2.93GHz with 2GB of memory (however, our
programs are single-threaded, and only used one of the available cores). We used the
Linux /proc file system to measure the memory consumption of nfa2obdd and the
Cudd ReadMemoryInUse utility to obtain the memory consumption of exec nfaobdd.
We instrumented both these programs to report their execution time using processor per-
formance counters. We report the performance of exec nfaobdd as the number of CPU
cycles to process each byte of network traffic (cycles/byte), i.e., fewer processing cy-
cles/byte imply greater time-efficiency. All our implementations were in C++; we used
the GNU g++ compiler suite (v4.3.2) with the O6 optimization level to produce the
executables used for experimentation.

Our experiments show that NFA-OBDDs: (1) outperform traditional NFAs by up
to three orders of magnitude while retaining their space-efficiency; (2) outperform or
are competitive in performance with the PCRE package, a popular library for regular
expression matching; (3) are competitive in performance with variants of DFAs while
being drastically less memory-intensive.

Constructing NFA-OBDDs. We used nfa2obdd to construct NFA-OBDDs from ε-
free NFAs of the regular expression sets. Figure 4 presents statistics on the sizes of the
input NFAs, the size of the largest of the four OBDDs in the NFA-OBDD (OBDD(T)),
and the time taken and memory consumed by nfa2obdd. For the NFA-OBDDs cor-
responding to the HTTP signature sets, the vectors x and y had 18 Boolean variables

Improving NFA-based Signature Matching using OBDDs 11

Size of the input NFA |OBDD(T)| Construction
Signature Set #Reg. Exps. #States #Transitions #Nodes Time/Memory

HTTP (March 2007) 1503 159,734 3,986,769 659,981 305sec/176MB
HTTP (October 2009) 2612 239,890 5,833,911 989,236 453sec/176MB
FTP (October 2009) 98 26,536 5,927,465 69,619 246sec/134MB

Fig. 4. NFA-OBDD construction results.

each, while the vector i had 8 Boolean variables to denote the 256 possible ASCII char-
acters. For the NFA-OBDD corresponding to the FTP signature set, the vectors x and
y had 15 Boolean variables each. We also tried to determinize these NFAs to produce
DFAs, but the determinizer ran out of memory in all three cases.

Performance of NFA-OBDDs. Figure 5 depicts the performance of NFA-OBDDs.
Figures 5(a) and 5(b) show the performance for each of the 33 HTTP traces, while
Figure 5(c) shows the performance for both FTP traces. Figure 5(d) also presents the
raw throughput and memory consumption of NFA-OBDDs observed for each signa-
ture set. The throughput and memory consumption of NFA-OBDDs varies across dif-
ferent traces for each signature set; this variance can be attributed to the size and
shapes of OBDD(F) (the OBDD of the NFA’s frontier) observed during execution.
We also observed that larger traces are processed more efficiently on average than
smaller traces. For example, in Figure 5(a), the 1.24GB trace was processed at 7,935
cycles/byte, whereas a 20MB trace was processed at 19,289 cycles/byte. We hypothe-
size that the improved throughput observed for larger traces is because of cache effects.
As exec nfaobdd executes, it is likely that NFA-OBDDs that are frequently observed
will be cached, therefore producing improved throughput for larger traces.

Comparison with NFAs. We compared the performance of NFA-OBDDs with an
implementation of NFAs that uses Thompson’s algorithm. This algorithm maintains a
frontier F , and operates as follows: for each state s in the frontier F , fetch the set of
targets Ts of the transitions labeled σ and compute the new frontier F ′=

⋃
s ∈ F Ts.

Our implementation of NFAs makes heavy use of the C++ standard template library.
It stores the transition table as an array of |Q| multimaps. The entry for state s denotes
the set of outgoing transitions from s, where each transition is of the form (σ, t). There
may be multiple entries with the same input symbol σ in each multimap, corresponding
to all the states reachable from s via transitions labeled σ. The performance and memory
consumption of our NFA implementation was relatively stable across the traces used for
each signature set. Figure 5 therefore reports only the averages across these traces.

