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ABSTRACT

A Network Intrusion Detection System (NIDS) resides at tHgesof a network and is tasked
with identifying and removing all occurrences of maliciauaffic traversing the network. At its
heart is a signature matching engine that compares eaclobiyteoming and outgoing traffic to
signatures representing known vulnerabilities or explaitd flags or drops traffic that matches a
signature.

Signature Matching is fundamentally a language recogmifimblem. Signatures are com-
monly represented as regular expressions, which can behethtsimultaneously by finite au-
tomata. Unfortunately, standard nondeterministic finiieoenata (NFAs) and deterministic finite
automata (DFASs) induce a space-time tradeoff when combamedare unsuitable for NIDS use.
NFAs are small and compact but too slow, whereas DFAs ardfastonsume too much memory.
Other alternatives such as filtering induce a tradeoff betwacccuracy and execution time.

We argue that the tradeoffs associated with signature nmgt@re not fundamental obstacles,
but instead result from limitations in existing models. Wasip that with richer, more complex
matching models, we can devise mechanisms that obviate thedeoffs and have acceptable
memory and performance profiles.

In an analysis of an existing NIDS, we show that the use oféiliteduces worst-case behavior
that is six orders of magnitude slower than the average aad&an be invoked by an adversary
to enable perpetual evasion. We present an enhanced matiegmacceptably small increase in

memory, that brings the worst case to within one order of ntage of the average case.
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Next, for DFA-based matching we present a first-principleasracterization of the state-space
explosion and subsequent memory exhaustion that occuns I@WRAs are combined, and we give
conditions that eliminate it when satisfied. We then show theough the careful inclusion of
auxiliary state variables, we can transform automata sdhleg satisfy these conditions and do not
lead to memory exhaustion. With this enriched model, weeghmatching speeds approaching
DFAs with memory footprints similar to NFAs.

A NIDS operates in a constrained, adversarial environm@&iis work makes contributions

towards enabling robust signature matching in such enmeots.



Chapter 1

Introduction

Network Intrusion Detection Systems (NIDS) have becoméaticomponents of modern net-
work infrastructure. Functionally, at the core of any NIDOfte resides a signature matching or
payload inspection engine that potentially compares elgtg of incoming and outgoing traffic
to signatures from a database containing known exploitsisuses. In practice, though, imple-
mentations must balance a number of conflicting demandswadiktspeeds, signature counts,
and signature processing requirements continue to inengetsare bounded by the limits of raw
processing speeds, relatively small memories, and the toeedintain wire-speed performance.
Failure to address these demands opens the door to evasionagncompromise the efficacy of a
NIDS.

This work concerns the development and analysis of teclesigund models for performing
regular expression-based payload inspection of streadatg such as network traffic. Network
intrusion detection provides the motivation and contextthe work, but the results are general
and may be applicable to other domains as well [76]. My thiedisat richer computation models

can help improve the capability, performance, scalabitityd robustness of payload inspection.

1.1 Network Intrusion Detection Systems

The use of a NIDS to protect network resources is in part afaerpf the continuing evolution
of the Internet away from its original intended use. Inljigihe Internet was designed for military
use with the overall objective of reliably interconnectiexsting but disparate networks together.

Within this overall objective, a ranked list of priority ad@sign goals [22] guided the development



of the architecture. Military use presumes hostile envinents, and the highest stated priority was
to maintain communication in the presence of lost hostks|inr entire networks [10]. Accounting
and management of resources, which includes addressingetheity of those resources, was
ranked lowest. The importance of and need for accountgbuis understood, but as Clark [22]
points out, “During wartime, one is less concerned with tietieaccounting of resources than with
... rapidly deploying them in an operational manner”.

Today, the Internet permeates many facets of society anthd@sme a key communications
conduit for activities ranging from banking and financiartsactions, to public utility and critical
infrastructure management, to recreation and entertaibhnkairther, it is arguably more common
for computing devices and networks to be connected to tlezriat in some way than not. Either
directly or indirectly, the Internet serves as a gatewaydosiderable assets, to private or sensi-
tive information, and to mechanisms that can be used to @pmranage, or disrupt these assets
and information. Thus, whether through intended maliceamident, there is significant risk to
the disruption of network communication or the unauthatiaecess of connected networks and
information.

Unfortunately, the overall Internet architecture stiliai@s the traits of its original design. With
the steady increase in both the frequency and sophisticafionalicious activity on the Internet,
support for security—including access control, authatitom, nonrepudiation, and integrity—has
significantly grown in importance. But, these capabilitas not intrinsic to the architecture and
effectively must be patched in. Of course, one approachns-tochitect the Internet to reflect the
change in priorities. The recently proposed Accountabteriret Protocol [5] among others, for
example, attempts to do just that by placing accounting aaeduntability, squarely as the highest
priority. Approaches such as these may eventually yield, fowt there are significant hurdles in
the way. The current Internet has become part of our infuatiire: the costs of “replacing” it are
high, the timescales are long, and proposals are still bgitdorth, evaluated, and refined. And,
if history is a guide, such changes are likely to occur inaatally. For the time being, it seems

that we must do our best with the current architecture.



In this environment, devices such as a NIDS have been dea@lopshoehorn security features
into network functionality. At a high level, a NIDS is essaily a filter. Simply put, its task is
to identify and discard malicious or unwanted traffic befeueh traffic reaches its intended tar-
get, without disrupting the flow of legitimate traffic. Redarg terminology, intrusion detection
focuses on identifying and flagging unwanted traffic, wheriggrusionpreventionadditionally
removes the traffic. From the perspective of this work, ttiteedince between detection and pre-
vention is simply a policy decision, though; we use the taemtrusion detection generally to refer

to both detection and prevention.

1.2 NIDS Requirements: Between a Rock and a Hard Place

Functionally, NIDS operation can be described very sudlyinpattern match all network traf-
fic against the signature database as it traverses the NHaSgport (or drop) matching payloads.
The operational requirements are daunting though, and &frmance needs continue to grow

at a faster pace than resource availability. Some of thereafor this are as follows:

1. Increase in signature counts.Despite recent focus on developing and maintaining secure
software, software continues to be produced with vulnéditeds, new vulnerabilities are dis-
covered in existing software, and novel attacks and exptmhtinue to appear. This trans-
lates to new signatures that must be written and added todttadase. Adding signatures is
unfortunately all too common an occurrence. Over a two yeaiod (from April 2005 to
April 2007), for example, the number of signatures in therSnde database [91] increased
almost three-fold, from 3,166 to 8,868. The direct consegads that larger numbers of

signatures must be matched against payloads, increagrgeti on the NIDS.

2. Increase in signature complexity.Intrusion detection is in many respects a cat-and-mouse
game. Network attacks continue to increase in complexitinaasion detection systems
evolve to respond to them. However, countering evasion§8,/88], mutation [56], and
other attack transformation techniques [92] requiresfadlyecrafted signatures that cover

large classes of attacks but still make fine enough distinstito eliminate false positive



matches. Signature languages have thus evolved from siexpleit-based signatures to
more complex session [93,102,117] and vulnerability-d4$@, 113] signatures, with higher

processing costs.

3. Increase in network speedsOrganizations are relying more and more on intrusion detec-
tion devices to protect their networks, even while netwqrkesds are increasing and NIDS
are being placed deeper into the network (toward the coraydvom the edges). Many
mid-size or larger networks are routinely run at 100 Mbps,dp& or even 10 Gbps. To be
effective, a NIDS must be able to inspect packets at linesragminst the signatures in the
database, regardless of the underlying network speedirB&d do so can lead to inadvertent
denial-of-service attacks if a NIDS must drop packets dugRb) resource exhaustibrRaw
processor speed increases are leveling; sising network speeds and traffic loads ultimately

result in fewer processor cycles per packet that can be dévtotmatching signatures.

