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ABSTRACT

A Network Intrusion Detection System (NIDS) resides at the edge of a network and is tasked

with identifying and removing all occurrences of malicioustraffic traversing the network. At its

heart is a signature matching engine that compares each byteof incoming and outgoing traffic to

signatures representing known vulnerabilities or exploits and flags or drops traffic that matches a

signature.

Signature Matching is fundamentally a language recognition problem. Signatures are com-

monly represented as regular expressions, which can be matched simultaneously by finite au-

tomata. Unfortunately, standard nondeterministic finite automata (NFAs) and deterministic finite

automata (DFAs) induce a space-time tradeoff when combinedand are unsuitable for NIDS use.

NFAs are small and compact but too slow, whereas DFAs are fastbut consume too much memory.

Other alternatives such as filtering induce a tradeoff between accuracy and execution time.

We argue that the tradeoffs associated with signature matching are not fundamental obstacles,

but instead result from limitations in existing models. We posit that with richer, more complex

matching models, we can devise mechanisms that obviate these tradeoffs and have acceptable

memory and performance profiles.

In an analysis of an existing NIDS, we show that the use of filters induces worst-case behavior

that is six orders of magnitude slower than the average case and can be invoked by an adversary

to enable perpetual evasion. We present an enhanced model, with an acceptably small increase in

memory, that brings the worst case to within one order of magnitude of the average case.



xiv

Next, for DFA-based matching we present a first-principles characterization of the state-space

explosion and subsequent memory exhaustion that occurs when DFAs are combined, and we give

conditions that eliminate it when satisfied. We then show that through the careful inclusion of

auxiliary state variables, we can transform automata so that they satisfy these conditions and do not

lead to memory exhaustion. With this enriched model, we achieve matching speeds approaching

DFAs with memory footprints similar to NFAs.

A NIDS operates in a constrained, adversarial environment.This work makes contributions

towards enabling robust signature matching in such environments.
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Chapter 1

Introduction

Network Intrusion Detection Systems (NIDS) have become critical components of modern net-

work infrastructure. Functionally, at the core of any NIDS there resides a signature matching or

payload inspection engine that potentially compares everybyte of incoming and outgoing traffic

to signatures from a database containing known exploits or misuses. In practice, though, imple-

mentations must balance a number of conflicting demands. Network speeds, signature counts,

and signature processing requirements continue to increase yet are bounded by the limits of raw

processing speeds, relatively small memories, and the needto maintain wire-speed performance.

Failure to address these demands opens the door to evasion and may compromise the efficacy of a

NIDS.

This work concerns the development and analysis of techniques and models for performing

regular expression-based payload inspection of streamingdata such as network traffic. Network

intrusion detection provides the motivation and context for the work, but the results are general

and may be applicable to other domains as well [76]. My thesisis that richer computation models

can help improve the capability, performance, scalability, and robustness of payload inspection.

1.1 Network Intrusion Detection Systems

The use of a NIDS to protect network resources is in part an artifact of the continuing evolution

of the Internet away from its original intended use. Initially, the Internet was designed for military

use with the overall objective of reliably interconnectingexisting but disparate networks together.

Within this overall objective, a ranked list of priority anddesign goals [22] guided the development
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of the architecture. Military use presumes hostile environments, and the highest stated priority was

to maintain communication in the presence of lost hosts, links, or entire networks [10]. Accounting

and management of resources, which includes addressing thesecurity of those resources, was

ranked lowest. The importance of and need for accountability was understood, but as Clark [22]

points out, “During wartime, one is less concerned with detailed accounting of resources than with

... rapidly deploying them in an operational manner”.

Today, the Internet permeates many facets of society and hasbecome a key communications

conduit for activities ranging from banking and financial transactions, to public utility and critical

infrastructure management, to recreation and entertainment. Further, it is arguably more common

for computing devices and networks to be connected to the Internet in some way than not. Either

directly or indirectly, the Internet serves as a gateway to considerable assets, to private or sensi-

tive information, and to mechanisms that can be used to control, manage, or disrupt these assets

and information. Thus, whether through intended malice or accident, there is significant risk to

the disruption of network communication or the unauthorized access of connected networks and

information.

Unfortunately, the overall Internet architecture still retains the traits of its original design. With

the steady increase in both the frequency and sophistication of malicious activity on the Internet,

support for security–including access control, authentication, nonrepudiation, and integrity–has

significantly grown in importance. But, these capabilitiesare not intrinsic to the architecture and

effectively must be patched in. Of course, one approach is tore-architect the Internet to reflect the

change in priorities. The recently proposed Accountable Internet Protocol [5] among others, for

example, attempts to do just that by placing accounting, andaccountability, squarely as the highest

priority. Approaches such as these may eventually yield fruit, but there are significant hurdles in

the way. The current Internet has become part of our infrastructure: the costs of “replacing” it are

high, the timescales are long, and proposals are still beingput forth, evaluated, and refined. And,

if history is a guide, such changes are likely to occur incrementally. For the time being, it seems

that we must do our best with the current architecture.
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In this environment, devices such as a NIDS have been developed to shoehorn security features

into network functionality. At a high level, a NIDS is essentially a filter. Simply put, its task is

to identify and discard malicious or unwanted traffic beforesuch traffic reaches its intended tar-

get, without disrupting the flow of legitimate traffic. Regarding terminology, intrusion detection

focuses on identifying and flagging unwanted traffic, whereas intrusionpreventionadditionally

removes the traffic. From the perspective of this work, the difference between detection and pre-

vention is simply a policy decision, though; we use the term intrusion detection generally to refer

to both detection and prevention.

1.2 NIDS Requirements: Between a Rock and a Hard Place

Functionally, NIDS operation can be described very succinctly: pattern match all network traf-

fic against the signature database as it traverses the NIDS, and report (or drop) matching payloads.

The operational requirements are daunting though, and NIDSperformance needs continue to grow

at a faster pace than resource availability. Some of the reasons for this are as follows:

1. Increase in signature counts.Despite recent focus on developing and maintaining secure

software, software continues to be produced with vulnerabilities, new vulnerabilities are dis-

covered in existing software, and novel attacks and exploits continue to appear. This trans-

lates to new signatures that must be written and added to the database. Adding signatures is

unfortunately all too common an occurrence. Over a two year period (from April 2005 to

April 2007), for example, the number of signatures in the Snort rule database [91] increased

almost three-fold, from 3,166 to 8,868. The direct consequence is that larger numbers of

signatures must be matched against payloads, increasing the load on the NIDS.

2. Increase in signature complexity.Intrusion detection is in many respects a cat-and-mouse

game. Network attacks continue to increase in complexity asintrusion detection systems

evolve to respond to them. However, countering evasion [47,86, 88], mutation [56], and

other attack transformation techniques [92] requires carefully crafted signatures that cover

large classes of attacks but still make fine enough distinctions to eliminate false positive
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matches. Signature languages have thus evolved from simpleexploit-based signatures to

more complex session [93,102,117] and vulnerability-based [17,113] signatures, with higher

processing costs.

3. Increase in network speeds.Organizations are relying more and more on intrusion detec-

tion devices to protect their networks, even while network speeds are increasing and NIDS

are being placed deeper into the network (toward the core, away from the edges). Many

mid-size or larger networks are routinely run at 100 Mbps, 1 Gbps, or even 10 Gbps. To be

effective, a NIDS must be able to inspect packets at line rates against the signatures in the

database, regardless of the underlying network speed. Failure to do so can lead to inadvertent

denial-of-service attacks if a NIDS must drop packets due toCPU resource exhaustion1. Raw

processor speed increases are leveling out2; rising network speeds and traffic loads ultimately

result in fewer processor cycles per packet that can be devoted to matching signatures.

4. Presence of an active adversary.When performance is a driving metric, as it is for a NIDS,

one frequently seeks to optimize the common case. In security-sensitive settings, however,

one must assume the presence of an active adversary seeking to disrupt operation and induce

worst case behavior. The extent of the disruption is boundedby the difference between

the average and worst cases, but in some cases it is large enough to be used as a denial of

service attack or to enable evasion [29,99]. In such an adversarial environment, a NIDS must

perform packet inspection under the assumption that the worst-caseis the average case.

It is fair to say that a NIDS resides between a rock and a hard place. Attacks and exploits have

been growing in frequency and sophistication for many yearsand continue to do so. Traffic loads

increase with rising network speeds and deployment of NIDS devices in larger and larger networks.

On the other hand, raw processing speeds are leveling off andsignatures require more processing

power to match. Evasion and denial of service are two of the ever-present consequences of failing

1Alternatively, for intrusiondetection, lapses may occur in which malicious packets enter the network undetected.
2Multicore processors can yield throughput gains, providedsufficient parallelization can be extracted and synchro-

nization costs are small.
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to satisfy these constraints. To remain effective under such demanding circumstances, a NIDS

must combine sufficiently expressive signature languages with efficient matching techniques.

1.3 Payload Inspection, the heart of a NIDS

Intrusion detection is a multi-layered process involving many tasks. A NIDS resides in-network,

but it must identify exploits and intrusions targeted at end-hosts. Thus, a NIDS must emulate the

network-level behavior of the hosts it is protecting so thatit can detect exploits as reconstructed

by the protocol stack in the host. This behavior includes reassembling streams of data from (po-

tentially) out-of-order, fragmented packets, performingtraditional header-based packet classific-

ation [46,107,110], and normalizing alternative traffic encodings such as in HTTP URLs [38,90].

Despite all this work, these tasks are just precursors to theactual process of matching signa-

tures. In the lowest layer, at the heart, there resides in anyNIDS a pattern matching engine that

potentially compares every byte of incoming and outgoing traffic to signatures from a database

containing known exploits or misuses. This process is generally referred to assignature match-

ing, deep packet inspection, or payload inspection3. Payload inspection directly bears the weight

of the conflicting demands described in the previous sectionand is the most processing-intensive

component of intrusion detection. Measurements on deployed systems have shown [18] that pay-

load inspection alone accounts for up to 75% of the total processing time; our own experiments

are consistent with these results. Ideally, we would like the time-complexity of DFAs and the

space-complexity of NFAs.

NIDS performance is limited to the speed at which network traffic can be matched against sig-

natures. Thus, thelanguageused to express signatures and, correspondingly, the data structures

and procedures used to represent and match input to strings in that language have a tremendous

impact on performance. To keep up with line speeds, signatures or portions thereof must be com-

bined and matched simultaneously in a single pass over the input. String-based signatures, initially

popular, have fast multi-pattern matching procedures [1,109] but limited expressivity. Modern sig-

natures commonly use the full capabilities of regular expressions, which are highly expressive yet

3We use all three terms interchangeably in this work.
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compact. From the perspective of matching procedures, regular expressions are typically imple-

mented as either deterministic finite automata (DFAs) or nondeterministic finite automata (NFAs).

Like strings, DFAs are fast–requiring only a single table lookup per input symbol–and can be

readily combined into a single automaton that recognizes the union of the component languages.

However, DFAs often interact poorly when combined, yielding a composite DFA that is typically

much larger than the sum of the sizes of the DFAs for individual signatures and often significantly

exceeds available memory. Our own experiments in Chapter 6 show that DFAs corresponding to

actual NIDS signatures require several gigabytes of memory.

At the other extreme, combined NFAs have a small memory footprint, but their matching time

can be large. Because they are nondeterministic, NFA implementations must use some strategy

for exploring possible state sequences while searching fora match. A “depth-first search” imple-

mentation requires backtracking over many possible nondeterministic paths when searching for an

accepting path. On the other hand, a “breadth-first search” avoids backtracking but must simulta-

neously maintain and update a distinct pointer for each possible path in each component signature.

For ever-expanding signature databases used in intrusion detection, these costs are not amenable

to real-time inspection.

A payload inspection engine must be both compact and fast to support NIDS requirements.

But, DFAs and NFAs induce a trade-off requiring either largematching times or large memory

usage, both of which are unsuitable for high-speed network environments.

1.4 Thesis and Contributions

This work concerns the development and analysis of techniques and models for performing

regular expression-based payload inspection of streamingdata such as network traffic. The genesis

of this work stems from the observation that in many cases, the time-space tradeoffs associated

with signature matching are not the result of fundamental obstacles, but rather the consequences

of limitations in existing models. We posit that with the introduction of richer, more complex

models for signature matching, we can construct algorithmsand data structures that bridge the gap

between the tradeoff points and provide acceptable memory and performance characteristics.
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For example, the disparity between worst-case and average-case performance for some NIDS,

while demonstrably large, can be reduced to manageable levels by using memoization in some

cases to avoid unnecessary computation at the expense of only a slight increase in memory usage.

As another example, through the careful inclusion and manipulation of simple auxiliary state vari-

ables, we can devise automata-based matching mechanisms that avoid the time-inefficiencies of

NFAs and the memory-inefficiencies of DFAs. From the DFA perspective, a slight decrease in

matching performance yields a dramatic reduction in the memory footprint. These examples illus-

trate that by tolerating slightly degraded behavior on one side of the tradeoff (time or space), we

can obtain significantly improved behavior on the other side. Manipulation and management of

these tradeoffs is a fundamental theme of this work.

In evaluating this thesis, we perform detailed analyses of existing NIDS to guide our work

and give insight into the practical constraints of payload inspection. In the process, we discover

new attack techniques and threats targeted directly at a NIDS itself. We formally characterize the

state-space explosion that occurs when DFAs are combined, and we propose and evaluate novel

models that naturally extend DFAs yet avoid the memory consumption associated with state-space

explosion. Finally, we develop novel methods for performing edge compression on automata to

further reduce memory usage.

Ultimately, our goal is to develop the theory, models, and algorithms for making regular

expression-based multi-pattern matching of streaming data practical at high speeds. However,

this work is not the last word on this subject; rather, it is hoped that these contributions will lay the

groundwork and prove useful to further research in automata-based inspection.

We briefly describe our contributions in the sections below and present them in detail in suc-

ceeding chapters.

1.4.1 Threat Models Against a NIDS

The purpose of a NIDS is to detect malicious or unauthorized activity present in network traffic,

but as a network-attached device it is itself a potential target. Successfully attacking a NIDS
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enables evasion by allowing malicious or restricted data topass through the NIDS and enter or

leave the network undetected.

We explore NIDS evasion through the use of a denial-of-service mechanism known as an algo-

rithmic complexity attack [29]. Given an algorithm whose worst-case performance is significantly

worse than its average-case performance, an algorithmic complexity attack occurs when an attacker

is able to trigger worst-case or near worst-case behavior. Two traffic streams are involved in such

attacks. The first is the unauthorized or malicious payload,such as an attack, that needs to traverse

the NIDS without being detected. The second is aimed squarely at the NIDS and serves as a cover

by slowing it down so that incoming packets (including the true attack) are able to slip through

undetected. Evasion is most successful when the true attackenters the network, and neither it nor

the second attack is detected by the NIDS.

We present an algorithmic complexity attack that exploits worst-case signature matching be-

havior in the Snort NIDS. By carefully constructing packet payloads and sending them into the

network, our attack forces the signature matcher to repeatedly backtrack during inspection, yield-

ing packet processing rates that are up to 1.5 million times slower than average. We term this type

of algorithmic complexity attack abacktracking attack. Our experiments show that hundreds of

intrusions can successfully enter the network undetected during the 5-minute course of the attack.

Further, a single attack packet sent once every three seconds is enough to perpetually disable a

NIDS.

We follow with a countermeasure that uses memoization to store intermediate state that must

otherwise be recomputed. This defense against the backtracking attack relies on the use of better

algorithms that reduce the disparity between average and worst case without changing function-

ality. Empirical results show that this solution confines the processing times of attack packets to

within one order of magnitude of benign packets. We note thatalthough the countermeasure does

not eliminate the disparity between average and worst-case, it significantly reduces the magnitude

and practical potency of the attack.

This work had immediate practical value to those using the NIDS employed in our analysis.

But, the long-term value is both more subtle and more instructive. First, it shows explicitly the
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danger of relying on average-case performance in adversarial environments. Second, the solution

we propose solves this particular problem, but it is not necessarily generalizable to other matching

architectures. Nevertheless, it highlights the inadequacy of standard mechanisms for multi-pattern

signature matching, which insights lead directly to the next contribution.

1.4.2 DFA State Explosion and Extended Finite Automata

As stated earlier, DFAs have a fast matching procedure and can be easily combined, but DFA

combination often leads to an untenable explosion in the state-space which can easily exhaust

available memory. In some cases, the combined DFA state space is exponential in the sizes of the

source DFAs. We examine this phenomenon in detail and propose mechanisms for obviating it.

This work is divided into three parts.

First, we present a first-principles characterization of state-space explosion. We describe, for-

mally, why it occurs and give ideal conditions that eliminate it when satisfied. We introduce the

notion ofambiguityfor DFAs, distinct from non-determinism, that captures these conditions and

show how violation of this property leads directly to state-space explosion. We then illustrate how

auxiliary state variables can be used to “factor out” the components of automata that lead to am-

biguity. When these components are removed, automata can befreely combined without any state

explosion. Intuitively, appropriately including auxiliary variables changes the shape of automata

and restructures the state space so that computation state can be maintained more efficiently than

by using explicit DFA states alone.

Second, we introduce a formal model, termedExtended Finite Automata (XFAs), that extends

the standard DFA model with (first) a finite set of auxiliary variables and (second) explicit instruc-

tions attached to states for updating these variables. The extension from DFAs is natural: a DFA

is simply an XFA with no added auxiliary variables. Variables cannot affect state transitions, but

they can influence acceptance. This model provides a formal framework for associating auxil-

iary variables to automata. The model is fully deterministic and yields combination and matching

algorithms that are straightforward extensions to those for DFAs. We present algorithms for con-

structing XFAs, combining XFAs, and matching XFAs to input.
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Third, and finally, a primary advantage of this model is that it allows for systematic analysis and

optimization. When many individual XFAs are combined, the resulting automaton accumulates all

the individual variables and may replicate instructions across many states. Even when no state-

explosion occurs, this can lead to large per-flow state and processing times. Taking inspiration

from common principles used in optimizing compilers [74], we devise optimization techniques

for systematically reducing both the number of instructions and the number of variables. These

techniques include exploiting runtime information and support, coalescing independent variables,

and performing code motion and instruction merging.

In summary, Extended Finite Automata provide a model for enabling transformations that re-

move ambiguity from DFAs. In this model, individual XFAs canbe combined together, and the

combined XFA can be pattern matched at (fast) speeds approaching those of DFAs while at the

same time retaining (small) memory footprints similar to those of NFAs.

1.4.3 Edge Compression

XFAs provide a framework for eliminating DFA state explosion when individual automata are

combined. Nevertheless, individual automata states have alarge memory footprint themselves.

Specifically, each state in an automaton contains a transition table that holds the next-state tran-

sition for each possible input symbol. For example, a one-byte wide input alphabet has256 in-

put symbols. Using 4-byte state identifiers, a single transition table requires256 symbols× 4

bytes/symbol totaling1, 024 bytes of memory. A 2-byte wide input symbol can double the match-

ing rate in principle, but the transition table grows in sizeto 262, 144 bytes of memory per state.

Many have observed that transition tables contain redundant information that can be removed

through compression [1, 30, 55, 64, 84]. When entries in a transition table contain the same next-

state identifier, those entries can be replaced by a singledefaulttransition that is followed for each

removed symbol. Alternatively, some input symbols induce the same next-state transition in the

transition tables at every state. These input symbols form an equivalence class, and there may be

several classes of equivalent symbols. To reduce transition table size, symbols in an equivalence
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class can be replaced by a single designated symbol in that class and indexed during matching

using analphabet compression table.

Single alphabet compression tables for DFA state compression have been used extensively in

compiler-writing tools such as LEX and YACC [2, 55, 84] and have been recently explored in the

signature matching context as well [13]. We refine this technique by introducingmultiplealphabet

compression tables, built from the observation that many sets of input symbols have equivalent

behavior for large numbers of states, but not necessarily all states. We develop heuristics for

partitioning the set of states in an automaton and creating compression tables for each subset in a

way that yields further reductions in memory usage.

Using compression tables does require more processing time, since the per-byte cost now in-

cludes lookups into these tables. However, experiments show that once the overhead of the first

compression table has been paid for, inclusion of additional compression tables comes at no ad-

ditional runtime cost. We conduct further experiments comparing the performance and memory

usage of multiple alphabet compression to default-transition compression and to the combined

compression scheme, and we show how to integrate alphabet compression and default-transition

compression so that both are employed simultaneously.

1.5 Dissertation Organization

This dissertation is structured as follows. In Chapter 2 we survey prior work performed and

provide general background and context to properly frame our own work. We give a brief history

of intrusion detection, describe threats against a NIDS andmechanisms that circumvent them, and

discuss proposed languages and models for performing signature matching at wire speeds.

In Chapter 3 we present the Backtracking Algorithmic Complexity Attack, highlighted in Sec-

tion 1.4.1 as our first contribution. We provide details of the Snort architecture to which it applies,

we describe mechanisms for crafting the attack input, and wepresent the memoization-based tech-

nique for countering the attack. For both the attack and the defense mechanism, we report mea-

surement results obtained from live experiments in a controlled setting.
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In Chapters 4, 5, and 6 we present the Extended Finite Automata model for matching regular

expressions, our second major contribution. Chapter 4 gives formal matching semantics for regular

expressions in the signature matching environment. Chapter 5 focuses on the formal underpinnings

including state space explosion and matching models, whereas Chapter 6 contains algorithms for

manipulating XFAs, including construction, combination,matching, and optimization.

We present our third major contribution, multiple AlphabetCompression, in Chapter 7. Finally,

Chapter 8 concludes.
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Chapter 2

Background and Related Work

In this chapter, we review previous work to give context and frame our own work. We begin in

Section 2.1 with a brief history of intrusion detection, andwe informally characterize and contrast

the many facets of general intrusion detection.

Intrusion detection systems are themselves subject to attack. In Section 2.2 we survey general

threats against a NIDS and describe work performed to deflector eliminate the threats altogether.

These threats include, in part, exploiting inherent ambiguities and triggering algorithmic complex-

ity attacks. Finally, in Section 2.3 we survey work performed toward enabling efficient signature

matching in a NIDS and contrast it with our own.

2.1 Intrusion Detection

In its most general sense, intrusion detection refers to theprocess of detecting unauthorized or

malicious activity on any computing resource. Early work onautomated intrusion detection can be

traced back to almost 30 years prior to the time of this writing [54, 57]. In a 1980 report, Ander-

son [6] proposed using programs to automatically inspect audit logs that identify and track misuses

and other anomalous behavior. Beginning in 1983 and spanning several years, Denning [31] devel-

oped an intrusion detection model intended to be “independent of any particular...type of intrusion”

and therefore suitable as the basis for a general-purpose Intrusion Detection Expert System, or

IDES, as it was termed at the time. Other products became available, although most were directed

toward finding intrusions on individual hosts. The year 1990marked the introduction of tools ex-

plicitly targeted toward network intrusion detection performed on local area networks [49], and



14

increased commercial and government interest in intrusiondetection technology soon followed.

Since then, intrusion detection has grown to the point that it is now a ubiquitous component of

modern computer and network systems [73,115].

Intrusion detection systems can be characterized along many axes. We briefly consider two:

host vs. network intrusion, and anomaly vs. misuse detection. A host-based IDS [42] resides

directly on an individual host and monitors system processes and memory usage for the presence

of malicious behavior. Exploit-based systems identify specific, known intrusions such as buffer

overflows, heap overflows, format string attacks, and so forth. Model-based systems construct

models of specific process behavior (such as typical system call sequences) and look for deviations

from that behavior. A network IDS, on the other hand, residesin-network and monitors traffic

to and from many hosts. Network-based and host-based systems serve complementary roles: a

host-based system constructs detailed knowledge about theenvironment and behavior of a specific

computer system, but it imposes monitoring overhead and hasno knowledge of activity outside the

machine itself. On the other hand, a network-based system can observe the activity of many hosts

on a network, but its knowledge of any specific host is limitedand often incomplete.

Looking at the other axis, anomaly detection relies on statistical techniques for performing in-

trusion detection. These systems construct a baseline model of normal behavior against which cur-

rent behavior is compared. Significant deviations from the model are flagged as intrusions. Several

techniques have been proposed for finding deviations, usingmethods such as maximum entropy es-

timation [45], dimensionality reduction through principle components analysis [66], wavelet-based

signal analysis [11], and sketch-based change detection [61], to name a few. Misuse detection, on

the other hand, compares traffic to instances of specific misuses. Misuses are characterized by

specific signatures, expressed as strings or regular expressions, that are all compared to traffic as

it passes through the detector. Traffic that does not match any misuse signatures is benign by

definition. There are many commercial NIDS offerings along with popular open-source systems

including Bro [85] and Snort [91].

As with host- and network-intrusion detection, anomaly andmisuse detection are likewise

complementary. Anomaly detectors can find new attacks and classes of intrusions, but the false
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positive rate is high. Significant changes in the nature of the traffic may need to be observed

before a deviation is identified. Misuse detectors perform very detailed analysis of traffic, but

detection is limited to the known signatures in their database; they cannot detect novel attacks

without updated signatures. Recent work has investigated techniques for automating the signature

construction process. Proposals such as EarlyBird [98], Autograph [58], and Polygraph [79] can

be interpreted as techniques that in part bridge anomaly detection and misuse detection by first

identifying anomalies and then automatically constructing misuse signatures from them.

The focus of this dissertation is misuse network intrusion detection. In particular, our work

focuses specifically on the mechanisms for matching signatures to traffic at line rates. Neverthe-

less, our techniques may have value in other domains involving high-speed matching of streaming

data [76].

2.2 Threats Against a NIDS

2.2.1 Adversarial Environments and Ambiguity

A NIDS operates in an adversarial environment; to be effective, it must be robust to adversarial

activity designed to foil or bypass detection. However, achieving such resilience continues to be

an elusive goal. In early foundational work, Ptacek and Newsham [88] outline inherent difficul-

ties with network intrusion detection and describe three general categories of attacks: insertion,

evasion, and denial of service. Aninsertionattack inserts data into the stream that the NIDS pro-

cesses but an end host discards. Conversely, anevasionattack carries data that bypasses a NIDS

but reaches the intended target. Both of these attacks rely on ambiguities or subtleties in network

protocol specifications and subsequent differences in implementation to succeed. For instance, an

attacker can send a packet whose Time-To-Live (TTL) field is set so that the packet reaches the

NIDS but expires and is dropped before arriving at the destination. Failing to recognize the short

TTL at the NIDS leads directly to an insertion attack opportunity. Finally,denial of serviceattacks

are resource consumption attacks that exhaust memory, processing cycles, or network bandwidth

to defeat the NIDS. Many techniques have been proposed to address these problems; each of them

has limitations.
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One approach to removing ambiguities is to introduce anormalizer [47, 71] that intercepts

traffic and transforms it to a canonical form before undergoing NIDS analysis and entry into the

network. Handleyet al.[47] introduce a normalizer that identifies incorrect or ambiguous elements

in IP, TCP, and UDP protocol headers and either corrects the error or drops the packet. Normaliza-

tion may lead to a change in end-to-end semantics; Handleyet al. consider this issue and describe

other trade-offs involved in normalization. Rubinet al. [94] explore normalization of application

layer data in packet payloads and propose a combined normalization and matching mechanism for

HTTP traffic.

Ideally, a NIDS should faithfully emulate the relevant behavior of all hosts on the network so

that its interpretation of traffic matches the hosts’ interpretation. Unfortunately, some ambiguities

cannot be resolved by a normalizer and stem from implementation differences in the hosts them-

selves both at the protocol level and the application level [90,96]. In this case, adopting a specific

normalization policy provides protection to only some of the hosts on the network. To address this,

Shankar and Paxson [96] propose using a database of host profiles by which a NIDS can query the

key traits of a host to resolve ambiguities and properly emulate the relevant host during matching.

Active Mapping provides a sort of context-sensitivity to a NIDS; the authors argue that some form

of context-sensitivity is required to resolve per-host ambiguities.

Finally, to examine protocols such as HTTP, a NIDS must reassemble application-level streams

from distinct, out-of-order, possibly duplicated packets. Stream Reassembly, as the process is

called, is also a source of ambiguity and can lead to evasion and denial of service. For instance,

packets with identical sequence numbers and other stream information can contain distinct pay-

loads. Only the destination end-host knows which fragment will be accepted; evasion is possible

when the NIDS incorrectly guesses which fragment the end host will accept. Dharmapurikar and

Paxson [33] examine the issues with stream reassembly in detail, show how adversaries can disrupt

operation, and characterize the damage they can cause. Theydevelop hardware-based mechanisms

that are resilient to adversaries, and use techniques such as graceful degradation when under attack.

Even so, they observe that the effects of an adversary cannotalways be removed, and in some cases

must be tolerated.
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2.2.2 Algorithmic Complexity Attacks

Denial of Service attacks targeting a NIDS can also disrupt the detection process. One way to

achieve denial of service is to exhaust resources such as available memory and processing cycles on

the NIDS. For instance, to perform stream reassembly a NIDS must maintain connection state for

each individual data stream. Dregeret al.[35] report experimental results showing that up to 4,000

new connections are created per second on a moderately largenetwork of (presumably) benign

traffic, and that the number of connections tends to grow overtime and can quickly exhaust memory

without some form of management. An attacker who establishes (and never closes) several streams

can induce memory exhaustion by forcing the creation of excessive connection state [33,88].

Denial of service can also be induced by triggeringalgorithmic complexity attacks, which

occur when an attacker is able to induce worst-case behaviorin an algorithm whose worst-case

is significantly beyond its average case. These attacks exploit poorly designed and implemented

algorithms rather than program correctness flaws or ambiguity. Typically, an attacker induces these

attacks by crafting input to invoke the worst case, possiblyover several iterations of the algorithm.

Crosby and Wallach [29] demonstrate the efficacy of algorithmic complexity attacks by exploiting

weaknesses in hash function implementations to effectively turn randomizedO(1) lookups into

O(n) linear scans. Using this technique, they reduce the packet processing rate of the Bro NIDS

[85] from 1200 packets per second to only 24 packets per second. In preliminary follow-on work

they illustrate how to achieve slowdown attacks against regular expression matching engines [28].

In Chapter 3 we describe a variant termed the backtracking algorithmic complexity attack.

Through careful construction of attack payloads, our attack forces the signature matching compo-

nent of the popular Snort NIDS [91] to repeatedly backtrack,yielding processing rates that are up

to 1.5 million times slower than average. In live, controlled experiments, we use this attack as a

cover to successfully and perpetually evade detection of other attacks.

The strength of these attacks draws on the difference between average- and worst- case behavior

of algorithms. In principle, this class of attacks can be eliminated by avoiding algorithms with

large performance gaps, or by designing explicitly for the worst-case. But in practice, worst-case

performance of existing algorithms is often unacceptable,and one common approach is to employ
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architectures with fast, approximate techniques backed byslower, more involved algorithms [34,

63, 94]. For example, Dregeret al. [35] proposes an adaptive filtering technique to dynamically

adjust for load changes. Snort [91], on the other hand, uses sequences of successively more refined

matching predicates to reduce average-case execution time. It is precisely this architecture that

opens the door to algorithmic complexity attacks.

Other techniques have been proposed to address the performance requirements of intrusion

detection. Leeet al. [67] dynamically divide the workload among multiple modules, making ad-

justments as necessary to maintain performance. Load shedding is performed as necessary to dis-

tribute the load to different modules, or to lower its priority. Alternatively, Kruegelet al. [62] have

proposed achieving high speed intrusion detection by distributing the load across several sensors,

using a scatterer to distribute the load and slicers and reassemblers to provide stateful detection.

Still other approaches seek to provide better performance by splitting up (and possibly replicating)

a sensor onto multiple cores or processors [26, 111]. These approaches show that allocating more

hardware can better protect large networks with large amounts of traffic, but they do not directly

address worst-case complexity attacks.

Both [67] and [85] propose the use of monitors to track the resource usage and performance

history of a NIDS. In [67], if a monitor discovers abnormallylong processing times, the current

operations are aborted and optionally transferred to a lower priority process. For [85], on the other

hand, the monitor simply triggers a restart of the NIDS. In the general case, such techniques may

provide a useful mechanism for ensuring guaranteed minimumperformance rates at the cost of

decreased detection accuracy. However, such mechanisms result in periodic lapses in detection

capability.

The backtracking algorithmic complexity attack arises from the inadequacy of standard NFA-

based regular-expression matching techniques for intrusion detection. DFA-based approaches have

constantO(1) complexity per byte and are thus immune to complexity attacks, but they have

untenable memory requirements. In Chapters 5 and 6, we propose Extended Finite Automata as a

model for addressing these weaknesses.
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2.3 Signature Matching

Signature matching is at the heart of intrusion detection and is the focus of this work. At a

high level, signature matching is simply a language recognition process in which input strings (the

payload) are tested for membership in the languages defined by the set of signatures. Two comple-

mentary facets of languages shape the behavior and characteristics of signature matching mecha-

nisms: the language used for writing signatures, and the matching model used for identifying and

accepting elements of the language. Unfortunately, these facets also introduce conflicting trade-

offs; e.g., more expressive language models typically require more complex and time-consuming

matching procedures. We briefly describe related work on both facets below and highlight some

of the tradeoffs involved.