As Figure 5 shows, NFA-OBDDs outperform NFAs for all three sets of signatures
by approximately three orders of magnitude for the HTTP signatures, and two orders
of magnitude for the FTP signatures. In Figure 5(a), for example, NFA-OBDDs are
between 570×–1645× faster than NFAs, while consuming approximately the same
amount of memory. The difference in the performance gap between NFA-OBDDs and
NFAs for the HTTP and FTP signatures can be attributed to the number and structure
of these signatures. As discussed in Section 3, the benefits of NFA-OBDDs are more
pronounced if larger frontiers are to be processed. Since there are a larger number of
HTTP signatures, the frontier for the corresponding NFAs are larger. As a result, NFA-
OBDDs are much faster than the corresponding NFAs for HTTP signatures than for

12 Liu Yang, Rezwana Karim, Vinod Ganapathy and Randy Smith

10
2

10
3

10
4

10
5

10
6

10
7

10
8

0

50

100

150

200

250

Processing time (cycles/byte)

M
em

or
y

us
ag

e
(M

B
)

NFA
NFA−BDD
MDFA
PCRE

10
4

10
5

10
6

10
7

10
8

0

100

200

300

400

500

Processing time (cycles/byte)

M
em

or
y

us
ag

e
(M

B
)

NFA
NFA−BDD
MDFA−2604−sigs
PCRE

(a) HTTP/1503 regular expressions (b) HTTP/2612 regular expressions

10
3

10
4

10
5

0

20

40

60

80

100

Processing time (cycles/byte)

M
em

or
y

us
ag

e
(M

B
)

NFA
NFA−BDD
MDFA−95−sigs
PCRE

Sig. Set Processing time Memory
NFA-OBDDs

HTTP/1503 7,935–22,895 cycles/byte 39–59MB
HTTP/2612 22,968–51,215 cycles/byte 54–61MB

FTP/98 5,095 cycles/byte 8MB
NFAs

HTTP/1503 1.3× 107 cycles/byte 53MB
HTTP/2612 2.1× 107 cycles/byte 73MB

FTP/98 5.6× 105 cycles/byte 29MB
PCRE

HTTP/1503 2.1–6.2× 105 cycles/byte 3.6MB
HTTP/2612 1.3–2.8× 107 cycles/byte 3.9MB

FTP/98 2,210–6,185 cycles/byte 5.9–6.2MB
MDFA (partial signature sets in Figure 5(b) and (c))

HTTP/1503 1,000–15,951 cycles/byte 71–232MB
HTTP/2604 15,891–49,296 cycles/byte 335–426MB

FTP/95 1,160–1,386 cycles/byte 54–82MB

(c) FTP/98 regular expressions (d) Raw performance numbers

Fig. 5. Comparing memory versus processing time of (1) NFA-OBDDs, (2) traditional NFAs,
(3) the PCRE package, and (4) different MDFAs for the Snort HTTP and FTP signature
sets. The x-axis is in log-scale. Note that Figure 5(b) and Figure 5(c) only report the perfor-
mance of MDFAs with 2604 and 95 regular expressions, respectively.

FTP signatures. Nevertheless, these results clearly demonstrate that OBDDs can im-
prove the time-efficiency of NFAs without compromising their space-efficiency.

Comparison with the PCRE package. We compared the performance of NFA-
OBDDs with the PCRE package used by a number of tools, including Snort and Perl.
The PCRE package represents regular expressions using a tree structure, and matches
input strings against this structure using a backtracking algorithm. For a given input
string, this algorithm iteratively explores paths in the tree until it finds an accepting
state. If it fails to find an accepting state in one path, it backtracks and tries another path
until all paths have been exhausted.

Figure 5 reports three numbers for the performance of the PCRE package, cor-
responding to different values of configuration parameters of the package. In both
Figure 5(a) and (b), NFA-OBDDs outperform the PCRE package. The throughput of
NFA-OBDDs is about an order of magnitude (9×–26×) better than the fastest config-
uration of the PCRE package for the set HTTP/1503. The difference in performance

Improving NFA-based Signature Matching using OBDDs 13

is more pronounced for the set HTTP/2612, where NFA-OBDDs outperform the most
time-efficient PCRE configuration by 248×–554×. The poorer throughput of the PCRE
package for the second set of signatures is likely because the backtracking algorithm
that it employs degrades in performance as the number of paths to be explored in the
NFA increases. However, in both cases, the PCRE package is more space-efficient than
NFA-OBDDs, and consumes between 3.7MB–4MB memory.