4. Presence of an active adversaryWhen performance is a driving metric, as it is for a NIDS,
one frequently seeks to optimize the common case. In sgea#itsitive settings, however,
one must assume the presence of an active adversary seekiisgupt operation and induce
worst case behavior. The extent of the disruption is bouriethe difference between
the average and worst cases, but in some cases it is larggtetmbe used as a denial of
service attack or to enable evasion [29,99]. In such an adveat environment, a NIDS must

perform packet inspection under the assumption that thetvaases the average case.

It is fair to say that a NIDS resides between a rock and a hackeplAttacks and exploits have
been growing in frequency and sophistication for many yaarscontinue to do so. Traffic loads
increase with rising network speeds and deployment of NIB\&ags in larger and larger networks.
On the other hand, raw processing speeds are leveling ofsigndtures require more processing

power to match. Evasion and denial of service are two of tlee-present consequences of failing

L Alternatively, for intrusiondetection lapses may occur in which malicious packets enter the mtudetected.
2Multicore processors can yield throughput gains, provisigificient parallelization can be extracted and synchro-
nization costs are small.



to satisfy these constraints. To remain effective undehslemanding circumstances, a NIDS

must combine sufficiently expressive signature languagtseificient matching techniques.

1.3 Payload Inspection, the heart of a NIDS

Intrusion detection is a multi-layered process involvingnytasks. A NIDS resides in-network,
but it must identify exploits and intrusions targeted at-@odts. Thus, a NIDS must emulate the
network-level behavior of the hosts it is protecting so tihaan detect exploits as reconstructed
by the protocol stack in the host. This behavior includessembling streams of data from (po-
tentially) out-of-order, fragmented packets, performtreditional header-based packet classific-
ation [46,107,110], and normalizing alternative trafficedings such as in HTTP URLs [38,90].

Despite all this work, these tasks are just precursors t@theal process of matching signa-
tures. In the lowest layer, at the heart, there resides inNIBS a pattern matching engine that
potentially compares every byte of incoming and outgoirdfitr to signatures from a database
containing known exploits or misuses. This process is galyereferred to asignature match-
ing, deep packet inspectipor payload inspectioh Payload inspection directly bears the weight
of the conflicting demands described in the previous sectiahis the most processing-intensive
component of intrusion detection. Measurements on deglsystems have shown [18] that pay-
load inspection alone accounts for up to 75% of the total ggsing time; our own experiments
are consistent with these results. Ideally, we would like time-complexity of DFAs and the
space-complexity of NFAs.

NIDS performance is limited to the speed at which networkir@an be matched against sig-
natures. Thus, thlanguageused to express sighatures and, correspondingly, the ttatduses
and procedures used to represent and match input to strinfygi language have a tremendous
impact on performance. To keep up with line speeds, sigeatoir portions thereof must be com-
bined and matched simultaneously in a single pass over plg. iBtring-based signatures, initially
popular, have fast multi-pattern matching procedures(a] but limited expressivity. Modern sig-

natures commonly use the full capabilities of regular egpi@ns, which are highly expressive yet

3We use all three terms interchangeably in this work.



compact. From the perspective of matching procedures)aegupressions are typically imple-
mented as either deterministic finite automata (DFAS) odederministic finite automata (NFAS).
Like strings, DFAs are fast—requiring only a single tableKop per input symbol-and can be
readily combined into a single automaton that recognizesutiion of the component languages.
However, DFAs often interact poorly when combined, yiegdancomposite DFA that is typically
much larger than the sum of the sizes of the DFAs for individignatures and often significantly
exceeds available memory. Our own experiments in Chapteo® shat DFAs corresponding to
actual NIDS signatures require several gigabytes of memory

At the other extreme, combined NFAs have a small memory fodtgout their matching time
can be large. Because they are nondeterministic, NFA imgeations must use some strategy
for exploring possible state sequences while searching foatch. A “depth-first search” imple-
mentation requires backtracking over many possible n@mdehistic paths when searching for an
accepting path. On the other hand, a “breadth-first seanabitia backtracking but must simulta-
neously maintain and update a distinct pointer for eachiplesgath in each component signature.
For ever-expanding signature databases used in intrugtactibn, these costs are not amenable
to real-time inspection.

A payload inspection engine must be both compact and fasigpast NIDS requirements.
But, DFAs and NFAs induce a trade-off requiring either largatching times or large memory

usage, both of which are unsuitable for high-speed netwavk@ments.

1.4 Thesis and Contributions

This work concerns the development and analysis of teclesigund models for performing
regular expression-based payload inspection of streadadtaysuch as network traffic. The genesis
of this work stems from the observation that in many cases tithe-space tradeoffs associated
with signature matching are not the result of fundamentataties, but rather the consequences
of limitations in existing models. We posit that with theroduction of richer, more complex
models for signature matching, we can construct algoritantsdata structures that bridge the gap

between the tradeoff points and provide acceptable memmthyparformance characteristics.



For example, the disparity between worst-case and averageperformance for some NIDS,
while demonstrably large, can be reduced to manageablés lbyeusing memoization in some
cases to avoid unnecessary computation at the expenseyd shght increase in memory usage.
As another example, through the careful inclusion and mdatpn of simple auxiliary state vari-
ables, we can devise automata-based matching mechaniatrevtid the time-inefficiencies of
NFAs and the memory-inefficiencies of DFAs. From the DFA peddive, a slight decrease in
matching performance yields a dramatic reduction in the orgrfootprint. These examples illus-
trate that by tolerating slightly degraded behavior on dde sf the tradeoff (time or space), we
can obtain significantly improved behavior on the other silfanipulation and management of
these tradeoffs is a fundamental theme of this work.

In evaluating this thesis, we perform detailed analysesxdtiag NIDS to guide our work
and give insight into the practical constraints of payloasbection. In the process, we discover
new attack techniques and threats targeted directly at SNti2If. We formally characterize the
state-space explosion that occurs when DFAs are combimedwea propose and evaluate novel
models that naturally extend DFAs yet avoid the memory comion associated with state-space
explosion. Finally, we develop novel methods for perforgnédge compression on automata to
further reduce memory usage.

Ultimately, our goal is to develop the theory, models, anglbathms for making regular
expression-based multi-pattern matching of streaming gaactical at high speeds. However,
this work is not the last word on this subject; rather, it ipld that these contributions will lay the
groundwork and prove useful to further research in autorbated inspection.

We briefly describe our contributions in the sections belod present them in detail in suc-

ceeding chapters.

1.4.1 Threat Models Against a NIDS

The purpose of a NIDS is to detect malicious or unauthoriotiglity present in network traffic,

but as a network-attached device it is itself a potentiajear Successfully attacking a NIDS



enables evasion by allowing malicious or restricted datpass through the NIDS and enter or
leave the network undetected.

We explore NIDS evasion through the use of a denial-of-sermechanism known as an algo-
rithmic complexity attack [29]. Given an algorithm whoseraiscase performance is significantly
worse than its average-case performance, an algorithmplexity attack occurs when an attacker
is able to trigger worst-case or near worst-case behaviea ffaffic streams are involved in such
attacks. The first is the unauthorized or malicious paylsadh as an attack, that needs to traverse
the NIDS without being detected. The second is aimed squateéhe NIDS and serves as a cover
by slowing it down so that incoming packets (including theetattack) are able to slip through
undetected. Evasion is most successful when the true ateeks the network, and neither it nor
the second attack is detected by the NIDS.