We note that a related but distinct problem is the automaton intersection problem: given a set

of DFAsD with common alphabetΣ, does there exist a stringx ∈ Σ such that for eachD ∈ D,

x ∈ L(D)? In other words, the problem is to discover whether the intersection of the automata in

D recognizes more than the empty language. This problem is pspace-complete [41]. In contrast,

for signature matching, the stringx is supplied as input and the problem is to efficiently find which

automata inD accept the prefixes ofx.

2.3.1 Signature Languages

Languages for expressing signatures have grown in complexity as attacks and evasion attempts

have become more sophisticated. Simpler languages are moreefficient to match, but have limited

expressive power. Complex languages are more expressive but have a longer matching procedure.

2.3.1.1 Exploits and String-based Signatures

String-based signatures were initially popular for intrusion detection and still find some use

today, most notably as fast pre-filters that guard more complex matching mechanisms [82]. Such

signatures have two advantageous properties. First, they are very efficient. Common string match-

ing algorithms [14,59] use skiplists, suffix automata [78],and other heuristics [72] to complete in
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linear time or less. For these algorithms, each byte of the payload is examined at most once, and

the per-byte cost is bounded and small.

Second, strings can be combined and matched simultaneouslyover a single pass of the input

payload. In particular, the Aho-Corasick algorithm [1] produces a concise automaton-like struc-

ture linear in the total size of the strings with a fixed worst-case performance bound that matches

all strings in a single pass. Other proposed multi-string matching techniques [25, 116] provide

different tradeoffs [114] between matching speed and memory usage. Simultaneous multi-pattern

matching is crucial to NIDS performance, allowing the number of signatures to grow over time

without affecting matching performance.

A number of improvements have been made to the basic string matching paradigm, including

parametrized matching [7, 8], approximate matching [75], matching with wildcards [3], and other

methods [24, 39]. These techniques seek to retain the basic efficiency of string matching while

increasing the expressivity of the underlying signatures.Still other work has focused on improving

matching performance through the use of hardware [69, 104, 106] or through other algorithmic

means. For example, Tucket al. [109] apply path compression and bitmaps to eliminate some of

the space costs inherent to the Aho-Corasick algorithm. They report memory requirements that are

reduced by a factor of 50 without any decrease in performance.

Unfortunately, strings are fundamentally limited by theirlack of expressivity. In adversarial

settings, many transformation techniques [32, 56, 90, 93] are commonly employed to produce dis-

tinct variations in attack signatures; a string-based detector would need a distinct string for each of

these variations, which can easily number into the thousands. As a simple example, a case insen-

sitive version of “root” can be easily captured with the regular expression ([Rr][Oo][Oo][Tt]) but

requires 16 distinct strings using a string-based approach. Thus, requirements for signature lan-

guages have evolved from simple exploit-based paradigms tothose that can succinctly characterize

classes of exploits, among other capabilities.
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2.3.1.2 Vulnerabilities and Regular Expressions

String-based signatures are effective for performing pattern matching in search of specific ex-

ploits, but they are not sufficient for expressing more general patterns or vulnerabilities. Due to

these limits, modern systems [20,85,91] have migrated towards richer models that provide greater

flexibility than strings. Currently, regular expressions [53] have become thede factostandard

for expressing signatures. Regular expressions are strictly more expressive than strings, but like

strings they can be succinctly expressed and combined and matched simultaneously using au-

tomata. Indeed, Sommer and Paxson [102] argue that the increased expressivity of regular expres-

sions combined with their efficient matching procedures (linear in input size) yields fundamental

improvements in signature matching capabilities.

One advantage of regular expressions is their ability to model general vulnerabilities, such as

a buffer overflow, as opposed to specific exploits that targetthe vulnerability. Brumleyet al. [17]

propose techniques for automatically constructing vulnerability-based signatures built from regu-

lar expressions. The principal advantages of this approachare the elimination of human error in

signature construction and resilience to polymorphic attacks. Given a vulnerable application, input

that produces an exploit, and a runtime trace leading up to the exploit, the approach constructs

a regular expression signature that in principle captures all exploit variations. Our work is com-

plementary to theirs. We focus on signature and regular expression matching, whereas they study

signature creation.

In the Shield approach [113], “vulnerability-specific, exploit-generic” filters are inserted into a

host’s network stack and executed on each packet that reaches the scripts. These filters determine

whether a packet’s contents satisfy a vulnerability condition and blocks the packet or alerts the

user if an exploit is detected. For text-based protocols, Shield uses regular expressions to express

vulnerabilities, although the full capabilities of the filters are more general.

Regular expression signatures are also used to provide additional matching context. Sommer

and Paxson [102] proposecontextual signatures, which incorporate protocol event sequencing

(e.g., ordering of commands and responses) into string matching.This allows standard matching
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algorithms to be performed in the context of the protocol-level events that have been received. Ru-

bin et al.[93] extend this notion withsession signatures, which model entire attack sequences from

connection initialization by the attacker to attack acknowledgment by the victim (to the attacker).

Yegneswaranet al. [117] introducesemantics-aware signaturesthat incorporate session-level and

application-level protocol semantics into signatures. Each of these techniques aims to reduce false

matches by providing a rich context in which to perform signature matching.

All of the work discussed above in this subsection employs regular expressions either as a

target for signature creation, or as the language used for filtering. In contrast, our work examined

the models used formatchingregular expressions to input, regardless of their construction or use.

2.3.1.3 Other Languages

With regard to expressive power, regular expressions are superior to strings. Thus, it is nat-

ural to ask whether even more expressive mechanisms such as context-free or context-sensitive

languages would provide even further benefit. For these classes of formal languages the answer is

in the affirmative, since they are both super-sets of regularlanguages [53]. However, to the best

of our knowledge the practical consequences of employing richer language models is not fully

understood with regard to the wire-speed performance requirements of matching payloads.

As a case in point, automata corresponding to regular expression signatures can be combined

and matched simultaneously with little (if any) increase inruntime cost, but this may not be practi-

cally feasible or even possible for matching mechanisms of more expressive languages. For exam-

ple, both Bro [85] and Shield [113] define custom scripting languages for expressing signatures,

but it is not clear whether scripts in these or other languages could be fully combined and executed

simultaneously as is done with finite automata. Further, matching procedures for more expressive

languages may impose untenable runtime costs. For example,in a host intrusion detection context

(where runtime performance is important but not as stringent), both Wagner and Dean [112] and

Giffin et al. [43] report that context-sensitive models were prohibitively expensive and unsuitable

for practical use.



23

It would be interesting to further explore the suitability of richer language models for network-

based intrusion detection, but such exploration is beyond the scope of this work.

2.3.2 Matching Models for Regular Expressions

Whereas the choice of signature language determines the expressive power of a signature

scheme, the matching model defines the runtime characteristics – the memory usage and per-

formance – associated with determining whether input strings belong in the language. In this

dissertation, our focus is on matching models for regular expressions.

Matching models for regular expressions are based on finite automata. It is well-known that

regular expressions and finite automata are inherently connected [53]. Specifically, a language

is regular if and only if it is accepted by a finite automaton ( [68], Theorem 2.5.1). Thus, for a

regular expressionR, we can determine whether any input sequence is a member of the language

L(R) defined byR by feeding it to a finite automatonF (R) corresponding toR. If F (R) accepts

the input, then the input is a member of the languageL(R). Signature matching is fundamentally

a language recognition problem, with the caveat that membership in multiple languages must be

evaluated simultaneously.

Regular expressions are typically represented as either Nondeterministic Finite Automata (NFAs)

or Deterministic Finite Automata (DFAs). Individual automata can be readily composed to form a

single composite automata (we give an algorithm in Section 4.3), but they often do not scale when

combined. As indicated in Chapter 1, NFAs can compactly represent multiple signatures but may

require large amounts of matching time, since the matching operation needs to explore multiple

fruitless paths in the automaton. DFAs are fast, requiring only a single table lookup per input sym-

bol, but they exhibit polynomial or exponential growth in the state space when combined. Thus,

in their basic form, NFAs and DFAs as used in intrusion detection lie at opposite extremes from a

memory-performance perspective and are not suitable for high speed signature matching.

Using DFAs (for their speed) as a starting point, many techniques have been proposed to re-

duce the memory footprint of combined DFAs. Memory reduction is achieved in two ways: by

reducing the total number of automaton states, and by reducing the footprint of individual states.
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Since the total memory footprint is a function of the number of states, reducing the number of

states yields the most significant reduction, and reducing the footprint of individual states provides

second-order results. Nevertheless, both mechanisms do induce some increase in the matching

time since additional computation is performed per byte. Weexamine these costs in detail later in

this dissertation.

2.3.2.1 Reducing the Number of States

In early work, Yuet al. proposedDFA Set-Splitting[118], a state reduction technique that

combines signatures into multiple DFAs (instead of a singleDFA) such that total memory usage is

below a supplied threshold. Regular expressions are heuristically selected for combination until the

resulting automaton exceeds its “fair share” of memory, at which time it becomes immutable and a

new combined automaton is begun. The process repeats until all expressions have been included.

Set-splitting controls state-space explosion by capping the amount of memory a group of DFAs can

consume when combined, at the cost of introducing additional DFAs to be matched. As a result,

set-splitting traces a curve between NFAs and DFAs in a space-time plot: as the memory threshold

is increased, the number of DFAs that must be simultaneouslymatched shrinks, decreasing the

inspection time. The primary advantage of this technique isits simplicity, although large signature

sets may require many DFAs to be matched in succession.

Becchi and Cadambi [12] propose State Merging, in which information about states themselves

is moved into edge labels in a way that allows states to be combined. The algorithm employs a

heuristic-driven iterative approach for selecting candidate states to be merged. The authors report

total memory savings of up to an order of magnitude, but performance results are not given. We

also reduce the number of DFA states, but our work seeks to eliminate the cause of state-space

explosion in combined DFAs.

Lazyapproaches to DFA evaluation [44] can reduce the effective number of DFA states, al-

though the overall total number remains the same. Beginningonly with an NFA (compact but

slow) and a start state, lazy approaches dynamically build the DFA at runtime by constructing

transitions and states only as needed, as determined by the input. Lazy construction draws on the
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fact that although the state space is large, the working set of visited orhot states is typically much

smaller. Although in its current form this technique was first proposed for XML Stream Processing,

recent work [70] has confirmed that working set sizes are relatively small for intrusion detection

signatures as well. The cost, of course, is increased execution time when new transitions and states

are constructed and exposure to algorithmic complexity attacks. This approach is orthogonal to

our own and can be applied to any DFA-based matching scheme.

Auxiliary variables can be used to reduce the memory requirements of an automaton. This

approach, common to software verification [9,52] and model checking [23], associates one or more

variables with an automaton and uses them to track matching state more compactly than explicit

states alone can do. But, to the best of our knowledge, prior techniques for including these variables

are ad-hoc and not designed for high speed payload inspection. Developed concurrently with our

own work, Kumaret al.[63] present heuristics that use flags and counters for remembering whether

portions of signatures have been seen. Like us, they use auxiliary variables for reducing the state

space, although there are some fundamental differences. First, their technique is heuristic and seeks

only to reduce the number of states, whereas we begin with a formal characterization of state space

explosion and then show how auxiliary variables can eliminate it. Second, the interaction between

states, variables, and transitions is not formalized, and it is not clear how individual automata can

be combined and manipulated. We provide an extensible formal model explicitly designed for this.

2.3.2.2 Reducing the Size of a State

The second way to reduce the overall memory size is to reduce the memory footprint of indi-

vidual states, a process referred to asedge compression. Since pointers for the transitions leading

out of a state constitute the bulk of a state’s footprint, reducing the number of outbound point-

ers can reduce the size of a state significantly. Most edge compression techniques are variations

of two themes: default transitions, and alphabet compression. These techniques trace their roots

back to automata compression techniques developed for compiler-writing tools such as LEX and

YACC [30,55,84]. We briefly describe some of them here.
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A default transition replaces entries for multiple symbolsin a transition table with a single

entry that is followed whenever the removed symbols are reserved at the state. During matching,

the default transition is followed to its destination stateif in the current state there is no transition

table entry for the current input symbol. Depending on the construction, it is possible that a single

input symbol may require traversing chains consisting of several default transitions before the

proper destination state is reached.

Johnson [55] introduced the use of default transitions for DFA compression during devel-

opment of the YACC parser generator. He used auxiliary arrays and performed careful place-

ment of state identifiers to achieve compression. The popular Aho-Corasick multi-pattern string

matcher [1] also employed default transitions extensively, so that only transitions that made for-

ward progress toward matching some pattern were distinctlyrepresented.

In an intrusion detection environment, one of the central challenges with default transition

schemes is quickly determining whether the current input symbol is contained in the state, or

whether the default transition must be followed. Recently,Kumaret al. [64] proposed a hardware-

based technique, D2FAs, with heuristics for construction that limit the maximum length of default

transition chains that must be followed. During matching, they use hardware-supported hashing

to quickly identify whether or not a default transition should be followed at a given state. In

further work, the hardware dependency has been removed by assuming the availability of wide

pointers [65] into which transition information is encoded, and the construction heuristics have

been reformulated to reduce default transition chain lengths further [13]. Finally, Ficaraet al. [37]

propose an enhancement that follows only one default transition at the cost of continually copying

transition table entries on each input symbol.

Alphabet compression is complementary to default transitions and draws on the fact that some

input symbols induce the same behavior at all states in a DFA.Such input symbols form an equiva-

lence class, and all but one symbol from each equivalence class can be removed from the transition

tables of all states. During matching, an alphabet compression table maps symbols to their respec-

tive equivalence classes. Our experiments with this technique using the Flex scanner have yielded
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memory reductions of up to 50×, although the reduction comes at a high execution time cost in-

volving multiple memory accesses that are not suitable for high-speed matching. Further, tools

like Flex perform matching using repeated invocations of the DFA and assume different semantics.

Recently, Becchi and Crowley have examined single alphabetcompression tables in the context

of intrusion detection [13]. In our work on edge compression, in contrast, we explore the use of

multiple alphabet compression tables that yield even further memory reductions without additional

runtime cost.

2.3.2.3 Hardware and Other Approaches

Many hardware approaches have been proposed to circumvent the time-space tradeoff inherent

to DFA and NFA matching. Hardware-based solutions can parallelize the processing required to

achieve high performance by processing many signatures in parallel rather than explicitly com-

bining them. Sidhu and Prasanna [97] provide a hardware-based NFA architecture that updates

the set of states in parallel during matching. Sourdis and Pnevmatikatos [105] employ content-

addressable memories (CAMs) to increase the performance further, and Clark and Schimmel [21]

present optimization techniques (such as examining multiple bytes per clock cycle) and achieve

regular expression matching at rates of up to 25 Gbps. Brodieet al. [15] also employ multi-byte

transitions and apply compression techniques to reduce thememory requirements. These tech-

niques show promise for high performance matching. However, replication of NFAs introduces

scalability issues as resource limits are reached (Clark and Schimmel are able to fit only 1500

signatures on their prototype). In addition, hardware techniques in general lack the flexibility for

evolving signature sets that is implicit to intrusion detection, and they restrict applicability to those

instances where the hardware cost can be justified and customhardware support is available. In

general, our focus on mechanisms for signature matching neither requires nor precludes the use

of custom hardware. Our work focuses on the inherent space complexity of combining automata

and mechanisms for avoiding the space costs, independent ofthe target architecture. In our ex-

periments, we assume only a generic computing platform consisting of a modern general purpose

processor with a standard amount of memory (e.g., a 3 GHz process with 4 GB of memory).
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Moving beyond signature matching, other extensions to automata have been proposed in the

context of information security.Extended Finite State Automata (EFSA)extend traditional au-

tomata to assign and examine values of a finite set of variables. Sekar and Uppuluri [95] use

EFSAs to monitor a sequence of system calls. Extensions, such as EFSA, fundamentally broaden

the language recognized by the finite-state automata,e.g., EFSAs correspond to regular expression

for events (REEs). On the other hand, XFAs can be viewed as an optimization of a regular DFA,

but XFAs do not enhance the class of languages that can be recognized. It will be interesting to

consider XFA-type optimizations to EFSAs.

Eckmannet al. [36] describe a language STATL, which can be thought of as finite-state au-

tomata with transitions annotated with actions that an attacker can take. The motivation for STATL

was to describe attack scenarios rather than improve the efficiency of signature matching. Au-

tomata augmented with various objects, such as timed automata [4] and hybrid automata [51],

have also been investigated in the verification community. For example, hybrid automata, which

combine discrete transition graphs with continuous dynamical systems, are mathematical models

for digital systems that interact with analog environments. As with EFSAs, these automata (which

are usually infinite-state) fundamentally enhance the languages they recognize.

Time-space tradeoffs like that induced by DFA and NFA matching are pervasive to Computer

Science. As illustrated with DFA Set Splitting [118], in such tradeoffs memory use can be reduced

at the cost of slower program execution, or alternatively, the computation time can be reduced at

the cost of increased memory use. In complexity theory, researchers investigate whether addition

of a restriction on the space inhibits one from solving problems in certain complexity class within

specific time bounds. For example, time-space tradeoff lower bounds for SAT were investigated

by Fortnow [40]. Time-space tradeoffs have also been explored in the context of attacks [77, 83].

We are not aware of existing work on time-space tradeoffs in the context of signature matching for

NIDS.
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Chapter 3

NIDS Evasion via Backtracking Algorithmic Complexity Attacks

In this chapter, we examine algorithmic mechanisms for inducing denial of service in a NIDS.

Many common algorithms have performance whose worst-case behavior is distinct from its average-

case. For example, hash lookup hasO(1) (constant) complexity on average, but in the worst-case

degenerates to anO(n) linear traversal. Similarly, Quicksort operates inO(n log n) time on av-

erage, but in its worst-case isO(n2) [27]. For both examples, the worst-case behavior is triggered

by the runtime input to the algorithm. By design, typical inputs will exhibit average-case complex-

ity. However, inputs can be supplied that exploit algorithmand/or implementation knowledge to

trigger the worst-case. In hostile environments where the input is controlled at least partially by an

adversary, this presents an opportunity for an attacker to induce degraded performance.

A NIDS has similar behavioral properties at both small and large scales. At the small scale,

processing components such as classification, normalization, and stream reassembly require the

use of algorithms with differentiated average- and worst-case. At the large scale, it is common

for NIDS designers to employ fast but approximate matching techniques backed by slower, more

detailed matching in order to meet performance requirements. Thus, the system itself may be

architected such that average-case and worst-case are distinguished. Finally, engineers, software

designers, and network operators can collectively controlall inputs and parameters that affect

NIDS performance except for one, the runtime traffic input.

An algorithmic complexity attack [29] is an attack in which carefully crafted inputs produce

worst-case behavior that exhausts processing resources and degrades performance, leading even-

tually to denial of service. To use firewall terminology [19], under such conditions a “fail-open”
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NIDS allows packets to pass unexamined, whereas a “fail-closed” NIDS drops packets. For exam-

ple, as discussed in Chapter 2, Crosby and Wallach [29] showed how to induce worst-case hash

function behavior to reduce performance in the Bro NIDS [85]to 24 packets per second (this flaw

has since been removed in Bro).

In this chapter we introduce the Backtracking Algorithmic Complexity Attack. Through care-

fully crafted input patterns, our attack forces the large-scale signature matching component of the

Snort NIDS [91] to repeatedly backtrack during inspection,yielding packet processing rates that

are up to 1.5 million times slower than average.

Our countermeasure to the backtracking attack is an algorithmic, semantics-preserving en-

hancement to signature matching based on the concept of memoization. The core idea is straight-

forward: whereas the backtracking attack exploits the needof a signature matcher to evaluate

signatures at all successful partial match offsets, a memoization table can be used to store interme-

diate state that must otherwise be recomputed. Our defense against the backtracking attack relies

on the use of better algorithms that reduce the disparity between worst and average case without

changing functionality. Even so, it does not eliminate the performance gap entirely, as we will

show.

Our result applies directly to Snort [91], a popular open-source NIDS that provides both NIDS

and IPS functionality and claims more than 150,000 active users. Snort uses a signature-based

architecture in which each signature is composed of a sequence of operations, such as string or

regular expression matching, that together identify a distinct misuse. In our experiments, we use

Snort over both traces and live traffic. In addition, we provide a practical implementation of the

defense by extending Snort’s signature matching functionality directly.

In summary, our contributions in this chapter are two-fold.First, we discuss NIDS evasion

through algorithmic complexity attacks. We present a highly effective real attack, the backtracking

attack, that yields slowdowns of up to six orders of magnitude and is feasible against the (esti-

mated) tens of thousands of networks monitored by Snort. Second, we present an algorithmic

defense, based on the principle of memoization, that confines the slowdown to less than one order
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Predicate Description Type

content:< str > Searches for occurrence of< str > in payload multiple-match

pcre:/regex/ Matches regular expression/regex/ against payload multiple-match

byte test Performs bitwise or logical tests on specified payload bytes single-match

byte jump Jumps to an offset specified by given payload bytes single-match

Table 3.1: Subset of Snort predicates used for packet inspection. Multiple-match predicates may
need to be applied to a packet several times.

of magnitude in general and to less than a factor of two in mostcases. We provide a practical

implementation of this solution and show its efficacy in a live setup.

We organize this chapter as follows. In Section 3.1 we describe Snort’s rule-matching archi-

tecture. Sections 3.2 and 3.3 present the backtracking attack and the countermeasure, respectively.

Section 3.4 details our experimental results, and Section 3.5 considers other types of complexity

attacks. Section 3.6 concludes.

3.1 Rule Matching in Snort

Our work is performed in the context of the Snort NIDS. Snort employs a signature-based ap-

proach to intrusion detection, defining distinct signatures, or rules, for each misuse to be searched

for. Each signature is in turn composed of a sequence ofpredicatesthat describe the operations

that the signature must perform. Section 3.1.1 gives an overview of the language used to specify

these rules. Section 3.1.2 describes the algorithm used to match rules against packets.

3.1.1 Expressing Rules in Snort

Snort’s rules are composed of a header and a body. The header specifies the ports and IP

addresses to which the rule should apply and is used during the classification stage. The body has

a sequence of predicates that express conditions that need to succeed for the rule to match. A rule

matches a packet only if all predicates evaluated in sequence succeed. Of the predicates that are
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alert tcp $EXT NET any -> $HOME NET 99

(msg:"AudioPlayer jukebox exploit";

content:"fmt="; //P1

pcre:"/^(mp3|ogg)/",relative; //P2

content:"player="; //P3

pcre:"/.exe|.com/",relative; //P4

content:"overflow",relative; //P5

sid:5678)

Figure 3.1: Rule with simplified Snort syntax describing a fictional vulnerability.

part of Snort’s rule language, we focus on those used to analyze the packet payloads. Table 3.1

summarizes the relevant rules.

Figure 3.1 depicts a signature using a simplified version of Snort’s rule language. The header

of the rule instructs Snort to match this signature against all TCP traffic from external sources to

servers in the home network running on port 99. The body of therule contains threecontent

predicates, twopcre [87] predicates, and two terms,msg andsid, used for notification and book-

keeping. The rule matches packets that contain the stringfmt= followed immediately bymp3 or

ogg, and also contain the stringplayer=, followed by.exe or .com, followed byoverflow.

Predicates have one important side effect: during rule matching a predicate records the position

in the payload at which it succeeded. Further, when a predicate contains arelative modifier, that

predicate inspects the packet beginning at the position at which the previous predicate succeeded,

rather than the start of the payload. For example, if predicate P3 in Figure 3.1 finds the string

player= at offseti in the payload, the subsequentpcre predicate (P4) succeeds only if it matches

the packet payload after positioni.

3.1.2 Matching signatures

When matching a rule against a packet, Snort evaluates the predicates in the order they are

presented in the rule, and concludes that the packet does notmatch the rule when it reaches a

predicate that fails. To ensure correctness, Snort potentially needs to consider all payload offsets

at whichcontent or pcre predicates can succeed. We term thesemultiple-matchpredicates.
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Payload fmt=aac player=play 000 fmt=mp3 rate=14kbps player=cmd.exe?overflow

Offset 01234567890123456789012345678901234567890123456789012345678901234567

1 2 3 4 5 6

(P5,59,67)

(P4,51,59) (P4,51,59)

(P3,31,51) (P3,31,51) (P3,31,51)

(P2, 4, f) (P2,28,31) (P2,28,31) (P2,28,31) (P2,28,31)

(P1, 0, 4) (P1, 0, 4) (P1, 0,28) (P1, 0,28) (P1, 0,28) (P1, 0,28) (P1, 0,28)

Figure 3.2: Packet payload matching the rule in Figure 3.1 and corresponding stack trace after each
call togetNextMatch on line 3 of Algorithm 3.1.

In contrast, predicatesbyte test and byte jump are single-match, meaning that any distinct

predicate invocation evaluates the payload once.

In the presence of a multiple-match predicateP, Snort must also retry all subsequent predicates

that either directly or indirectly depend on the match position ofP. For example, consider matching

the rule in Figure 3.1 against the payload in Figure 3.2. The caret (ˆ) inP2 indicates thatP2 must

find a match in the payload immediately after the previous predicate’s match position. If Snort

considers onlyP1’s first match at offset 4, thenP2 will fail since P2 is looking for mp3 or ogg

but findsaac instead. However, if Snort also considersP1’s second match at offset 28,P2 will

succeed and further predicates from the rule will be evaluated. Snort explores possible matches by

backtracking until either it finds a set of matches for all predicates or it determines that such a set

does not exist.

Algorithm 3.1 presents a simplified version of the algorithmused by Snort to match rules

against packets.1 All predicates support three operations. When a predicate is evaluated, the

algorithm callsgetNewInstance to do the required initializations. The previous match’s offset is

passed to this function. ThegetNextMatch function checks whether the predicate can be satisfied,

and it sets the offset of the match returned by calls to thegetMatchOffset predicate. Further

invocations ofgetNextMatch return true as long as more matches are found. For each of these

matches, all subsequent predicates are re-evaluated, because their outcome can depend on the

1The Snort implementation uses tail calls and loops to link predicate functions together and to perform the func-
tionality described in Algorithm 3.1. The algorithm presented here describes the behavior that is distributed throughout
these functions.
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MatchRule(Preds):

Stack ← (Preds[0].getNewInstance(0));1

while Stack.size > 0 do2

if Stack.top.getNextMatch() then3

if Stack.size == Preds.size then return True;4

ofst ← Stack .top.getMatchOffset();5

Push(Stack, Preds[Stack.size].getNewInstance(ofst));6

elsePop(Stack);7

return False;8

Algorithm 3.1: Rule matching in Snort. The algorithm returnsTrue only if all predicates
succeed.

offset of the match. The rule matching stops when the last predicate succeeds, or when all possible

matches of the predicates have been explored. Figure 3.2 shows the stack at each stage of the

algorithm. Each stack record contains three elements: the predicate identifier, the offset passed to

getNewInstance at record creation, and the offset of the match found bygetNextMatch (f if no

match is found). In this example, the algorithm concludes that the rule matches.

3.2 NIDS Evasion via Backtracking

The use of backtracking to cover all possible string or regular expression matches exposes a

matching algorithm to severe denial of service attacks. By carefully crafting packets sent to a host

on a network that the NIDS is monitoring, an attacker can trigger worst-case backtracking behav-

ior that forces a NIDS to spend seconds trying to match the targeted rule against the packet before

eventually concluding that the packet does not match. For the rule in Figure 3.1,P2 will be eval-

uated for every occurrence of the stringfmt= in the packet payload. Furthermore, whenever this

string is followed bymp3, P2 will succeed and the matcher will evaluateP3, and ifP3 succeeds it

will evaluateP4. If fmt=mp3 appearsn1 times,P3 is evaluatedn1 times. If there aren2 occurrences

of player=, P4 will be evaluatedn2 times for each evaluation ofP3, which gives us a total ofn1 ·n2

evaluations forP4. Similarly, if these occurrences are followed byn3 repetitions of.exe or .com,
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Payload fmt=mp3fmt=mp3fmt=mp3player=player=player=.exe.exe.exe

Offset 0123456789012345678901234567890123456789012345678901234

1 2 3 4 5

Figure 3.3: A packet payload that causes rule matching to backtrack excessively.

P5 is evaluatedn1 ·n2 ·n3 times. Figure 3.3 shows a packet that hasn1 = n2 = n3 = 3 repetitions.

Figure 3.4 shows the evaluation tree representing the predicates evaluated by the algorithm as it

explores all possible matches when matching Figure 3.1 against the payloads in Figure 3.2 and in

Figure 3.3. Our experiments show that with packets constructed in this manner, it is possible to

force the algorithm to evaluate some predicates hundreds ofmillions of times while matching a

single rule against a single packet.

The amount of processing a backtracking attack can cause depends strongly on the rule. Let

n be the size of a packet in bytes. If the rule hask unconstrained multiple-match predicates that

performO(n) work in the worst case, an attacker can force a rule-matchingalgorithm to perform

O(nk) work. Thus the following three factors determine the power of a backtracking attack against

a rule.

1. The number of backtracking-causing multiple-matchcontent andpcre predicatesk. The rule

from Figure 3.1 hask = 4 because it has 4 backtracking-causing multiple-match predicates (in-

cludingP5 which does not match the attack packet, but still needs to traverse the packet before

failing). Note that not allcontents andpcres can be used to trigger excessive backtracking.

Often, predicates that have constraints on the positions they match cannot be used by an at-

tacker to cause backtracking. An example of such a predicateis the firstpcre from Figure 3.1,

predicateP2, which has to match immediately after the firstcontent.

2. The size of the attack packetsn. We can use Snort’s reassembly module to amplify the effect of

backtracking attacks beyond that of a single maximum sized packet. The rule from Figure 3.1

is open to attacks of complexityO(n4). When Snort combines two attack packets into a virtual

packet and feeds it to the rule-matching engine,n doubles, and the rule-matcher does 16 times

more work than for either packet alone.
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Figure 3.4: Predicate evaluation trees in Snort. The left tree represents the 6 predicate evaluations
performed on the payload in Figure 3.2, and the right tree shows the 43 evaluations performed for
the payload in Figure 3.3. Numbers on edges indicate payloadoffsets where a predicate matched.

3. The total length of the strings needed to match thek predicates. If these strings are short, the

attacker can repeat them many times in a single packet. This influences the constants hidden

by theO-notation. Lets1,. . . ,sk be the lengths of the strings that can cause matches for thek

predicates. If we make their contribution to the processingtime explicit we can compute for each

string the exact number of repetitions. If we divide the packet intok equal-sized portions, each

filled with repetitions of one of these strings, we obtainni = ⌊⌊n/k⌋/si⌋. The cost of the attack

isO(
∏k

i=1 ni) = O(nk/(kk
∏k

i=1 si)). Other factors such as the amount of overlap between these

strings, the length of the strings needed to match predicates that do not cause backtracking, and

the details of the processing costs of the predicates also influence the processing cost. These

factors remain hidden by the constants inside theO-notation.

Approximately 8% of the 3800+ rules in our ruleset were susceptible to backtracking attacks to

some degree. Our focus is on the most egregious attacks, which typically yielded slowdowns rang-

ing from three to five orders of magnitude. We quantify the strength of these attacks experimentally

in Section 3.4.
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MemoizedMatchRule(Preds):

Stack ← (Preds[0].getNewInstance(0));1

MemoizationTable← ∅;2

while Stack.size > 0 do3

if Stack.top.getNextMatch() then4

if Stack.size == Preds.size then return True;5

ofst ← Stack .top.getMatchOffset();6

if (Stack.top, ofst) /∈ MemoizationTable then7

MemoizationTable←MemoizationTable ∪ {(Stack.top, ofst)};8

Push(Stack, Preds[Stack.size].getNewInstance(ofst));9

elsePop(Stack);10

return False;11

Algorithm 3.2: The memoization-enhanced rule-matching algorithm. Lines 2, 7, and 8 have
been added.

3.3 Memoization, a remedy for backtracking

As illustrated above, rule-matching engines are open to backtracking attacks if they retain

no memory of intermediate results, which for Snort are predicate evaluations that have already

been determined to fail. Thus, matching engines can be forced to unnecessarily evaluate the same

doomed-for-failure predicates over and over again, as Figure 3.4 indicates.

Algorithm 3.2 shows our revised algorithm for rule matchingthat uses memoization [27, 89].

It is based on the observation that the outcome of evaluatinga sequence of predicates depends

only on the payload and the offset at which processing starts. The memoization table holds

(predicate, offset) pairs indicating for all predicates, except the first, the offsets at which they

have been evaluated thus far. Before evaluating a predicate, the algorithm checks whether it has

already been evaluated at the given offset (line 7). If the predicate has been evaluated before,

it must have ultimately led to failure, so it is not evaluatedagain unnecessarily. Otherwise, the

(predicate, offset) pair is added to the memoization table (line 8) and the predicate is evaluated

(line 9). Note that memoization ensures that no predicate isevaluated more thann times. Thus, if a
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Figure 3.5: The memoization algorithm performs only 13 predicate evaluations instead of 43 as it
avoids the grayed-out nodes. The CPS optimization reduces the number of predicate evaluations
to 9, and the monotonicity optimization further reduces theevaluations to 5.

rule hask′ predicates performing work at most linear in the packet sizen, memoization ensures that

the amount of work performed by the rule matching algorithm is at mostO(k′ · n · n) = O(k′n2).