For the FTP signatures (Figure 5(c)), NFA-OBDDs are about 2× slower than the
fastest PCRE configuration. However, unlike NFA-OBDDs which report all substrings
of an input packet that match signatures, this PCRE configuration only reports the first
matching substring. The performance of the PCRE configurations that report all match-
ing substrings is comparable to that of NFA-OBDDs.

Note that in all cases, the PCRE package outperforms our NFA implementation,
which use Thompson’s algorithm [13] to parse input strings. Despite this gap in perfor-
mance, Cox [17] shows that Thompson’s algorithm performs more consistently than the
backtracking approach employed by PCRE. For example, the backtracking approach is
vulnerable to algorithmic complexity attacks, where a maliciously-crafted input can
trigger the worst-case performance of the algorithm [18].

Comparison with DFA variants. We compared the performance of NFA-OBDDs
with a variant of DFAs, called multiple DFAs (MDFAs), produced by set-splitting [4].3

An MDFA is a collection of DFAs representing a set of regular expressions. Each DFA
represents a disjoint subset of the regular expressions. To match an input string against
an MDFA, each constituent DFA is simulated against the input string to determine
whether there is a match. MDFAs are more compact than DFAs because they result
in a less than multiplicative increase in the number of states. However, MDFAs are also
slower than DFAs because all the constituent DFAs must be matched against the input
string. An MDFA that has a larger number of constituent DFAs will be more compact,
but will also have lower time-efficiency than an MDFA with fewer DFAs.

Using Yu et al.’s algorithms [4], we produced several MDFAs by combining the
Snort signatures in several ways, each with different space/time utilization. Each point
in Figure 5 denotes the performance of one MDFA (again, averaged over all the input
traces), which in turn consists of a collection of combined DFAs as described above.

Producing MDFAs for the HTTP/2612 and FTP/98 signature sets was more chal-
lenging, primarily because these sets contained several structurally-complex regular ex-
pressions that were difficult to determinize efficiently. For example, they contained sev-
eral signatures with large counters (i.e., sequences of repeating patterns) often used in
combination with the alternation (i.e., re1|re2) operator. Our determinizer frequently
ran out of memory when attempting to construct MDFAs for such regular expressions.
As an example, consider the following regular expression in HTTP/2612:
/.*\x2FCSuserCGI\x2Eexe\x3FLogout\x2B[ˆ\s]{96}/i

Our determinizer consumed 1.6GB of memory for this regular expression alone, before
aborting. Producing a DFA for such regular expressions may require more sophisticated

3 We were unable to compare the performance of NFA-OBDDs against DFAs because DFA con-
struction ran out of memory. However, prior work [3] estimates that DFAs may offer through-
puts of about 50 cycles/byte.

14 Liu Yang, Rezwana Karim, Vinod Ganapathy and Randy Smith

techniques, such as on-the-fly determinization [19] that are not currently implemented
in our prototype. We therefore decided to exclude problematic regular expressions, and
constructed MDFAs with the remaining ones (2604 for HTTP/2612 and 95 for FTP/98).
Note that the MDFAs for these smaller sets of regular expressions may be more time-
efficient and much more space-efficient than corresponding MDFAs for the entire set of
regular expressions.

Figure 5 shows that in many cases NFA-OBDDs can provide throughputs compa-
rable to those offered by MDFAs while utilizing much less memory. For example, the
fastest MDFA in Figure 5(b) (constructed for a subset of 2604 signatures) offered about
50% more throughput than NFA-OBDDs, but consumed 7×more memory. The remain-
ing MDFAs for this signature set had throughputs comparable to those of NFA-OBDDs,
but consumed 270MB more memory than NFA-OBDDs. The performance gap between
NFA-OBDDs and MDFAs was largest for FTP signature set, where the MDFAs (for a
subset of 95 signatures) were about 4× faster than the NFA-OBDD; however, the MD-
FAs consumed 46MB-74MB more memory.

These results are significant for two reasons. First, conventional wisdom has long
held that traditional NFAs operate much slower than their deterministic counterparts.
This is supported by our experiments, which show that the time-efficiency of NFAs is
three to four orders of magnitude slower than that of MDFAs. However, our results show
that OBDDs can drastically improve the performance of NFAs and even make them
competitive with MDFAs, which are a determinstic variant of finite automata. We believe
that further enhancements to improve the time-efficiency of NFA-OBDDs can make
them operate even faster than MDFAs (e.g., by relaxing the OBDD data structure, and
thereby eliminating several graph operations in the APPLY and RESTRICT operations).