We present an algorithmic complexity attack that exploitgst-case signature matching be-
havior in the Snort NIDS. By carefully constructing packetyjmads and sending them into the
network, our attack forces the signature matcher to repgabacktrack during inspection, yield-
ing packet processing rates that are up to 1.5 million tin@ses than average. We term this type
of algorithmic complexity attack dacktracking attack Our experiments show that hundreds of
intrusions can successfully enter the network undeteateidglthe 5-minute course of the attack.
Further, a single attack packet sent once every three sedsrehough to perpetually disable a
NIDS.

We follow with a countermeasure that uses memoization te stdermediate state that must
otherwise be recomputed. This defense against the bakkigpattack relies on the use of better
algorithms that reduce the disparity between average amstwase without changing function-
ality. Empirical results show that this solution confines ffrocessing times of attack packets to
within one order of magnitude of benign packets. We notedhthbugh the countermeasure does
not eliminate the disparity between average and worst;tasignificantly reduces the magnitude
and practical potency of the attack.

This work had immediate practical value to those using thBSemployed in our analysis.

But, the long-term value is both more subtle and more insitreic First, it shows explicitly the



danger of relying on average-case performance in advatsmvironments. Second, the solution
we propose solves this particular problem, but it is not seagly generalizable to other matching
architectures. Nevertheless, it highlights the inadeguwdstandard mechanisms for multi-pattern

signature matching, which insights lead directly to thetrm@ntribution.

1.4.2 DFA State Explosion and Extended Finite Automata

As stated earlier, DFAs have a fast matching procedure amdbeaasily combined, but DFA
combination often leads to an untenable explosion in thie-sgace which can easily exhaust
available memory. In some cases, the combined DFA state spaxponential in the sizes of the
source DFAs. We examine this phenomenon in detail and peopeshanisms for obviating it.
This work is divided into three parts.

First, we present a first-principles characterization afestspace explosion. We describe, for-
mally, why it occurs and give ideal conditions that elimm#twhen satisfied. We introduce the
notion of ambiguityfor DFAs, distinct from non-determinism, that capturessthneonditions and
show how violation of this property leads directly to stafgace explosion. We then illustrate how
auxiliary state variables can be used to “factor out” the ponents of automata that lead to am-
biguity. When these components are removed, automata ciedde combined without any state
explosion. Intuitively, appropriately including auxifiavariables changes the shape of automata
and restructures the state space so that computation stateecmaintained more efficiently than
by using explicit DFA states alone.

Second, we introduce a formal model, ternmtedended Finite Automata (XFAghat extends
the standard DFA model with (first) a finite set of auxiliaryigdles and (second) explicit instruc-
tions attached to states for updating these variables. Xiem&on from DFAs is natural: a DFA
is simply an XFA with no added auxiliary variables. Variableannot affect state transitions, but
they can influence acceptance. This model provides a forraaidwork for associating auxil-
iary variables to automata. The model is fully determigistnd yields combination and matching
algorithms that are straightforward extensions to thos®feAs. We present algorithms for con-

structing XFAs, combining XFAs, and matching XFAs to input.
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Third, and finally, a primary advantage of this model is thatlows for systematic analysis and
optimization. When many individual XFAs are combined, tesulting automaton accumulates all
the individual variables and may replicate instructionsoas many states. Even when no state-
explosion occurs, this can lead to large per-flow state andgssing times. Taking inspiration
from common principles used in optimizing compilers [74]e Wevise optimization techniques
for systematically reducing both the number of instrucsi@md the number of variables. These
techniques include exploiting runtime information and @, coalescing independent variables,
and performing code motion and instruction merging.

In summary, Extended Finite Automata provide a model foibéing transformations that re-
move ambiguity from DFAs. In this model, individual XFAs che combined together, and the
combined XFA can be pattern matched at (fast) speeds agpngathose of DFAs while at the

same time retaining (small) memory footprints similar togl of NFAs.

1.4.3 Edge Compression

XFAs provide a framework for eliminating DFA state explasihen individual automata are
combined. Nevertheless, individual automata states hdsega memory footprint themselves.
Specifically, each state in an automaton contains a trangiéible that holds the next-state tran-
sition for each possible input symbol. For example, a orte-lyide input alphabet has6 in-
put symbols. Using 4-byte state identifiers, a single ttasitable require256 symbols x 4
bytes/symbol totaling, 024 bytes of memory. A 2-byte wide input symbol can double theamat
ing rate in principle, but the transition table grows in si@a@62, 144 bytes of memory per state.

Many have observed that transition tables contain redundésrmation that can be removed
through compression [1, 30, 55, 64, 84]. When entries in @sttion table contain the same next-
state identifier, those entries can be replaced by a sdefbulttransition that is followed for each
removed symbol. Alternatively, some input symbols indute $ame next-state transition in the
transition tables at every state. These input symbols farracaivalence class, and there may be

several classes of equivalent symbols. To reduce tranddible size, symbols in an equivalence
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class can be replaced by a single designated symbol in thsd elind indexed during matching
using analphabet compression table

Single alphabet compression tables for DFA state commessve been used extensively in
compiler-writing tools such as LEX and YACC [2, 55, 84] and/édeen recently explored in the
signature matching context as well [13]. We refine this tégqiv by introducingnultiplealphabet
compression tables, built from the observation that many skeinput symbols have equivalent
behavior for large numbers of states, but not necessallilgtales. We develop heuristics for
partitioning the set of states in an automaton and creatngpcession tables for each subset in a
way that yields further reductions in memory usage.

Using compression tables does require more processing simee the per-byte cost now in-
cludes lookups into these tables. However, experiments shat once the overhead of the first
compression table has been paid for, inclusion of additioampression tables comes at no ad-
ditional runtime cost. We conduct further experiments carg the performance and memory
usage of multiple alphabet compression to default-traomsitompression and to the combined
compression scheme, and we show how to integrate alphabgiression and default-transition

compression so that both are employed simultaneously.

1.5 Dissertation Organization

This dissertation is structured as follows. In Chapter 2 wevey prior work performed and
provide general background and context to properly franreoaun work. We give a brief history
of intrusion detection, describe threats against a NIDSmeacdhanisms that circumvent them, and
discuss proposed languages and models for performingtsign@aatching at wire speeds.

In Chapter 3 we present the Backtracking Algorithmic ComipjeAttack, highlighted in Sec-
tion 1.4.1 as our first contribution. We provide details af tnort architecture to which it applies,
we describe mechanisms for crafting the attack input, angresent the memoization-based tech-
nique for countering the attack. For both the attack and #ferdse mechanism, we report mea-

surement results obtained from live experiments in a cdleticetting.
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In Chapters 4, 5, and 6 we present the Extended Finite Aueomatlel for matching regular
expressions, our second major contribution. Chapter 4dmenal matching semantics for regular
expressions in the signature matching environment. Ch&gteuses on the formal underpinnings
including state space explosion and matching models, wkeZdapter 6 contains algorithms for
manipulating XFAs, including construction, combinatiomatching, and optimization.

We present our third major contribution, multiple Alphakstmpression, in Chapter 7. Finally,

Chapter 8 concludes.
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Chapter 2

Background and Related Work

In this chapter, we review previous work to give context aragirfe our own work. We begin in
Section 2.1 with a brief history of intrusion detection, amel informally characterize and contrast
the many facets of general intrusion detection.

Intrusion detection systems are themselves subject tokatta Section 2.2 we survey general
threats against a NIDS and describe work performed to dedtegliminate the threats altogether.
These threats include, in part, exploiting inherent amitiggiand triggering algorithmic complex-
ity attacks. Finally, in Section 2.3 we survey work perfodrteward enabling efficient signature

matching in a NIDS and contrast it with our own.