Figure 3.5 updates Figure 3.4 to reflect the effects of memoization. The greyed out nodes in the

large tree from Figure 3.5 correspond to the predicates thatwould not be re-evaluated when using

memoization. For the most damaging backtracking attacks against rules in Snort’s default rule set,

memoization can reduce the time spent matching a rule against the packet by more than four orders

of magnitude(with the optimizations from Section 3.3.1, more than five orders of magnitude).

To implement memoization, we used pre-allocated bitmaps for the memoization table, with a

separate bitmap for each predicate except the first. The sizeof the bitmaps (in bits) is the same

as the sizev (in bytes) of the largest virtual packet. Thus if the largestnumber of predicates in a

rule ism, the memory cost of memoization isv(m− 1)/8 bytes. In our experiments, memoization

increases the amount of memory used in Snort by less than 0.1%.

A naive implementation of memoization would need to initialize these bitmaps for every rule

evaluated. We avoid this cost by creating a small array that holds up to 5 offsets and an index into

the array. When a rule is to be evaluated, only the index into the array needs to be initialized to

0. If the number of offsets a predicate is evaluated at exceeds 5, we switch to a bitmap (and pay

the cost of initializing it). It is extremely rare that packets not specifically constructed to trigger

backtracking incur the cost of initializing the bitmap.
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3.3.1 Further optimizations

We present three optimizations to the basic memoization algorithm: detecting constrained pred-

icate sequences, monotonicity-aware memoization, and avoiding unnecessary memoization after

single-match predicates. The first two of these significantly reduce worst case processing time, and

all optimizations we use reduce the memory required to perform memoization. Most importantly,

all three optimizations are sound when appropriately applied; none of them changes the semantics

of rule matching.

Constrained predicate sequences:We use the namemarker for predicates that ignore the

value of the offset parameter. The outcome of a marker and of all predicates subsequent to the

marker are independent of where predicates preceding the marker matched. As a result, markers

break a rule into sequences of predicates that are independent of each other. We use the name

constrained predicate sequence(CPS) for a sequence of predicates beginning at one marker and

ending just before the next marker. For example,P3 in Figure 3.1 looks for the stringplayer=

in the entire payload, not just after the offset where the previous predicate matches becauseP3

does not have therelative modifier. Thus the rule can be broken into two CPSes:P1-P2 and

P3-P4-P5.

Instead of invoking the rule-matching algorithm on the entire rule, we invoke it separately for

individual CPSes and fail whenever we find a CPS that cannot bematched against the packet.

The algorithm does not need to backtrack across CPS boundaries. Less backtracking is performed

because the first predicate in each CPS is invoked at most once. For the example in Figure 3.5,

detecting CPSes causes the algorithm not to revisitP1 andP2 onceP2 has matched, thus reducing

the number of predicate invocations from 13 to 9.

Monotone predicates: Some expensive multiple-match predicates used by Snort have the

monotonicity property that we informally define as follows:if the set of matches returned from

predicatep at any offseto is always a subset of the set of matches returned from evaluation at an

earlier offset, then predicatep is monotone. For these predicates we use the more aggressivelowest-

offset memoization. In this optimization, we skip calls to a monotone predicateif it has previously

been evaluated at an offset smaller than the offset for the current instance. For example, say we
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first evaluate a monotonecontent predicate starting at offset 100 that does not lead to a matchof

the entire rule. Later we evaluate the same predicate starting at offset 200. The second instance is

guaranteed to find only matches that have already been explored by the first instance. With basic

memoization, after each of these matches of the second instance we check the memoization table

and do not evaluate the next predicate because we know it willlead to failure. But, thecontent

predicate itself is evaluated unnecessarily. With monotonicity-aware memoization, we do not even

evaluate thecontent predicate at offset 200.

The monotonicity property generalizes to some regular expressions too, and it can be defined

formally as follows: letS1 be the set of matches obtained when predicatep is evaluated at offset

o1, andS2 the matches for starting offseto2. If for all packets and∀o1 ≤ o2 we haveS2 ⊂ S1,

thenp is monotone. In our example from Figure 3.1, allcontents andpcres are monotone with

the exception of the firstpcre, P2, because it matches at most onceimmediately afterthe position

where the previous predicate matched.

Lowest-offset memoization helps reduce worst case processing because for some predicates

the number of worst-case invocations is reduced fromO(n) to 1. For the example in Figure 3.5,

this optimization would have eliminated the second and third evaluations for predicatesP4, andP5

(and forP3 also if CPSes are not detected). This further reduces the number of predicate instances

evaluated from 9 to 5.

Unnecessary memoization:Basic memoization guarantees that no predicate is evaluated more

thann times. For some rules with single-match predicates we can provide the same guarantee even

if we omit memoizing some predicates. If we employ memoization before evaluating a single-

match predicate, but not before evaluating its successor, we can still guarantee that the successor

will not be evaluated more thann times (at most once for every evaluation of our single-match

predicate). Also, if we have chains of single-match predicates it is enough to memoize only before

the first one to ensure that none is evaluated more thann times. Thus, our third optimization is

not to perform memoization after single-match predicates,such asbyte test andbyte jump

(see Table 3.1), except when they are followed by a monotone predicate. For our rule set, this

optimization reduces by a factor of two the amount of memory used for memoization.
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Rule Processing time (seconds/gigabyte) Slowdown Slowdown

Protocol ID Trace Backtracking attack w.r.t. avg traffic w.r.t. same protocol

traffic Original Basic Memo. Memo+Opt. Original Memo+Opt Original Memo+Opt

IMAP 1755 200.6 89,181 1,802 91.9 4,329× 4.46× 444× 0.46×

IRC 1382 14.6 1,956,858 1,170 87.6 94,993× 4.25× 134,031× 6.00×

MS-SQL 2003 119.3 18,206 715 140.4 884× 6.82× 152× 1.17×

NetBIOS 2403 729.7 357,777 57,173 122.0 17,368× 5.92× 490× 0.17×

Oracle 2611 110.5 6,220,768 3,666 174.0 301,979× 8.45× 56,296× 1.57×

SMTP 3682 132.8 30,933,874 2,192 126.4 1,501,644× 6.14× 232,936× 0.95×

SMTP 3682, w/o reassembly 1,986,624 903 103.1 96,438× 5.00× 14,960× 0.78×

SMTP 2087 132.8 175,657 5,123 164.5 8,527× 7.99× 1,323× 1.24×

Table 3.2: Strength of the backtracking attack and feasibility of the memoization defense. Columns
7-8 show the overall slowdown under attack when memoizationis not and is used. Columns 9-10
show similar slowdowns with respect to the same protocol.

3.4 Experimental Results

We performed empirical evaluations with traces and in a livesetting. In Section 3.4.1, we

present measurements comparing backtracking attack packets with traces of typical network traf-

fic. Our results show that three to six orders of magnitude slowdowns achieved with the back-

tracking attack are reduced to less than one order of magnitude slowdown under memoization. In

Section 3.4.2, we show actual evasion using a non-memoized implementation, and the resulting

recovery with the memoized version.

For our experiments we used the Snort NIDS, version 2.4.3, configured to use the Aho-Corasick [1]

string matching algorithm. Snort is run on a 2.0 GHz Pentium 4processor and is loaded with a

total of 3812 rules. We instrumented Snort using cycle-accurate Pentium performance counters.

When enabled, instrumentation introduced less than 2% overhead to the observed quantities of

interest. We found that our measured observations were consistent with the instrumentation results

collected by Cabreraet al. [18].
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3.4.1 Trace-based Results

For benign traffic, we obtained two groups of three traces each captured on different days at

distinct times. The first group of traces were captured on thelink between a university campus and

a departmental network with 1,200 desktop and laptop computers, a number of high-traffic servers

(web, ftp, ntp), and scientific computing clusters generating high volumes of traffic. These traces

are 7 minutes long and range in size from 3.1 GB to just over 8 GB. The second group of traces

were captured in front of a few instructional laboratories totaling 150 desktop clients. They are

also 7 minutes long and range in size from 816 MB to 2.6 GB.

We created attack traffic by generating flows corresponding to several protocols and supplying

payloads that are constructed in a similar manner to the payload construction outlined in Sec-

tion 3.2.

In the trace-based experiments, we fed the benign traffic andattack traffic traces into Snort

and observed the performance. We performed these experiments with and without memoization

enabled. Figure 3.6 shows the slowdowns experienced due to backtracking attacks targeting several

rules and the corresponding defense rates. It summarizes the information in Table 3.2. In each

group, the leftmost bar represents the cost of packet processing for the specified protocol relative

to 20.6 s/GB, the combined average packet processing rate inall our traces. For Rule 1382 (IRC),

the rate is less than 1, reflecting the fact that the average traffic processing time for IRC traffic is

less than the baseline.

The central bar in each group shows the slowdown observed by packets crafted to target the

specific rules indicated at the base of each group. The attacks result in processing times that are

typically several orders of magnitude slower than the baseline, with the most egregious attack

coming in at a factor of 1.5 million times slower. Finally, inthe rightmost bar of each group we

see the result of each attack repeated with the memoization defense deployed. In most cases, Snort

performance when under attack is comparable to if not betterthan when not under attack.

Table 3.2 details the attacks and the defenses quantitatively for several different protocols. For

each attack, Columns 1 and 2 give the protocol and the targeted Rule ID to which the attack be-

longs, respectively. Column 3 shows the average processingtime for each protocol. Columns 4
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Figure 3.6: Relative processing times for benign and attacktraffic, and attack traffic with memo-
ization. Memoization confines the slowdown to less than one order of magnitude.

through 6 show the raw processing times for attack packets under an unmodified Snort, Snort with

basic memoization, and Snort with fully optimized memoization. Columns 7-8 give overall slow-

downs and Columns 9-10 supply the slowdowns on a per-protocol basis. The backtracking attack

achieves slowdowns between 3 and 5 orders of magnitude for rules from many protocols. When

memoization is employed, the overall slowdown is confined towithin one order of magnitude. Per-

protocol, memoization confines most attacks to within a factor of two of their normal processing

time.

Rows 7 and 8 highlight the impact that reassembly has on the processing time. In this experi-

ment, when reassembly is performed the size of the virtual packet fed to the rule-matching engine

is only twice the size of a non-reassembled packet, but the processing time is almost 16× longer.

The effects of the three memoization optimizations can be seen by comparing Columns 5 and 6

in Table 3.2. The strength of the optimizations varies by protocol, ranging from just under a factor

of 10 to just over a factor of 30, excluding the NetBIOS outlier. In the Snort rule set, NetBIOS

rules contain many predicates that can be decomposed into constrained predicate sequences. These

rules benefit considerably from the optimizations.
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Figure 3.7: Live Snort evasion environment. Snort monitorsa net-
work composed of web and mail servers.

Recall that the attacks applied are all low-bandwidth attacks. Even though the overall slow-

down rate using memoization is up to an order of magnitude slower, these rates applyonly to the

attack packets (which are few in number) and not to the overall performance of Snort. Under mem-

oization, processing times for attack packets fall within the normal variation exhibited by benign

packets.

In the rightmost column, slowdowns less than 1.0 indicate that with all the optimizations in-

cluded, Snort was able to process backtracking attack packets more quickly than it could process

legitimate traffic. In other words, our optimizations allowed Snort to reject these attack packets

more quickly than it otherwise was able since fewer overall predicate evaluations are performed.

3.4.2 Evading a Live Snort

In this section we demonstrate the efficacy of the backtracking attack by applying it to a live

Snort installation. We first show successful evasion by applying the attack under a variety of

conditions. We then show that with memoization, all the formerly undetected attacks are observed.

Figure 3.7 shows the topology used for testing evasion for this experiment. To induce denial of

service in Snort, we use an SMTP backtracking attack that connects to a Sendmail SMTP server in

the protected network. We are using this attack to mask a Nimda [81] exploit normally recognized

by Snort. Both the Nimda exploit and its SMTP cover are sent from the same attacking computer.
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Test Description of backtrack attack Exploits Required
detected rate (kbps)

1 Control; no attack 300/300 N/A
2 two packets every 60 sec. 220/300 0.4
3 two packets every 15 sec. 6/300 1.6
4 onepacket every 5 sec. 4/300 2.4
5 onepacket every 3 sec. 0/300 4.0
6 twentypackets initially 0/300 0.8

7 onepacket every 3 sec. 300/300 N/A
(memoization enabled)

8 twentypackets initially 300/300 N/A
(memoization enabled)

Table 3.3: Summary of live Snort experiments. Without memoiza-
tion, 300 intrusions pass into the network undetected.

Each Nimda exploit is sent one byte at a time in packets spaced1 second apart. To simulate real

world conditions, we used the Harpoon traffic generator [103] to continuously generate background

traffic at 10 Mbps during the experiments.

We measure the effectiveness of the backtracking attack by the number of malicious exploits

that can slip by Snort undetected over various time frames. We initiated a new Nimda exploit

attempt every second for 5 minutes, yielding 300 overlapping intrusion attempts. Table 3.3 shows

the results. Test 1 is the control: when the backtracking exploit is not performed, Snort recognizes

and reports all 300 exploits despite our fragmenting them. In Test 2, we sent two backtracking

attack packets every 60 seconds for the duration of the experiment. Snort missed only one-third

of the attacks, detecting 222 out of 300 intrusion attempts.In Test 3, we increased the frequency

of the backtracking attacks to 2 packets every 15 seconds, dropping the detection rate to just 2%

of the transmitted exploits. Test 4 decreased the detectionrate even further, and in Tests 5 and

6 the attacker successfully transmitted all 300 exploits without detection. Aside from high CPU

utilization during the attacks and an occasional, sporadicport scan warning directed at the SMTP

attack, Snort gave no indication of any abnormal activity orintrusion attempt.

These experiments show that the transmission rate needed tosuccessfully penetrate a network

undetected is quite low, with both tests 5 and 6 requiring no more than 4.0 kbps of bandwidth.
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Test 5, in particular, suggests that perpetual evasion can be achieved through regular, repeated

transmissions of backtracking attack packets.

Tests 7 and 8 demonstrate the effectiveness of memoization.These tests repeat Tests 5 and

6 with memoization enabled (including all optimizations).With memoization, Snort successfully

detected all intrusions in both tests.

In summary, these experiments validate the results of our trace-based experiments and illustrate

the real-world applicability of the backtracking attack. Using carefully crafted and timed packets,

we can perpetually disable a NIDS without triggering any alarms, using at most 4 kilobits per

second of traffic. Correspondingly, the memoization defense can effectively be used to counter

such attacks.

3.5 Discussion

Often, algorithmic complexity attacks and their solutionsseem obvious once they have been

properly described. Nevertheless, software is still written that is vulnerable to such attacks, which

begs the question–how can a NIDS or IPS designer defend against complexity attacks that he

has not yet seen? A possible first step is to explicitly consider worst-case performance in critical

algorithms and to look at whether it is significantly slower than average case and can be exploited.

For example, Crosby and Wallach [29] have shown that in the Bro NIDS, failure to consider worst-

case time complexity of hash functions leads to denial of service. With this mindset, we briefly

consider mechanisms employed by existing NIDS with an eye towards triggering the worst case.

• Deterministic finite automata (DFA) systems can experienceexponential memory requirements

when DFA’s corresponding to individual rules are combined.In some cases, automata are built

incrementally [102] to reduce the footprint of a DFA that cannot otherwise fit in memory. Be-

cause each byte of traffic is examined exactly once in a DFA, backtracking does not occur.

However, it may be possible for an adversary to construct packets that trigger incremental state

creation on each byte of payload, resulting in consistentlyincreased computation costs and po-

tentially leading to memory exhaustion.
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• Nondeterministic finite automata (NFA) systems reduce the memory requirement costs of DFA

systems by allowing the matcher to be in multiple states concurrently. In practice, this is

achieved either through backtracking or by explicitly maintaining and updating multiple states.

In the first case, algorithmic complexity attacks are achieved by triggering excessive backtrack-

ing. In the second, the attacker tries to force the NIDS to update several states for each byte

processed.

• Predicate-based systems such as Snort can be slowed down if the attacker can cause more pred-

icates to be evaluated than in the average case. We have presented an attack that forces the

repeated evaluation of a few predicates many times. In contrast, attacks can be devised that

seek to evaluate many predicates a few times. For example, Snort employs a multi-pattern string

matcher [1] as a pre-filter to pare down the rules to be matchedfor each packet. Constructing

payloads that trigger large numbers of rules can lead to excessive predicate evaluations.

We have performed preliminary work that combines the secondand third observations above

to yield packet processing times in Snort that are up to 1000 times slower than average. These

results, combined with those of this paper, suggest that left unaddressed, algorithmic complexity

attacks can pose significant security risks to NIDS.

3.6 Conclusion

Algorithmic complexity attacks are effective when they trigger worst-case behavior that far

exceeds average-case behavior. We have described a new algorithmic complexity attack, the back-

tracking attack, that exploits rule matching algorithms ofNIDS to achieve slowdowns of up to six

orders of magnitude. When faced with these attacks, a real-time NIDS becomes unable to keep

up with incoming traffic, and evasion ensues. We tested this attack on a live Snort installation and

showed that the protected network is vulnerable under this attack, along with the tens of thousands

of other networks protected by Snort.
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To counter this attack, we have developed a semantics-preserving defense based on the princi-

ple of memoization that brings Snort performance on attack packets to within an order of magni-

tude of benign packets. In some cases, the techniques employed allow Snort to evaluate the packets

even faster than average.

In general, it is not clear how to find and root out all sources of algorithmic complexity attacks.

To do so requires knowledge of average- and worst-case processing costs. Without a formal model

of computation, such knowledge is difficult to obtain and is often acquired in an ad-hoc manner.

Mechanisms for formally characterizing and identifying algorithms and data structures that are

subject to complexity attacks can serve as useful analysis tools for developers of critical systems,

such as NIDS.
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Chapter 4

DFA Matching Semantics

In our second main contribution, we present an alternative model to DFAs for performing

signature matching. As a prelude to that work, in this short chapter we formally define the language

specification and matching semantics for regular expressions and deterministic finite automata in

the context of intrusion detection. We start by reviewing standard definitions for DFAs. We then

extend DFAs as necessary to enable multi-pattern matching of streaming data, and we show that

with these extensions, matching can be modeled precisely asa finite state transducer. Finally,

we present an algorithm for combining multiple DFAs into a single DFA that matches all the

component DFAs simultaneously.

4.1 Deterministic Finite Automata

A deterministic finite automaton (DFA) is a 5-tuple(Q,Σ, δ, q0, F ) where

• Q is a finite set of states,

• Σ is a finite alphabet,

• δ is a function fromQ× Σ to Q,

• q0 is a designated start state, and

• F ⊆ Q is a set of accepting (or final) states.
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Figure 4.1: A DFA recognizing the regular ex-
pression/.*ab.*cd/. Starting in state 0, the in-
put is accepted if the DFA is in state 4 after the
last symbol is read.

The functionδ is a total function over the states and alphabet that maps states inQ crossed

with alphabet symbols inΣ back to states. For each stateq ∈ Q and each symbolσ ∈ Σ, there is a

transition from q to some stateq′ ∈ Q (note:q′ = q is possible).

When supplied an input sequencex ∈ Σ⋆, a DFA begins at starting stateq0 and moves from

state to state as each symbol inx is read. If the DFA is in an accepting, or final, state when the last

symbol ofx is read, then we say that the DFAacceptsits input. We use the termcurrent stateto

refer to the state the DFA is in at any given point in the input sequence.

Pictorially, we can represent a DFA as a directed graph in which states are nodes in the graph,

edges between nodes are transitions, and each edge is labeled with a symbol from the input alphabet

Σ. Sinceδ is total, there are|Σ| labeled edges out of each state to other states in the DFA. Figure 4.1

shows a DFA withQ = {0, 1, 2, 3, 4} states,Σ = {a, b, c, d}, q0 = 0, F = {4}, andδ as depicted.

Note the back-arc from state 0 to itself labeledΣ− {c} is a graphical shorthand representing all

edges whose labeled transition is notc. We may alternatively express this as[^c].

DFAs are inherently tied to regular expressions. A regular expression is a mechanism for con-

cisely specifying classes of languages, some of which may beinfinite. A DFA, on the other hand,

is a language acceptor and is used for recognizing whether a string is a member of a language or

not. Moreover, the class of languages accepted by finite automata is exactly the class of languages

specifiable using regular expressions. In other words, for any regular expressionR, there is a DFA

D such thatD accepts all strings inL(R), the language described byR. The DFA in Figure 4.1,

for example, accepts all strings in the language specified bythe regular expression/.*ab.*cd/,
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read as “an arbitrary number of symbols, followed by the sequenceab, followed by an arbitrary

number of symbols, followed by the sequencecd”. Note that throughout this work, as a notational

convenience we delimit regular expressions with a forward slash (“/”) at the beginning and the end

of the expression.

4.2 Streaming Data and Transducers

Streaming applications can be characterized by their long-lived streams, which can be viewed

as a single sequence of input of indeterminate length. For these applications, which include intru-

sion detection, one is typically interested in finding matching patterns up to the currently-scanned

byte in the input, rather than accepting (or rejecting) the entire stream as a whole. This change in

semantics affects both the regular expressions used to specify the underlying languages as well as

the structure of the automaton used for matching.

Recall that regular expressions are language specifiers. Toaccommodate streaming data, reg-

ular expressions need to be adjusted so that their describedlanguages include theentirestream up

to the current byte, even the previous portion not directly relevant to the signature. In practice, this

is achieved by prefixing the regular expression with a Kleeneclosure over the full alphabet (Σ⋆),

typically denoted as “.*”. This construct has the effect of prepending into the language (specified

by the regular expression) all alphabet symbol sequences upto the occurrence of the language

strings themselves. For example, the regular expression/.*ab.*cd/ in Figure 4.1 contains this

prefix already. On the other hand,/ab.*cd/ specifies a language whose strings must begin with

the sequenceab and is therefore not suitable for stream matching.

Automata semantics must be similarly adapted. Two properties must be amended. First, per

the definition, a DFA accepts its input only if it is in an accepting state after all the input has been

scanned. The adjustment is to change the matching procedureto acknowledge acceptance each

time the DFA moves into an accepting state. This has the effect of allowing the automaton to accept

the input up to the current byte without regard to the remainder of the input. Second, DFAs emit

a binary “accept” or “reject” to indicate acceptance, but streaming applications typically match

many regular expressions simultaneously, each of which hasa distinct ID that must be emitted
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whenever accepted. Ignoring how we combine DFAs for the moment, we address this change by

associating one or more IDs with each accepting state and emit them as appropriate.

From a strict definitional perspective, we can model DFAs with these two changes as deter-

ministic finite state transducers [53]. A finite state transducer is a DFA augmented with an output

alphabet and a function that maps states or edges to symbols from the output alphabet. Transduc-

ers that emit output symbols on states, as is the case here, are termed Moore machines; those that

emit on edges are termed Mealy machines. During matching, transducers emit the output symbols

associated with each state (or edge) each time it is visited.

In our formulation, Moore machines are the relevant model. Formally, a Moore machine is a

6-tuple(Q, Σ, ∆, δ, λ, q0) where

• Q (states),Σ (alphabet),δ (transition function), andq0 (start state) are as in DFAs,

• ∆ is the output alphabet, and

• λ is a mapping fromQ to ∆ specifying the output associated with each state

(which may be empty for some states).

Note that there is no set of final states in a Moore machine. TheMoore machine model captures

streaming data matching semantics precisely. To wit, starting with a DFA, we set∆ (the output

alphabet) to be the set of all regular expression IDs, and we constructλ to map accepting states

in the DFA to the output symbol in∆ corresponding to the proper ID. Thus, matching can be

interpreted as the process of converting the input to a sequence of matching regular expression

IDs.

Throughout this dissertation, we assume Moore machine transducer semantics for simultaneous

matching of multiple regular expression patterns by makingthe simple changes to DFA matching

described above. Nevertheless, the changes from standard DFA matching are minor. Thus, to

remain consistent with accepted practice, we continue to refer to the process generically as DFA

matching.
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4.3 Combining Automata

Automata combination refers to the process of combining twoor more distinct automata into

a single, composite automaton which, when executed, is equivalent to executing all the individual

automata simultaneously. This process is central to meeting the performance demands of signa-

ture matching. We give a formal description of DFA combination and present an algorithm for

efficiently combining automata.

Definition 4.1 Let D1 = (Q1, Σ, δ1, s1, F1) andD2 = (Q2, Σ, δ2, s2, F2) be two DFAs with com-

mon alphabetΣ. Thestandard product constructionof D1 andD2 is the DFAD = (Q,Σ, δ, s, F ),

where

• for eachq1 ∈ Q1 andq2 ∈ Q2, there is a distinct elementq = 〈q1, q2〉 ∈ Q,

• s = 〈s1, s2〉,

• for eachq1a, q1b ∈ Q1 andq2a, q2b ∈ Q2 andσ ∈ Σ, if δ1(q1a, σ) → q1b and

δ2(q2a, σ)→ q2b, thenδ(〈q1a, q1b〉, σ)→ 〈q2a, q2b〉,

• for each〈q1, q2〉 ∈ Q, if q1 ∈ F1 or q2 ∈ F2 (or both), then〈q1, q2〉 ∈ F .

We denote the product constructionD of automataD1 andD2 asD = D1 + D2. Further,

L(D) = L(D1) ∪ L(D2). The standard product construction for Moore automata is defined simi-

larly.

Definition 4.2 Let M1 = (Q1, Σ, ∆1, δ1, λ1, s1) andM2 = (Q2,Σ,∆2, δ2, λ2, s2) be two DFAs

with common alphabetΣ. Then, the standard product construction of ofM1 andM2 is the Moore

automatonM = (Q,Σ, ∆, δ, λ, s) where

• Q, δ, ands are as defined for DFA combination above,

• for eachρ1 ∈ {∆1∪ǫ} andρ2 ∈ {∆2∪ǫ}, there is a distinct symbol〈ρ1, ρ2〉 ∈ ∆

(ǫ is a symbol not occurring in∆1 or ∆2),

• for eachq1 ∈ Q1 andq2 ∈ Q2, there are three cases to consider:
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Combine(MooreMachinefirst, MooreMachine second) :

worklist WL1

MooreMachine c2

c.addState (〈first.start, second.start〉)3

〈first.start,second.start〉.outputsym.append (first.start.outputsym)4

〈first.start,second.start〉.outputsym.append (second.start.outputsym)5

c.setStart (〈first.start, second.start〉)6

WL = { 〈first.start, second.start〉 }7

while ( |WL| > 0 ) do8

〈s,t〉 = WL.pop ()9

foreach (β ∈ Σ) do10

s′ = first.getNextState(s, β)11

t′ = second.getNextState(t, β)12

if 〈s′,t′〉 /∈ c.statesthen13

c.addState (〈s′,t′〉)14

〈s′, t′〉.outputsym.append (s′.outputsym)15

〈s′, t′〉.outputsym.append (t′.outputsym)16

WL.push (〈s′,t′〉)17

c.addTrans (〈s, t〉,〈s′, t′〉,β)18

return c19

Algorithm 4.1: Standard product construction for Moore machines.

i. if λ1(q1)→ ρ1 andλ2(q2) is undefined, thenλ(〈q1, q2〉) = 〈ρ1, ǫ〉;

ii. if λ2(q2)→ ρ2 andλ1(q1) is undefined, thenλ(〈q1, q2〉) = 〈ǫ, ρ2〉;

iii. if λ1(q1)→ ρ1 andλ2(q2)→ ρ2, thenλ(〈q1, q2〉) = 〈ρ1, ρ2〉.

The construction above produces combined automata with|M1| · |M2| states, where| · | denotes

the number of states. Nevertheless, some combined states may be unreachable;i.e., there is no

sequence of transitions from the start state leading to the unreachable state. Algorithm 4.1 gives

a worklist-based algorithm for computing the product construction of Moore automata that avoids

constructing unreachable states. In line 7, the combined start state initializes a worklist which is

added to by each newly created state (line 17). In each iteration, the algorithm pops a state from the

worklist, follows transitions out of it, and places new states on the worklist as necessary. Iteration

continues until the worklist is empty, when all combined states have been created and processed.

Since the number of states in the two input machines is finite,the algorithm must terminate.
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Figure 4.2: Standard product construction (right) for DFAscorresponding to/.*wisc/ (upper
left) and/.*win/ (lower left).

Output symbols attached to states are represented as lists to which output symbols are ap-

pended. For each stateq = 〈s, t〉 in the combined automaton, we simply copy the output symbols

from s and t into q (Lines 15 and 16). The correctness of this follows from the fact that en-

tering composite stateq when matching is equivalent to entering statess and t simultaneously,

implying that the symbols in boths and t need to be emitted. Alternatively, for DFA matching

we replace Lines 15 and 16 with a statement that marksq as accepting if eithers or t is accept-

ing. Figure 4.2 illustrates the combination algorithm for two DFAs corresponding to the regular

expressions/.*wisc/ (upper left in the figure, with ID 1) and/.*win/ (lower left, with ID 2).
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Chapter 5

State-Space Explosion and Ambiguity

This chapter and the next are devoted to mechanisms for avoiding the time-space tradeoff asso-

ciated with automata-based matching. We begin in this chapter with a first-principles characteriza-

tion of state-space explosion that lays the groundwork for the techniques we develop to circumvent

the tradeoff. We describe, formally, why it occurs and give ideal conditions that eliminate it when

satisfied. When these conditions are met, automata can be freely combined without any state ex-

plosion. In preparation for the next chapter, we then illustrate how auxiliary state variables can be

used to “factor out” the components of automata that violatethese conditions.

5.1 Combining DFAs Considered Harmful

DFAs corresponding to NIDS signatures explode when combined. That is, the size of the state

space, and hence the number of states, increases dramatically when DFAs are combined. The mag-

nitude of DFA state space explosion depends strongly on the types of signatures being matched.

For simple string-based regular expressions of the form/. ∗ s/, wheres ∈ Σ∗ is a sequence of

alphabet symbols, the number of states required to recognize n signatures is bounded above by

the total size of the strings, orO(n) if we bound the size of the largest string. Other types of

patterns can cause the number of states to increase quadratically and exponentially in the number

of signatures.

Consider “counting” regular expressions of the form/.*\ns1[^\n]{k}/, read as “newline

followed by the sequences1 followed byk non-newline characters”. Signatures of this form are

commonly used to identify and stop exploits aimed at triggering buffer overflow vulnerabilities.
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Figure 5.1: The combined DFA for corresponding to the expressions/.*\na[^\n]{200}/ and
/.*bc/ replicates the second expression 200 times, once for each counting state (for clarity, some
edges have been omitted).

The left-hand automaton in Figure 5.1 shows the DFA for a signature of this form. Note that the

counting range specifier{200} is a form of syntactic sugar that replaces 200 repetitions of[^\n].

In this case, there are 200 states used solely for counting the number of successive non-newline

symbols observed.

By itself, this DFA is relatively innocuous, since the number of states is linear in the number

of symbols in the expression. However, when combined with other DFAs, even those for simple

string-based regular expressions, the total number of states multiplies. The right-hand side of

Figure 5.1 shows the DFA resulting from the cross product of the counting DFA with a simple

string-based automaton. For clarity, some edges have been removed. In general, the combined

DFA needs to concurrently track the independent matching progress of both source DFAs. For this

example this means that the DFA corresponding to/.*bc/ is replicated at each of the counting

states in the first DFA. This requiresO(nk) states for tracking a single such counting automata and

n strings andO(n2k) states for trackingn such signatures andn strings.

Other signature patterns can lead to an exponential growth in the state space when their DFAs

are combined. This occurs, for example, with signatures of the form/.*s1.*s2/, read as “sub-

patterns1 followed by an arbitrary number of characters followed by sub-patterns2”. Figure 5.2

shows the result of combining the DFAs for the signatures/.*ab.*cd/ and/.*ef.*gh/. For

each signature of this type, the combined DFA needs to remember whether it has already seen the

first sub-pattern so that it knows whether or not to accept thesecond sub-pattern. For example, in

Figure 5.2 the DFA is in statePV when neitherab nor ef has been observed. Similarly, it is in

stateRV whenab but notef is seen, statePX whenef but notab is seen, and stateRX when both
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Figure 5.2: The combined DFA for expressions/.*ab.*cd/ and/.*ef.*gh/ must use states to
“remember” which subpatterns have occurred (for clarity, some edges have been omitted).

ab andef have been seen. In general, to remembern independent bits of information, the DFA

needs at least2n distinct states. For this case, an analysis of the generalized example shows that if

the strings are of lengthl, then the actual number of states used by the combined DFA isO(nl2n).