Second, processing the set of regular expressions to produce compact yet perfor-
mant MDFAs is a non-trivial exercise, often requiring time-consuming partitioning
heuristics to be applied [4]. Some of the partitioning heuristics described by Yu et al.
also require modifications to the set of regular expressions, thereby changing their se-
mantics. Our own experience constructing MDFAs for HTTP/2612 and FTP/98 shows
that this process is often challenging, especially if the regular expressions contain com-
plex structural patterns. In contrast, NFA-OBDDs can be constructed automatically in
a straightforward manner from regular expressions, including those with counters and
other complex structural patterns, yet are competitive in performance and more compact
than MDFAs.

Finally, we also attempted to compare the performance of NFA-OBDDs with a vari-
ant of DFAs, called hybrid finite automata (HFA) [20]. HFAs are constructed by inter-
rupting the determinization algorithm when it encounters structurally-complex patterns
(e.g., large counters and .* patterns) that are known to cause memory blowups when
determinized. We used Becchi and Crowley’s implementation [20] in our experiments,
but found that it ran out of memory when trying to construct HFAs from our signature
sets. For example, the HFA construction process exhausted the available memory on
our machine after processing just 106 regular expressions in the HTTP/1503 set.

Deconstructing NFA-OBDD Performance. We further analyzed the performance
of NFA-OBDDs to understand the time consumption of each OBDD operation. The

Improving NFA-based Signature Matching using OBDDs 15

Operation Fraction
ANDABSTRACT 50%

AND 39%
MAP 4%

Acceptance check 7%

Fig. 6. Fraction of time spent performing
OBDD operations. Fig. 7. 2-stride NFA for Figure 2.

results reported in this section are based upon the first set of 1503 signatures; the results
with the other signature sets were similar.

Figure 6 shows the fraction of time that exec nfaobdd spends performing var-
ious OBDD operations as it processes a single input symbol. As discussed earlier,
exec nfaobdd uses the Cudd package to manipulate OBDDs. Although Cudd imple-
ments the OBDD operations described in Section 2, it also implements composite op-
erations that combine multiple Boolean operations; the composite operations are often
more efficient than performing the individual operations separately. ANDABSTRACT is
one such operation, which allows two OBDDs to be combined using an AND operation
followed by an existential quantification. ANDABSTRACT takes a list of Boolean vari-
ables to be quantified, and performs the OBDD transformations needed to eliminate all
these variables. The MAP operation allows variables in an OBDD to be renamed, e.g., it
can be used to rename the y variables in G(y) to x variables instead.

We implemented the Boolean operations required to obtain a new frontier (described
in Section 3) using one set of AND, ANDABSTRACT and MAP operations. Each AND-
ABSTRACT step existentially quantifies 26 Boolean variables (the x and i variables).
To check whether a frontier should be accepted, we used another AND operation to
combine OBDD(F) and OBDD(A); the cost of an acceptance check appears in the last
row of Figure 6.

Figure 6 shows that the cost of processing an input symbol is dominated by the
cost of the ANDABSTRACT and AND operations to compute a new frontier. This is be-
cause the sizes of the OBDDs to be combined for frontier computation are bigger than
the OBDDs that must be combined to check acceptance. Moreover, computing new
frontiers involves several applications of APPLY and RESTRICT, as opposed to an ac-
ceptance check, which requires only one APPLY, thereby causing frontier computation
to dominate the cost of processing an input symbol.

These results suggest that an OBDD implementation that optimizes the ANDAB-
STRACT and AND operations (or a relaxed variant of OBDDs that allows more efficient
ANDABSTRACT and AND) can further improve the performance of NFA-OBDDs.

5 Matching Multiple Input Symbols

The preceding sections assumed that only one input alphabet is processed in each
step. However, there is growing interest to develop techniques for multi-byte matching,
i.e., matching multiple input symbols in one step. Prior work has shown that multi-byte
matching can improve the throughput of NFAs [21,22]. We present one such technique,

16 Liu Yang, Rezwana Karim, Vinod Ganapathy and Randy Smith

k-stride NFAs [21], and show that OBDDs can further improve the performance of k-
stride NFAs.