2.1 Intrusion Detection

In its most general sense, intrusion detection refers t@ptbeess of detecting unauthorized or
malicious activity on any computing resource. Early workaattomated intrusion detection can be
traced back to almost 30 years prior to the time of this wgitis4, 57]. In a 1980 report, Ander-
son [6] proposed using programs to automatically inspedit éngs that identify and track misuses
and other anomalous behavior. Beginning in 1983 and spgrsewveral years, Denning [31] devel-
oped an intrusion detection model intended to be “indepetmfeany particular...type of intrusion”
and therefore suitable as the basis for a general-purpdsesion Detection Expert System, or
IDES, as it was termed at the time. Other products becam&ahiaialthough most were directed
toward finding intrusions on individual hosts. The year 18%&rked the introduction of tools ex-

plicitly targeted toward network intrusion detection perhed on local area networks [49], and
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increased commercial and government interest in intrudetection technology soon followed.
Since then, intrusion detection has grown to the point thet mow a ubiquitous component of
modern computer and network systems [73, 115].

Intrusion detection systems can be characterized alongy @ees. We briefly consider two:
host vs. network intrusion, and anomaly vs. misuse detect®d host-based IDS [42] resides
directly on an individual host and monitors system processgl memory usage for the presence
of malicious behavior. Exploit-based systems identifycsjoe known intrusions such as buffer
overflows, heap overflows, format string attacks, and sdhfoiModel-based systems construct
models of specific process behavior (such as typical systédirmerjuences) and look for deviations
from that behavior. A network IDS, on the other hand, resimlesetwork and monitors traffic
to and from many hosts. Network-based and host-based systerme complementary roles: a
host-based system constructs detailed knowledge aboaehti®nment and behavior of a specific
computer system, but it imposes monitoring overhead andd&sowledge of activity outside the
machine itself. On the other hand, a network-based systamluserve the activity of many hosts
on a network, but its knowledge of any specific host is limiéed often incomplete.

Looking at the other axis, anomaly detection relies onstiatl techniques for performing in-
trusion detection. These systems construct a baselinelmbaermal behavior against which cur-
rent behavior is compared. Significant deviations from tloelet are flagged as intrusions. Several
techniques have been proposed for finding deviations, us&tgods such as maximum entropy es-
timation [45], dimensionality reduction through prin@gomponents analysis [66], wavelet-based
signal analysis [11], and sketch-based change detectigntfoname a few. Misuse detection, on
the other hand, compares traffic to instances of specificsasuMisuses are characterized by
specific signatures, expressed as strings or regular esipres that are all compared to traffic as
it passes through the detector. Traffic that does not matghmasuse signatures is benign by
definition. There are many commercial NIDS offerings alonthypopular open-source systems
including Bro [85] and Snort [91].

As with host- and network-intrusion detection, anomaly amiduse detection are likewise

complementary. Anomaly detectors can find new attacks amsbeb of intrusions, but the false



15

positive rate is high. Significant changes in the nature efttaffic may need to be observed
before a deviation is identified. Misuse detectors perfosry\detailed analysis of traffic, but

detection is limited to the known signatures in their das&hahey cannot detect novel attacks
without updated signatures. Recent work has investigaigthiques for automating the signature
construction process. Proposals such as EarlyBird [98]pgnaph [58], and Polygraph [79] can

be interpreted as techniques that in part bridge anomakcteh and misuse detection by first
identifying anomalies and then automatically construgtimsuse signatures from them.

The focus of this dissertation is misuse network intrusietedtion. In particular, our work
focuses specifically on the mechanisms for matching sigestio traffic at line rates. Neverthe-
less, our techniques may have value in other domains inmpligh-speed matching of streaming
data [76].

2.2 Threats Against a NIDS
2.2.1 Adversarial Environments and Ambiguity

A NIDS operates in an adversarial environment; to be effectt must be robust to adversarial
activity designed to foil or bypass detection. However,iegng such resilience continues to be
an elusive goal. In early foundational work, Ptacek and News [88] outline inherent difficul-
ties with network intrusion detection and describe threeegal categories of attacks: insertion,
evasion, and denial of service. Amsertionattack inserts data into the stream that the NIDS pro-
cesses but an end host discards. Converselgyvasionattack carries data that bypasses a NIDS
but reaches the intended target. Both of these attacks neyrbiguities or subtleties in network
protocol specifications and subsequent differences indmphtation to succeed. For instance, an
attacker can send a packet whose Time-To-Live (TTL) fieldeisse that the packet reaches the
NIDS but expires and is dropped before arriving at the dasitn. Failing to recognize the short
TTL at the NIDS leads directly to an insertion attack oppoitty Finally, denial of servicattacks
are resource consumption attacks that exhaust memorygssing cycles, or network bandwidth
to defeat the NIDS. Many techniques have been proposed tesgithese problems; each of them

has limitations.
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One approach to removing ambiguities is to introduceoamalizer[47, 71] that intercepts
traffic and transforms it to a canonical form before undangdNIDS analysis and entry into the
network. Handleyt al.[47] introduce a normalizer that identifies incorrect or aguious elements
in IP, TCP, and UDP protocol headers and either correctsrtbe @ drops the packet. Normaliza-
tion may lead to a change in end-to-end semantics; Haradlal consider this issue and describe
other trade-offs involved in normalization. Rulabal. [94] explore normalization of application
layer data in packet payloads and propose a combined naatiah and matching mechanism for
HTTP traffic.

Ideally, a NIDS should faithfully emulate the relevant babaof all hosts on the network so
that its interpretation of traffic matches the hosts’ intetation. Unfortunately, some ambiguities
cannot be resolved by a normalizer and stem from implementdifferences in the hosts them-
selves both at the protocol level and the application |e9@) 96]. In this case, adopting a specific
normalization policy provides protection to only some df tiosts on the network. To address this,
Shankar and Paxson [96] propose using a database of hos¢giofiwhich a NIDS can query the
key traits of a host to resolve ambiguities and properly eteuthe relevant host during matching.
Active Mapping provides a sort of context-sensitivity to EDI$; the authors argue that some form
of context-sensitivity is required to resolve per-host &julhies.

Finally, to examine protocols such as HTTP, a NIDS must erabte application-level streams
from distinct, out-of-order, possibly duplicated packeStream Reassemblgs the process is
called, is also a source of ambiguity and can lead to evasidrdanial of service. For instance,
packets with identical sequence numbers and other strefammiation can contain distinct pay-
loads. Only the destination end-host knows which fragmehtos accepted; evasion is possible
when the NIDS incorrectly guesses which fragment the entlwitlsaccept. Dharmapurikar and
Paxson [33] examine the issues with stream reassemblyaii,d#tow how adversaries can disrupt
operation, and characterize the damage they can causedé&helpp hardware-based mechanisms
that are resilient to adversaries, and use techniques sugaeeful degradation when under attack.
Even so, they observe that the effects of an adversary caiways be removed, and in some cases

must be tolerated.
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2.2.2 Algorithmic Complexity Attacks

Denial of Service attacks targeting a NIDS can also distptdetection process. One way to
achieve denial of service is to exhaust resources such aaldeanemory and processing cycles on
the NIDS. For instance, to perform stream reassembly a NIDSt maintain connection state for
each individual data stream. Dregaral. [35] report experimental results showing that up to 4,000
new connections are created per second on a moderatelyratg®rk of (presumably) benign
traffic, and that the number of connections tends to grow tivex and can quickly exhaust memory
without some form of management. An attacker who estaldigied never closes) several streams
can induce memory exhaustion by forcing the creation of €sige connection state [33, 88].

Denial of service can also be induced by triggeradgorithmic complexity attackswvhich
occur when an attacker is able to induce worst-case behavian algorithm whose worst-case
is significantly beyond its average case. These attack®iexorly designed and implemented
algorithms rather than program correctness flaws or amtyigliypically, an attacker induces these
attacks by crafting input to invoke the worst case, possiblr several iterations of the algorithm.
Crosby and Wallach [29] demonstrate the efficacy of algorithcomplexity attacks by exploiting
weaknesses in hash function implementations to effegtitteh randomized)(1) lookups into
O(n) linear scans. Using this technique, they reduce the packeepsing rate of the Bro NIDS
[85] from 1200 packets per second to only 24 packets per skdarpreliminary follow-on work
they illustrate how to achieve slowdown attacks againgtleegexpression matching engines [28].