Both of these examples illustrate the growth in the state space that occurs when DFAs are

combined. Intuitively, we can generalize this phenomenon as follows. When a set of DFAs are

combined, the combined automaton tracks the matching progress of the individual automata si-

multaneously. As alluded to by the state names in Figures 5.1and 5.2, states in the combined

automaton are equivalent to tuples of individual states from the source automata. Thus, in the

combined DFA, there is a distinct state for each reachable combination of states in the source

DFAs. As shown above, signatures often overlap or (partially) subsume each other, leading to

interleaved matching progress with many distinct combinations of reachable states.

Beyond this, DFA states typically require 1,024 bytes each,so that large numbers of states can

quickly exhaust memory. In a later section, we informally present a mechanism for restructuring

the state-space so that even though state-space explosion still occurs, it does not affect the number

of automaton states.

5.2 Understanding State-Space Explosion

In this section we formally characterize state space explosion and give sufficient conditions

for guaranteeing that such explosion will not occur. We showhow incorporating auxiliary state



59

variables can be used to transform automata so that they satisfy these conditions and eliminate such

explosion in automata states directly. This characterization provides the underlying foundation that

motivates our work on extended finite automata.

5.2.1 State and Path Ambiguity

State-space explosion centers around the notion of ambiguity, which we define as follows. Let

D = (Q, Σ, δ, q0, F ) be a DFA with statesQ, input symbolsΣ, transition functionδ, start stateq0,

and accepting statesF ⊆ Q. For stateq ∈ Q we definepaths(q) to be the set of paths fromq0 to

q. In the presence of cycles,paths(q) may be infinite. SinceD is deterministic, we can uniquely

represent each pathπ ∈ paths(q) by the corresponding sequence of input symbolsσ(π).

We say that stateq is unambiguousif and only if the following conditions hold:

1. there exists a finite sequencexq ∈ Σ⋆ such that for each pathπ ∈ paths(q),

σ(π) = y · xq for y ∈ Σ⋆;

2. for someπ ∈ paths(q), σ(π) = xq (i.e., y = ǫ).

In other words,q is unambiguous if and only if all paths toq have the same suffixxq and at least

one path toq is specified solely byxq.

A DFA D is unambiguousif and only if all states inD are unambiguous and the following

conditions also hold:

3. for eachy ∈ Σ⋆, ∃f ∈ F such thaty · xf ∈ paths(f);

4. letm(f) be the path corresponding toxf for statef ∈ F . Then, for eachq ∈ Q,

q ∈ m(f) for somef ∈ F .

For an unambiguous automatonD, the first three conditions ensure that all strings in the lan-

guage accepted byD are of the form. ∗ xf wheref ∈ F . The fourth condition ensures that there

are no superfluous states that do not advance matching progress toward acceptance and is unnec-

essary if the DFA has been minimized. Note that ambiguity is different from nondeterminism;i.e.,

an ambiguous state may be reached by many distinct sequences, but the succession of states is still
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deterministic in the input. Finally, we say that a pathπ ∈ paths(q) is ambiguous if there is an

ambiguous state inπ.

5.2.2 Combination and State Explosion

State-space explosion results from the interaction between states in ambiguous and unambigu-

ous paths when automata are combined. During combination, unambiguous states in the prefix of a

path from one automaton get replicated when combined with ambiguous states in a path in another

automaton. This phenomenon occurs because the combined automaton must now track progress

in matching both the unambiguous path and, independently, the ambiguous path. Of course, the

amount of replication observed depends on how extreme and pervasive the ambiguity is in the two

source automata and how much interaction occurs between them. Automata with limited levels of

ambiguity introduce comparatively small amounts of replication, whereas a path of infinite length

can cause an entire automaton to be copied and leads directlyto exponential replication.

To illustrate, consider the examples in Figure 5.3. In this figure and in most others, we show

all states but for clarity eliminate many transitions. In Figure 5.3a, automata for the expressions

/.*atom/ and/.*a[mv]id/ are combined. Only the first automaton is unambiguous, but the

ambiguity in the second automaton is limited to allowing only anm or av in the transition between

the two states. When combined, the unambiguous and ambiguous paths do not interact, and no

state replication occurs in this case. In general, though, the replication is limited to a few states.

Figure 5.3b describes the case in which the regular expression/.*a[^a][^a]b/ (read as: “an

a followed by two non-a characters, followed byb”) is combined with the expression/.*cdef/.

In the first automaton, paths to StatesR, S, andT are all ambiguous (the path toT is ambiguous

because no pathp = yx wherex = b andy = ǫ exists). In the combined automaton shown

in the figure, a full copy of both original automata is required so that both expressions can be

matched. However, states in the prefix of the single unambiguous path in/cdef/ must also be

partially replicated so that the combined automaton can properly track the progress in matching

both /cdef/ and the “don’t care” transitions in the first automaton. In this case, the number of

paths to ambiguous states is finite, but additional unambiguous paths in the first regular expression
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Figure 5.3: Depending on the structure of the underlying automata, the combined automaton sizes
may be linear (left), polynomial (middle) or exponential (right) in the limit (some edges removed
for clarity).

would be partially replicated along these as well, so that inpractice a large number of additional

states may need to be created.

Figure 5.3c depicts the case in which both regular expressions contain a Kleene closure (.*) in

the middle of the expression. This introduces ambiguous paths of infinite length since the closure

can consume an infinite number of symbols. When combined withanother automatonA, the

closure effectively replicatesA in many cases. When the two automata in the figure are combined,

the result is similar to a cross-product of states, since thetwo automata are heavily interleaved and

states must be created that track each possible position in the first automaton with each possible

position in the second. Whenn expressions of this form are combined, the number of required

states in the combined automata is exponential inn.

5.2.3 Eliminating Ambiguity Using Auxiliary Variables

From a systematic perspective, we can eliminate state-space explosion by first identifying the

conditions in which it cannot occur, and second, specifyingtransformations that translate offending
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automata into automata that satisfy the conditions withoutchanging semantics. In this context,

ambiguity in automata as defined above provides a sufficient set of conditions, and we relate them

to state space explosion by the following theorems.

Theorem 5.1 Let D1 andD2 be DFAs withD1 + D2 their standard product combination. IfD1

andD2 are unambiguous, then|D1 + D2| < |D1|+ |D2|, where|D| is the number of states in D.

Theorem 5.2 If D1 andD2 are unambiguous, thenD1 + D2 is unambiguous.

We provide a brief sketch of a proof. As described in Section 5.2.1, an unambiguous DFAD =

(Q, Σ, δ, q0, F ) recognizes languages of the form{.∗xf |f ∈ F}. Consequently, the languageL(D)

can be expressed asΣ⋆(
∑

f∈F xf)Σ
⋆. But, this has the same structure as languages recognized by

Aho-Corasick-constructed DFAs (see [1, section 8]). Thus,unambiguous DFAs are equivalent

to Aho-Corasick automata. Now, combining Aho-Corasick automata is equivalent to taking the

strings from one automaton and inserting them into the other. Moreover, the number of states in

an Aho-Corasick automaton is bounded above by
∑k

i=1 |yi|, where|yi| denotes the length of the

stringyi. From this, Theorem 1 is established and Theorem 2 immediately follows.

Theorem 5.1 simply places a bound on the number of automaton states that are produced by the

combination process. Theorem 5.2 states that unambiguity is closed under standard combination.

We define state-space explosion formally as a pairwise phenomenon that occurs whenever

|D1 + D2| ≥ |D1|+ |D2| for two automataD1 andD2. Theorem 1 is overly restrictive since in

reality a larger class of expressions than strings of the form . ∗ s can be combined without any ap-

preciable blowup (Figure 5.3a, for example). Further, a combined automaton that exhibits a modest

increase in the number of states beyond the additive sum of its component DFAs is perfectly ac-

ceptable in many cases. Despite these restrictions, Theorem 5.1 is sufficient for the purposes of

characterization and provides an ideal: if, as in string matching, we can ensure that the additive

sum of states always dominates the combined sum for any automata, then state-space explosion

can never occur.

Given these conditions, the next task is to identify a mechanism for transforming automata. As

stated earlier, by augmenting DFAs with auxiliary variables we can represent the state space more
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Dotted lines show less-important edges.

compactly than explicit states alone can do. Intuitively, incorporating auxiliary variables changes

the “shape” of an automaton since part of the computation state is now stored in the variables.

By carefully controlling how these variables are incorporated and manipulated, we can in turn

transform an ambiguous DFA into an equivalent automaton with less ambiguity or none at all.

As an example, consider again/.*ab.*cd/, whose DFA is ambiguous (stateR is ambiguous).

In addition, assume that we can associate a single bit with this expression that can be freely manipulated

(set, reset, and tested). Ignoring the method of construction for the time being, we can use this bit to

“remember” whether the first substring has been observed or not. In so doing, the shape of the automaton

itself is transformed as illustrated in Figure 5.4. When constructed appropriately, the new automaton along

with the bit preserves the semantics of the regular expression. Most importantly, in the new automaton all

states are unambiguous and the automaton satisfies the condition for avoiding state-space explosion.

Next, consider/\na[^\n]{200}/ whose DFA was shown in Figure 5.1. The DFA for this expression

contains 200 ambiguous states whose sole purpose is to countthe distance in the input from the sequence

\na in which a newline is not observed. As shown, when combined with other DFAs, unambiguous paths

are partially or fully replicated at each of these “countingstates.”

To eliminate the ambiguity in this automaton, we introduce asimple counter whose value can be set

(initialized to a value), reset (indicating the counter value should be ignored), decremented, and compared

to zero. The transformation incorporating the counter is given in Figure 5.5. The state variable replaces

the 200 counting states, leading to a sharp reduction in the size of the automaton. Most importantly, the
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Figure 5.5: Adding a counter to/.*\na[^\n]{200}/. The resulting automaton is unambiguous.

careful inclusion of the counter has yielded an automaton whose states are unambiguous and satisfies the

unambiguity condition. Note that the counter is decremented on the start state. For this counter we assume

a semantics in which the variable isinactiveuntil initialized. We discuss this property in more detail in

Section 6.5.

In both of these examples, we have in essence “factored out” the ambiguity of the DFAs and placed

it into auxiliary state variables that manipulate some aspects of the matching state more compactly than

explicit DFA states can. Figures 5.6 and 5.7 show the same combination operation as Figures 5.1 and

Figures 5.2, respectively, except that the ambiguous DFAs in the figures are replaced by their semantically

equivalent unambiguous XFA counterparts. In both figures, the input XFAs are unambiguous, and the

resulting combined XFAs are also unambiguous, as per Theorem 5.2. Theorem 5.1 is also easily checked.

In general, the amount of auxiliary state we introduce and its effect on the underlying automaton is very

fluid. At one extreme, DFAs corresponding to strings have unambiguous forms that require no auxiliary

state. At the other end, we can reduce an automaton to a singlestate (with transitions to itself) by incorporat-

ing an appropriate combination of possibly many different types of state variables. Of course, the number

of state variables may then be very large, and updating them may be time consuming. Transforming an

ambiguous automata to an equivalent unambiguous form may introduce auxiliary state that lies somewhere

between these extremes.
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5.2.4 Generalizing Ambiguity

The conditions we have given to support these conclusions are very strict. Here, we take first steps

toward generalizing the notion of ambiguity to better characterize polynomial state replication as illustrated

in Figure 5.3b. A languageL ⊆ Σ⋆ is finite if and only if the number of sequences|L| in L is finite.

Let D = (Q,Σ, δ, q0, F ) be a DFA. We say that a stateq ∈ Q is finitely unambiguousif and only if

LD(q) = Σ⋆Rq, whereRq is a finite set of strings. In this case, all suffixes of paths toa finitely unambiguous

stateq belong to the setRq. Thus, finite unambiguity generalizes our earlier definition. As before, DFAD

is finitely unambiguous if all of its states are finitely unambiguous.
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Consider two finitely unambiguous DFAsD1 = (Q1, Σ, δ1, q
1
0 , F1) andD2 = (Q2,Σ, δ2, q

2
0 , F2). The

languagesL1 andL2 accepted byD1 andD2, respectively, have the following form:

L1 =
∑

q∈F1

Σ⋆ · Rq L2 =
∑

q∈F2

Σ⋆ ·Rq

Hence, the language accepted byD1 +D2 is given asΣ⋆· (
∑

q∈F1∪F2

Rq) and the size of the DFAD1 +D2

is bounded above by
∑

q∈F1∪F2

∑

σ∈Rq(q) |σ|. Thus, we can bound the amount of replication that occurs.

To summarize, we have presented a formal framework for characterizing state space explosion and

have shown that in this framework, auxiliary variables can be used to eliminate explosion. In the next

section, we formalize the ideas presented here into an explicit model that specifies how auxiliary variables

are incorporated into automata.
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Chapter 6

Extended Finite Automata

In the previous chapter we gave a formal characterization ofstate-space explosion and showed by ex-

ample how auxiliary variables can be employed to remove the ambiguity from automata. In this chapter,

we present a formal model for incorporating variables into automata and explore its consequences for sig-

nature matching applications. This model, termedExtended Finite Automata[100,101], or XFAs for short,

extends the standard DFA model with auxiliary state variables and instructions for manipulating them, yet

at the same time retains many of the advantageous traits of DFAs. For example, the model is fully deter-

ministic in the states and input, and enables combination and matching algorithms that are straightforward

extensions to those for DFAs.

This chapter proceeds by first giving the formal model for XFAs (Section 6.1), and then discussing

algorithms for constructing XFAs (Section 6.2), combiningXFAs (Section 6.3), and matching XFAs (Sec-

tion 6.4). Following that in Section 6.5 we present a set of optimizations inspired from compiler construction

principles that further reduce memory usage and increase performance. In Section 6.6, we present a series

of experimental results showing the behavior of XFAs, and weconclude with a discussion in Section 6.7.

6.1 Formal Models

XFAs generalize DFAs to include variables along with instructions for manipulating those variables.

Practically, variables are stored in an auxiliary memory associated with an automaton. Subject to certain

constraints, instructions for manipulating variables canbe attached to either edges or states.

We formally represent the space of auxiliary variable values used by Extended Finite Automata as a

finite set termed thedata domain, denoted asD. Each distinct setting of the variables is represented as

a distinct data valued in the data domain. We associate a data valuedi with the current stateci, whose

values change as the automaton processes its input. Together, these extend the notion of a current state to a
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currentconfiguration(ci, di). We similarly extend starting states and accepting (or final) states in DFAs to

starting and accepting configurations in XFAs. With each transition or state we associate anupdate function

U : D → D (or for non-deterministic XFAs anupdate relationU ⊆ D×D) which specifies howd is to be

updated. For the common case in which the data domain is not being updated on a transition, we associate

the identity function with the transition.

Below, we present two equivalent models for XFAs: one with instructions attached to edges, and one

with instructions attached to states. Each serves a distinct purpose.

Definition 6.1 An edge-based nondeterministic extended finite automaton (NXFA) is described by the7-

tuple(Q,Σ, δ,D, U,QD0, F ), where

• Q is the set of states,

• Σ is a finite set of symbols (the alphabet),

• δ ⊆ Q× (Σ ∪ {ǫ})×Q is the transition relation,

• D is the finite set of values in the data domain,

• U : Q× (Σ∪{ǫ})×Q→ 2D×D is the per transitionupdate relationwhich defines how

the data value is updated on every transition,

• QD0 ⊆ Q×D is the set of initial configurations consisting of initial states paired with

initial data domain values,

• F ⊆ Q×D is the set of accepting configurations.

XFAs add two additional components (a data domain and an update relation) to the classical non-

deterministic finite automaton (NFA). Further, as described above, XFAs change the initial state and the

acceptance criteria to include elements of the data domain.

As stated above, a configuration is a tuple(q, d) whereq ∈ Q andd ∈ D. Configurations extend the

notion of state in DFAs to include a data domain value. Similarly, operations manipulating states in DFAs

are extended to manipulate configurations in XFAs. Thus, forXFAs, there is a transition from configuration

(q, d) to (q′, d′) on an input symbola ∈ Σ (denoted by(q, d)
a
→ (q′, d′)) if and only if (q, a, q′) ∈ δ and

(d, d′) ∈ U(q, a, q′). Further, a stringa1a2 · · ·ak is accepted by an XFAX if and only if there is a sequence

of transitions(q0, d0)
a1→ (q1, d1) · · · (qk−1, dk−1)

ak→ (qk, dk) such that(qk, dk) ∈ F . The set of strings

accepted byX is the languageL(X ).
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An XFA X is state deterministicif the transition relationδ is a function fromQ × Σ to Q. X is data

deterministicif for all (q, a, q′) ∈ Q×Σ×Q, U(q, a, q′) is a function fromD toD. X is deterministicif it

is both state and data deterministic. For deterministic XFAs, we provide a tighter definition forδ andU as

follows:

Definition 6.2 An edge-based deterministic extended finite automaton (XFA) is described by the7-tuple

(Q,D,Σ, δ, Uδ, (q0, d0), F ), where

• Q is the set of states,

• Σ is a finite set of symbols,

• δ : Q× Σ→ Q is the transition function,

• D is the finite set of values in the data domain,

• U : Q× Σ×D → D is the per transitionupdate function,

• (q0, d0) is the initial configuration,

• F ⊆ Q×D is the set of accepting configurations.

In the deterministic definition, bothδ andU are functions instead of relations. The transition function

δ has the same type as for DFAs. For the update functionU , a configuration (state and data value) and an

input symbol uniquely determine the updated data value.

The above definitions attach instructions to transitions, but instructions can alternatively be attached to

states. From a language perspective, edge-based and state-based XFAs are equivalent: for any edge-based

XFA Xe there is a state-based XFAXs such thatL(Xe) = L(Xs) and vice versa. We define a state-based

XFA as follows.

Definition 6.3 A state-based deterministic extended finite automaton (XFA) is described by the7-tuple

(Q,Σ, δ, D,U, (q0, v0), F ), where

• Q is the set of states,

• Σ is a finite set of symbols,

• δ : Q× Σ→ Q is the transition function,
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• D is a finite set of values,

• U : Q×D → D is the per-stateupdate function

• (q0, d0) is the initial configuration,

• F ⊆ Q×D is the set of accepting configurations.

Formally, the only difference between edge-based and state-based XFAs is the type of the update

function U . In the latter case,U is a function from only states and domain values to domain values

(U : Q × D → D). Even so, each model has its advantages, and the algorithmswe present for ma-

nipulating XFAs employ both models. XFAs are constructed from regular expressions using the edge-based

model (Section 6.2). At the same time, combination, matching, and optimization algorithms are more effi-

cient for state-based XFAs (Sections 6.3–6.5). Algorithmsfor transforming a constructed edge-based XFA

to a state-based XFA are straightforward and given later.

According to the definitions, all auxiliary state is maintained in principle using a single (possibly com-

posite) variable, although in practice we can have many distinct variables without any loss of generality.

Further, although XFAs are formally defined in terms of abstract data domains, in most cases we can map

data domains and update functions to fairly common high-level data types such as bits, counters, and bit-

maps. Combination routines then automatically combine them further. Note also that according to the

definition, a standard DFA is simply an XFA with a data domain containing only one element.

We argue that the XFA model, whether edge-based or state-based, has fundamental advantages for in-

corporating variables and in some sense is the most natural extension for adding variables. As with DFAs,

transitions are a function of states and input symbols only and are not influenced by variable values. Sim-

ilarly, variable update functions are a function of states and variable values only (for state-based XFAs).

This distinct separation – decoupling transition behaviorfrom variable values – is one of the key enabling

features of the model. On the one hand, retaining DFA-like transitions allows us to adapt and use com-

mon DFA operations with only slight modification in most cases. In particular, XFAs can be constructed

individually and later combined using standard techniques. Matching is also more efficient, since variable

values do not need to be queried prior to following transitions. On the other hand, the use of explicit instruc-

tions provides fertile ground for systematically applyingoptimizations and analysis techniques common to

compiler construction.
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Finally, and also with reference to the suitability of the XFA model, distinctions between edge-based

and state-based XFAs are analogous to the distinctions between Mealy and Moore automata, respectively,

under certain assumptions. Recall that Mealy and Moore machines extend DFAs with an output alphabet

and a mapping function from edges (for Mealy automata) or states (for Moore automata) to the output

symbols. If from an automaton’s perspective we view update functions as opaque objects, then distinct

instructions can be interpreted as distinct output symbolsthat an XFA emits during traversal1. Thus, XFA

models share the same characteristics as Mealy and Moore models. For example, to recognize the same

language, state-based XFAs require more states than corresponding edge-based XFAs.

6.1.1 Cost Models for XFAs

DFAs are fast and efficient, requiring only a single table lookup per byte along with a test for acceptance

at each state. The complexity is thusO(1) per byte andO(l) for a stream ofl bytes. Letφ be the execution

time cost of an individual table lookup. Then, DFA cost isφ per byte, orφ · l for a stream ofl bytes.

For XFAs, the cost model is slightly more complex, since instruction execution must also be accounted

for. Let |U(q, a)| denote the number of high-level instructions for manipulating variables that are attached

to a transition for edge-based XFAs, and|U(q)| the number attached to stateq for state-based XFAs. Let

|F (q)| denote the number of acceptance conditions to check at stateq. Lastly, letmi =max{|U(q, α)||q ∈

Q,α ∈ Σ}, andni =max{|U(q)|+ F (q)|q ∈ Q}.

With these definitions, we can model the execution time cost of edge-based XFAs asφ+ ψ · (mi + F )

per byte, and the execution time cost of state-based XFAs asφ + ψ · ni per byte, whereψ is the cost of

executing a single instruction. Note that acceptance conditions are implemented at the high level using

simple instructions and are modeled identically as update functions from a cost perspective.

These models assume that state(s) with the maximum number ofinstructions are exclusively traversed

for each byte of the input and thus reflect worst-case behavior. In fact, the average number of executed

instructions per byte may be much smaller. Nevertheless, the worst-case cost model given above provides a

lower bound.

1Equivalency conditions regarding the output symbol on the start state of Moore machines are relevant for XFAs
as well [53], but also treated analogously.
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6.2 Constructing XFAs

The steps for compiling a regular expression to an XFA are similar to those for constructing a DFA

from a regular expression using the standard Thompson construction [108]: parsing the regular expression

and constructing a non-deterministic automaton withǫ-transitions, removingǫ-transitions, determinizing

the states, and minimizing the automaton. For XFAs, we need to provide algorithms corresponding to

these four steps. The key difference is the inclusion of the abstract data domain. Parsing is modified to

initially populate the data domain and introduce update relations that manipulate values in the domain.

Each of the remaining steps is extended to transform these elements appropriately as the transitions and

states are determinized and minimized, yielding an edge-based XFA with abstract variable values and update

functions. Finally, the last step maps these values and functions to concrete data types such as bits, counters,

or their combinations, with edge-based instructions for manipulating them. We illustrate the techniques in

this section with a running example that constructs an XFA from the regular expression/.*ab.*cd/.

The construction techniques described here add data domainvalues to transitions between states. Thus,

they employ the edge-based XFA model. After construction iscomplete and an XFA is produced, we may

optionally transform the edge-based XFA to a state-based XFA.

It is important to note that all variables are fully specifiedat construction. Unlike some models, there

is no dynamic creation or destruction of variables. For example, signatures of the form/.*x.{n}y/ need

n+ 1 bits to track then positions (which may themselves include anx) betweenx andy. Thus, an XFA for

this expression would include ann+ 1-bit bitmap; no dynamic variable creation is employed.

6.2.1 Extending Regular Expressions

Transforming a regular expression into an XFA requires striking a balance between using states and

transitions on one hand and executing instructions that manipulate variables on the other. At one extreme

we can produce a (possibly large) DFA which uses no variablesand at the other extreme a (possibly slow)

program that does not rely on state information at all. Thereare regular expressions for which the best

XFA lies at one of these extremes. For expressions such as/.*s/, wheres is a string, a simple DFA

with no variables is ideal. At the other extreme, the examplefrom Figure 6.2 which recognizes/.{n}/

gives an XFA that is effectively just a program: there is a single state which does not influence at all how
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Figure 6.1: The DFA for/.{n}/ (n arbitrary
symbols).

counter++; 

q0
counter=0

If (counter==n) { accept(); }

Figure 6.2: An XFA recognizing/.{n}/.

the auxiliary memory is updated or when acceptance happens.Prior to construction, we augment regular

expressions with new or re-interpreted operators to control where the resulting XFA lies along this spectrum.

We expand the grammar of regular expressions with an additional operator that introduces data domain

values and changes the shape of the resulting XFA. We also re-interpret an operator to introduce data

domain values. We call regular expressions with these extensionsdomain-augmented regular expressions.

The set of domain-augmented regular expressions (denotedREΣ) over an alphabetΣ is recursively defined

as follows:

• ∅ ∈ REΣ.

• ǫ ∈ REΣ.

• ∀a ∈ Σ, a ∈ REΣ.

• if E1 ∈ REΣ andE2 ∈ REΣ, thenE1|E2 ∈ REΣ.

• if E1 ∈ REΣ andE2 ∈ REΣ, thenE1 · E2 ∈ REΣ.

• if E ∈ REΣ, thenE⋆ ∈ REΣ.

• if E1 ∈ Σ andE2 ∈ Σ, thenE1#E2 ∈ REΣ. (parallel concatenation)

• if E ∈ REΣ, integern ≥ 0, integerm ≥ 0, andn ≤ m, thenE{n,m} ∈ REΣ. (integer

ranges)

• if E ∈ REΣ, then(E) ∈ REΣ.

Next, we define the language corresponding to this augmentedgrammar. Given an expressionE ∈

REΣ, letL(E) ∈ Σ⋆ denote the language corresponding toE. We defineL(E) recursively as follows:

• L(∅) = ∅.

• L(ǫ) = {ǫ}.
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ID Signature

2667 .*[/\\]ping\.asp
3194 .*bat"#.*&

2411 .*\nDESCRIBE\s#[^\n]{300}
3466 .*\nAuthorization:\s*Basic\s#[^\n]{200}
1735 (.*new XMLHttpRequest#.*file://)|(.*file://#.*new XMLHttpRequest)

Table 6.1: Snort signatures for HTTP traffic annotated with the parallel concatenation operator ‘#’.

• ∀a ∈ Σ, L(a) = {a}.

• if E = E1|E2, thenL(E) = L(E1) ∪ L(E2).

• if E = E1 · E2, thenL(E) = {x1x2|x1 ∈ L(E1) andx2 ∈ L(E2)}.

• if E = E′⋆, thenL(E) = {x1x2 · · · xk|0 ≤ i ≤ k, xi ∈ E
′}.

• if E = E1#E2, thenL(E) = {x1x2|x1 ∈ L(E1) andx2 ∈ L(E2)}.

• if E = E′{n,m}, thenL(E) = {x1x2 · · · xk|0 ≤ n ≤ k ≤ m for 1 ≤ i ≤ k, xi ∈ E ′}.

In the definitions above, we introduce two operators: parallel concatenation (E1#E2), and integer

range constraints (E{n,m}). Parallel concatenation is semantically equivalent to standard concatenation,

and integer ranges produce a subset of the strings produced by E⋆. All other operators have behavior

identical to their standard regular expression counterparts. Thus, neither operator changes the underlying

language.

During NXFA construction, these two operators introduce values from the data domain into the nonde-

terministic XFA. Integer ranges, a form of syntactic sugar,are already present in the signatures (although

we do re-interpret them to introduce a counter). Thus we onlyneed to decide where to use the parallel

concatenation operator ‘#’. Currently, this is a partly manual step.

The previous chapter showed that string-based automata areunambiguous and therefore not vulnerable

to state-space explosion. The purpose of the parallel concatenation operator is to break up a regular ex-

pression, or parts of one, into string-like subexpressionsthat are individually suitable for string matching.

For example, we annotate/. ∗ s1. ∗ s2/, wheres1 ands2 are strings, as/. ∗ s1#. ∗ s2/. Put another way,

we add the ‘#’ operator right before subexpressions such as ‘.*’ and[^\n]{k} that repeat characters from

either the whole input alphabet or a large subset thereof. Table 6.1 shows examples of regular expressions

representing actual NIDS signatures from our test set annotated with ‘#’. Note that for signature 2667 we
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have not used any parallel concatenation as the expression is sufficiently string-like already. This signature

will be compiled to an XFA without any added variables. For signature 3466, we do not insert a ‘#’ in front

of \s* because the character class\s contains few characters (the white spaces). For signaturessuch as

1735 which is a union of sub-expressions we apply the rules for inserting ‘#’ to the sub-expressions of the

union separately.

6.2.2 Parse Trees and NXFAs

The first step in XFA construction is to parse the domain-augmented regular expression. This step

is straightforward and only minimally changed from that forstandard regular expressions. Parallel con-

catenation is left-associative and has precedence immediately below standard concatenation. Integer range

constraints have the same precedence as Kleene Closure (E∗). All other operators are unchanged.

After parsing, the next step is to construct a non-deterministic XFA with epsilon transitions via a bottom-

up traversal of the parse tree. Parallel concatenation and integer range operators introduce formal versions

of a bit and a counter to the constructed NXFA, respectively.Other operators produce NXFA constructs

structurally identical to those used for standard regular expressions, modified to incorporate identity update

functions along their edges.

We give recursive construction definitions for each operator below. Figure 6.3 shows two generic nonde-

terministic XFAs, NXFA 1 and NXFA 2, upon which the recursivedefinitions are built. In the descriptions,

NXFA 1 and NXFA 2 corresponding to arbitrary regular expressionsE1 andE2, respectively. Without loss

of generality, we assume that there is a single start state and a single accepting state in each automaton,

although there may be multiple initial and accepting domainvalues. NXFA 1 has initial configuration do-

main valuesdi1 and accepting domain valuesdf1. Initial and accepting domain values for NXFA 2 are

defined analogously. We further assume that domain values between the two NXFAs are distinct, since if

not domains can simply be remapped to new values if necessary. Unless otherwise noted, when NXFA 1

and NXFA 2 are combined using one of the operators below, the resulting domainD is simply the union of

the respective domainsD1 andD2.

1. basis(R = α ∈ Σ). The basis case applies to occurrences of individual symbols2 in the alphabet

parsed from the regular expression. In this case, a two-state automaton is created with a single

2character classes such as[aeiou] or [^\n] also fall into this category.
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NXFA 1
NXFA 1 qf1q01

{df1}

NXFA 2
NXFA 2 qf2q02

{df2}

{di1} {di2}

Figure 6.3: Source NXFAs used for recursive construction definitions for concatenation, union,
and so forth. The NXFAs have starting configurations and accepting configurations as shown.

qfq0

d
d

a  

(d,d)

Figure 6.4: The basis case for NXFA construction. A single transition with an attached symbol has
one domain valued. Its starting configuration is(q0, d) and its accepting configuration is(qf , d).

transition between them labeled with the observed symbol, as shown in Figure 6.4. This automaton

has a domainD = {d} consisting of a single element, which serves as the initial domain value and

the accepting domain value. The identity function(d, d) attached to the edge links the initial and

accepting configuration values.

2. concatenation(E1 ·E2). Figure 6.5 depicts the construction process corresponding to concatenation.

From the state perspective, as with standard concatenationan ǫ-transition links the accepting state

of the left-hand automaton to the starting state of the rightmost automaton. For domain values,

the initial domain values are the same as the left-hand automaton, and the accepting domain values

are the same as for the right-hand automaton. The update relation attached to theǫ-transition maps

accepting domain values from the left-hand side to initial domain values in the right-hand side.

3. alternation (E1|E2). The construction corresponding to alternation is given in Figure 6.6 and also

mirrors the DFA construction definition. Here, we arbitrarily pick the initial domain values of the

first alternative (NXFA 1) to be initial domain values for thenew NXFA. In theǫ-transitions from the

start stateq0 we supply update relations that map them as appropriate to the correct alternative. We
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NXFA 1
NXFA 1 qf1q01

�
NXFA 2

NXFA 2 qf2q02

{df2}

{ (di,df) | di  df1 and
df  di2 }

{di1}

Figure 6.5: NXFA construction for concatenation. The epsilon transition links accepting domain
values on the left hand side to initial domain values on the right hand side.

NXFA 1
NXFA 1 qf1q01

NXFA 2
NXFA 2 qf2q02

q0 qf

�
� �

�{ (d,d) | d  df1 }

{ (d,d) | d  df2 }

{di1}

{ (d1,d2) | d1  di1

and d2  di2 }

{ d | d  df1 or
d  df2 }

{ (d1,d1) | d1  di1 }{ (d1,d1) | d1  di1 }

Figure 6.6: NXFA construction for the alternation operation. The accepting domain values are the
union of the accepting values in either source NXFA.

attach identity relations to theǫ-transitions connecting the accepting states in the sourceautomata to

the new accepting stateqf . Finally, the accepting domain values forqf are the union of the accepting

domain values in statesqf1 andqf2.

4. Kleene closure(E⋆
1). Kleene closure is depicted in Figure 6.7. In this construction, the new start

state has initial domain values{di1} corresponding to the initial domain values for stateq01. The

accepting domain values are also the set{di1}, which follows since the evaluation of NXFA 1 is

optional. Update relations attached toǫ-transitions serve the purpose of mapping accepting domain

values (fromqf1) to initial domain values.