A k-stride NFA matches k symbols of the input in a single step. Given a traditional
(i.e., 1-stride) ε-free NFA (Q, Σ, δ, q0, F), a k-stride NFA is a 5-tuple (Q, Σk, Γ ,
q0, F), whose input symbols are k-grams, i.e., elements of Σk. The set of states and
accepting states of the k-stride NFA are the same as those for the 1-stride NFA. Intu-
itively, the transition relation Γ of the k-stride NFA is computed as a k-step closure
of δ, i.e., (s, σ1σ2 . . . σk, t) ∈ Γ if and only if the state t is reachable from state s in
the original NFA via transitions labeled σ1, σ2, . . ., σk. The algorithm to compute Γ
from δ must also consider cases where the length of the input string is not a multiple
of k. Intuitively, this is achieved by padding the input string with a new “do-not-care”
symbol, and introducing this symbol in the labels of selected transitions. We refer the
interested reader to prior work [21,22] for a detailed description of the construction.

Figure 7 presents an example of a 2-stride NFA corresponding to the NFA in Fig-
ure 2. The do-not-care symbol is denoted by a “•”. Thus, for instance, an input string
101 would be padded with • to become 101•. The 2-stride NFA processes digrams in
each step. Thus, the first step would result in a transition from state A to itself A (be-
cause of the transition labeled 10), followed by a transition from A to B when it reads
the second digram 1•, thereby accepting the input string.

A k-stride NFA (Q, Σk, Γ , q0, F) can readily be converted into a k-stride NFA-
OBDD using the same approach described in Section 3. The main difference is that the
input alphabet isΣk (plus “•”). Transition tables of k-stride NFAs encountered in prac-
tice are generally sparse. We therefore applied a well-known technique called alphabet
compression [21], which reduces the size of the input alphabet by combining symbols
in the input alphabet into equivalence classes. An alphabet-compressed NFA can also
be converted into an NFA-OBDD using the same techniques described in Section 3, and
operated in the same way.

Performance of k-stride NFA-OBDDs. To evaluate the performance of k-stride
NFAs and k-stride NFA-OBDDs, we used a toolchain similar to the one discussed in
Section 4, but additionally applied alphabet compression. Our implementation accepts
k as an input parameter. However, we have only conducted experiments for k = 2
because alphabet compression ran out of memory for larger values of k.

The setup that we used for the experiments reported below is identical to that de-
scribed in Section 4. However, we only used two sets of Snort signatures in our mea-
surements: (1) HTTP/1400: a subset of 1400 HTTP signatures from HTTP/1503 and
(2) FTP/95 a subset of 95 FTP signatures from FTP/98. This was because the 2-stride
NFA for a larger number of signatures ran out of memory during execution, thereby
precluding a head-to-head comparison between the performance of 2-stride NFAs and
NFA-OBDDs. We did not consider HTTP/2612 for the experiments reported in this
section, because alphabet compression ran out of memory on these signature sets.

Figure 8(a) presents the size of the 1-stride and 2-stride NFA-OBDDs, and the size
of the compressed alphabet. In each case, the alphabet compression algorithm took over
a day to complete, and consumed over 1GB of memory. Figure 8(b) and (c) compare
the performance of 1-stride NFAs and NFA-OBDDs with the performance of 2-stride
NFAs and NFA-OBDDs. As in Section 4, for NFAs we only report the average perfor-

Improving NFA-based Signature Matching using OBDDs 17

Signature Set #States #Transitions (1-stride) #Transitions (2-stride) #Alpbahet Symbols
HTTP/1400 146,992 2,246,701 44,815,280 6,928

FTP/95 15,266 3,361,065 5,136,420 848

(a) 1-stride and 2-stride NFA-OBDD construction results.

10
3

10
4

10
5

10
6

10
7

10
8

0

200

400

600

800

1000

1200

Processing time (cycles/byte)

M
em

or
y

us
ag

e
(M

B
)

1−stride−NFA
2−stride−NFA
1−stride−NFA−OBDD
2−stride−NFA−OBDD

10
3

10
4

10
5

10
6

0

50

100

150

200

250

300

350

400

Processing time (cycles/byte)

M
em

or
y

us
ag

e
(M

B
)

1−stride−NFA
2−stride−NFA
1−stride−NFA−OBDD
2−stride−NFA−OBDD

(b) HTTP/1400 regular expressions. (c) FTP/95 regular expressions.