In Chapter 3 we describe a variant termed the backtrackiggrighmic complexity attack.
Through careful construction of attack payloads, our &tfacces the signature matching compo-
nent of the popular Snort NIDS [91] to repeatedly backtraoélding processing rates that are up
to 1.5 million times slower than average. In live, contrdliexperiments, we use this attack as a
cover to successfully and perpetually evade detectiontarattacks.

The strength of these attacks draws on the difference betexsgage- and worst- case behavior
of algorithms. In principle, this class of attacks can benelated by avoiding algorithms with
large performance gaps, or by designing explicitly for thest-case. But in practice, worst-case

performance of existing algorithms is often unacceptadniel, one common approach is to employ
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architectures with fast, approximate techniques backesldwyer, more involved algorithms [34,
63, 94]. For example, Dreget al. [35] proposes an adaptive filtering technique to dynamycall
adjust for load changes. Snort [91], on the other hand, wesspsesices of successively more refined
matching predicates to reduce average-case execution tinie precisely this architecture that
opens the door to algorithmic complexity attacks.

Other techniques have been proposed to address the penfcenmaguirements of intrusion
detection. Leeet al. [67] dynamically divide the workload among multiple modslenaking ad-
justments as necessary to maintain performance. Load stieddperformed as necessary to dis-
tribute the load to different modules, or to lower its prigriAlternatively, Kruegekt al.[62] have
proposed achieving high speed intrusion detection byidiging the load across several sensors,
using a scatterer to distribute the load and slicers andsegalslers to provide stateful detection.
Still other approaches seek to provide better performagaplitting up (and possibly replicating)
a sensor onto multiple cores or processors [26,111]. Thegmaches show that allocating more
hardware can better protect large networks with large ansoohtraffic, but they do not directly
address worst-case complexity attacks.

Both [67] and [85] propose the use of monitors to track thewese usage and performance
history of a NIDS. In [67], if a monitor discovers abnormalbng processing times, the current
operations are aborted and optionally transferred to admerity process. For [85], on the other
hand, the monitor simply triggers a restart of the NIDS. le ¢feneral case, such techniques may
provide a useful mechanism for ensuring guaranteed minirparformance rates at the cost of
decreased detection accuracy. However, such mechanisuls ire periodic lapses in detection
capability.

The backtracking algorithmic complexity attack arisesvirthe inadequacy of standard NFA-
based regular-expression matching techniques for imnudetection. DFA-based approaches have
constantO(1) complexity per byte and are thus immune to complexity agadiut they have
untenable memory requirements. In Chapters 5 and 6, we pedprtended Finite Automata as a

model for addressing these weaknesses.
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2.3 Signature Matching

Signature matching is at the heart of intrusion detectioth iarthe focus of this work. At a
high level, signature matching is simply a language redagnprocess in which input strings (the
payload) are tested for membership in the languages defindeelset of signatures. Two comple-
mentary facets of languages shape the behavior and chagtcseof signature matching mecha-
nisms: the language used for writing signatures, and themrsgg model used for identifying and
accepting elements of the language. Unfortunately, thesets also introduce conflicting trade-
offs; e.g, more expressive language models typically require moreptex and time-consuming
matching procedures. We briefly describe related work o lextets below and highlight some
of the tradeoffs involved.

We note that a related but distinct problem is the automattarsection problem: given a set
of DFAs D with common alphabet, does there exist a string € ¥ such that for eaclb € D,

x € L(D)? In other words, the problem is to discover whether the $stetion of the automata in
D recognizes more than the empty language. This problem &cgspomplete [41]. In contrast,
for signature matching, the stringis supplied as input and the problem is to efficiently find vahic

automata irD accept the prefixes af.

2.3.1 Signature Languages

Languages for expressing signatures have grown in conyplasiattacks and evasion attempts
have become more sophisticated. Simpler languages aresfimient to match, but have limited

expressive power. Complex languages are more expressiveabe a longer matching procedure.

2.3.1.1 Exploits and String-based Signatures

String-based signatures were initially popular for intamsdetection and still find some use
today, most notably as fast pre-filters that guard more cermpiatching mechanisms [82]. Such
signatures have two advantageous properties. First, tlieeyesy efficient. Common string match-

ing algorithms [14,59] use skiplists, suffix automata [#8]d other heuristics [72] to complete in
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linear time or less. For these algorithms, each byte of tlyopa is examined at most once, and
the per-byte cost is bounded and small.

Second, strings can be combined and matched simultaneouesiya single pass of the input
payload. In particular, the Aho-Corasick algorithm [1] guzes a concise automaton-like struc-
ture linear in the total size of the strings with a fixed warase performance bound that matches
all strings in a single pass. Other proposed multi-strindcimag techniques [25, 116] provide
different tradeoffs [114] between matching speed and mgmsage. Simultaneous multi-pattern
matching is crucial to NIDS performance, allowing the numbksignatures to grow over time
without affecting matching performance.

A number of improvements have been made to the basic stringhing paradigm, including
parametrized matching [7, 8], approximate matching [75fching with wildcards [3], and other
methods [24, 39]. These techniques seek to retain the bfisiercy of string matching while
increasing the expressivity of the underlying signatugisl other work has focused on improving
matching performance through the use of hardware [69, 18], &r through other algorithmic
means. For example, Tuek al.[109] apply path compression and bitmaps to eliminate soime o
the space costs inherent to the Aho-Corasick algorithmy Tégort memory requirements that are
reduced by a factor of 50 without any decrease in performance

Unfortunately, strings are fundamentally limited by thksick of expressivity. In adversarial
settings, many transformation techniques [32, 56, 90, 88tammonly employed to produce dis-
tinct variations in attack signatures; a string-basedaetevould need a distinct string for each of
these variations, which can easily number into the thousaAd a simple example, a case insen-
sitive version of “root” can be easily captured with the riegexpression ([Rr][O0][Oo][Tt]) but
requires 16 distinct strings using a string-based approdtius, requirements for signature lan-
guages have evolved from simple exploit-based paradigit®se that can succinctly characterize

classes of exploits, among other capabilities.
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2.3.1.2 \ulnerabilities and Regular Expressions

String-based signatures are effective for performinggratmatching in search of specific ex-
ploits, but they are not sufficient for expressing more gehpatterns or vulnerabilities. Due to
these limits, modern systems [20, 85, 91] have migratedrisvwacher models that provide greater
flexibility than strings. Currently, regular expressioris3] have become thde factostandard
for expressing signatures. Regular expressions arelgtnaire expressive than strings, but like
strings they can be succinctly expressed and combined atchathsimultaneously using au-
tomata. Indeed, Sommer and Paxson [102] argue that theasexleexpressivity of regular expres-
sions combined with their efficient matching procedureseir in input size) yields fundamental
improvements in signature matching capabilities.

One advantage of regular expressions is their ability to@hgéneral vulnerabilities, such as
a buffer overflow, as opposed to specific exploits that tattget/ulnerability. Brumleyet al. [17]
propose techniques for automatically constructing vidbéity-based signatures built from regu-
lar expressions. The principal advantages of this appraaethe elimination of human error in
signature construction and resilience to polymorphicckidaGiven a vulnerable application, input
that produces an exploit, and a runtime trace leading updceiploit, the approach constructs
a regular expression signature that in principle captulesxaloit variations. Our work is com-
plementary to theirs. We focus on signature and regularesgion matching, whereas they study
signature creation.