5. parallel concatenation(E1#E2). Parallel concatenation has the same semantics as standard con-

catenation but is structurally distinct. Whereas standardconcatenation as described above connects
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NXFA 1
NXFA 1 qf1q01q0 qf

 

 

 

{di1}

{ (d1,d2) | d1  df1

and d2  di1 }

{di1}

{ (d,d) | d  di1 }

 { (d,d) | d  di1 }

{ (d1,d2) | d1  df1

and d2  di1 }

Figure 6.7: Kleene Closure construction for NXFAs.

two NXFAs together in sequence by linking the accepting states of one to the starting states of an-

other, parallel concatenation usesǫ-transitions to link all states in the first NXFA to the start state of

the second NXFA. Thus, parallel concatenation is structurally a superset of standard concatenation.

We use appropriately constructed update relations to ensure that semantics remain the same as for

standard concatenation despite the structural change.

Figure 6.8 shows the construction. As the figure shows,ǫ-transitions are added from every state in

NXFA 1 to the start state of NXFA 2. The initial conditions arethose of NXFA 1, and the accepting

conditions are the same as for NXFA 2. Update relations are added as follows:

(a) For each of the addedǫ-transitions, we attach update relations that map domain values inD

(recall,D is the union of domainsD1 andD2) to the starting domain values ofD1.

(b) To each transition in NXFA 2 we add tuples in the update relation mapping NXFA 1’s starting

domain values to themselves.

(c) For eachǫ-transition out of an accepting state in NXFA 1 into a starting state of NXFA 2, we

add tuples to the update relation that map accepting domain values in NXFA 1 to starting values

in NXFA 2.

Together, these update relations ensure that an overall accepting configuration can be reached if and

only if an accepting configuration for NXFA 1 is first observedfollowed by an accepting configura-

tion for NXFA 2. Specifically, the proper initial domain value for NXFA 2 is only set by following
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NXFA 1
NXFA 1 qf1q01�

NXFA 2
NXFA 2 qf2q02

{df2}

{di1} qij

 q,q’ ! Q,  s ! !, set  U(q,s,q’) = 
U(q,s,q’) " { (d1,d1) | d1 ! {di1} }

� �
{ (d1,d2) | d1 ! D, d2 ! {di1} }

{ (d1,d2) | d1 ! D, d2 ! {di1} }

{ (d1,d2) | d1 ! D, d2 ! {di1} }
"

{ (d1,d2) | d1 ! {df1}, d2 ! {di2} }

Figure 6.8: Parallel Concatenation of two NXFAs. The updaterelation in theǫ-transition fromqf1

to q02 contains tuples that link the domain values in the acceptingconfiguration of NXFA 1 to the
initial configuration of NXFA 2.

theǫ-transition from an accepting configuration for NXFA 1 (Item5c). All otherǫ-transitions from

NXFA 1 to NXFA 2 move the domain to a “poison” value with regardto NXFA 2 (Items 5a and 5b:

an initial domain value for NXFA 1) that can only be reset by first accepting NXFA 1.

The effect of this construction is that both NXFAs can be matched “in parallel” by introducing the

formal version of a bit that uses the data domain to enforce the sequencing requirements of concate-

nation. WhenR2 has a leading.* as is the case for strings, this construction eliminates theambiguity

associated with the.* at the beginning ofR2 that is present with standard concatenation.

6. Integer Ranges(E1{n,m}). Integer ranges of the formE1{n,m} are used to indicate thatE1 must

occur at leastn times and no more thanm times in immediate succession, where0 ≤ n, n ≤ m,

andm ≤ ∞.3 Integer ranges already exist as a form of syntactic sugar forregular expressions. For

XFAs, we re-interpret them to perform the repetition counting in the domain values rather than in

explicit states. When ambiguous counting states are fully replaced by counting domain values, the

associated ambiguity can be reduced or even eliminated (ref. Figures 5.1 and 5.6).

3Noten <∞ or else the resulting automaton is not finite.
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Figure 6.9 illustrates the construction process for integer ranges. Since counting is performed in

the domain, the construction is structurally identical to the Kleene closure construction4. To properly

count repetitions in the domain, we must construct a domainD that is the cross product of the domain

D1 for NXFA 1 with the counting range0..m (we consider the case wherem = ∞ below). This

follows from the fact that NXFA 1 needs to manipulate its own domain values in each iteration of

the counting. By crossing the domain values we can ensure that NXFA 1 manipulates its domain

independently while at the same time the counting state is also preserved. Converting to the new

domain is a two step process:

(a) First, we introduce a simple mapping, termedM(·, ·) to translate from the ordered pair pro-

duced by the cross product to a single domain value in the new domainD. Since bothD1 and

the counting range are finite,M(·, ·) is also finite and can be pre-computed.

(b) Second, we translate all update relations in NXFA 1 to thenew domain as shown in the figure.

Since the update relations in NXFA 1 must exist for each counting value, we compute the cross

product (and translate usingM(·, ·)) for each possible counting value.

Conceptually, NXFA 1 manipulates the first component of the ordered pair produced by the cross

product, whereas the counting domain manipulates the second component. The mapping functionM

simply translates the ordered pair to a new single value and exists as a notational and implementation

convenience. In the figure, theǫ-transitionsq0
ǫ
→ q01 andq0

ǫ
→ qf map the initial domain values for

NXFA 1 associated with a counter value of 0 to their translated counterparts inD. In the transitions

qf1
ǫ
→ q01 andqf1

ǫ
→ qf , the counting domain values are incremented and the accepting domain

values for NXFA 1 are mapped back to the initial domain values(as with Kleene closure). Finally,

the accepting conditions for the entire automaton are the cross of the acceptable counting rangen..m

with the initial domain values for NXFA 1.

Figure 6.9 shows that counters are incremented up to a valuemax, which is computed as follows: if

m = ∞, thenmax = m, otherwisemax = m + 1. Further, whenm = ∞, the accepting counting

values are fixed atn rather than running over the rangen..m in the accepting conditions attached to

stateqf . Finally, we also add update relations to theqf1
ǫ
→ qf transition that map accepting domain

values in NXFA 1 to the starting domain values in NXFA 1 (and thus the accepting conditions of the

4In fact, Kleene closure is a special case of integer ranges inwhichn = 0 andm =∞.
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NXFA 1
NXFA 1 qf1q01q0 qf

�
�

�
{di1}

{ (M(d,0), M(d,0)) | d  di1 }

�

{ (d1,d2) | 
for c=0,1,…,max,  
for df  {df1} and di  {di1},
d2 = M(df, c) and d1 = M(di, c+1) }

!q,q’  Q, !s  � , replace (d,r)  U(q,s,q’) with
{ (d1,d2) | 

for c=0,1,…,max,  
d1 = M(d, c) and d2 = M(r, c) }

{ (d1,d2) | 
for c=0,1,…,max,  
for df  {df1} and di  {di1},
d2 = M(df, c) and d1 = M(di, c+1) }

{ (M(d,0), M(d,0)) | d  di1 }

{ d | 
for c=n,…,m,   
for di  {di1}
d = M(di, c) }

Figure 6.9: Integer range construction for NXFAs, giving the construction forE1{n, m}. The value
max is set depending on the values ofn andm, andM(·, ·) maps to a new domain incorporating
counter values.

newly constructed NXFA), crossed with the valuemax. Formally, these update relations are expressed

as follows:

{(M(d1,max),M(d2,max))|d1 ∈ df1, d2 ∈ di1}

These changes ensure that whenm = ∞, the automaton will accept whenever at leastn repetitions

of NXFA 1 have occurred.

For the expression/.*ab.*cd/ in the running example, we insert a parallel concatenation operator

after theab sub-expression to yield/.*ab#.*cd/. Figure 6.10 depicts the corresponding parse tree, and

Figure 6.11 shows the NXFA withǫ-transitions constructed from a traversal of the parse tree. Looking at

the NXFA, one can observe that the only way to reach the accepting configuration(s, d) = (15, 5) is by

first reaching state 7 with a domain value of 2, and then following theǫ-transition out to state 10, which

nondeterministically moves the current domain value to 3.

6.2.3 Determinization and Minimization

Once a non-deterministic XFA has been constructed, the nextsteps involveǫ-elimination, state deter-

minization and data-domain determinization, and minimization of states and data domains. These steps are
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Figure 6.10: Parse tree produced from the augmented regularexpression/.*ab#.*cd/.
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(3,3)

(0,0)
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(1,0)
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(3,4)
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(4,4)

(0,0)
(4,5)

(0,0)
(5,5)

(0,0)
(3,3)

(0,0)
(3,3)

5

0

Figure 6.11: Basic NXFA for/.*ab#.*cd/ constructed from the parse tree in Figure 6.10.
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similar to those used for determinizing standard NFAs, but they introduce the additional complication of

needing to appropriately manipulate the relations (and functions) that update the data domain.

Epsilon Elimination . The first step in the determinization process is to eliminate epsilon edges;

i.e., edges with no associated symbol, also known asǫ-transitions. We first introduce definitions forǫ-

reachability, relational composition, andǫ-closure, and we extend update relations to paths and sets ofpaths.

With these definitions, we then describe how to eliminateǫ-transitions. For each of the definitions below,

assume we have constructed a nondeterministic XFA withǫ-transitionsX = (Q,D,Σ, δ, U,QD0, F ).

Definition 6.4 A stateq′ ∈ Q is ǫ-reachablefrom another stateq ∈ Q if there is a path fromq to q′

consisting exclusively ofǫ-transitions.

Definition 6.5 Given two relationsU1 ⊆ D × D andU2 ⊆ D × D, the relational compositionU2 ◦ U1

is given as follows: ford1, d2 ∈ D, (d1, d2) ∈ U2 ◦ U1 if and only if ∃d ∈ D such that(d1, d) ∈ U1 and

(d, d2) ∈ U2.

Note that Definition 6.5 is the standard definition for relational composition. Next, we extend update

relations to paths and sets of paths. Consider a pathπ = q1
ǫ
→ q2

ǫ
→ · · ·

ǫ
→ qk+1 from q1 to qk+1

consisting only ofǫ-transitions. Then, the update relationU(π) corresponding to pathπ isU(qk, ǫ, qk+1) ◦

U(qk−1, ǫ, qk) ◦ · · · ◦ U(q2, ǫ, q3) ◦ U(q1, ǫ, q2). Generalizing, the update relation corresponding to asetof

paths{π1, · · ·πk} is given by
⋃k

i=1 U(πi).

Finally, we defineǫ-closure for nondeterministic XFAs.

Definition 6.6 Theǫ-closureof stateq is the set of tuples constructed as follows:(q′, U ′) ∈ ǫ-closure(q) if

and only if there exists anǫ-reachable path fromq to q′, whereU ′ =
⋃

π∈paths(q,q′) U(π), andpaths(q, q′)

is the set ofǫ-paths fromq to q′.

Once theǫ-closure(q) has been computed for all statesq ∈ Q, we can construct a non-deterministic

XFA X ′ = (Q,D,Σ, δ′, U ′, QD′
0, F

′) with ǫ-transitions removed as follows:

• Fora ∈ Σ, a transition(q, a, q′) ∈ δ′ if and only if

– (q, a, q′) ∈ δ, or

– ∃q1 ∈ Q such thatq′ is ǫ-reachable fromq1 and(q, a, q1) ∈ δ.
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EliminateEpsilon(Q,D,Σ, δ, Uδ, QD0, F ):
δ′ ← ∅;1

U ′

δ ← ∅;2

foreach (qi, s, qf ) ∈ δ ∩Q× Σ×Q do3

foreach (di, df ) ∈ Uδ(qi, s, qf ) do4

foreach (qreachable, dreachable) ∈ ComputeEpsilonReachable (qf , df ) do5

δ′ ← δ′ ∪ {(qi, s, qreachable)};6

U ′

δ ← U ′

δ ∪ {((qi, s, qreachable), (di, dreachable))};7

QD′

0 ← ∅;8

foreach (q0, d0) ∈ QD0 do9

QD′

0
← QD′

0
∪ ComputeEpsilonReachable (q0, d0);10

return (Q,D,Σ, δ′, U ′

δ, QD
′

0
, F );11

ComputeEpsilonReachable(q, d) :
Result← {(q, d)};12

foreach (qi, di) ∈ Result do13

foreach qf ∈ {q|(qi, ǫ, q) ∈ δ} do14

Result← Result ∪ {qf} × {df |(di, df ) ∈ Uδ(qi, ǫ, qf )};15

return Result;16

Algorithm 6.1: ǫ-elimination for NXFAs.

• U ′(q, a, q′) is equal to the following relation:

U(q, a, q′) ∪
⋃

(q1,U1)∈ǫ−closure(q′)

U1 ◦ U(q, a, q′).

• LetG ⊆ QD0 be the set of configurations such that∀g ∈ G, ∃(q, d) ∈ F in which(q, d)

is ǫ-reachable fromg. Then,F ′ = F ∪G.

• For (q′, d′) ∈ Q × D, (q′, d′) ∈ QD′
0 if and only if (q′, d′) is ǫ-reachable from some

initial configuration(q, d) ∈ QD0.

The last item above states that the start configurationsQD′
0 in X ′ are precisely those configurations

that areǫ-reachable from the start configurations inX . Algorithm 6.1 gives the procedure for removingǫ-

transitions. Informally, the algorithm extends standardǫ-elimination by composing update functions along

chains of “collapsed”ǫ-transitions from the original NXFA and places these new relations into the appro-

priate transition in theǫ-free NXFA. These composed functions keep track of the possible changes to the

data domain value along the collapsed edges. In the running example, Figure 6.12 shows the NXFA from

Figure 6.11 after epsilon elimination has completed. Afterrunning Algorithm 6.1, we then remove states
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from the NXFA that are not accepting and have no paths leadingto accepting states (i.e., dead states). Fig-

ure 6.13 shows the result of this process. Note that in Figure6.13, there are four starting configurations:

states 0, 8, and 12, each paired with domain value 0, and state4 paired with domain value 1.

Determinization. Epsilon elimination produces anǫ-free automaton that is nondeterministic in both

its states and its domain. We perform determinization in twostages, determinizing transitions first and

update relations (yielding update functions) second. Bothsteps extend the classic subset construction [53]

for computing deterministic automata. LetX = (Q,D,Σ, δ, U,QD0, F ) be a nondeterministic XFA with

ǫ-transitions removed, and letX ′ = (Q′,D′,Σ, δ′, U ′, QD′
0, F

′) be the eventual state-determinized XFA,

whereq0 is a starting state inQD′
0. As with the subset construction, states inX ′ correspond to sets of states

in X . Consider first a state determinization scheme constructingX ′ as follows:

• q′0 = {q1, q2, ..., qk}, where for each stateqi ∈ {q1, q2, ..., qk}, qi is a starting state inX .

• D′ = D.

• d′0 =
⋃

{di}, where{di} are the sets of starting domain values inX .

• Let q′ = {qi, ..., qm} andp′ = {pj , ..., pn}. q′, p′ ∈ Q′ if and only if ∃α ∈ Σ such that∀qk ∈

q′, qk
α
→ pl (or qk has no transition onα)5, wherepl ∈ p′ andp′ contains only states that are the

targets of transitions onα from states inq′.

• {pi, ..., pn} ∈ δ
′({qi, ..., qm}, α) if and only if ∃qk ∈ {qi, ..., qm}, pl ∈ {pj, ..., pn} such thatpl ∈

δ(qk, α).

• U ′({qi, ..., qm}, α, {p1, ..., pn}) =
⋃m

k=i

⋃n
l=j U(qk, α, pl).

• ({qi, ..., qm}, d) ∈ F
′ if and only if ∃qk ∈ {qi, ..., qm} such that(qk, d) ∈ F .

This formulation computes the subset construction independently of the domain values and constructs

update relations using a simple set union operation. Unfortunately, this construction is flawed, andX ′ may

not accept the same language asX . To see why, suppose that inX ′ we have a state{q1, q2} and there

are transitionsq0
α
→ q1 andq0

α
→ q2 in X . In this construction, the update relationU associated with

({q0}, α, {q1, q2}) is the union of the update relationsU1 andU2 associated with(q0, α, q1) and(q0, α, q2),

respectively. Assume that(d0, d1) ∈ U1 and(d0, d2) ∈ U2 but (d0, d2) /∈ U1 and(d0, d1) /∈ U2. Since

5for at least oneqk ∈ {qi, ..., qm}, we must haveqk
α
→ pl
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Figure 6.12: The NXFA from Figure 6.11 corresponding to/.*ab#.*cd/, afterǫ-transitions have
been removed.
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Figure 6.13: Theǫ-free NXFA corresponding to/.*ab#.*cd/ after dead states have been re-
moved.
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(state,domain)→D (state,domain)→D (state,domain)→D

〈0,0〉→0 〈14,2〉→14 〈4,0〉→28
〈0,1〉→1 〈14,3〉→15 〈4,0〉→29
〈0,2〉→2 〈14,4〉→16 〈8,0〉→30
〈0,3〉→3 〈14,5〉→17 〈8,0〉→31
〈0,4〉→4 〈12,0〉→18 〈8,0〉→32
〈0,5〉→5 〈12,0〉→19 〈8,0〉→33
〈15,0〉→6 〈12,0〉→20 〈8,0〉→34
〈15,1〉→7 〈12,0〉→21 〈8,0〉→35
〈15,2〉→8 〈12,0〉→22 〈6,0〉→36
〈15,3〉→9 〈12,0〉→23 〈6,0〉→37
〈15,4〉→10 〈4,0〉→24 〈6,0〉→38
〈15,5〉→11 〈4,0〉→25 〈6,0〉→39
〈14,0〉→12 〈4,0〉→26 〈6,0〉→40
〈14,1〉→13 〈4,0〉→27 〈6,0〉→41

Table 6.2: The mapping from〈state, domain〉 pairs inQ×D to the new domain used in Figure 6.14.

(d0, d1) ∈ U ′ and(d0, d2) ∈ U ′, the configurations({q1, q2}, d1) and({q1, q2}, d2) are both reachable in

X ′ from the configuration{{q0}, d0}. However, configurations(q1, d2) and(q2, d1) are not reachable from

(q0, d0) in X . This can lead to extra accepting paths inX ′.

One way to remedy this is for each stateq ∈ Q to have its own copy of the relevant update relations to

manipulate. Thus, we setD′ = Q×D and update the construction above as follows:

• Let q′0 = {q1, q2, ..., qk} as above. Then,QD′
0 = {(q′0, 〈qi, di〉)|qi ∈ {q1, q2, ..., qk} and(qi, di) ∈

QD0}.

• For q′ = {qi, ..., qm} andp′ = {pj , ..., pn} in Q′, (〈q′, d1〉, 〈p′, d2〉 ∈ I ′(q, α, p′) if and only if

(d1, d2) ∈ U(qr, α, ps) for someqr ∈ {q1, q2, ..., qk} andps ∈ {pj, ..., pn}.

• (q′, 〈qr, d〉) ∈ F
′ if and only if (qr, d) ∈ F for someqr ∈ {q1, q2, ..., qk}.

By transforming to domainQ × D, we preserve the dependencies in the update relations that existed in

XFA X . We give the algorithm for performing state determinization in Algorithm 6.2. In the running

example, the nondeterministic XFA in Figure 6.13 has statesQ = {0, 4, 6, 8, 12, 14, 15} and domainD =

{0, 1, 2, 3, 4, 5}. Thus, the size of domainQ×D is 42. Figure 6.14 shows the state-deterministic XFA that

results from applying Algorithm 6.2 to the NXFA in Figure 6.13. For clarity, we map each domain element

in Q×D to a distinct integer using the mapping shown in Table 6.2.
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0,4,6,8,12

0,4,8,12,150,4,8,12,14
d

 -{a,c}

c

0,18,25,30

a

(0,0) (25,18) (30,30)
(0,18) (25,30) (33,22)
(0,25) (25,38) (33,33)
(0,30) (30,18)

0,4,8,12

c

b

c

 -{a,b,c}

(0,0) (0,30) (33,22)
(0,18) (30,18) (33,33)
(0,25) (30,30)

a
(0,0) (25,18) (30,30)
(0,18) (25,30) (33,22)
(0,25) (25,38) (33,33)
(0,30) (30,18)

(0,0) (18,12) (33,22)
(0,18) (22,17) (33,33)
(0,25) (30,18)
(0,30) (30,30)

(0,0) (12,6) (33,22)
(0,18) (17,11) (33,33)
(0,25) (30,18)
(0,30) (30,30)

a

(0,0) (25,18) (30,30)
(0,18) (25,30) (33,22)
(0,25) (25,38) (33,33)
(0,30) (30,18)

 -{a,c,d}

(0,0) (0,30) (33,22)
(0,18) (30,18) (33,33)
(0,25) (30,30)

a

(0,0) (25,18) (30,30)
(0,18) (25,30) (33,22)
(0,25) (25,38) (33,33)
(0,30) (30,18)

c

(0,0) (18,12) (33,22)
(0,18) (22,17) (33,33)
(0,25) (30,18)
(0,30) (30,30)

 -{a,c}

(0,0) (0,30) (33,22)
(0,18) (30,18) (33,33)
(0,25) (30,30)

(0,0) (0,30) (33,22)
(0,18) (30,18) (33,33)
(0,25) (30,30)

to State 
0,4,8,12

11

(0,0) (30,18) (38,18)
(0,18) (30,30) (38,22)
(0,25) (33,22) (38,30)
(0,30) (33,33) (38,33)

(0,0) (18,12) (33,22)
(0,18) (22,17) (33,33)
(0,25) (30,18)
(0,30) (30,30)

(0,0) (18,12) (33,22)
(0,18) (22,17) (33,33)
(0,25) (30,18)
(0,30) (30,30)

Figure 6.14: The state-deterministic XFA for/.*ab#.*cd/ constructed with Algorithm 6.2. Up-
date relations over the domainQ×D arise from the mapping in Table 6.2.
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DeterminizeTransitions(Q,D,Σ, δ, Uδ, QD0, F ):
D′ ← Q×D;1

// Data value in new NXFA = configuration in old
D′

0
← QD0 ;2

// New states are sets of old states
q′0 ← {q0|∃d0 ∈ D.(q0, d0) ∈ QD0} ;3

Q′ ← {q′
0
};4

δ′ ← ∅;5

U ′

δ ← ∅;6

foreach q′i ∈ Q
′ do7

foreachs ∈ Σ do8

q′f ← {qf |∃qi ∈ q
′

i.(qi, s, qf ) ∈ δ};9

Q′ ← Q′ ∪ {q′f} ; // Accum. reachable sets of old states10

// New states have 1 trans. per symbol
δ′ ← δ′ ∪ {(q′i, s, q

′

f )} ;11

U ← {((qi, di), (qf , df ))|qi ∈ q
′

i ∧ qf ∈ q
′

f∧12

(di, df ) ∈ Uδ(qi, s, qf )};13

// Update relations preserve semantics
U ′

δ ← U ′

δ ∪ {(q
′

i, s, q
′

f )} × U ;14

F ′ ← {(q′, (q, d))|q′ ∈ Q′ ∧ q ∈ q′ ∧ (q, d) ∈ F} ;15

return (Q′, D′,Σ, δ′, U ′

δ, {q
′

0
} ×D′

0
, F ′);16

Algorithm 6.2: Algorithm for determinizing transitions.

DeterminizeData(Q,D,Σ, δ, Uδ, {q0} ×D0, F ):
d′
0
← D0 ; // New data values = sets of old data values1

D′ ← {d′0};2

// QD accumulates all reachable configurations
QD ← {(q0, d′0)} ;3

U ′

δ ← ∅;4

foreach (qi, d
′

i) ∈ QD do5

foreachs ∈ Σ do6

qf ← δ(qi, s);7

d′f ← {df |∃di ∈ d′i.(di, df ) ∈ Uδ(qi, s, qf )};8

D′ ← D′ ∪ {d′f} ; // Accum. reachable sets of old values9

QD ← QD ∪ {(qf , d′f )};10

// Build deterministic update functions
U ′

δ ← U ′

δ ∪ {((qi, s), (d
′

i, d
′

f ))} ;11

F ′ ← {(q, d′)|(q, d′) ∈ QD ∧ ∃d ∈ d′.(q, d) ∈ F};12

return ((Q,D′,Σ, δ, U ′

δ, (q0, d
′

0), F
′), QD);13

Algorithm 6.3: Algorithm for determinizing NXFA data domains.
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New Domain Domain Value Sets
Value from Domain Determ.

0 {0,18,25,30}
1 {0,18,25,30,38}
2 {0,12,18,25,30}
3 {0,6,18,25,30}
4 {0,18,22,25,30,33}
5 {0,18,22,25,30,33,38}
6 {0,12,17,18,22,25,30,33}
7 {0,6,11,18,22,25,30,33}

(a) Sets of domain values→new domain value

New State State Sets from
ID State Determin.

P {0,4,8,12}
Q {0,4,6,8,12}
S {0,4,8,12,14}
T {0,4,8,12,15}

(b) Sets of states→new state ID

Table 6.3: The simplifying mapping from sets of domains and sets of states in Figure 6.15 to single
domain values and single state IDs used to produce Figure 6.16.

Data domain determinization is the second half of the determinization process. Algorithm 6.3 accepts

as input a state-deterministic XFA and produces an XFA as output that is both state- and data-deterministic.

Data-determinization applies the same notion of subset construction for determinizing states to update re-

lations in the data domain. LetX = (Q,D,Σ, δ, U,QD0, F ) be the state-deterministic input XFA and

X ′ = (Q,D′,Σ, δ, U ′, QD′
0, F

′) be the corresponding deterministic XFA. In principle, for the new domain

D′ = 2D. However, the algorithm uses a worklist that adds new domainvalues toD′ as necessary so that

only the domain values that are reachable from the starting configuration are included. Algorithm 6.3 also

outputs the setQD (Line 13) that contains all configurations that are reachable from the starting configura-

tion. This set is used at a later stage.

Figure 6.15 shows the deterministic XFA resulting from applying Algorithm 6.3 to the state-deterministic

XFA in Figure 6.14. Analogous to state determinization, update relations are now updatefunctionsdefined

over domain values inD′ that correspond to sets of domain values inD. Note that although the update

functions associated with transitionsU ′ are not defined on the entire data domainD′, they are defined on

all data valuesd′ ∈ D′ that can occur in any stateq. Admittedly, the use of sets of domain values and sets

of states makes the figure hard to read and obscures the structure of the update functions. In Figure 6.16 we

show the same XFA as Figure 6.15 with the sets of domains and sets of states replaced by the correspon-

dence given in Table 6.3. The Domain value set{0, 18, 25, 30} (the initial domain value) in Figure 6.15

corresponds to value0 in Figure 6.16, and so forth.
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0,4,6,8,12

0,4,8,12,150,4,8,12,14
d

 -{a,c}

c

{0,18,25,30}

a
0,4,8,12

c

b

c

 -{a,b,c}

({0,18,25,30,38},         {0,18,25,30})
({0,18,22,25,30,33,38},{0,18,22,25,30,33})

a

({0,18,25,30,38},    {0,18,25,30,38})
({0,18,22,25,30,33,38},{0,18,22,25,30,33,38})

({0,12,18,25,30},       {0,12,18,25,30})
({0,12,17,18,22,25,30,33}, {0,12,17,18,22,25,30,33})

a

 -{a,c,d}

({0,12,18,25,30},       {0,18,25,30})
({0,12,17,18,22,25,30,33},{0,18,22,25,30,33})

a

({0,6,18,25,30},       {0,18,25,30,38})
({0,6,11,18,22,25,30,33},{0,18,22,25,30,33,38})

c

({0,6,18,25,30},       {0,12,18,25,30})
({0,6,11,18,22,25,30,33}, {0,12,17,18,22,25,30,33})

 -{a,c}

({0,18,25,30},         {0,18,25,30})
({0,18,22,25,30,33},{0,18,22,25,30,33})

({0,6,18,25,30},        {0,18,25,30})
({0,6,11,18,22,25,30,33}, {0,18,22,25,30,33})

to State 
0,4,8,12

{0,6,11,18,22,25,30,33}

({0,18,25,30,38},    {0,12,18,25,30})
({0,18,22,25,30,33,38},{0,12,17,18,22,25,30,33})

({0,18,25,30},          {0,18,25,30,38})
({0,18,22,25,30,33}, {0,18,22,25,30,33,38})

({0,18,25,30},         {0,12,18,25,30})
({0,18,22,25,30,33},{0,12,17,18,22,25,30,33})

({0,18,25,30,38},    {0,18,22,25,30,33})
({0,18,22,25,30,33,38},{0,18,22,25,30,33})

({0,12,18,25,30},       {0,18,25,30,38})
({0,12,17,18,22,25,30,33},{0,18,22,25,30,33,38})

({0,12,18,25,30},              {0 6 18 25 30})
({0,12,17,18,22,25,30,33}, {0,6,11,18,22,25,30,33})

Figure 6.15: The state- and domain-deterministic XFA for/.*ab#.*cd/ after domain deter-
minization has completed. Each domain value in the resulting XFA corresponds to a set of domain
values in the input state-deterministic XFA.
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Q

TS
d

 -{a,c}

c

0

a

(0,1)
(4,5)

P

c

(0,2)
(4,6)

b

c

(1,4)
(5,4)

 -{a,b,c} (1,0)
(5,4)

a

(1,1)
(5,5)

(2,2)
(6,6)

(1,2)
(5,6)

(2,3)
(6,7)

a

(2,1)
(6,5)

 -{a,c,d}

(2,0)
(6,4)

a

(3,1)
(7,5)

c

(3,2)
(7,6)

 -{a,c}

(0,0)
(4,4)

(3,0)
(7,4)

to State 
P

7

Figure 6.16: The state- and domain-deterministic XFA for/.*ab#.*cd/ with state and domain
values replaced according to the map in Table 6.3.
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Minimization . Once the XFA has been determinized, the next step is to perform minimization. The

minimization process for XFAs is also split into two parts: data domain minimization and state minimiza-

tion. Each component of minimization employs the kernel of the standard Hopcroft-Ullman minimization

algorithm [53] for finding equivalent data domain elements and states, respectively.

Consider a DFAM = (Q,Σ, δ, q0, F ). Minimization ofM finds the coarsest equivalence relation

R ⊆ Q×Q that satisfies the following conditions:

• (q1, q2) ∈ R implies thatq1 ∈ F ↔ q2 ∈ F .

• (q1, q2) ∈ R implies that∀a ∈ Σ, (δ(q1, a), δ(q2, a)) ∈ R.

LetR be the set of all relations satisfying the conditions above.We say thatR1 ∈ R is coarser than

R2 ∈ R if and only if R2 ⊆ R1. Algorithms for computing the coarsest equivalence relation are given

in [53]. Once the coarsest equivalence relationR is computed, all the states inQ in the same equivalence

class can be merged.

Consider a deterministic XFAX = (Q,D,Σ, δ, U, (q0, d0), F ). Analogous to the above, assume we

find the coarsest equivalence relationR ⊆ (Q×D)× (Q×D) that satisfies the following conditions:

• ((q, d), (q′, d′)) ∈ R implies thatq = Q′ (configurations with different states are never

equivalent).

• ((q, d), (q, d′)) ∈ R implies that(q, d) ∈ F ↔ (q, d′) ∈ F ).

• ((q, d), (q, d′)) ∈ R implies that∀a ∈ Σ ((q′, U(q, a, q′)(d) ), (q′, U(q, a, q′)(d′)) ) ∈

R (note:q′ = δ(q, a)).

In this case, if for a stateq and two data valuesd1 andd2 we have((q, d1), (q, d2)) ∈ R, then configura-

tions(q, d1) and(q, d2) can be merged. Recall that during determinization, the datadomain was expanded

fromD toQ ×D. The equivalence relationR above allows us to merge data values for each stateq ∈ Q.

Algorithm 6.4 gives the procedure for minimizing the data domain.

Minimizing states follows a similar formulation. For a state q ∈ Q, we define the setA ⊆ D such that

∀d ∈ D, if (q, d) ∈ F , thend ∈ A. Next, recall thatU(q, α) is the set of tuples comprising the update

function attached to transitionα leading out of stateq. We defineUΣ = {(α,U(q, α))|α ∈ Σ}. UΣ is the

set of all update functions out ofq, grouped by alphabet symbol. We then defineeffects(q) = (A,UΣ).

Intuitively, effects(q) captures the update functions and accepting data values associated with stateq.