Fig. 8. Memory versus throughput for 1-stride NFAs, 1-stride NFA-OBDDs, 2-stride NFAs,
and 2-stride NFA-OBDDs.

mance across all network traces because their performance was relatively stable across
all traces. We first note from Figure 8 that as expected, matching multiple bytes in the
input stream improved the performance of NFAs. However, this increase in throughput
comes at a drastic increase in the memory consumption of the 2-stride NFA.

In both the 1-stride and 2-stride NFAs, the use of OBDDs improved throughput—by
about three orders of magnitude for HTTP/1400 and about two orders of magnitude for
FTP/95. In both cases, the memory utilization of the 2-stride NFA-OBDD was smaller
than that of the 2-stride NFA by two orders of magnitude. This is because OBDDs
compactly encode the NFA’s transition relation. These results show that 2-stride NFA-
OBDDs are drastically more efficient in time and space than 2-stride NFAs. Further
investigation of the benefits of k-stride NFAs is a topic for future work.

6 Related Work

Early NIDS exclusively employed strings as attack signatures. String-based signatures
are space-efficient, because their size grows linearly with the number of signatures.
They are also time-efficient, and haveO(1) matching algorithms (e.g., Aho-Corasick [23]).
They are ideally suited for wire-speed intrusion detection, and have been implemented
both in software and hardware [24,25,26,27,28,29]. However, prior work has shown that
string-based signatures can easily be evaded by malware using polymorphism, meta-
morphism and other mutations [30,31,32,33]. The research community has therefore
been investigating sophisticated signature schemes that require the full power of reg-
ular expressions. This in turn, has spurred both the research community to develop
improved algorithms for regular expression matching, as well as NIDS vendors, who
are increasingly beginning to deploy products that use regular expressions [34,35,36].

DFAs provide high-speed matching, but DFAs for large signature sets often con-
sume gigabytes of memory. Researchers have therefore investigated techniques to im-
prove the space-efficiency of DFAs. These include, for example, techniques to deter-

18 Liu Yang, Rezwana Karim, Vinod Ganapathy and Randy Smith

minize on-the-fly [19]; MDFAs, which combine signatures into multiple DFAs (as dis-
cussed in Section 4) [4]; D2FAs [2], which reduce the memory footprint of DFAs via
edge compression; and XFAs [3,8], which extend DFAs with scratch memory to store
auxiliary variables, such as bitmaps and counters, and associate transitions with in-
structions to manipulate these variables. Some DFA variants (e.g., [2,3,21]) also admit
efficient hardware implementations.

These techniques use the time-efficiency of DFAs as a starting point, and seek to
reduce their memory footprint. In contrast, our work uses the space-efficiency of NFAs
as a starting point, and seeks to improve their time-efficiency. We believe that both
approaches are orthogonal and may be synergistic. For example, it may be possible to
use OBDDs to also improve the time-efficiency of MDFAs.

Our approach also provides advantages over several prior DFA-based techniques.
First, it produces NFA-OBDDs from regular expressions in a fully automated way.
This is in contrast to XFAs [8], which required a manual step of annotating regular ex-
pressions. Second, our approach does not modify the semantics of regular expressions,
i.e., the NFA-OBDDs produced using the approach described in Section 3 accept the
same set of strings as the regular expressions that they were constructed from. MDFAs,
in contrast, employ heuristics that relax the semantics of regular expressions to improve
the space-efficiency of the resulting automata [4]. Last, because these techniques op-
erate with DFAs, they may sometimes encounter regular expressions that are hard to
determinize. For example, Smith et al. [8, Section 6.2] present a regular expression
from the Snort data set for which the XFA construction algorithm runs out of memory.
Our technique operates with NFAs and therefore does not encounter such cases.

Research on NFAs for intrusion detection has typically focused on exploiting paral-
lelism to improve performance [9,10,37,38]. NFA operation can be parallelized in many
ways. For example, a separate thread could be used to simulate each state in an NFA’s
frontier. Else, a set of regular expressions can be represented as a collection of NFAs,
which can then be operated in parallel. FPGAs have been used to exploit this parallelism
to yield high-performance NFA-based intrusion detection systems [9,10,37,38].

Although not explored in this paper, OBDDs can potentially improve NFA perfor-
mance in parallel execution environments as well. For example, consider a NIDS that
performs signature matching by operating a collection of NFAs in parallel. The perfor-
mance of this NIDS can potentially be improved by converting it to use a collection
of NFA-OBDDs instead; in this case, OBDDs improve the performance of each NFA,
thereby increasing the throughput of the NIDS as a whole. Finally, NFA-OBDDs may
also admit a hardware implementation. Prior work has developed techniques to imple-
ment OBDDs in CAMs [39] and FPGAs [40]. Such an implementation of NFA-OBDDs
can potentially be used to improve the performance of hardware-based NFAs as well.