In the Shield approach [113], “vulnerability-specific, &ip-generic” filters are inserted into a
host’s network stack and executed on each packet that re#ohecripts. These filters determine
whether a packet’s contents satisfy a vulnerability caadiind blocks the packet or alerts the
user if an exploit is detected. For text-based protocolgl8luses regular expressions to express
vulnerabilities, although the full capabilities of thedils are more general.

Regular expression signatures are also used to providé@udimatching context. Sommer
and Paxson [102] propossntextual signatureswhich incorporate protocol event sequencing

(e.g, ordering of commands and responses) into string matchihg allows standard matching
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algorithms to be performed in the context of the protocgklevents that have been received. Ru-
bin et al.[93] extend this notion witlsession signaturesvhich model entire attack sequences from
connection initialization by the attacker to attack ackiemgment by the victim (to the attacker).
Yegneswaramet al.[117] introducesemantics-aware signaturésat incorporate session-level and
application-level protocol semantics into signaturescHeaf these techniques aims to reduce false
matches by providing a rich context in which to perform sigina matching.

All of the work discussed above in this subsection employgile expressions either as a
target for signature creation, or as the language used ferifig. In contrast, our work examined

the models used fanatchingregular expressions to input, regardless of their constmor use.

2.3.1.3 Other Languages

With regard to expressive power, regular expressions goergar to strings. Thus, it is nat-
ural to ask whether even more expressive mechanisms suabngextfree or context-sensitive
languages would provide even further benefit. For thesesetasf formal languages the answer is
in the affirmative, since they are both super-sets of redalaguages [53]. However, to the best
of our knowledge the practical consequences of employidgeri language models is not fully
understood with regard to the wire-speed performance reouénts of matching payloads.

As a case in point, automata corresponding to regular egigresignatures can be combined
and matched simultaneously with little (if any) increaseuntime cost, but this may not be practi-
cally feasible or even possible for matching mechanismsaremexpressive languages. For exam-
ple, both Bro [85] and Shield [113] define custom scriptinggaages for expressing signatures,
but it is not clear whether scripts in these or other langsageild be fully combined and executed
simultaneously as is done with finite automata. Furtherchmag procedures for more expressive
languages may impose untenable runtime costs. For exam@léiost intrusion detection context
(where runtime performance is important but not as stritigdroth Wagner and Dean [112] and
Giffin et al. [43] report that context-sensitive models were prohilitjvexpensive and unsuitable

for practical use.
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It would be interesting to further explore the suitabiliyricher language models for network-

based intrusion detection, but such exploration is beybadtope of this work.

2.3.2 Matching Models for Regular Expressions

Whereas the choice of signature language determines thesswe power of a signature
scheme, the matching model defines the runtime charaateristthe memory usage and per-
formance — associated with determining whether input géribelong in the language. In this
dissertation, our focus is on matching models for regul@ressions.

Matching models for regular expressions are based on finitenaata. It is well-known that
regular expressions and finite automata are inherentlyexed [53]. Specifically, a language
is regular if and only if it is accepted by a finite automator68]; Theorem 2.5.1). Thus, for a
regular expressio®, we can determine whether any input sequence is a membee tdriguage
L(R) defined byR by feeding it to a finite automatoh(R) corresponding ta?. If F'(R) accepts
the input, then the input is a member of the languagg). Signature matching is fundamentally
a language recognition problem, with the caveat that meshiy@in multiple languages must be
evaluated simultaneously.

Regular expressions are typically represented as eithed&terministic Finite Automata (NFAS)
or Deterministic Finite Automata (DFAS). Individual autata can be readily composed to form a
single composite automata (we give an algorithm in Secti8h #ut they often do not scale when
combined. As indicated in Chapter 1, NFAs can compactlyeggnt multiple signatures but may
require large amounts of matching time, since the matchpeyation needs to explore multiple
fruitless paths in the automaton. DFAs are fast, requirinly a single table lookup per input sym-
bol, but they exhibit polynomial or exponential growth iretbtate space when combined. Thus,
in their basic form, NFAs and DFAs as used in intrusion débvedie at opposite extremes from a
memory-performance perspective and are not suitable fir sipeed signature matching.

Using DFAs (for their speed) as a starting point, many teghes have been proposed to re-
duce the memory footprint of combined DFAs. Memory redutii® achieved in two ways: by

reducing the total number of automaton states, and by radubie footprint of individual states.
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Since the total memory footprint is a function of the numbgstates, reducing the number of
states yields the most significant reduction, and redud¢iaddotprint of individual states provides
second-order results. Nevertheless, both mechanismsdiliceénsome increase in the matching
time since additional computation is performed per byte.@&mine these costs in detail later in

this dissertation.

2.3.2.1 Reducing the Number of States

In early work, Yuet al. proposedDFA Set-Splitting118], a state reduction technique that
combines signatures into multiple DFAs (instead of a silifid) such that total memory usage is
below a supplied threshold. Regular expressions are higatlg selected for combination until the
resulting automaton exceeds its “fair share” of memory, laiciv time it becomes immutable and a
new combined automaton is begun. The process repeats lietipbaessions have been included.
Set-splitting controls state-space explosion by capgieg@mount of memory a group of DFAs can
consume when combined, at the cost of introducing additiDR&s to be matched. As a result,
set-splitting traces a curve between NFAs and DFAs in a spaeplot: as the memory threshold
is increased, the number of DFAs that must be simultaneauslghed shrinks, decreasing the
inspection time. The primary advantage of this techniquis isimplicity, although large signature
sets may require many DFAs to be matched in succession.

Becchi and Cadambi [12] propose State Merging, in whichrimittion about states themselves
is moved into edge labels in a way that allows states to be swdb The algorithm employs a
heuristic-driven iterative approach for selecting caatidstates to be merged. The authors report
total memory savings of up to an order of magnitude, but perémce results are not given. We
also reduce the number of DFA states, but our work seeks tauredte the cause of state-space
explosion in combined DFAs.

Lazyapproaches to DFA evaluation [44] can reduce the effectivabrer of DFA states, al-
though the overall total number remains the same. Beginaimyg with an NFA (compact but
slow) and a start state, lazy approaches dynamically bb#dOFA at runtime by constructing

transitions and states only as needed, as determined byghe Lazy construction draws on the



25

fact that although the state space is large, the workingfsasited orhot states is typically much
smaller. Although in its current form this technique wastfimoposed for XML Stream Processing,
recent work [70] has confirmed that working set sizes ardivelly small for intrusion detection
signatures as well. The cost, of course, is increased eradirne when new transitions and states
are constructed and exposure to algorithmic complexitgc#t. This approach is orthogonal to
our own and can be applied to any DFA-based matching scheme.

Auxiliary variables can be used to reduce the memory remergs of an automaton. This
approach, common to software verification [9,52] and motetking [23], associates one or more
variables with an automaton and uses them to track matchatg siore compactly than explicit
states alone can do. But, to the best of our knowledge, mabntiques for including these variables
are ad-hoc and not designed for high speed payload inspe@eveloped concurrently with our
own work, Kumaret al.[63] present heuristics that use flags and counters for rdreeng whether
portions of signatures have been seen. Like us, they uskaayxiariables for reducing the state
space, although there are some fundamental differenaes, thieir technique is heuristic and seeks
only to reduce the number of states, whereas we begin witmaeallaccharacterization of state space
explosion and then show how auxiliary variables can elit@ma Second, the interaction between
states, variables, and transitions is not formalized, argdnot clear how individual automata can

be combined and manipulated. We provide an extensible farmodel explicitly designed for this.