We find the coarsest equivalence relationR ⊆ Q×Q that satisfies the following conditions:
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ReduceDataDomain((Q,D,Σ, δ, Uδ, (q0, d0), F ), QD):
/* PQ Holds for each state the finest partition of possible data values known to

be necessary. */

PQ ← ∅Workset← ∅;1

foreach q ∈ Q do2

partition← {{d|(q, d) ∈ F}, {d|(q, d) ∈ QD − F}} − {∅};3

PQ ← PQ ∪ {(q, partition)};4

if |partition| > 1 thenWorkset←Workset ∪ {q};5

while Workset 6= ∅ do6

qf ←Workset[0];7

Workset←Workset− {qf};8

foreach (qi, s) ∈ {(q, z)|((q, z), qf ) ∈ δ} do9

if ∃d′i ∈ PQ(qi).∄d
′

f ∈ PQ(qf ).∀di ∈ d
′

i.Uδ(qi, s)(di) ∈ d
′

f then10

newpartition← ∅;11

foreachd′i ∈ PQ(qi) do12

foreachd′f ∈ PQ(qf ) do13

d′ ← {di|di ∈ d
′

i ∧ Uδ(qi, s)(di) ∈ d
′

f};14

if d′ 6= ∅ then newpartition← newpartition ∪ {d′};15

PQ ← PQ − {(qi, PQ(qi))} ∪ {(qi, newpartition)};16

Workset←Workset ∪ {qi};17

QD′ ← {(q, d′)|q ∈ Q ∧ d′ ∈ PQ(q)};18

D′ ← {d′|∃q ∈ Q.(q, d′) ∈ QD′};19

d′0 ← {d
′|(q0, d′) ∈ QD′ ∧ d0 ∈ d′}[0];20

F ′ ← {(q, d′)|(q, d′) ∈ QD′ ∧ (q, d′[0]) ∈ F};21

U ′

δ ← {((qi, s), (d
′

i, d
′

f ))|(qi, d′i) ∈ QD
′ ∧ (δ(qi, s), d

′

f ) ∈ QD′ ∧ Uδ(qi, s)(d
′

i[0]) ∈ d
′

f};22

return (Q,Σ, δ, F,D′, q0, d
′

0, U
′

δ, A
′, QD′);23

Algorithm 6.4: Reducing the size of the data domain by combining the equivalent configu-
rations.
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ReduceStates(Q,D,Σ, δ, Uδ, (q0, d0), F ):
/* P Holds the finest partition of states known to be necessary. */

P ← ∅;1

foreach q ∈ Q do2

if ∃EC ∈ P such thatGetStateEffect(q)=GetStateEffect(EC[0]) then3

P ← P − {EC} ∪ {EC ∪ {q}};4

else P ← P ∪ {{q}};5

while ∃EC ∈ P such that∃q1 ∈ EC, q2 ∈ EC, s ∈ Σ.∄ECf ∈ P.{δ(q1, s), δ(q2, s)} ⊆ ECf do6

NewECs← ∅;7

foreach q ∈ EC do8

if ∃EC ′ ∈ NewECs such that∀s ∈ Σ.∃ECf ∈ P.{δ(q, s), δ(EC′[0], s)} ⊆ ECf then9

NewECs← NewECs− {EC′} ∪ {EC′ ∪ {q}};10

elseNewECs← NewECs ∪ {{q}};11

P ← P − {EC} ∪NewECs;12

Q′ ← P ;13

δ′ ← {((q′i, s), q
′

f )|q′i ∈ Q
′ ∧ q′f ∈ Q

′ ∧ δ(q′i[0], s) ∈ q′f};14

q′0 ← {q
′|q′ ∈ Q′ ∧ q0 ∈ q′}[0];15

U ′

δ ← {((q
′

i, s), Uδ(q
′

i[0], s))|q
′

i ∈ Q
′ ∧ s ∈ Σ};16

F ′ ← {(q′, d)|q′ ∈ Q′ ∧ (q′[0], d) ∈ F};17

return (Q′, D,Σ, δ′, U ′

δ, (q
′

0, d0), F
′);18

GetStateEffect(q ∈ Q) :
A← {d|(q, d) ∈ F};19

UΣ ← {(s, Uδ(q, s))|s ∈ Σ};20

return (A,UΣ);21

Algorithm 6.5: Reducing the size state space by combining the equivalent states.

• (q1, q2) ∈ R implies thateffects(q1) = effects(q2);

• (q1, q2) ∈ R implies that∀α ∈ Σ, (δ(q1, α), δ(q2, α)) ∈ R.

Then, with the equivalence relationR computed, two states in the same equivalence class can be merged

into one. The procedure for minimizing states is given in Algorithm 6.5. Minimization has no effect on the

XFA in the running example.

6.2.4 Finding Efficient Implementations

For performance reasons, an XFA does not explicitly useU andF to manipulate and test data values.

Instead elements ofU andF are appropriately mapped to high-level data types that are more efficiently

computed and more easily managed. Thus, the last step in the compilation process is to map abstract data

domain operations to efficient, concrete instructions for manipulating data values. Intuitively, this step
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replaces domain values and update functions with higher-level variables and instructions that manipulate

them.

To perform the mapping, the compiler makes use of generic data-type templates that formally relate

domain values and update functions to high-level types. When a suitable mapping is found, as described

below, the compiler substitutes the appropriate components of the template into the XFA. We call these

templates Efficiently Implementable Data Domains (EIDDs) and define them as follows:

Definition 6.7 An efficiently implementable data domain (EIDD)is a6-tuple(D, d0, E, UE, C, AC), where

• D is the finite set of values in the data domain,

• d0 is the initial data domain value,

• E is a set of symbolic names for efficient-to-compute update functions,

• UE : E → DD is a mapping from these names to fully defined (deterministic) update

functions onD that can be associated with XFA transitions,

• C is a set of symbolic names for efficient-to-check acceptanceconditions,

• andAC : C → 2D is a mapping from these names to acceptance conditions that can be

associated with XFA states.

To illustrate, Figure 6.17 shows an EIDD for a simple bit formatted according to the grammar we have

defined in our implementation. In the figure, the domain has two elements and an initial value of0. E

holds the high level names of the operations applied to the bits: noop, set, andreset. Ue maps these

names to the corresponding update functions. Note that update functions are total over the domain. For

example, the update function forset–{(0,1),(1,1)}–implements the total function0 → 1, 1 → 1 over

the domainD = {0, 1}. Continuing,C andAc specify acceptance condition names and relate them to

specific domain values. Theunconditional acceptance condition will accept on any value inD, whereas

conditional hi accepts only if the data value is 1 during matching. Finally,although not part of the EIDD

itself, itemsCGe andCGa6 map the high-level operations to the low-level instructions that are executed. In

this case, the instructions are in the format used by our prototype interpreter.

Although Definition 6.7 specifies that the update functions inE must be “efficient to compute” and the

acceptance conditions fromC “efficient to check”, we cannot give a single definition for what it means to

6CGe andCGa stand for “Code Generation–edges” and “Code Generation–acceptance”, respectively.
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e i d d t b i t f u l l = {

D = {0 . . 1 } ,
d = 0 ,
E = {noop , s e t , r e s e t} ,
Ue = {

( noop , { ( 0 , 0 ) , ( 1 , 1 )} ) ,
( s e t , { ( 0 , 1 ) , ( 1 , 1 )} ) ,
( r e s e t , {0 ,0 ) , ( 1 , 0 )} )

} ,
C = { nonaccep t i ng , c o n d i t i o n a l , u n c o n d i t i o n a l} ,

Ac = {
( nonaccep t i ng , {} ) ,
( c o n d i t i o n a l l o , {0} ) ,
( c o n d i t i o n a l h i , {1} ) ,
( u n c o n d i t i o n a l , {0 ,1} )

} ,

CGe = {
( noop , ‘ ‘ ’ ’ ) ,
( s e t , ‘ ‘[% i , b i t , s e t ( ) ] ’ ’ ) ,
( r e s e t , ‘ ‘[% i , b i t , r e s e t ( ) ] ’ ’ )

} ,

CGa = {
( nonaccep t i ng , ‘ ‘ ’ ’ ) ,
( c o n d i t i o n a l l o , ‘ ‘ [% i , b i t , t e s t , 0 , ( [% i , a c c e p t ] ) ] ’ ’ ) ,
( c o n d i t i o n a l h i , ‘ ‘ [% i , b i t , t e s t , 1 , ( [% i , a c c e p t ] ) ] ’ ’ ) ,
( u n c o n d i t i o n a l , ‘ ‘ [% i , a c c e p t ] ’ ’ )

}
} ;

Figure 6.17: an EIDD specifying the mapping for a simple bit.
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be efficient as this depends strongly on the platform XFAs runon. For example, on some platforms we may

define efficiency as the use of five or fewer machine code instructions to perform the update or to check the

condition, on others we may use different definitions.

Algorithm 6.6 presents the basic procedure for mapping to EIDDs. Note the use of two unconventional

notations. First, for some setsA we useA[0] to denote an arbitrary element of the set; the correctness ofthe

algorithm does not depend on which element gets chosen and whenever we use this notation we know that

A 6= ∅. Second, the conditions of some while loops and if-statements are of the form∃a ∈ A, and in these

cases we assume that inside the body of the loop or the if-statementa is bound to one of the elements ofA.

As above, it is not important for the correctness of the algorithm which element is chosen.

Given an XFA(Q,D,Σ, δ, Uδ, (q0, d0), F ) and an EIDD(D′, d′0, E, UE , C, AC), this algorithm com-

putes a mapping that consists of three components:

1. D′
QD : Q × D → D′ maps all configurations fromQD (the set of all reachable configurations,

produced by the Algorithm 6.3–Data Determinization) to values in the new data domainD′ specified

by the EIDD,

2. Eδ : Q× Σ→ E maps all transitions to efficient update functions, and

3. CQ : Q→ C maps all states to efficient acceptance conditions.

The mappingD′
QD for data domain values is fromQD toD′ rather than fromD toD′, thus mapping only

those configurations that are reachable to the EIDD’s domain. Note that the EIDD domainD′ can be much

smaller thanD (and typically is) because different values ofD can map to the same value ofD′ without

affecting semantics, as long as there is no state where multiple values fromD can occur simultaneously. In

the running example, for instance, the data domain size is reduced from 8 to 2. Below are the conditions

that a valid mapping(D′
QD, Eδ, CQ) satisfies to ensure that it preserves the semantics of the XFA.
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∀q ∈ Q, ∃c ∈ C s.t. (q, c) ∈ CQ

∀(q, d) ∈ QD, ∃d′ ∈ D′ s.t. ((q, d), d′) ∈ D′
QD

∀(qi, s) ∈ Q× Σ,∃e ∈ E s.t. ((qi, s), e) ∈ Eδ

D′
QD(q0, d0) = d′

0

∀(q, d) ∈ F D′
QD(q, d) ∈ AC(CQ(q))

∀(q, d) ∈ QD − F D′
QD(q, d) /∈ AC(CQ(q))

∀((qi, di), s) ∈ QD × Σ D′
QD(δ(qi, s), Uδ(qi, s)(di)) =

UE(Eδ(qi, s))(D
′
QD(qi, di))

Algorithm 6.6 finds a mapping if one exists or declares failure by returning an empty mapping. The

loop at line 11 expandsD′
QD when it finds situations in which a transitiont = δ(qi, s) has already been

mapped inEδ and a configuration(qi, di) of the source state fort also has been mapped inD′
QD, but the

configuration resulting from applying the update function for t, (qf , df ) = (δ(qi, s), Uδ(qi, s)(di)), has not

been mapped inD′
QD yet. In this case(qf , df ) can be mapped to the value fromD′ which is the output

of Eδ(qi, s) for inputD′
QD(qi, di). Eδ is expanded by choosing an unmapped transition on line 15 andby

trying all possible mappings for it in the loop on line 16. Some mappings for edges can lead to conflicting

mappings for certain configurations; theFindInconsistency function detects such mappings.

The recursive calls inFindValidMapping continue until all transitions are labeled with a symbolic

update function. When this happens (or even earlier) the loop at line 11 will assign a mapping inD′
QD to all

configurations that are reachable from(q0, d0). Thus if the function ever returns on line 14, all transitions

from δ have a mapping inEδ, and all the configurations fromQD have a mapping inD′
QD. Since the

loop on line 16 tries all possible update functions, we know that if there is a mapping from transitions to

update functions that leads to a valid mapping of configurations to values fromD′, the algorithm will find

it. Otherwise, it will signal failure by returning(∅, ∅).

In the running example, Algorithm 6.3 returns a state deterministic XFA with the following set of

reachable configurations (using the mapping in Table 6.3):

QD = {(P, 0), (P, 4), (Q, 1), (Q, 5), (S, 2), (S, 6), (T, 3), (T, 7)}.
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MapXFAtoEIDD( (Q,D,Σ, δ, Uδ, (q0, d0), F ), QD,EIDD):
(D′, d′0, E, UE , C,AC)← EIDD;1

Eδ ← ∅;2

D′

QD ← {((q0, d0), d
′

0
)};3

(D′

QD, Eδ)←FindValidMapping (D′

QD, Eδ);4

if (D′

QD, Eδ) = (∅, ∅) then return (∅, ∅, ∅) ;5

CQ ← ∅;6

foreach q ∈ Q do7

ccorrect ← {c ∈ C|∀((q, d), d′) ∈ D′

QD.d
′ ∈ AC(c) ⇐⇒ (q, d) ∈ F}[0];8

CQ ← CQ ∪ {(q, ccorrect)};9

return (D′

QD, Eδ, CQ);10

FindValidMapping(D′

QD, Eδ) :
while ∃(s, ((qi, di), d

′

i)) ∈ Σ×D′

QD.∄d
′

f ∈ D
′.((δ(qi, s), Uδ(qi, s)(di)), d

′

f ) ∈ D′

QD ∧Eδ(qi, s) ∈ E do11

D′

QD ← D′

QD ∪ {((δ(qi, s), Uδ(qi, s)(di)), UE(Eδ(qi, s))(d
′

i))};12

if FindInconsistency (D′

QD, Eδ) then return (∅, ∅);13

if |Eδ| = |Q| · |Σ| then return (D′

QD, Eδ) ;14

trans← {(qi, s)|(qi, s) ∈ Q× Σ ∧ ∄e ∈ E.((qi, s), e) ∈ Eδ}[0];15

foreache ∈ E do16

Result←FindValidMapping (D′

QD, Eδ ∪ {(trans, e)});17

if Result 6= (∅, ∅) then return Result;18

return (∅, ∅) ;19

FindInconsistency(D′

QD, Eδ) :
foreach (qi, s, di) ∈ Q× Σ×D do20

if ∃d′i ∈ D
′, d′f ∈ D

′.((qi, di), d
′

i) ∈ D
′

QD ∧ ((δ(qi, s), Uδ(qi, s)(di)), d
′

f ) ∈ D′

QD then21

if ∃e ∈ E.((qi, s), e) ∈ Eδ ∧ (d′i, d
′

f ) /∈ UE(e) then22

return true ;23

foreach q ∈ Q do24

if ∀c ∈ C.∃((q, d), d′) ∈ D′

QD.¬d
′ ∈ AC(c) ⇐⇒ (q, d) ∈ F then return true ;25

return false ;26

Algorithm 6.6: Basic algorithm for finding a mapping of an XFA to a given EIDD.
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With the XFA in Figure 6.16 as input along with QD given above and the EIDD in Figure 6.17, Algo-

rithm 6.6 produces the following mappings:

D′
QD(Q×D → D′):

(P, 0)→ 0 (Q, 1)→ 0 (S, 2)→ 0 (T, 3)→ 0

(P, 4)→ 1 (Q, 5)→ 1 (S, 6)→ 1 (T, 7)→ 1

Eδ(Q× Σ→ E):

(P, a)→ set

all otherQ× Σ→ noop

CQ(Q→ C):

P → nonaccepting

Q→ nonaccepting

S → nonaccepting

T → conditionalhi

Figure 6.18 shows the constructed XFA with domain values replaced by theD′
QD mapping above. Fig-

ure 6.19 shows fully constructed XFA with high-level variables after all mapping substitutions have been

performed (“C”-like instructions are used rather than those used by the prototype interpreter).

In principle, the use of EIDD templates is just an optimization. We could alternatively provide a fully

generic template and let a matching algorithm construct thehigh-level types without any guidance (or

restriction) from the template. But in practice, the matching algorithm as presented hasO(|E||δ|) worst-case

complexity and thus would not scale well. One improvement, which cuts down unnecessary exploration,

is to greedily pick the transitions for which the number of possible symbolic functions that can be mapped

to without leading to inconsistencies is minimal. We also perform pre-computation to rule out symbolic

functions that cannot map to given transitions because of mismatches in the number of input values mapped

to an output value. These optimizations are sound; neither of them can cause the algorithm to miss an

existing solution.
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Figure 6.18: The XFA in Figure 6.16 with domain values replaced by a successful mapping toD′

in the EIDD (D′
QD contains the mapping).
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Figure 6.19: The fully constructed XFA with high-level mappings.
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Figure 6.20: Edge-based and State-based XFAs corresponding to the augmented regular expression
/.*ab#.*cd/.

6.2.5 Edge-based to State-based XFA Transformations

The construction process as described produces edge-basedXFAs from regular expressions. Although

edge-based XFAs have fewer automaton states than state-based XFAs, they are operationally inefficient.

For example, instructions on edges is cumbersome both for human analysis and for maintaining in code.

Algorithms for combining, matching, and optimizing XFAs are also more involved. Fortunately, unlike

construction, these algorithms operate on high-level auxiliary variables rather than low-level data domains.

Further, conversion to state-based XFAs is straightforward. We sketch the procedure briefly: for every state

S, we create a copy ofS (along with its outgoing transitions) for each incoming transition toS that has a

distinct set of instructions on that transition7. We then move these instructions to the corresponding copies

of S and retarget the incoming transitions appropriately. Figure 6.20 shows edge-based and state-based

XFAs corresponding to the regular expression/.*ab.*cd/, which after being annotated, has the form

/.*ab#.*cd/. In Figure 6.20a, stateP has an incoming transition from stateQ on symbolb with a bit set

instruction. StateP is copied, renamed to stateR, and the bit set instruction is attached to it. We employ

the state-based XFA model for all the remaining operations we describe in this chapter.

7If all incoming transitions toS have the same instructions attached to them, no replicationis necessary.
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6.3 Combining XFAs

Although state space blowup occurs when DFAs are combined, recall that the fault lies in the “shape”

of the source automata and in their violation of the conditions given in Chapter 5, not in the combination

process itself. XFA combination is a straightforward extension to DFA combination. This is a consequence

of the XFA model: transitions are fully deterministic in states and input only, and variables are separable

[52] up to renaming.

Algorithm 6.7 gives the procedure for combining two XFAs. Note that this algorithm is virtually iden-

tical to Algorithm 4.1 given in Chapter 4 for combining DFAs.The chief difference is that instead of

appending output symbols, we now append instructions to combined states.

Here, lines 15 and 16 add instructions to combined states from their original counterparts. For combined

statesq = 〈s, t〉, we copy the instructions froms andt into q. As before, correctness follows from the fact

that entering stateq is equivalent to entering statess andt simultaneously, so that instructions in boths and

t need to be executed. Figure 6.22 shows the results of combining the XFAs in Figures 6.21a and 6.21b. For

illustration purposes, names of states in the figure containthe source states from which they are composed.

Note that this automaton has only 15 states, whereas the combined DFA (not shown, for brevity) requires

2,194 states.

Recall from Section 6.1.1 that the worst-case execution time cost model for XFAs isφ + ψ · ni per

byte, whereφ is the cost of a table lookup,ψ is the cost of executing a single instruction, andni is the

maximum number of instructions at any state. For a combined automaton,φ andψ remain unchanged,

but ni may increase since states in the combined XFA accumulate instructions from both source XFAs.

Thus, combination does not affect the state lookup time, butit may affect the instruction execution time. In

Section 6.5, we propose optimizations aimed at reducingni, the maximum number of instructions per state.

Combining many XFAs is an incremental process: new signatures can be combined with an existing

automaton as necessary without needing to reconstruct entirely from scratch. One implicit precondition is

that the variable value in the starting configuration be the same in each automaton. In practice, the last

phase of the construction process ensures this when mappingto high-level types and instructions.
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Combine(XFA first, XFA second) :

worklist WL1

XFA c2

c.addState (〈first.start, second.start〉)3

〈first.start,second.start〉.instrs.append (first.start.instrs)4

〈first.start,second.start〉.instrs.append (second.start.instrs)5

c.setStart (〈first.start, second.start〉)6

WL = { 〈first.start, second.start〉 }7

while ( |WL| > 0 ) do8

〈s,t〉 = WL.pop ()9

foreach (β ∈ Σ) do10

s′ = first.getNextState(s, β)11

t′ = second.getNextState(t, β)12

if 〈s′,t′〉 /∈ c.statesthen13

c.addState (〈s′,t′〉)14

〈s′, t′〉.instrs.append (s′.instrs)15

〈s′, t′〉.instrs.append (t′.instrs)16

WL.push (〈s′,t′〉)17

c.addTrans (〈s, t〉,〈s′, t′〉,β)18

return c19

Algorithm 6.7: XFA combination. Instructions are copied from source states to “paired”
states.

MATCH(XFA M, uchar* buf, int len) :

state curState = M.start1

execInstrs ( curState.instrs)2

for i ← 0 to lendo3

curState = curState.nextState(buf [i])4

execInstrs ( curState.instrs)5

Algorithm 6.8: Algorithm to match an XFA against an input buffer.
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Figure 6.21: When combined, instructions get replicated atmany states.

6.4 Matching to Input

XFA matching employs the same Moore-machine semantics as DFA matching, described in Chapter 3.

That is, accepting states output a unique symbol from an output alphabet when reached, regardless of the

position of the input. This straightforward extension to DFA matching is also a consequence of the XFA

model.

XFA matching, given in Algorithm 6.8, simply extends this model by executing programs attached to

states when they are reached. In our framework, and as indicated by the figures, acceptance conditions are

implemented as instructions. Thus, no special acceptance tests are needed. An indication of an accepted

expression is emitted and processed identically to any other instruction.

6.5 Optimization

The conditions and model in Sections 5.2 and 6.1 allow XFAs tobe independently constructed and

easily combined without blowup, but this flexibility comes at a cost. As XFAs are combined, variables and

their instructions from the source XFAs accumulate in the combined XFA. For a combined XFA composed

from several individual automata, many auxiliary variables must be maintained (increasing per-flow state

size), and states may contain many instructions to execute (increasing execution time).

In this section, we present a set of optimization techniquesthat systematically reduce both program

sizes and per-flow state requirements of combined XFAs. Taking inspiration from techniques developed

for compiler construction [74], we present three distinct optimizations: exploiting runtime information
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Figure 6.22: XFA produced by combining the XFAs in Figures 6.21a and 6.21b.

and support, combining independent variables, and moving and merging instructions. The first and last

techniques reduce instruction counts, whereas the second reduces both per-flow state and instruction counts.

6.5.1 Exposing Runtime Information

Some regular expressions, such as/.*\ncmd[^\n]{200}/, induce counters that are decremented after

every byte once initialized. For example, when the XFA in Figure 6.21b is combined with other automata,

the decrement and test instructions get replicated to most of the states, as shown in Figure 6.22, even though

no state explosion occurs. When many such automata are combined, distinct decrement instructions get

propagated among all states. Executing these instructionsat every state can significantly impact processing

times during matching.

Once initialized, the counter in this example will be decremented on all states except those that follow a

reset instruction. Thus, when the counter is initialized ata given payload offset, the offset at which it would

reach 0 is also known. By maintaining this offset directly, we can eliminate the decrement instruction

altogether. This highlights our first optimization, which is to provide runtime support for replacing (and

eliminating) common or expensive operations.

Continuing, we extend the runtime environment with a sortedlist holding the payload offsets at which

the counter would reach 0 along with a pointer to the instructions to be executed when it does. After each

symbol is read, the offset value at the head of thisoffset listis compared to the current payload offset, and

the consequent instructions are executed on equality. In the automata, initialization and reset instructions
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are replaced with those that insert into and remove from the offset list, respectively. This does increase the

processing overhead slightly, but the optimization replaces explicit updates of (potentially) many counter

variables with a singleO(1) check after each byte read.

6.5.2 Combining Independent Variables

Some logically distinct state variables can be reduced to a single actual variable. For example, if one

counter is active in some set of states and another counter isactive in a disjoint set, then the two counters can

share the same memory location without interference, leading to reduced memory and smaller programs.

This scenario is similar to the register assignment problemfaced by a typical compiler: multiple variables

can share the same register as long as they cannot be simultaneously “live.”

Thus, the goal of this optimization is to automatically identify pairs of variables that are compatible at

each state in an XFA. We achieve this goal through a two-step process: a dataflow analysis first determines

the states at which a variable is active, and a compatibilityanalysis uses this information to iteratively find

and combine independent variables. These techniques applyto many kinds of state variables, although

for presentation purposes we focus on a fairly simple decrementing counter. To aid the discussion, we

depict instructions in the format used by our interpreter, rather than the C-like language used thus far, which

we describe briefly. Instructions have the form[instr id,args]. Initialization instructions set an initial

value and also point to the instructions to be executed when the counter reaches 0. Consequently,decrement

andtestinstructions are combined into a single instruction that decrements a counter and compares it to 0,

executing the previously supplied instructions if so. For example, the instruction[ctrSET 1,200,[ALT

3]] initializes counter 1 to 200. When the counter reaches 0, theinstruction[ALT 3] signals that signature

3 has matched. Finally,resetinstructions make a counter invalid, or inactive (see below), so that it will not

be manipulated until anothersetinstruction occurs.

We illustrate with the running example in Figure 6.23. The leftmost XFAs correspond to expressions

/\na[^\n]{200}/ and/\nb[^\n]{150}/ that are combined to give the XFA in the middle of Figure 6.23

(the “clouds” have meaning at a later stage and can be ignorednow). In the end, optimization finds that the

two counters in the combined automaton are independent and reduces them to one counter.
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Figure 6.23: The counter minimization process applied to automata for signatures
/.*\na[^\n]{200}/ and/.*\nb[^\n]{150}/. The optimization results in the elimination of
one of the original counters.

6.5.2.1 Dataflow Analysis

As informally described in Section 5.2.3, counters are initially inactive with status changes occurring

whenever initialization or reset instructions are executed. The goal of this step is to determine the activity

of each counter at each state in the combined automaton, evenfor those states without instructions. This

requires a precise definition of active and inactive counters, given as follows:

Definition 6.8 Let Q be the set of states containing aset operation for counterC. Then,C is active at

stateS if there is a path from a state inQ to S in which no state in the path contains areset operation for

C. OtherwiseC is inactive.

In other words,C is active atS if and only if there exists at least one input sequence endingatS containing

aset but no subsequentreset for C. The termactivity refers to the active or inactive status of a counter.

Operations applied to an inactive counter are effectively ano-op.

To calculate activity, we define a dataflow analysis that fits into the classic monotone dataflow frame-

work [74, 80]. Static dataflow analyses comprise techniquesused at compile time to produce correct but

approximate facts about behavior that arises dynamically at runtime. During execution, different input may

yield different behavior depending on that input; static techniques must therefore produce correct (if ap-

proximate) results for all possible inputs. Dataflow analyses and their applicability to program optimization

are well-studied and at the foundation of many common compiler optimizations including register alloca-

tion, constant propagation, and partial subexpression elimination [74]. To the best of our knowledge, ours

is the first work that extends the technique to finite automata.
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Figure 6.24: The value lattice that orders abstract counterfacts.Inactiveis the initial value.

The first step in an analysis is to identify the abstract values, or facts, that the counter can assume and

order them in a lattice structure. Here, the valuesactiveand inactiveare arranged in the lattice given in

Figure 6.24. Second, a directed graph with a designated start node is supplied by the XFA itself. Third,

flow functions define the effects that instructions have on each possible value in the lattice. For a counterC

with set, reset, anddecr-and-test instructions, the flow functions are defined as follows:

fset(C) → Active fdecr−and−test(C) → C
freset(C) → Inactive fpreserve(C) → C

For set andreset, C becomes active and inactive, respectively.decr-and-test does not changeC’s

value, andpreserve is the identity function used when there is no instruction ata state.

These components define a standard forward-flow “may have” analysis. The analysis algorithm prop-

agates facts for each counter among the states, applying flowfunctions whenever they are encountered. It

terminates when the facts have converged to a single value per state. Upon completion, a counter is marked

as inactive at a stateS if and only if C is definitely inactive on all paths leading toS. Conversely, if there is

any path toS in whichC may be active, thenC is active atS. Hence, the results are correct but approximate.

In Figure 6.23, the clouds in the middle XFA show the activityof each counter at each state prior to

instruction execution as computed by the analysis. The counters are inactive at stateMX because all paths

to MX pass throughLY, which resets both counters. Similarly, the counters are active in KX because there

is a path fromMX that sets counter 1 (making it active) and a path fromKZ that sets counter 2.

6.5.2.2 Compatibility Analysis

Two counters can be reduced to one if they arecompatibleat all states in the automaton. At a single

state, two counters are compatible if their operations and activity status can be combined without changing

the semantics of either counter. We determine compatibility by computing the cross product of operations

and activity status and pairwise comparing each element. The compatibility matrix in Figure 6.25a contains
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Inactive Active
r,d,p set reset set decr pres

In
ac

t r,d,p r,d,p set reset set decr pres
set set – set – – –

A
ct

iv
e

reset reset set reset set – –
set set – set – – –

decr decr – – – decr –
pres pres – – – – pres

(a) Counter Compatibility

Inactive Active
r,t,p set reset set test pres

In
ac

t r,t,p r,t,p set reset set test pres
set set set set – test –

A
ct

iv
e

reset reset set reset set – –
set set set set set – –

test test – – – – –
pres pres – – – – pres

(b) Bit Compatibility

Figure 6.25: Compatibility matrices for counters and bits,specifying which operations are com-
patible at a state along with the surviving operation.

this information for the simple counters in this example. Aswith the dataflow analysis, activity at stateS

refers to the activity of the counter upon entrance toS, prior to instruction execution.

In the matrix, thepreservecolumn handles the cases in which a counter has no instruction at the state in

question.r,d,p coalesces the entries for thereset, decrement, andpreserveoperations, which have identical

behavior for inactive counters. If two operations are compatible, the corresponding entry holds the operation

that survives if the counters are combined. A dash indicatesthat operations are not compatible. Operations

to active counters are incompatible with most other operations, but inactive operations are mostly compati-

ble. The exception is an inactiveset, which transitions a counter to the active state and is therefore mostly

incompatible. The lower half of the rightmost column specifies the cases in which a state has instructions

for only one counter, but the dataflow analysis determines that a second counter is also active. Combining

the two counters and using the operation of the counter present at the state could change semantics of the

second active counter, so the counters are in fact not compatible.

Algorithm 6.9 shows the process for identifying and reducing equivalent counters. For each pair, the

algorithm cycles through all states and compares the pair using theareCompat function, which extracts

activity status and operations forc1 andc2 at states and invokes the counter compatibility matrix. Lines

8-10 perform the actual reduction for a pair of counters thatare compatible at all states. When a reduction

results in the elimination of one or more instructions at a state, the operation that remains is returned from

the compatibility matrix via a call to thegetReduced function. Note that compatibility is not transitive;

when a pair of counters has been reduced, the resulting compatibility between thisnewcounter and other

counters must be re-established. This is satisfied by Line 11, which causes the algorithm to fall out to the

outermost loop after a reduction has been performed. In the running example, the rightmost automaton
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FIND EQUIVALENT(XFA M) :

do1

foreachpair of counters (c1,c2) do2

compatible = true3

foreachstates ∈M.statesdo4

if areCompat(s, c1, c2) == FALSE then5

compatible = false ; break6

if compatiblethen7

foreachstates ∈M.statesdo8

op = getReduced(s, ci, cj)9

combine countersci andcj , keeping operationop10

break;11

while compatible = true12

Algorithm 6.9: Counter compatibility. Two counters are equivalent and can be reduced to
one if they are compatible at each state.

shows the results after compatibility analysis has determined that counters 1 and 2 are compatible. All

references to counter 2 are replaced by a reference to counter 1, and irrelevantreset anddecr operations

are removed.

In our experiments, this optimization completes quickly, despite theO(n3) worst-case runtime of the

dataflow and compatibility analysis. With one exception (which contained 172 bits) the procedure com-

pleted in less than one minute per test set.

6.5.2.3 Compatibility for Optimized Counters and Bits

The techniques described here apply directly to optimized counters (produced from the first optimiza-

tion) as well as to simple bits. Recall that counters optimized with the first optimization do not have explicit

decrement operations. To compensate, we first insert a fake decrement instruction in each state and for each

of these optimized counter. We then perform the analysis andcoalesce counters if possible, after which the

fake instructions are removed.

For bits, the compatibility matrix varies slightly from thecounter compatibility matrix supplied, reflect-

ing the fact that the consequent for a bit test is supplied in thetest instruction itself rather than in theset

instruction as is the case for counters. We present an updated compatibility matrix for bits in Figure 6.25b.

In the matrix,r,t,p combines the entries forreset, test, andpreserve. Here, allset options are compatible.
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bitSET 1

bitSET 2

x

y

z

[^xyz]

bitTST 1, [alert …]

bitTST 2, [alert …]

y

z

Figure 6.26: Combined automata for/.*x.*y/ and/.*x.*z/. A different dataflow analysis can
eliminate a bit.