7 Summary

Many recent algorithms for regular expression matching have focused on improving
the space-efficiency of DFAs. This paper sought to take an alternative viewpoint, and
aimed to improve the time-efficiency of NFAs. To that end, we developed NFA-OBDDs,
a representation of regular expressions in which OBDDs are used to operate NFAs.

Improving NFA-based Signature Matching using OBDDs 19

Our prototype software-based implementation with Snort signatures showed that NFA-
OBDDs can drastically outperform NFAs—by up to 1645× in the best case. We also
showed how OBDDs can enhance the performance of NFAs that match multiple input
symbols.

Acknowledgements. We thank Cristian Estan and Somesh Jha for useful discussions
in the early stages of this project. We also thank Michael Bailey for shepherding the
paper and the anonymous reviewers for their feedback on our work.

References

1. Becchi, M.: Data Structures, Algorithms and Architectures for Efficient Regular Expression
Evaluation. PhD thesis, Washington University in St. Louis (2009)

2. Kumar, S., Dharmapurikar, S., Yu, F., Crowley, P., Turner, J.: Algorithms to accelerate mul-
tiple regular expressions matching for deep packet inspection. In: ACM SIGCOMM Con-
ference, ACM (2006) 339–350

3. Smith, R., Estan, C., Jha, S., Kong, S.: Deflating the Big Bang: Fast and scalable deep packet
inspection with extended finite automata. In: SIGCOMM Conference, ACM (2008) 207–218

4. Yu, F., Chen, Z., Diao, Y., Lakshman, T.V., Katz, R.H.: Fast and memory-efficient regular
expression matching for deep packet inspection. In: ACM/IEEE Symp. on Arch. for Net-
working and Comm. Systems. (2006) 93–102

5. Roesch, M.: Snort - lightweight intrusion detection for networks. In: USENIX Conf. on
System Administration, USENIX (1999) 229–238

6. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages,
and Computation, Third Edition. Addison-Wesley (2007)

7. Becchi, M., Crowley, P.: An improved algorithm to accelerate regular expression evaluation.
In: Intl. Conf. on Architectures for Networking and Communication Systems, ACM (2007)
145–154

8. Smith, R., Estan, C., Jha, S.: XFA: Faster signature matching with extended automata. In:
Symp. on Security and Privacy, IEEE Computer Society (2008) 187–201

9. Sidhu, R., Prasanna, V.: Fast regular expression matching using FPGAs. In: Symp. on Field-
Programmable Custom Computing Machines, IEEE Computer Society (2001) 227–238

10. Clark, C.R., Schimmel, D.E.: Scalable pattern matching for high-speed networks. In:
IEEE Symp. on Field-Programmable Custom Computing Machines, IEEE Computer So-
ciety (2004) 249–257

11. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Transac-
tions on Computers 35(8) (1986) 677–691

12. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, J.: Symbolic model checking:
1020 states and beyond. In: Symp. on Logic in Computer Science, IEEE Computer Society
(1990) 401–424

13. Thompson, K.: Programming techniques: Regular expression search algorithm. Commun.
ACM 11(6) (1968) 419–422

14. Somenzi, F.: CUDD: CU decision diagram package, release 2.4.2 Department of
Electrical, Computer, and Energy Engineering, University of Colorado at Boulder.
http://vlsi.colorado.edu/∼fabio/CUDD.

15. Signatures referenced in Section 4 and Section 5: Available at http://www.cs.
rutgers.edu/˜vinodg/papers/raid2010.

16. PCRE: The Perl compatible regular expression library http://www.pcre.org.

http://www.cs.rutgers.edu/~vinodg/papers/raid2010
http://www.cs.rutgers.edu/~vinodg/papers/raid2010

20 Liu Yang, Rezwana Karim, Vinod Ganapathy and Randy Smith

17. Cox, R.: Regular expression matching can be simple and fast (but is slow in Java, Perl, PHP,
Python, Ruby, ...) (2007) http://swtch.com/∼rsc/regexp/regexp1.html.