2.3.2.2 Reducing the Size of a State

The second way to reduce the overall memory size is to recheenemory footprint of indi-
vidual states, a process referred toeggle compressiorsince pointers for the transitions leading
out of a state constitute the bulk of a state’s footprintuedg the number of outbound point-
ers can reduce the size of a state significantly. Most edg@ssion techniques are variations
of two themes: default transitions, and alphabet comprassihese techniques trace their roots
back to automata compression techniques developed forit@mpiting tools such as LEX and
YACC [30,55, 84]. We briefly describe some of them here.
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A default transition replaces entries for multiple symbisa transition table with a single
entry that is followed whenever the removed symbols arerveseat the state. During matching,
the default transition is followed to its destination stiéte the current state there is no transition
table entry for the current input symbol. Depending on thestaction, it is possible that a single
input symbol may require traversing chains consisting ks default transitions before the
proper destination state is reached.

Johnson [55] introduced the use of default transitions f&Azompression during devel-
opment of the YACC parser generator. He used auxiliary araayd performed careful place-
ment of state identifiers to achieve compression. The popha-Corasick multi-pattern string
matcher [1] also employed default transitions extensjvedythat only transitions that made for-
ward progress toward matching some pattern were distineflyesented.

In an intrusion detection environment, one of the centralllehges with default transition
schemes is quickly determining whether the current inputtsyl is contained in the state, or
whether the default transition must be followed. Receitlynaret al.[64] proposed a hardware-
based technique, ZFFAs, with heuristics for construction that limit the maximuength of default
transition chains that must be followed. During matchirggyt use hardware-supported hashing
to quickly identify whether or not a default transition shaie followed at a given state. In
further work, the hardware dependency has been removeddwyrasg the availability of wide
pointers [65] into which transition information is encodedhd the construction heuristics have
been reformulated to reduce default transition chain lesfjirther [13]. Finally, Ficarat al.[37]
propose an enhancement that follows only one default tiansat the cost of continually copying
transition table entries on each input symbol.

Alphabet compression is complementary to default tramsstiand draws on the fact that some
input symbols induce the same behavior at all states in a BE&h input symbols form an equiva-
lence class, and all but one symbol from each equivalenss ckn be removed from the transition
tables of all states. During matching, an alphabet compes$able maps symbols to their respec-

tive equivalence classes. Our experiments with this teglenusing the Flex scanner have yielded
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memory reductions of up to 59 although the reduction comes at a high execution time cest i
volving multiple memory accesses that are not suitable fgihdspeed matching. Further, tools
like Flex perform matching using repeated invocations eflifrA and assume different semantics.
Recently, Becchi and Crowley have examined single alphet@ipression tables in the context
of intrusion detection [13]. In our work on edge compressiancontrast, we explore the use of
multiple alphabet compression tables that yield even &mthemory reductions without additional

runtime cost.

2.3.2.3 Hardware and Other Approaches

Many hardware approaches have been proposed to circunieetitrte-space tradeoff inherent
to DFA and NFA matching. Hardware-based solutions can |edicsd the processing required to
achieve high performance by processing many signaturearallpl rather than explicitly com-
bining them. Sidhu and Prasanna [97] provide a hardwareebB-A architecture that updates
the set of states in parallel during matching. Sourdis anelfatikatos [105] employ content-
addressable memories (CAMS) to increase the performamtteefuand Clark and Schimmel [21]
present optimization techniques (such as examining nielbgtes per clock cycle) and achieve
regular expression matching at rates of up to 25 Gbps. Bredat. [15] also employ multi-byte
transitions and apply compression techniques to reducentraory requirements. These tech-
niques show promise for high performance matching. Howeaeplication of NFAs introduces
scalability issues as resource limits are reached (Clack@shimmel are able to fit only 1500
signatures on their prototype). In addition, hardware mémphes in general lack the flexibility for
evolving signature sets that is implicit to intrusion deiae, and they restrict applicability to those
instances where the hardware cost can be justified and custatiware support is available. In
general, our focus on mechanisms for signature matchirthereiequires nor precludes the use
of custom hardware. Our work focuses on the inherent spatglexity of combining automata
and mechanisms for avoiding the space costs, independéné adérget architecture. In our ex-
periments, we assume only a generic computing platformisting of a modern general purpose

processor with a standard amount of memaryg( a 3 GHz process with 4 GB of memory).
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Moving beyond signature matching, other extensions toraata have been proposed in the
context of information securityExtended Finite State Automata (EFS&Yend traditional au-
tomata to assign and examine values of a finite set of vasab®&ekar and Uppuluri [95] use
EFSAs to monitor a sequence of system calls. Extensionh,as&EFSA, fundamentally broaden
the language recognized by the finite-state autoneaga EFSAS correspond to regular expression
for events (REEs). On the other hand, XFAs can be viewed apt@miaation of a regular DFA,
but XFAs do not enhance the class of languages that can bgniezed. It will be interesting to
consider XFA-type optimizations to EFSAs.

Eckmannet al. [36] describe a language STATL, which can be thought of asefistiate au-
tomata with transitions annotated with actions that arckéiacan take. The motivation for STATL
was to describe attack scenarios rather than improve thaegftiy of signature matching. Au-
tomata augmented with various objects, such as timed asdofghand hybrid automata [51],
have also been investigated in the verification community. éxample, hybrid automata, which
combine discrete transition graphs with continuous dyahsystems, are mathematical models
for digital systems that interact with analog environme#is with EFSAs, these automata (which
are usually infinite-state) fundamentally enhance thelaggs they recognize.

Time-space tradeoffs like that induced by DFA and NFA matghare pervasive to Computer
Science. As illustrated with DFA Set Splitting [118], in $utadeoffs memory use can be reduced
at the cost of slower program execution, or alternativdlg, computation time can be reduced at
the cost of increased memory use. In complexity theory,aesers investigate whether addition
of a restriction on the space inhibits one from solving peof in certain complexity class within
specific time bounds. For example, time-space tradeoff id@ends for SAT were investigated
by Fortnow [40]. Time-space tradeoffs have also been egplar the context of attacks [77, 83].
We are not aware of existing work on time-space tradeoffae@cbntext of signature matching for
NIDS.
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Chapter 3

NIDS Evasion via Backtracking Algorithmic Complexity Attacks

In this chapter, we examine algorithmic mechanisms for amly denial of service in a NIDS.
Many common algorithms have performance whose worst-casavior is distinct from its average-
case. For example, hash lookup a4 ) (constant) complexity on average, but in the worst-case
degenerates to af(n) linear traversal. Similarly, Quicksort operates(tin log n) time on av-
erage, but in its worst-case ¥(n?) [27]. For both examples, the worst-case behavior is trigder
by the runtime input to the algorithm. By design, typicalutwill exhibit average-case complex-
ity. However, inputs can be supplied that exploit algoritand/or implementation knowledge to
trigger the worst-case. In hostile environments wherettpet is controlled at least partially by an
adversary, this presents an opportunity for an attackerdadge degraded performance.

A NIDS has similar behavioral properties at both small anddascales. At the small scale,
processing components such as classification, normalizatind stream reassembly require the
use of algorithms with differentiated average- and woestec At the large scale, it is common
for NIDS designers to employ fast but approximate matcheuhhiques backed by slower, more
detailed matching in order to meet performance requiremeiiihus, the system itself may be
architected such that average-case and worst-case argydished. Finally, engineers, software
designers, and network operators can collectively cordhoinputs and parameters that affect
NIDS performance except for one, the runtime traffic input.

An algorithmic complexity attack [29] is an attack in whicharefully crafted inputs produce
worst-case behavior that exhausts processing resourdedegmades performance, leading even-

tually to denial of service. To use firewall terminology [18hder such conditions a “fail-open”
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NIDS allows packets to pass unexamined, whereas a “fasleddoNIDS drops packets. For exam-
ple, as discussed in Chapter 2, Crosby and Wallach [29] sthdwes to induce worst-case hash
function behavior to reduce performance in the Bro NIDS [8624 packets per second (this flaw
has since been removed in Bro).