We conclude the discussion of this optimization with the observation that other dataflow analyses can

be designed that identify further reduction opportunitiesthat this analysis misses. For example, Figure 6.26

shows a combined XFA for expressions/.*x.*y/ and/.*x.*z/ that share a common prefix and use one

bit each. A dataflow analysis that uses more than just activity could determine that a single bit is sufficient

for both of these expressions.

6.5.3 Code Motion and Instruction Merging

Many expressions yield automata that set or reset a single bit. When they are combined, individual

states may contain many suchbit assignmentinstructions. However, the cost of updating a single bit is the

same as that for an entire word; by coalescing bit operationswhose bits fall within the same word we can

shorten the number of instructions in programs and simultaneously reduce the number of writes to memory.

This optimization operates on each state independently. The basic mechanism is to move bit assign-

ment instructions so that those belonging to the same word are adjacent. Such sequences are then replaced

by a composite one-word mask and an instruction that appliesthe mask when executed. There are sub-

tleties, though. First, there are data hazards [50]: bit assignment instructions cannot be moved across other

instructions that use or manipulate the bit values without changing semantics. As an example, in the se-

quence[bitSET 2],[bitTST 4,([alert,42])],[bitRST 4], instruction 3 cannot move left because

bit 4’s value is used by instruction 2. Second, merged instructions should combine bits belonging to the

same word only. Thus, the task is to move and merge as many instructions as possible while satisfying both

conditions.

In practice, we use a simple greedy heuristic that identifiesmany opportunities for merging. The heuris-

tic first identifies all bit assignment instructions that belong to the same word. Next, it looks for data hazards
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between neighboring pairs of assignments. When a pair with ahazard-free movement direction is found,

the instruction is moved along this direction to its neighbor. The process repeats until no more moves are

performed. For each word, the optimizer merges adjacent bits, constructs the mask, and replaces the in-

structions with a single bit mask instruction. This optimization is performed last of all, after the dataflow

analysis.

6.6 Experimental Evaluation

6.6.1 Toolset

We have developed a fully-functional evaluation prototypethat implements the algorithms described in

this chapter and performs matching of XFAs and other automata to network traffic. Our prototype suite is

divided into four separate applications:re2xfa, xfa manip, combine, andtrace apply. We describe each of

these tools as follows:

1. re2xfa - implements all of the XFA construction algorithms described in this chapter,

producing XFAs from annotated regular expressions supplied as input.

2. xfa manip- manipulates existing XFAs, including performing optimizations and edge-

based to state-based transformations.

3. combine- performs cross-product combination of two or more XFAs.

4. trace apply - performs XFA matching. When given an XFA and a tcpdump-formatted

trace, this tool extracts and feeds payloads into the XFA andreports matching signatures.

In addition, for comparison purposes we have also implemented a DFA compiler that builds minimized

DFAs from regular expressions. These tools produce DFAs with the same general format as XFAs and

can be freely used in tools in the XFA toolset (e.g., combineandtrace apply) for like comparisons. Both

XFA and DFA implementations assume a 256-symbol alphabet (one byte symbols) and can parse all regular

facets of pcre-style [87] regular expressions8. Thus, our implementation can faithfully represent the kinds

of signatures seen in commercial NIDS systems.

For XFAs, instructions are executed using an interpreter built into trace apply. Some experiments

also use compiled instructions, which we describe below. Finally, since our primary goal is to study the

8Some pcre extensions to regular expressions include matching constructs that are not regular. We do not imple-
ment those.
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feasibility of XFAs, standard NIDS operations such as defragmentation and normalization are beyond the

scope of our experiments and not performed here.

6.6.2 Initial Feasibility Experiments

We first report early experiments testing the feasibility ofXFAs. These experiments use only bits

(no counters) as auxiliary memory with instructions attached to edges. For our test set we used a Snort

signature set obtained in March 2007. We gathered traces of live traffic gathered at the edge of the University

of Wisconsin’s Computer Sciences Department network and collected at different times, with each trace

containing between 17,000 and 86,000 HTTP packets. We measure performance as the number of CPU

cycles expended per byte of payload. All experiments were performed on a standard Pentium 4 Linux

workstation running at 3 GHz with 3 GB of memory.

6.6.2.1 Constructing XFAs

In this section we describe the steps used to construct our test set. First, we used the Snort2Bro tool

(included in the Bro [85] software distribution) to do an initial parsing and conversion of Snort’s HTTP

signatures into Bro format, which we then passed through scripts that created the individual regular ex-

pressions. These scripts also inserted the parallel concatenation operator into approximately 97% of the

applicable signatures. We indiscriminately gathered bothclient-side and server-side signatures, yielding

1556 signatures in total. We eliminated 106 signatures for reasons discussed below, giving us a signature

set size of 1450.

In Step 2, we manually selected the appropriate instructiontemplate (EIDD) and added the remaining

parallel concatenation operators where necessary. In manycases, this process required just a few seconds

per signature and was aided by the fact that many signatures have similar formats. Some signatures required

the construction of a new EIDD when observed, which typically induced a one-time cost of up to an hour or

two. In total, we spent approximately two days on this phase,not including EIDD creation time. Table 6.4

breaks down the signatures according to their general type and gives the number of variables (bits) needed

per signature.

Next, we fed each signature and its matching EIDD to there2xfaapplication, which produced an XFA.

XFA construction time varied by EIDD: some completed withinseconds whereas others require an hour or

more, as summarized by Table 6.5. In our test set, 85% of the signatures completed within 10 seconds each.



117

Examples (some simplified) # Sigs EIDD name Variables

.*calendar(|[- ]admin)\.pl 814 null nothing

.*cmd"#.*& 5 set-only bit 1 bit

.*<OBJECT#[^>]*classid=11cf-9377 341 bit 1 bit

.*<\0O\0B\0#([^>]\0)*c\0l\0s=\01\0c\0-\09\03\0 213 bit plus parity 2 bits
(.*[\\/]cgi60#.*auth)|(.*auth#.*[\\/]cgi60) 56 two set-only bits 2 bits
(.*/st\.cgi#.*\.\./)|(.*\.\./#.*/st\.cgi) 21 2 bits plus overlap 3 bits

Table 6.4: Signature types and their mappings to XFAs.

Run time # of
(seconds) signatures.

< 1 37.1%
1..10 48.1%

10..100 0.1%
100..1, 000 1.2%

1, 000..10, 000 13.5%

Table 6.5: Distribution of XFA construction times.

Finally, in step 4 we combined each of the XFAs produced in theprevious step using the incremental

combination algorithm outlined in Section 6.3. Combination of all individual XFAs into a single equivalent

XFA required just over 10 minutes. Table 6.6 characterizes the number of instructions on edges and states in

the combined XFA. 95% of the transitions have exactly one instruction, and 98% of the states have at most

one instruction. The final XFA had 41,994 states (requiring 43 MB), used 193 bits (25 bytes) of auxiliary

memory, and required 3.5 MB of instruction memory.

In general, the most manual-labor-intensive aspect of thisprocess occurs when EIDDs are selected for

regular expressions. For existing signature sets this is a one-time process, and our experience indicates

that when new signatures are produced, a security expert (i.e., someone who writes the initial signatures)

familiar with our approach could easily annotate a regular expression, produce an XFA, and add it to an

existing combined XFA within a matter of minutes, dependingon the XFA construction time in Step 3.

Even if a novel signature requires a new EIDD to be defined9, this is also a one-time cost.

Signatures were removed from this test set for two reasons. First, some complex signatures compose bits

and counters in ways that are prohibitively time-consumingto map to EIDDs using our prototype. Second,

there are some signatures whose individual DFAs consume exponential amounts of memory and for which

9EIDDs are declarative and parsed by our prototype. They can be supplied at runtime and do not require a recom-
pile.
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# Instrs 0 1 2 3 4 5 6 7 8 9 10 11 12

% Edges 1.0 94.8 2.7 0.47 0.80 – – – 0.13 – – – 0
% States 78.9 20.0 0.9 0.03 – – – – 0.05 0.05 – – –

Table 6.6: Distribution of instructions on edges and states. Entries marked ’–’
contribute less than .01%.

our construction algorithms also run out of memory, even though a compact XFA does exist. Signatures

of the form/.*a.{n}b/ among others fall into this category, for example. In both cases, the difficulties

arise from using signatures that are not necessarily designed for deterministic automata. Thus, although

many signatures with counters are straightforward to compile and map to EIDDs, for this experiment we

eliminated all counter-based signatures from our test set.

In summary, these results demonstrate that XFAs can be readily constructed for large numbers of real-

world signatures. We produced XFAs for 93% of Snort’s HTTP signatures. Construction of this set required

a day of manual effort, but admittedly, this process drew heavily on our own experience. When being

performed by people with less experience, construction maytake longer. Nevertheless, our experience

suggests that new XFAs can be quickly constructed and incorporated in many cases.

6.6.2.2 Performance and Memory Usage

We compared XFAs to traditional DFAs and to multiple DFA-based solutions [118], using the same

1450 signatures for each of these techniques that were used for XFA construction. Our attempt to build a

single, combined DFA for all signatures failed after only 88out of 1450 signatures had been processed, at

which time over 15 GB of memory was needed for the partial automaton.

Recall that in the Set-Splitting approach to multiple DFA matching, an upper memory bound is given

and DFAs are heuristically grouped and combined into as few composite DFAs as possible such that the total

memory usage is less than the supplied bound. We implementedthe Set-Splitting heuristics and produced

multiple DFAs (mDFAs) for several memory limits ranging from 66 MB (the smallest memory size that

could hold all signatures) to 512 MB.

Table 6.7 summarizes the performance and memory usage individually for each of the techniques.

DFAs, if realizable, would have the best performance but thelargest memory consumption; the reported ex-

ecution time was obtained using the largest partially combined DFA that could be fit into our test machine’s
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Automata
Total Memory

Num Exec Time
Type Automata (cycles/byte)

XFA 43MB + 3.5MB 1 226.8
DFA > 15GB n/a ∼34.8

432 MB 67 4,374
397 MB 107 8,071

mDFA 277 MB 147 11,341
191 MB 346 25,735
98 MB 587 44,671
66 MB 786 62,601

Table 6.7: Machine size and execution times for XFAs, DFAs, and Multiple DFAs for several
memory settings. XFAs approach DFA performance yet retain small memory sizes.

memory. The six mDFA points shown exhibit the tradeoffs between increased memory vs. increased time,

with their execution time being largely a function of the number of created automata. The combined XFA

compares favorably as these results show: compared to the next-best data point (the penultimate mDFA en-

try), the XFA requires 10× less memoryand is 20× faster. On average, the XFA executed 1.12 instructions

per byte, roughly consistent with the data in Table 6.6.

Figure 6.27 compares the mDFAs to XFAs graphically. In the plot, the y-axis reflects total memory

usage and for XFAs includes both instruction memory and auxiliary memory (46.5 MB). Both axes are on

a logarithmic scale. Entries toward the bottom left requirereduced resources (either space or time). The

plus marks (’+’) in the plot show the points for several multiple DFA instances and in a sense represent the

true cost of realizable DFA-based approaches. The points hint at the tradeoffs obtained through pure DFA

approaches and suggest lower bounds given specific time or memory requirements. The DFA point, if we

could plot it, would reside close to the left edge, several orders of magnitude beyond the extent of the graph.

The XFA result, represented by a star, is below and to the leftof the curve suggested by the DFA-

based approaches, indicating that XFAs require fewer resources overall. The XFA yields superior results as

compared to mDFAs both in memory usage and performance.

6.6.3 Optimizations and State-based Experiments

In the second set of experiments we move beyond simple feasibility by examining the effects of opti-

mization, state-based matching performance, and other characteristics applied to several sets of signatures.

We use the same test environment as before for these experiments.
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Figure 6.27: Memory vs. run-time for mDFAs and XFAs. XFAs areboth smaller and faster than

mDFAs for many memory ceilings.

We evaluated XFAs on FTP, SMTP, and HTTP signatures from Snort [91] and Cisco Systems [20].

We used the same procedure as before to produce edge-based XFAs from regular expressions. We then

converted to state-based XFAs and combined the XFAs together per-protocol. We also built standard DFAs

for each of the regular expressions and combined these per protocol as well.

Table 6.8 summarizes properties of the combined XFAs, showing the number of states, the types and

quantities of variables, along with the memory requirements. In each test set, the top row describes the

automaton before any optimizations are performed. Columns3 and 4 give the number of states in the com-

bined DFA and XFA, respectively, and illustrate the magnitude of the savings when state-space explosion is

eliminated. In some cases, the combined DFA size may be a gross underestimate: Cisco FTP, for example,

exhausted memory after only 23 DFAs were combined. Columns 5and 6 show the number of variables

used by each test set, Columns 7 and 8 give the maximum and average number of instructions per state, and

Columns 9 and 10 give the amount of auxiliary memory needed for storing mutable variables and immutable

programs. We used two-byte counters when computing the variable memory requirements.

We applied the three optimizations in Section 6.5 in consecutive order and show relevant results in

Tables 6.9a, 6.9b, and 6.9c. In Table 6.9a and all subsequenttables, we use a forward slash to separate

generic and implicit counters. As the table shows, a large fraction of generic counters were converted to an

implicit form. Since these new counters require no explicitdecrement instruction, the average number of

instructions per state is considerably reduced as shown in Columns 3 and 5. Table 6.9b shows the effect of
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Figure 6.28: Instructions per state for Snort HTTP, before (left) and after (right) optimization.

the analyses for coalescing independent variables. In mostdatasets, the analysis discovers that a significant

percentage of generic and implicit counters can be coalesced. Note that variables must have the sametype

to be considered. For example, generic counters can be coalesced with other generic counters but not with

implicit counters. For bits, the reduction opportunities are more modest. We believe that improved results

can be obtained with a more refined analysis. Finally, Table 6.9c reports the results of code motion and

instruction merging applied to bit instructions. Not surprisingly, the largest reductions come from the sets

with the most bits.

Table 6.8 summarizes the cumulative effect of the optimizations in the bottom row of each set. Fig-

ure 6.28 shows histograms of the number of instructions per state for Snort HTTP before and after optimiza-

tion. Note the log scale on the y-axis. After optimization, just over half of all states have no instructions,

and all remaining states have 11 or fewer instructions. Histograms for other sets are similar.

6.6.3.1 Memory Usage and Performance

Next, we analyze the memory and runtime performance of XFAs when applied to traces of live traffic.

We wrote a translator that converts instructions on states to C source code (with a distinct function for

each state) and compiled the code to a shared library whose functions are linked to the appropriate state

during initialization. During inspection, programs are executed after the input symbol is read and the state

transition is complete. Support for runtime information, as is used in Optimization 1, is compiled into the

library as well.

For comparison purposes, we again evaluate multiple DFAs along with the D2FAs [64] edge-compression

scheme, which we briefly described in Chapter 2. Note that D2FAs employ multiple DFAs to reduce the

total number of states. For multiple DFAs, we supplied memory ceilings ranging from 4K total states to
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Num # States Variables Instrs per state Aux memory (bytes)
Rule set Sigs DFA XFA # bits # ctrs max avg variables program

Snort FTP
72 >3.1M 769

8 46 50 38.67 93 1336K
optimized 8 2/2 5 0.66 9 44K

Snort SMTP
56 >3.1M 2,415

11 31 37 21.48 64 2211K
optimized 6 4/6 21 0.69 21 114K

Snort HTTP
863 >3.1M 15,266

172 15 31 15.91 52 7445K
optimized 171 0/6 11 1.03 34 1008K

Cisco FTP
38 >3.1M 527

11 12 19 12.35 26 271K
optimized 10 0/3 4 0.33 8 16K

Cisco SMTP
102 >3.1M 3,879

8 3 10 5.20 7 806K
optimized 8 0/2 7 0.28 5 76K

Cisco HTTP
551 >3.1M 11,982

13 10 17 10.48 22 4907K
optimized 12 0/2 7 0.42 5 515K

Table 6.8: Combined automata for several protocols, beforeand after optimization.

No-Opt Opt 1
Inst/ ctrs Inst/

Rule set ctrs state gen/imp state

Snort FTP 46 38.67 8/38 4.18
Snort SMTP 31 21.48 10/21 1.59
Snort HTTP 15 15.91 0/15 1.24
Cisco FTP 12 12.35 0/12 2.65
Cisco SMTP 3 5.20 0/3 0.34
Cisco HTTP 10 10.48 0/10 0.69

(a) Opt 1: Exploit runtime information

Opt 1 Opt 2

bits ctrs bits ctrs

8 8/38 8 2/2
11 10/21 6 4/6

172 0/15 171 0/6
11 0/12 10 0/3
8 0/3 8 0/2

13 0/10 12 0/2

(b) Opt 2: Coalesce independ.
vars

Opt 2 Opt 3
Inst/State Inst/State

max avg max avg

7 0.81 5 0.66
21 0.73 21 0.69
16 1.09 11 1.03
7 0.46 4 0.33
9 0.33 7 0.28
8 0.55 7 0.42

(c) Opt 3: Instruction merging

Table 6.9: Consecutively applying optimizations 1, 2, and 3.



123

512K total states. During runtime we matched multiple DFAs by modifying our matching code to main-

tain multiple state pointers. For the D2FA evaluation, we applied the D2FA edge compression algorithm

to each combined DFA in each mDFA group. The D2FA proposal requires custom hardware to hash an

input symbol to the correct compressed transition entry. Toadapt to a software-based environment, we

used a simple bitmap-based structure to identify the next transition. This makes the hash function as fast as

possible (simulating the hardware assist) with only a minorcost in memory usage.

As before, execution time tests were performed on 10 GB traces captured on the link at the edge of

the University of Wisconsin Computer Sciences departmental network at varying times. Runtime mea-

surements were collected using cycle-accurate performance counters and are reported as average cycles

per payload byte. During execution, each automaton is applied only to packets belonging to its respective

protocol.

Figure 6.29 gives space-time comparisons for each test set10. In all plots, the x-axis (processing time)

and y-axis (memory usage) increase on a log scale. The dashedvertical line gives the runtime for the largest

subset of DFAs that we could combine and fit into memory. Multiple DFAs (mDFAs) trace out a curve

showing the trade-offs between memory usage and processingtime. Each plus mark (’+’) in the figures

corresponds to a distinct memory ceiling from which mDFA groups were created.

D2FAs build on mDFAs and follow a similar curve with a reduced memory footprint. We performed

D2FA edge compression for each multiple DFA point in the figuresand show the results as diamonds in the

graph. D2FA edge compression decreases the memory footprint but increases the access time and generally

follows the Multiple DFA curve. For XFAs, we plot the combined automata along with the cumulative

effects of each optimization, leading toward the lower leftcorner. In the figures, Optimization 1 exhibits

the largest visible improvement. By eliminating instructions on many states, both memory and runtime

are reduced by up to an order of magnitude. In general, the second optimization also achieves significant

reductions, although here they are largely subsumed by optimization 1. Optimization 3 reduces memory

but has a negligible effect on performance.

10An early version of this work that appeared in SIGCOMM 2008 [101] contained a calculation error that improperly
plotted XFA results in Figure 6.29. That error is corrected here.
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Figure 6.29: Memory versus run-time trade-offs for Multiple DFAs, D2FAs, and XFAs.
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XFA mDFA/D2FA
Rule set 8K States 64K States 512K States

Snort FTP 11 (4) 8 (2) 4 (2) 6
Snort SMTP 23 (11) 22 (11) 22 (4) 12
Snort HTTP 36 (77) 154 (41) 82 (27) 81
Cisco FTP 10 (4) 8 (2) 4 (2) 6
Cisco SMTP 7 (6) 12 (3) 6 (3) 9
Cisco HTTP 8 (23) 46 (14) 28 (8) 24

Table 6.10: Per-flow state in bytes for XFAs and mDFAs at various memory ceilings. Parentheses
hold the number of mDFAs at each setting.

6.6.3.2 Per-flow State

A network link typically carries many streams of traffic simultaneously. Each stream is called aflow,

and packets from many flows are multiplexed one after the other on a link. When a packet is received off

the link, it must first be associated with its proper flow. Thisis the flow reassembly process described in

Chapter 2.

Payload inspection for a flow occurs in a disjointed manner aspackets are received. A NIDS maintains

per-flow statethat preserves the necessary matching context between two packets that are logically adjacent

in a stream, but in fact may be physically separated by packets from many flows. When matching for

a packetpi from flow F has completed, the per-flow state forF is updated to reflect the full matching

context. Later, when packetpi+1 has been received, the per-flow state is first retrieved so that matching can

resume at the proper point.

For large links with many flows, the per-flow state requirements can be significant. Table 6.10 depicts

the per-flow state for mDFAs/D2FAs at various memory ceilings and for XFAs. mDFAs require a distinct

current state pointer for each automaton in a group, and D2FAs have these same requirements. We assume

2-byte state pointers for 8K and 64K ceilings and 3-byte pointers for 512K ceilings. XFA per-flow state

contains a state pointer along with all the variables that must be maintained. We quantify this by adding a

2-byte state pointer to each of the optimized variable memory entries (column 9) in Table 6.8. Reductions

in per-flow state for XFAs are a direct result of optimization2. As Table 6.8 indicates, per-flow state can

be reduced by up to a factor of six. In Table 6.10, per-flow state for XFAs is comparable to mDFAs in all

cases. For large test sets, XFA state can be much smaller, depending on the mDFA memory ceiling.
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Figure 6.30: An XFA recognizing/.*a.{n}b/. In the instructions,k = n + 2.

6.7 Limitations and Discussion

The XFA model provides a framework that extends DFAs for incorporating auxiliary variables yet

extends DFAs in a natural manner. Even so, there is still muchwork remaining. We briefly describe a

subset of the open issues below.

6.7.1 Mapping to EIDDs

The basic procedure for mapping an XFA with abstract data domains to an appropriate EIDD, given

in Algorithm 6.6, uses a backtracking algorithm that we haveenhanced to aggressively identify and prune

fruitless searches. Even so, some mappings require an hour or more of computation time to complete.

Further, each EIDD must specify all the high-level variabletypes (typically just bits and counters in various

forms) to be used by an XFA. Common expressions that simply need one or more bits or counters have

standard patterns and can be mapped quickly. However, complex regular expressions in which bits and

counters are composed into complex data types require equally complex EIDDs. These are difficult to

specify. In principle, we could define a fully generic EIDD that provides many compositions of bits and

counters from which Algorithm 6.6 selects only those that itneeds. But in our prototype, the resulting

mapping times would be infeasible. More work needs to be doneto make this mapping faster and to reduce

human involvement. Alternative construction procedures may also be worth considering.
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6.7.2 Expressions with Exponential State

Some signatures require exponential amounts of space during the construction process, even though they

have a compact XFA representation. For example any deterministic automaton recognizing/.*a.{n}b/

needs to remember which of the previousn + 1 bytes in the input were ‘a’ so that it knows to accept if

it sees a ‘b’ in the nextn + 1 input characters. DFAs require at least2n+1 states for this case. Similarly,

during construction an XFA also needs at least2n+1 distinct configurations, although ultimately these can

be contained partially in auxiliary memory rather than onlyin explicit automaton states. For example,

an XFA corresponding to this regular expression, given in Figure 6.30, needs only two states, a counter,

and a bitmap withk = n + 2 bits of auxiliary memory. The number of configurations is exponential,

but the number of distinct states is small. For small values of n, we can annotate the regular expression

(as/.*a#.{n}b/), construct an EIDD, and build the XFA in Figure 6.30. However, since the number

of configurations is exponential inn, we quickly run out of memory during construction asn grows. We

found dozens of such regular expressions among Snort’s web rules, such as rule 3519, which recognizes the

regular expression/.*wqPassword=[^\r\n&]{294}/ .

Fortunately, XFAs are not an exclusive solution and can be easily combined with other techniques to

achieve full generality. For instance, we may use substring-basedfilters [91,94] that identify only subparts

of signatures and invoke full signature evaluation using DFAs, NFAs, or other techniques when the subparts

are matched. Alternatively, multiple DFAs [118] may also beused.

In general, we observe that signatures are written with an understanding of the underlying matching

engine’s capabilities. Signatures that are written for an NFA-based engine (such as/.*a.{n}b/) are not

necessarily appropriate for a deterministic engine and vice-versa. As shown, signatures that can be repre-

sented compactly for nondeterministic automata may require exponential state for deterministic automata.

In many cases, small changes to a regular expression turn it into something we can build XFAs for effi-

ciently. For example, it is possible to recognize/.*a[^a]{n}b/ as an XFA with two states and a data

domain of sizen + 2 used essentially as a counter. Of course, whether such changes are possible without

changing the intent of the rule requires human judgment and is best performed by the signature writer.
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6.8 Summary and Conclusion

The Big Bang Theory [48] asserts that a compact, highly compressed mass exploded into a mostly

empty universe, leaving scattered pockets of organized matter. This is not too dissimilar from combined

DFAs, which experience explosive growth yet are full of redundancy. Our running hypothesis in this XFA

work is that the systematic use of auxiliary variables and optimizations provides a practical mechanism for

deflating explosive DFAs.

In this and the previous chapter we presented a formal characterization of state-space explosion and

showed how auxiliary variables can be used to eliminate it. We presented XFAs, a formal model that extends

standard DFAs with auxiliary variables and instructions for manipulating them. We defined optimizations

over this model that significantly improve performance and decrease per-flow state.

Many research problems remain open. Our treatment of state-space explosion is preliminary, and

stronger results may allow us to better predict and control it. A better understanding of the interplay be-

tween protocol parsing and signature matching may yield simpler automata and better performance. But,

even with our current prototype, measurements show large improvements over previous solutions. We are

optimistic that in the end, XFAs will yield a fast, scalable mechanism for deep packet inspection.
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Chapter 7

Edge Compression with Alphabet Compression Tables

The memory footprint of a DFA can be reduced in two ways: by reducing the number of states, and

by reducing the size of each state. In the previous chapters we introduced Extended Finite Automata and

showed how they could be used as a framework for reducing or eliminating state space explosion. This led

directly to smaller numbers of states in an automaton. In this chapter, we look at the second mechanism for

reducing memory–reducing the sizes of individual states.

We propose a lightweight compression technique for reducing the memory requirements of states in a

DFA. We start from the observation that for NIDS signatures,distinct input symbols often have identical

behavior in their DFAs. In these cases, anAlphabet Compression Table (ACT)can be used to map such

groups of symbols to a single symbol that is retrieved by a table lookup. Alphabet compression tables

were first proposed for use in compiler-writing tools such asYACC [2,55] and have been recently explored

in the signature matching context as well [13]. We refine thistechnique by introducingmultiple alphabet

compression tables [60]. Specifically, we develop heuristics for partitioning the set of states in a DFA and

creating compression tables for each subset in a way that yields further reductions in memory usage.

As with XFAs, the use of compression tables or other edge compression techniques does increase the

execution time since the appropriate transition needs to be“decompressed” before it can be followed. For-

tunately, for alphabet compression tables our experimentsshow that the inclusion of additional compression

tables beyond the first introduces no additional performance overhead. In essence,multiplealphabet com-

pression comes for free.

This chapter is organized as follows. In Section 7.1 we startby reviewing algorithms for single alpha-

bet compression tables. We then introduce multiple alphabet compression tables and present algorithms

for constructing them. Many mechanisms for compressing thestate memory have been proposed in the

literature. We surveyed many of them in Chapter 2. In Section7.2, we describe how compression tables
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Figure 7.1: A DFA recognizing the regular ex-
pression(.*)ab(.*)cd. Starting in state 0, input
is accepted whenever state 4 is reached.

interact with two other techniques, D2FAs [64] and Set Splitting [118], which are used extensivelyin our

evaluation. Our experimental results are contained in Section 7.3. Finally, Section 7.4 concludes.

7.1 Alphabet Compression Tables

Recall that a DFA is a directed graph with labeled edges used for efficiently matching regular expres-

sions to input. Nodes are termedstates, edges between nodes are calledtransitions, and each edge is labeled

with a symbol from the input alphabetΣ. For each stateS in the DFA, there is an edge for each input sym-

bol in Σ from S to some stateS′ in the DFA. The set of transitions out ofS is referred to as thetransition

tablefor S, and each state has its own table. A non-empty subset of the states are marked asaccepting, and

there is a distinct starting states0. Figure 7.1, reproduced from Figure 4.1, shows a DFA that recognizes

the regular expression(.*)ab(.*)cd.

The DFA matching procedure keeps acurrent statevariable that is initialized to states0. During match-

ing, the DFA reads input characters one at a time and updates the current state by following the appropriate

transition out of the current state to the destination state. Reaching anacceptingstate indicates that the input

thus far is a string in the language defined by the regular expression.1 Figure 7.2 depicts this procedure at a

specific state.

Alphabet compression tables for DFAs arise from the observation that for any given transition table,

there are often many input characters that lead to the same next state. Such identical behavior forms a

binary relation between input symbols and partitions them into equivalence classes. Individual transition

tables can then store a single entry for an entire equivalence class, and a shared lookup table can be used

1In the more traditional definition, a DFA signals a match onlyif it is in an accepting state after reading the last
input character. All the results we present apply to that definition as well.



131

State 0

12

12

12

4

2

8

2

8

State 1

12

12

12

4

4

4

8

8

State 2

25

25

25

41

41

41

5

5

25

25

25

6

41

5

41

5

State 3

input_char=1

crt_state=1

…

next_state=12

Figure 7.2: At its core, DFA matching involves
looking up the next state given the current state
and an input symbol in a DFA.

to map from the observed input character to the appropriate equivalence class entry in the compressed

transition table (Figure 7.3a). Since this alphabet compression table (ACT) is shared by all states, it will

be accessed for every input character, and thus likely reside in the cache of the processor. Therefore,

while alphabet compression adds one extra lookup to the per-byte processing, it does not have a significant

negative performance impact as there is no need for an extra off-chip memory access.

Before discussing the algorithm for building alphabet compression tables, we clarify some of the nota-

tion used in the algorithms in this chapter. Our notation relies heavily on the use of sets whose elements can

be characters, states, or other sets (with all elements of a set being of the same type). We use the standard

definition for set equality:{1, 2} = {2, 1}, but{{1, 2}, {3, 4}} 6= {1, 2, 3, 4} (actually two such sets would

never even get compared by our algorithms since their elements are of different types). As usual, the size of

a setS given by|S| only counts the number of elements in the top-level set, and does not give a recursive

count of all atomic elements. For setsA andB, the statementA∪ = B is shorthand forA = A ∪ B.

Finally, we represent hash tables as associative arrays anduse standard notations (e.g. hashtable[key])

for performing lookups, using sets both as keys and values insome cases. To simplify the algorithms, we

introduce the convention that for hash tables whose values are sets, looking up a non-existent value returns

the empty set rather than explicitly signaling failure.

We say that a statedistinguishes betweentwo characters if the transitions corresponding to those char-

acters go to different states. Thus in Figure 7.1, characters b andd are distinguished between by each of
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(a) DFA using a single ACT
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(b) DFA using multiple ACTs

Figure 7.3: Basic DFA lookup augmented with one or more alphabet compression tables.

states 1 and 3, but not by 0, 2 and 4. On the other hand, characters e andf are not distinguished between

by any state. When using a single compression table there is aunique partition of the symbols in the input

alphabet that minimizes the total memory usage. Algorithm 7.1 gives the procedure that computes this par-

tition in a single traversal of the states of the DFA. Starting with a partition of size one whose single entry

is the full set of input characters, the algorithm progressively refines the partition to account for distinctions

between input characters that manifest themselves as transitions to distinct states out of the same source

state. Upon completion, the algorithm finds the smallest number of setsσ of input symbols where all the

elements in each set induce the same sequence of traversed states in the automata. Per-state transition tables

are correspondingly reduced from|Σ| to σ entries. Conversely, for any two characters that are in different

sets, there is at least one state that has transitions to different states for these two characters. Given the out-

put of Algorithm 7.1, building the actual alphabet compression table and the compressed transition tables is

straightforward. Note that the complexity of this algorithm isO(n|Σ|) wheren is the number of states and

|Σ| is the size of the input alphabet.

7.1.1 Multiple Alphabet Compression Tables

It is often the case that many characters behave identicallyfor a large fraction of statesS but are

individually distinguished between by a small (perhaps overlapping) set of states. When using a single

ACT for all states as in the previous section, individual characters of such groups will need separate entries

in each of the compressed transition tables, limiting the memory savings that can be achieved. If instead
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SingleAlphabetPartition(StateSetStates):

CrtBestPartition = {Σ}1

foreachstates ∈ States do2

NextPartition = {}3

foreachcharacter groupg ∈ CrtBestPartition do4

NextToChars = EmptyHashTable5

foreachcharacterc ∈ g do6

NextToChars[s.next[c]] ∪= {c}7

foreachstaten ∈ NextToChars.keys()do8

NextPartition ∪= {NextToChars[n]}9

CrtBestPartition =NextPartition10

return CrtBestPartition11

Algorithm 7.1: Compression algorithm that finds the partition of the inputalphabetΣ with
the smallest number of equivalence classes.

we compute an ACT to apply only to the large subset of statesS, the transition tables are smaller since the

groups of characters treated identically are larger and fewer. Thus, further reductions in memory usage can

be obtained by using multiple ACTs, each over a disjoint subset of states.