18. Smith, R., Estan, C., Jha, S.: Backtracking algorithmic complexity attacks against a NIDS.
In: Annual Computer Security Applications Conf., IEEE Computer Society (2006) 89–98

19. Sommer, R., Paxson, V.: Enhancing byte-level network intrusion detection signatures with
context. In: Conf. on Computer and Comm. Security, ACM (2003) 262–271

20. Becchi, M., Crowley, P.: A hybrid finite automaton for practical deep packet inspection. In:
Intl. Conf. on emerging Networking EXperiments and Technologies. (2007)

21. Brodie, B.C., Taylor, D.E., Cytron, R.K.: A scalable architecture for high-throughput regular-
expression pattern matching. In: Intl. Symp. Computer Architecture, IEEE Computer Society
(2006) 191–202

22. Becchi, M., Crowley, P.: Efficient regular expression evaluation: Theory to practice. In: Intl.
Conf. on Architectures for Networking and Communication Systems, ACM (2008) 50–59

23. Aho, A.V., Corasick, M.J.: Efficient string matching: An aid to bibliographic search. Comm.
ACM 18(6) (1975) 333–340

24. Dharmapurikar, S., Lockwood, J.W.: Fast and scalable pattern matching for network intru-
sion detection systems. Jour. on Selected Areas in Comm. 24(10) (2006) 1781–1792

25. Liu, R., Huang, N., Chen, C., Kao, C.: A fast string-matching algorithm for network
processor-based intrusion detection system. Trans. on Embedded Computing Sys. 3(3)
(2004) 614–633

26. Sourdis, I., Pnevmatikatos, D.: Fast, large-scale string match for a 10Gbps FPGA-based
network intrusion detection system. In: Cheung, P., Constantinides, G., Sousa, J., (eds.) FPL
2003. Volume 2778 of LNCS., Springer (2003) 880–889

27. Tan, L., Sherwood, T.: A high throughput string matching architecture for intrusion detection
and prevention. In: Intl. Symp. Computer Architecture, IEEE Computer Society (2005) 112–
122

28. Tuck, N., Sherwood, T., Calder, B., Varghese, G.: Deterministic memory-efficient string
matching algorithms for intrusion detection. In: IEEE INFOCOM 2004, IEEE Computer
Society 333–340

29. Vasiliadis, G., Antonatos, S., Polychronakis, M., Markatos, E.P., Ioannidis, S.: Gnort: High
performance network intrusion detection using graphics processors. In: Lippman, R., Kirda,
E., Trachtenberg, A., (eds.) RAID 2008. Volume 5230 of LNCS., Springer (2008) 116–134

30. Handley, M., Paxson, V., Kreibich, C.: Network intrusion detection: Evasion, traffic normal-
ization, and end-to-end protocol semantics. In: Usenix Security, USENIX (2001) 9–9

31. Jordan, M.: Dealing with metamorphism. Virus Bulletin Weekly (2002)
32. Ptacek, T., Newsham, T.: Insertion, evasion and denial of service: Eluding network intrusion

detection http://insecure.org/stf/secnet ids/secnet ids.html.
33. Shankar, U., Paxson, V.: Active mapping: Resisting NIDS evasion without altering traffic.

In: Symp. on Security and Privacy, IEEE Computer Society (2003) 44–61
34. TippingPoint: http://www.tippingpoint.com.
35. LSI-Corporation: Tarari RegEx content processor http://www.tarari.com.
36. Cisco: IOS terminal services configuration guide http://tinyurl.com/2eouvq.
37. Hutchings, B.L., Franklin, R., Carver, D.: Assisting network intrusion detection with re-

configurable hardware. In: Annual Symp. on Field-Programmable Custom Computing Ma-
chines, IEEE Computer Society (2002) 111–120

38. Mitra, A., Najjar, W., Bhuyan, L.: Compiling PCRE to FPGA for accelerating Snort IDS.
In: Symp. on Arch. for Networking and Comm. Systems, ACM (2007) 127–136

39. Yusuf, S., Luk, W.: Bitwise optimized CAM for network intrusion detection systems. In:
Intl. Conf. on Field Prog. Logic and Applications, IEEE Press (2005) 444–449

40. Sinnappan, R., Hazelhurst, S.: A reconfigurable approach to packet filtering. In: Brebner,
G., and Woods, R., (eds.) FPL 2001. Volume 2147 of LNCS., Springer (2001) 638–642