To build a DFA withm ACTs, we first divide the states of an automaton intom subsets (discussed

below) and then compute a separate ACT for each subset. During matching, the lookup function needs not

only the current state and current input symbol but also the identity of the correct ACT to use (in the range

{1..m}). Thus, in the transition table we don’t just encode the nextstate but also the corresponding ACT.

Figure 7.3b shows the matching process extended for multiple ACTs. Since the number of ACTs is small

(up to 8 in our experiments), for all currently feasible configurations a 32-bit word can encode both the

ACT number and the pointer to the next state so that sizes of transition table entries are not increased. Since

entries of the transition tables are decoded efficiently andall the ACTs are typically cached, the matching

process is not significantly slower than in the case of a single ACT.

In constructing multiple alphabet compression tables, we must first divide the states into subsets that

will be covered by the same ACT. For any of these subsets, we can then use Algorithm 7.1 to build the

corresponding ACT. If there are no restrictions on the number of ACTs we can use, the partition that min-

imizes the total size of the transition tables is the one in which all states that distinguish between the same

input symbols use the same ACT. Algorithm 7.2 finds this best partition of the set of states inO(n|Σ|) time.

Unfortunately, for practical automata, the number of ACTs required to achieve the optimum is unfeasibly
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BestStatePartition(StateSetStates):

AlphaPartToStates = EmptyHashMap1

foreachstates ∈ States do2

Groups = SingleAlphabetPartition ({s}) // Alg. 13

AlphaPartToStates[Groups] ∪= {s}4

Result = {}5

foreachpartitionap ∈ AlphaPartToStates.keys()do6

Result ∪= AlphaPartToStates[ap]7

return Result8

Algorithm 7.2: Algorithm to partition a set of states so that the sum of the sizes of transition
tables is minimized when the number of ACTs is unlimited.

PartitionStates(StateSetStates, Int m):

SPrt = BestStatePartition (States)1

foreachstate setss ∈ SPrt do2

APrt[ss] = SingleAlphabetPartition (ss)3

while |SPrt| > m do4

/* Combine the two subsets that give the least increase in memory. */
min incr =∞5

for i = 0 to |SPrt| − 1 do6

for j = i+ 1 to |SPrt| − 1 do7

prtsz = |(SPrt[i]|+ |SPrt[j])|8

/* Combinedefined in Algorithm 7.4 */
cmbsz = |Combine (APrt[SPrt[i]],APrt[SPrt[j]])|9

firstsz = |SPrt[i]| · |APrt[SPrt[i]]|10

secndsz = |SPrt[j]| · |APrt[SPrt[j]]|11

incr = prtsz · cmbsz - (firstsz + secndsz)12

if incr < min incr then13

min incr = incr14

besti = i15

bestj = j16

NewSet = SPrt[besti] ∪ SPrt[bestj]17

APrt1 =APrt[SPrt[besti]]18

APrt2 =APrt[SPrt[bestj]]19

APrt[NewSet] = Combine (APrt1,APrt2)20

SPrt ∪ = {NewSet} - {SPrt[besti], SPrt[bestj]}21

return SPrt22

Algorithm 7.3: Bottom-up heuristic algorithm for partitioning a set of states intom subsets
such that when ACTs are computed separately for each subset,total memory usage is low.

large, so we need algorithms that can guarantee that the number of state subsets produced by the partition

of the states is bounded above by a givenm.



135

Combine(AlphaPart Set1, AlphaPart Set2):

/* Structurally, AlphaPart is a set of sets having the form{{a,b,c},{d,e},...} for input symbols a,b,c,d,e,... */
CombAlphaPart = {}1

foreachsets1 ∈ Set1 do2

foreachsets2 ∈ Set2 do3

if s1 ∩ s2 6= ∅ then4

CombAlphaPart ∪ = s1 ∩ s25

return CombAlphaPart6

Algorithm 7.4: Algorithm for constructing the coarsest alphabet partition such that equiva-
lent symbols in the input partitions are respected when possible.

There areS(n,m) ways to partitionn elements intom disjoint subsets, whereS(n,m) is a Stirling

number of the second kind [16], given as:

S(n,m) =
1

m!

m
∑

i=0

(−1)i
(

m

i

)

(m− i)n

Note thatS(n,m) is bounded above bymn/m!. We found no criterion for easily determining the optimal

partition and instead focused on heuristic techniques. We instead devised and evaluated two heuristics for

partitioning the states intom subsets.

First, a “bottom-up” approach starts with the partition produced by Algorithm 7.2 and combines subsets

until the total number of subsets is reduced tom. The combination routine iteratively combines subsets two

at a time, selecting at each iteration the two subsets that yield the smallest increase in total memory usage.

Algorithm 7.3 depicts this process.

The bottom-up algorithm computes a partition of size at mostm of the set of states constructed from

the larger optimal partition computed by Algorithm 7.2. As long as the partition is too large (i.e., there are

more thanm subsets), the algorithm greedily picks the two subsets thatcan be combined with the smal-

lest amount of increase in the total memory usage and combines them. Central to the operation of the

bottom-up algorithm is theCombine function, shown in Algorithm 7.4, which combines two alphabet par-

titions such that the combined partition is as coarse as possible while simultaneously respecting the symbol

distinctions of the input partitions. For example, for two alphabet partitions{{a, b, c, d, e}, {f, g, h}} and

{{a, b, c}, {d, e, f}, {g, h}}, Algorithm 7.4 produces the partition{{a, b, c},{d, e},{f},{g, h}}. Combine

operates inO(|Σ|2) time.

Since the alphabet partition produced byCombine is at least as large as the largest of the two initial

alphabet partitions, combining the two subsets can increase (but never decrease) the sizes of the transition
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FastPartitionStates(StateSetStates, Int m):

CrtPartition = {}1

RemainingStates = States2

for i = 1 to m− 1 do3

StatesCovered =RemainingStates4

TargetSize = |RemainingStates|/25

Groups=SingleAlphabetPartition (StatesCovered)6

while |StatesCovered| > TargetSize do7

/* Choose the pair of groups distinguished between by the fewest states, discard the states, combine the
groups. */

StatesCut = StatesCovered8

for j = 0 to |Groups| − 1 do9

for k = j + 1 to |Groups| − 1 do10

Candidates = {}11

foreachstates ∈ StatesCovered do12

if s.next[Groups[j][0]] 6= s.next[Groups[k][0]] then13

Candidates ∪= {s}14

if |Candidates| < |StatesCut| then15

StatesCut = Candidates16

bestj = j17

bestk = k18

if |StatesCut| == |StatesCovered| then19

return CrtPartition ∪ {RemainingStates}20

NewGroup = Groups[bestj] ∪ Groups[bestk]21

Groups = Groups ∪ {NewGroup} - {Groups[bestj], Groups[bestk]}22

StatesCovered = StatesCovered - StatesCut23

CrtPartition ∪= {StatesCovered}24

RemainingStates = RemainingStates - StatesCovered25

return CrtPartition ∪ {RemainingStates}26

Algorithm 7.5: Fast top-down heuristic algorithm for partitioning a set of states intom
subsets such that when ACTs are computed separately for eachsubset, total memory usage
is low.

tables for the states in the two subsets. Taken together, theoverall complexity of Algorithms 7.3 and 7.4 is

O(n3|Σ|2). By storing the results of the computation on line 9, it is possible to reduce the running time to

O(n2 log(n)|Σ|2), at the cost of increasing the storage requirements toO(n2). While this algorithm is not

guaranteed to give us the best partition of sizem, our experiments for feasible values ofm yield memory

costs that are close to the optimum achievable without constraints on the number of ACTs.

Unfortunately, the bottom-up algorithm’s high running time is costly. We found that for large rule sets

typical of those found in signature matching, this algorithm was unacceptably slow (each run required over
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a day to complete) with results no better than those from the top-down approach described below. Thus, we

focus instead on the top-down approach presented below.

An alternative method to producing a partition withm subsets is to use a “top-down” approach that starts

with a single set and iteratively subdivides untilm subsets are produced. In Algorithm 7.5, we present such

a top-down approach that completes in onlyO(mn|Σ|3) time. At each step, the algorithm sets a target for

the size of the subset to remove (line 5: we found that settingthis target to half the remaining states works

well) and finds a subset that is large enough and has a small ACT. To do so it uses a greedy heuristic (lines

7-23) that starts with the set of all remaining states and removes states from the set until the desired size is

reached.

The greedy heuristic implemented by the loop between lines 7and 23 tries to find a large set of states

with an ACT that results in small transition tables. Each iteration of the loop reduces the size of the

transition table by one by removing all states that distinguish between two groups of characters. To remove

the fewest possible states, the nested inner loops (lines 9 to 18) go through all pairs of groups of characters

and pick the two groups that can be combined by removing the fewest states. Note that if at each step of the

outermost loop we chose the smallest subset larger than the target size (as opposed to the largest below it),

the complexity of the algorithm would reduce toO(n|Σ|3). In practice the difference between the sizes of

the two sets is not significant, and the actual running times do not depend much onm since asm increases

the loop in lines 7 to 23 works with exponentially smaller sets of states and the processing requirements are

dominated by the cost of the first few iterations through the outermost loop.

7.2 ACTs with Other Techniques

Our evaluation shows that using multiple ACTs can provide significant reductions in memory usage

with little runtime cost. One of the benefits of ACTs is that itis not restricted to stand-alone operation and

can be incorporated with other methods to achieve additional savings. In this section, we present methods

for combining multiple ACT compression with other recentlyproposed techniques for DFA-based signature

matching. We first contrast ACTs with another approach, D2FAs [64], and follow this with a description of

a hybrid approach that combines both techniques. We then describe how to incorporate ACTs into DFA Set

Splitting [118] heuristics.
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Figure 7.4: Different kinds of transition redundancy in DFAs. ACTs can eliminate redundancy in
7.4a; D2FAs are best for eliminating that in 7.4b.

7.2.1 D2FAs

Kumar et al. proposed Delayed Input DFAs (D2FAs) [64] as another solution for compressing the

transition tables used by DFAs. Whereas alphabet compression exploits the fact that for a given state the

transitions for many input characters point to the same nextstate, D2FAs build on the fact that for a given

input character, many states transition to the same next state. Figure 7.4 illustrates the two distinct kinds

of redundancy in transitions. In Figure 7.4a, many symbols behave identically and can be compressed with

Alphabet Compression Tables. Conversely, in Figure 7.4b distinct symbols at many states lead to common

next-states. For example, in StatesS5 andS6 symbols ’e’, ’f’, and ’h’ each have common next-states with

regard to the symbol. This second kind of redundancy can be effectively addressed with D2FAs.

If two states have the same transitions for many characters as in Figure 7.4b, one can reduce memory

by storing for one of the states only the transitions that differ. Default transitions that consume no input link

states with elided transitions to states that contain the proper transition table entry. As shown in Figure 7.5,

if the transition table entry for the input symbol is not stored in the current state, the default transition points

to the state whose transition table should be consulted. Multiple states can have default transitions pointing

to the same state, and one may need to follow multiple defaulttransitions when processing a single input

character. Following chains of default transitions comes at a processing cost, so the maximum length of

default transition is given and fixed during construction.

Kumaret al. show that D2FAs lead to large reductions in memory usage, but there are two limitations

to consider when using D2FAs alone. First, memory savings achieved by D2FAs can vary widely among

different kinds of signatures. Figure 7.6 shows the signature.*\na[^\n]{50} (read as an arbitrary number
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Figure 7.5: For each state, D2FAs employ a default transi-
tion that is followed whenever its transition table contains no
entry for the current symbol.

of characters followed by a newline and ana followed by 50 non-newline characters) for which D2FAs

cannot achieve significant memory savings, but ACTs can. Such signatures are commonly used to detect

buffer overflow attacks. States 2 to 52 have very similar transition tables: for the newline character the next

state is 1, and for all others the next state is the state with the next number. Applying an ACT for these states

can reduce the size of their transition tables to 2, but D2FAs cannot produce significant memory reductions

since most of transitions are to distinct next states.

Second, software implementations of D2FAs can be slow. The original D2FA proposal is targeted to

custom hardware environments where content addressable memories can be used. Software implementa-

tions must use a hash table-like data structure to compress transition tables, but without careful design this

can result in unacceptable run-time and memory overheads resulting from computing hash functions and

handling collisions.

To adapt to software-based environments, we designed a solution that combines a bitmap and an array

to achieve good performance and low memory overhead. Each state has a bitmap as large as the alphabet

(256 bits or 8 words) to indicate whether the transition corresponding to a given input character is stored

or not, and an array to store the actual transitions. To determine the position of the transition in this array

during matching, we need to count the number of bits set to 1 inthe bitmap prior to the position of the

bit corresponding to the input character. For our signaturesets this solution uses between 0.1% and 148%

more memory compared to an idealized solution that has no memory overhead. Compared to an idealized
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Figure 7.6: A DFA recognizing the signature.*\na[ \̂n]{50} .

solution that performs array lookups instead of hashed lookups, the runtime is between 2.6 and 6 times

larger.

7.2.2 Hybrid D2FAs and ACTs

Since ACTs and D2FAs exploit different kinds of redundancy in DFA transitions, it is natural to ask

whether it is possible to combine them into a solution that benefits from the strengths of both approaches.

We evaluated a straightforward hybrid of the two methods that applies alphabet compression to D2FAs. We

perform D2FA compression to a DFA first, followed by multiple alphabet compression applied to the results

of the D2FA transformation. To adapt ACT construction algorithms toa D2FA data structure, we extend

the transition tables to include a “not handled here” symbolthat can be compressed along with symbols,

and we extend the default transition entry to also include the appropriate compression table reference. With

these extensions, we can directly apply our procedures for building the alphabet compression tables to

D2FA-compressed automata. Our experiments in Section 7.3 show that for some signature sets this hybrid

solution results in the most compact automata.

Performing a state lookup involves traversing the auxiliary structures inherent to both ACTs and D2FAs.

Figure 7.7 illustrates the state lookup process for the hybrid approach. As in Figure 7.3b, the entries in the

transition table indicate the next state and the ACT to use. Also, as with D2FAs, the algorithm may need to

follow multiple default transitions when processing an input character. In the example, the lookup process

begins with an input symbol value of 1, current compression table 1, and current state 1. The first step is

to perform a table lookup to apply the appropriate compression table. The resulting index value (index = 0)

is then used to look up the next state in transition table for State 1. Here, the transition has been removed

due to D2FA compression. Thus, the default transition for State 1 is consulted, which links to State 2 with

compression table 0. Continuing, we repeat the process: we map the original input symbol through ACT 0
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Figure 7.7: Depiction of the state lookup process when both multiple
ACTs and D2FAs are employed.

and then look up the resulting index value in State 2. In this state, the transition table contains an entry for

the symbol, yielding a next-state of 12 and a next-ACT of 0.

7.2.3 ACT-aware DFA Set Splitting

DFA Set Splitting [118] is an early technique devised to reduce the memory footprint of combined

DFAs. In this approach, an upper memory bound is specified, and signatures are partitioned into multiple

groups of DFAs (instead of a single DFA) such that the total memory usage is below the supplied threshold.

Increasing the threshold reduces the execution time, sincefewer combined DFAs need to be created to fit in

memory; decreasing the threshold has the opposite effect.

In principle it is easy for edge-compression techniques such as ACTs or D2FAs to be applied in conjunc-

tion with Set Splitting. Applying edge compression to each of the constructed DFAs is one simple way to

accomplish this. However, such independent interaction exposes sub-optimal memory and execution-time

behavior. The Set Splitting heuristics partition the set ofDFAs so that the overalluncompressedmemory

usage is within the supplied bound. But, edge compression reduces the effective memory footprint, so that

in practice the set of combined DFAs may be an order of magnitude or more below the memory thresh-

old. This excess memory could have been used toward producing fewer combined DFAs and reducing the

overall execution time.
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We propose a straightforward ACT-aware extension to Set Splitting that incorporates ACT-based edge

compression into the heuristic used for partitioning signatures. The Set Splitting heuristic partitions signa-

tures by measuring theinteractivitybetween individual signatures and greedily choosing thosesignatures

with the least interactivity. Signatures are then combineduntil a “fair share” of memory is used, at which

time the combined DFA is frozen and another partition is begun. We extend this process by measuring

the memory share with ACT compression applied; thus, the memory estimate used for constructing com-

bined DFAs reflects that in actual use. This process is time consuming, since ACT compression must be

re-applied at each intermediate stage. Nevertheless, as shown in Section 7.3, we are able to observe a

significant reduction in the number of combined DFAs produced.

7.3 Experimental Results

We performed a comparative evaluation using multiple signature sets to better understand the behavior

of ACTs in practice. We extracted regular expressions from the FTP, HTTP, and SMTP signatures from

the Snort and Cisco IPS rule sets and grouped them by protocol, collecting 1550 regular expressions in

total. In addition to the algorithms and techniques described in this chapter, we also implemented the DFA

Set Splitting algorithm [118] (termedmDFA here, for “Multiple DFA”) for combining a set of signatures

to a group of DFAs. Finally, our comparative evaluation of D2FAs was performed using the D2FA source

code obtained from its authors. Modifications discussed in Section 7.2.1 were built upon this as well. Test

results involving execution time were obtained using a 10GBtrace collected on the edge of a university

departmental network. All experiments were performed on a Linux workstation with a 3.0 GHz Pentium

IV processor and 3.4 GB of memory that was otherwise idle. We used cycle-accurate performance counters

to measure the number of cycles required by the matching operations.

7.3.1 Multiple Alphabet Compression Tables

The first set of experiments looks at the behavior of ACTs as the number of compression tables is in-

creased. For each of our rule sets, we combined a subset of theregular expressions and converted them to

a large, single DFA. We then repeatedly invoked Algorithm 7.5 with values ofm (the number of alphabet

compression tables) increasing from 0 to 8. Table 7.1 presents the memory requirements, execution time,
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Signature # of Memory Exec Time Trans.
Set ACTs (KB) cycles/byte per state

Cisco SMTP
0 630,669 46.3 256
1 231,573 50.6 94
8 165,234 48.8 67

Cisco HTTP
0 106,771 43.0 256
1 81,329 54.7 195
8 24,124 52.0 57

Cisco FTP
0 308,602 43.3 256
1 39,780 49.9 33
8 24,535 49.6 20

Snort SMTP
0 810,711 22.2 256
1 139,340 30.0 44
8 67,761 29.8 21

Snort HTTP
0 163,114 38.6 256
1 36,955 46.1 58
8 15,150 43.9 23

Snort FTP
0 1,386,340 35.5 256
1 167,877 43.6 31
8 93,815 42.9 17

Table 7.1: Measuring the cost of multiple compression tables. The biggest
reductions come after the first table is employed, but additional tables
yield further memory reductions.

and average transitions per state for 0, 1, and 8 compressiontables. Figure 7.8 presents the results graphi-

cally for all tested values ofm. For clarity of presentation, we show detailed results for only four of the six

data sets. The omitted data sets have similar behavior.

The casem = 0 is the combined DFA without any alphabet compression applied and serves as the

baseline for comparison. Consequently, the number of transitions per state is 256, the size of the alphabet.

As m is increased, the memory requirements (also counting the memory used by the compression tables

themselves) decreases. With 8 tables, the Cisco signature sets exhibit approximately a 4× reduction in

memory usage, whereas for the Snort signature sets a 12× to 15× reduction is observed. As Figures 7.8a

and 7.8b show, the memory usage experiences the largest decreases after the first alphabet compression

table is applied, but using multiple ACTs reduces memory requirements further.

ACTs do carry an increased execution cost, adding 5 to 10 cycles per byte to the execution time on

average. Fortunately, in Figure 7.8c we see that this cost isincurred only when the first alphabet compression

table is introduced; adding multiple ACTs does not incur significant additional run-time costs. Thus, even
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Figure 7.8: Effect of multiple ACTs on memory usage and matching execution time. Incorporating

ACTs induces an initial runtime cost, but subsequent increases in the number of tables is free.

though we observe diminishing returns in memory savings as the number of ACTs increases, the increased

savings come for free, essentially, after the initial cost of including compression tables has been paid. For

the remainder of the experiments, we usem = 8 ACTs.

7.3.2 ACTs, D2FAs and Uncompressed DFAs

Next, we compare ACTs to D2FAs, D2FAs + ACTs, and uncompressed DFAs. Combining all regular

expressions into a single DFA exceeds feasible memory limits, so we used set splitting [118] to produce
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Memory Num. Uncompressed multiple ACT D2FA mult. ACT+D2FA
Signature budget of Runtime Memory Runtime Memory Runtime Memory Runtime Memory

set (MB) DFAs (cyc/byte) (KB) increase decrease increase decrease increase decreas

Snort 16 15 266 9,667 1.84× 65.96× 12.70× 1.10× 4.24× 75.43×
SMTP 48 13 236 30,058 1.82× 70.66× 12.25× 1.04× 4.51× 73.66×

128 11 209 98,236 1.79× 17.26× 12.31× 2.20× 3.94× 28.52×
Snort 16 45 1,103 14,065 2.92× 6.74× 10.58× 2.83× 5.90× 15.17×
HTTP 48 28 651 23,693 1.62× 6.71× 9.98× 4.00× 5.33× 14.44×

128 23 543 73,988 1.59× 9.11× 9.60× 6.81× 3.78× 16.88×
Snort 16 18 434 11,127 1.56× 50.50× 9.47× 1.32× 3.36× 62.10×
FTP 48 14 374 37,920 1.45× 33.28× 9.23× 1.67× 3.02× 40.99×

128 4 131 94,288 1.35× 19.13× 8.76× 7.92× 2.97× 23.71×
Cisco 16 4 72 15,316 1.78× 3.92× 13.98× 15.04× 3.85× 6.03×
SMTP 48 3 57 40,367 1.72× 3.79× 14.22× 16.38× 3.98× 6.05×

128 3 57 110,063 1.72× 3.78× 14.34× 17.34× 3.86× 5.92×
Cisco 16 19 432 15,015 1.64× 3.81× 8.66× 11.03× 3.16× 6.42×
HTTP 48 12 282 43,389 1.62× 4.06× 8.76× 13.37× 3.12× 7.12×

128 9 220 116,352 1.64× 3.87× 8.98× 14.08× 3.11× 6.57×
Cisco 16 3 83 13,308 1.34× 16.41× 9.38× 15.43× 2.61× 31.56×
FTP 48 2 66 22,254 1.19× 16.97× 8.76× 16.92× 2.44× 33.95×

128 2 70 83,162 1.14× 16.09× 8.26× 19.29× 2.23× 42.86×

Table 7.2: Comparison of run times and memory usage for uncompressed DFAs, DFAs using
multiple ACTs, D2FAs, and D2FAs using multiple ACTs.

sets of combined DFAs that cover all the rules. For the construction, we supplied memory budgets ranging

from 4 MB to 128 MB.2 As shown in columns 2 and 3 of Table 7.2, smaller memory budgets result in

large numbers of DFAs to match. We use the termprotocol setto refer to the set of DFAs produced by the

algorithm for a given protocol and a given total memory setting. We then built a distinct set of eight alphabet

compression tables for each protocol set. Thus, for example, a rule set such as Snort SMTP combined

into six DFAs would contain eight ACTs that are shared among the six DFAs. Finally, we repeated the

construction process to produce D2FAs for each of the DFAs in the protocol sets.

We performed signature matching using protocol sets with uncompressed DFAs, DFAs with ACTs,

D2FAs, and D2FAs with ACTs, recording execution time and memory usage. Table 7.2 shows the results for

three memory settings: 16 MB, 48 MB, and 128 MB. Execution times are higher in these results principally

because we must repeat the matching procedure for each DFA ina protocol set. Note also that in some

cases (Cisco SMTP), increasing the amount of available memory does not decrease execution time. This

behavior is an artifact of the greedy algorithm [118] for building the protocol sets. In general, the table

shows that increasing total available memory reduces the number of DFAs in the protocol set, decreasing

execution time.

2Although 128 MB may seem rather small in relation to modern memory capacities, our tests are performed using
a single protocol. In reality, DFAs for many protocols must reside in memory simultaneously.
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Figure 7.9: Comparing memory usage (left) and performance (right) of ACTs to mDFAs, D2FAs,
and their combination, using Cisco rule sets.
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Figure 7.10: Comparing memory usage (left) and performance(right) of ACTs to mDFAs, D2FAs,
and their combination, using Snort rule sets.
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Compared to uncompressed DFAs (column 4 in Table 7.2), the table shows a sharp reduction in memory

costs when eight ACTs are employed (column 5). For 16 MB totalmemory, ACTs are between 66× smaller

(Snort SMTP) and 4× smaller. At 128 MB, DFAs with ACTs are between 19× and 4× smaller. As

expected, however, there is a slight increase in execution time: execution times with ACTs are typically

between 35% to 85% slower, the largest slowdown approaches afactor of 3×. Figure 7.9 (Cisco rules) and

Figure 7.10 (Snort rules) show the memory usage (top graph) and execution time (bottom graph) for all

supplied values of available memory for three signature sets.

D2FAs (column 6) exhibit wider variability in their performance and memory usage than ACTs. For

Cisco rule sets, our tests give an 11× to 17× reduction in memory usage. These results are generally

consistent with those reported in [64]. For the Snort signature sets, however, which were not included in

the original D2FA evaluation, the memory reduction is always less than a factor of 8 and often less than

a factor of 2. This is consistent with our observation that D2FAs are designed to optimize DFAs in which

certain symbols in the alphabet (almost) always go to the same state. This is not characteristic of the Snort

sets, and thus there is little opportunity for compression.

The hybrid algorithm that combines D2FAs and ACTs (rightmost column in Table 7.2) always achieves

low memory (often the lowest of all solutions), and run-times that are close to, but larger than those of ACTs.

ACTs are faster because the matching algorithm does not needto follow default transitions. Interestingly, in

one of the signature sets D2FAs use less memory than the hybrid approach. The reason is that after applying

ACTs to D2FAs, for a given state there may be multiple entries in the actual transition table storing the “not

handled here” symbol, resulting in higher memory usage thanD2FAs that do not store these entries.

Both execution time and memory usage are critical resourcesin signature matching and induce a space-

time trade-off. Figure 7.11 depicts a space-time comparison for all six of our test sets, directly showing

the trade-offs that occur between memory usage (the x-axis)and execution time (the y-axis). We have

truncated the axes in some sets to more clearly highlight thedata in the lower left-hand quadrant; this

does not influence the interpretation. Each point on the plotrefers to an observed total available memory

setting. Data points belonging to the same compression technique trace out a curve that shows the trade-offs

between execution time and memory for that technique. In thelimit, large memory yields fast execution,

and small memory requires large execution times. Entries toward the origin (the bottom left corner) require

reduced resources in space and time and are thus preferred.
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Figure 7.11: Comparing memory usage vs. run-time performance.
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Signature Mem # DFAs
Set Budget Sequential Act-Aware

Cisco SMTP
16 4 3
48 3 3
128 3 2

Cisco HTTP
16 19 9
48 12 7
128 9 6

Cisco FTP
16 3 2
48 2 2
128 2 2

Snort SMTP
16 15 7
48 13 7
128 11 5

Snort HTTP
16 45 38
48 28 31
128 23 17

Snort FTP
16 18 3
48 14 3
128 4 2

Table 7.3: ACT-Aware Set Splitting. When DFA Set Splitting is extended
to include alphabet compression, the number of resulting DFAs is reduced.

Most importantly, for all protocol sets ACTs provide the most favorable trade-offs between run time

and memory usage. Admittedly, it may be surprising that ACTscan be faster than uncompressed DFAs

despite the overhead of the compression table mapping. In reality, large available memory sizes (resulting

in bigger but fewer DFAs) combined with excellent ACT memoryreduction yields a memory footprint that

is smaller than for uncompressed DFAs, and the time savings obtained from executing fewer DFAs more

than compensates for the ACT overhead. Thus, a small number of highly compressed DFAs can be both

smaller and faster than other alternatives.

7.3.3 ACT-aware DFA Set Splitting

We briefly quantify the effects of extending DFA Set Splitting heuristics with alphabet compression ta-

bles. We extended DFA Set Splitting to measure the memory usage of multiple ACT-compressed combined

DFAs rather than uncompressed DFAs. By doing so, more signatures are grouped into fewer combined

DFAs. Table 7.3 shows the effects ACT-aware Set Splitting for different memory thresholds. Column 3

shows the number of DFAs required when Set Splitting and ACTsare applied sequentially and indepen-

dently. Here, the effective memory is significantly below the memory budget (ref. column 7 of Table 7.2).



151

Column 4 shows the number of DFAs required when Set Splittingis augmented with ACT-based memory

usage). In some cases, the reduction is dramatic. For example, at the 128MB threshold, the Snort SMTP

set requires just 5 DFAs, down from 11 using the unmodified algorithm.

The downside to this integrated approach is the construction time: alphabet compression must be per-

formed at each intermediate stage as well as at the end, and for our experiments this required several hours

of computation time per configuration. This cost may prove untenable in dynamic settings with frequently

added or updated signatures. Lightweight techniques for estimating the memory savings may reduce con-

struction time to more reasonable levels.

7.4 Conclusion

In this chapter we introduced multiple alphabet compression tables (ACTs) for reducing the memory

footprint of DFA-based signature matching. This techniqueuses heuristics to partition the states of a DFA,

computing a distinct ACT for each partition. Using MultipleACTs achieves increased memory reduction

over single ACTs with no additional runtime cost. We presentalgorithms for constructing multiple ACTs

and demonstrate their effectiveness using signatures found in Cisco IPS and Snort. ACTs are applicable in

software-only environments, although they may be easily included in hardware-based solutions.

Compared to uncompressed DFAs, multiple ACTs achieve memory savings of between a factor of 4

and a factor of 70 at the cost of an increase in run time that is typically between 35% and 85%. Compared

to D2FAs, multiple ACTs are between 2 and 3.5 times faster in software, and for some signature sets they

use less than one tenth of the memory. Overall, for all signature sets and compression methods evaluated,

ACTs offer the best memory versus run-time trade-offs.
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Chapter 8

Conclusion

Network intrusion detection operates in a difficult environment. Restrictive memory sizes and limited

processing capabilities coupled with increasing traffic loads, increasing numbers of signatures, and in-

creasing signature complexity exert constant pressure to do more work with comparatively fewer available

resources. Further, systems that fail to satisfy performance requirements are vulnerable to evasion.

Signature matching is at the heart of intrusion detection, with regular expressions the language of choice

for writing signatures. However, standard matching techniques such as NFAs and DFAs induce a time-

space tradeoff between the memory footprint and the execution time and are unsuitable for NIDS use. One

alternative is to employ approximation techniques that quickly identify benign traffic, retaining potentially

malicious traffic for more detailed analysis. But, this induces a type of tradeoff between accuracy and

execution time, where higher accuracy comes at the cost of longer execution.

The goal of this work has been to discover and properly characterize the principles behind these trade-

offs, and to develop richer matching mechanisms that eithereliminate the tradeoffs or make them more

manageable. This leads to signature matching mechanisms that are more amenable to the NIDS environ-

ment, that require fewer resources to operate, and that are more resilient to attack.

For DFA-based matching, we introduced the notion of ambiguity and showed that it is at the root of the

state-space explosion phenomenon and subsequent memory exhaustion that often occurs when DFAs are

combined. We then proposed the use of auxiliary state variables as a way to “factor out” the ambiguity in

DFAs. When auxiliary variables are properly employed, the state-space explosion still occurs, but the state-

space is structured so that the number of explicit automatonstates is bounded, and memory exhaustion is

avoided. From a DFA perspective, a slight decrease in matching performance yields a significant reduction

in memory usage.
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Similarly, as we demonstrated in Chapter 3 for the Snort NIDS, the divide between worst-case and

average-case signature matching performance can be bridged by using memoization and other techniques

that track intermediate state and avoid unnecessary computation. At the expense of a slight increase in

memory usage, we reduced the worst-case slowdown by four orders of magnitude, bringing the worst case

to within one order of magnitude of the average case, based onour measurements.

As these and other examples from our work illustrate, by accepting slightly degraded behavior in one

initially acceptable aspect of a time-space tradeoff (either time or space), we can obtain significantly im-

proved behavior from the other, formerly unacceptable, aspect. These results demonstrate that the tradeoffs

associated with intrusion detection are not immutable obstacles, but rather can be changed through appro-

priate research and engineering effort.

For this author, the results presented here have raised at least as many questions as they have answered.

For example, with regard to DFAs, ambiguity provides a sufficient criterion for assessing the behavior of

DFAs under combination. But, it is very strict, and more refined conditions may lead to a better character-

ization of state-space explosion, among other things. Regarding XFAs, auxiliary variables can be used to

eliminate ambiguity, but the practical limits on their use as ambiguity-removing mechanisms is not known.

Also, constructing XFAs from regular expressions requiressome human intervention; techniques that min-

imize or eliminate human involvement altogether would be useful. Finally, our work has focused almost

exclusively on regular expression-based signatures. It would be interesting to consider the use of more

expressive languages, such as context free or context sensitive languages, and the implications of their

matching models for network intrusion detection.
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