In this chapter we introduce the Backtracking Algorithmior@plexity Attack. Through care-
fully crafted input patterns, our attack forces the largals signature matching component of the
Snort NIDS [91] to repeatedly backtrack during inspectigie]ding packet processing rates that
are up to 1.5 million times slower than average.

Our countermeasure to the backtracking attack is an algorit, semantics-preserving en-
hancement to signature matching based on the concept of izatina. The core idea is straight-
forward: whereas the backtracking attack exploits the nafed signature matcher to evaluate
signatures at all successful partial match offsets, a mestion table can be used to store interme-
diate state that must otherwise be recomputed. Our defg@sesa the backtracking attack relies
on the use of better algorithms that reduce the disparitywéen worst and average case without
changing functionality. Even so, it does not eliminate tleef@rmance gap entirely, as we will
show.

Our result applies directly to Snort [91], a popular openfse NIDS that provides both NIDS
and IPS functionality and claims more than 150,000 activerausSnort uses a signature-based
architecture in which each signature is composed of a seguehoperations, such as string or
regular expression matching, that together identify arisimisuse. In our experiments, we use
Snort over both traces and live traffic. In addition, we pdava practical implementation of the
defense by extending Snort’s signature matching funcligyrdirectly.

In summary, our contributions in this chapter are two-fokrst, we discuss NIDS evasion
through algorithmic complexity attacks. We present a higffective real attack, the backtracking
attack, that yields slowdowns of up to six orders of magretadd is feasible against the (esti-
mated) tens of thousands of networks monitored by Snort.of8cwe present an algorithmic

defense, based on the principle of memoization, that canfimeslowdown to less than one order
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Predicate Description Type
content:< str > | Searches for occurrence af str > in payload multiple-match
pcre:/regex/ Matches regular expressignegexz/ against payload multiple-match
byte_test Performs bitwise or logical tests on specified payload bytes | single-match
byte_jump Jumps to an offset specified by given payload bytes single-match

Table 3.1: Subset of Snort predicates used for packet itispedultiple-match predicates may
need to be applied to a packet several times.

of magnitude in general and to less than a factor of two in nmases. We provide a practical
implementation of this solution and show its efficacy in @ Isetup.

We organize this chapter as follows. In Section 3.1 we diesc8nort’s rule-matching archi-
tecture. Sections 3.2 and 3.3 present the backtrackingkadtad the countermeasure, respectively.
Section 3.4 details our experimental results, and Sectidre@nsiders other types of complexity

attacks. Section 3.6 concludes.

3.1 Rule Matching in Snort

Our work is performed in the context of the Snort NIDS. Snonpéoys a signature-based ap-
proach to intrusion detection, defining distinct signasi@ rules, for each misuse to be searched
for. Each signature is in turn composed of a sequengaedicatesthat describe the operations
that the signature must perform. Section 3.1.1 gives anvaerof the language used to specify

these rules. Section 3.1.2 describes the algorithm use@tcmules against packets.

3.1.1 Expressing Rules in Snort

Snort’s rules are composed of a header and a body. The hepefiss the ports and IP
addresses to which the rule should apply and is used durengléissification stage. The body has
a sequence of predicates that express conditions that oseddeed for the rule to match. A rule

matches a packet only if all predicates evaluated in sequsncceed. Of the predicates that are
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alert tcp $EXT_NET any -> $HOME_NET 99
(msg:"AudioPlayer jukebox exploit";
content:"fmt="; //P1
pcre:"/" (mp3logg) /" ,relative; //P2
content: "player="; //P3
pcre:"/.exel|.com/",relative; / /P4
content:"overflow",relative; //P5
51d:5678)

Figure 3.1: Rule with simplified Snort syntax describing &idical vulnerability.

part of Snort’s rule language, we focus on those used to aedhe packet payloads. Table 3.1
summarizes the relevant rules.

Figure 3.1 depicts a signature using a simplified versionrmafr® rule language. The header
of the rule instructs Snort to match this signature agaithdi@P traffic from external sources to
servers in the home network running on port 99. The body ofrtike contains threeontent
predicates, twpcre [87] predicates, and two termssg andsid, used for notification and book-
keeping. The rule matches packets that contain the string followed immediately bynp3 or
ogg, and also contain the string ayer=, followed by . exe or . com, followed byoverflow.

Predicates have one important side effect: during rule hiradca predicate records the position
in the payload at which it succeeded. Further, when a pregantains aelative modifier, that
predicate inspects the packet beginning at the positiorhathwthe previous predicate succeeded,
rather than the start of the payload. For example, if pradiea in Figure 3.1 finds the string
player= at offset; in the payload, the subsequentre predicate$4) succeeds only if it matches

the packet payload after position

3.1.2 Matching signatures

When matching a rule against a packet, Snort evaluates #ticates in the order they are
presented in the rule, and concludes that the packet doesatoch the rule when it reaches a
predicate that fails. To ensure correctness, Snort paigntieeds to consider all payload offsets

at which content or pcre predicates can succeed. We term thesétiple-matchpredicates.
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Payload| fmt=aac player=play 000 fmt=mp3 rate=14kbps player=cmd.exe?overflow
Offset 01234567890123456789012345678901234567890123456789012345678901234567
1 2 3 4 5 6

(P5,59,67)

(P4,51,59) (P4,51,59)

(P3,31,51) (P3,31,51) (P3,31,51)

(P2, 4, f) (P2,28,31) (P2,28,31) (P2,28,31) (P2,28,31)

(p1, 0, 4) (P1, 0, 4) (P1, 0,28) (P1, 0,28) (P1, 0,28) (P1, 0,28) (P1, 0,28)

Figure 3.2: Packet payload matching the rule in Figure 3dlcamresponding stack trace after each
call to getNextMatch on line 3 of Algorithm 3.1.

In contrast, predicatesyte_test andbyte_jump are single-match meaning that any distinct
predicate invocation evaluates the payload once.

In the presence of a multiple-match predicat&nort must also retry all subsequent predicates
that either directly or indirectly depend on the match posibfP. For example, consider matching
the rule in Figure 3.1 against the payload in Figure 3.2. Tdretq") inP2 indicates thaP2 must
find a match in the payload immediately after the previouslisege’s match position. If Snort
considers onlyP1’s first match at offset 4, theh2 will fail since P2 is looking formp3 or ogg
but findsaac instead. However, if Snort also consid@ss second match at offset 282 will
succeed and further predicates from the rule will be evallilaBnort explores possible matches by
backtracking until either it finds a set of matches for allddcates or it determines that such a set
does not exist.

Algorithm 3.1 presents a simplified version of the algoritlused by Snort to match rules
against packets. All predicates support three operations. When a predicatevaluated, the
algorithm callsgetNewInstance to do the required initializations. The previous matchkefis
passed to this function. ThgtNextMatch function checks whether the predicate can be satisfied,
and it sets the offset of the match returned by calls togéeMatchOffset predicate. Further
invocations ofgetNextMatch return true as long as more matches are found. For each & thes

matches, all subsequent predicates are re-evaluatedydeetaeir outcome can depend on the

The Snort implementation uses tail calls and loops to lirddjwate functions together and to perform the func-
tionality described in Algorithm 3.1. The algorithm preseshhere describes the behavior that is distributed through
these functions.
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MatchRule(Preds):

1 Stack — (Preds|0].getNewInstance(0));

2 while Stack.size > 0 do

3 | if Stack.top.getNextMatch() then

4 || if Stack.size == Preds.size then return True;

5 || ofst « Stack.top.getMatchOffset();

6 | | Push(Stack, Preds[Stack.size].getNewInstance(ofst));

7 | elsePop(Stack);

8 return False;

Algorithm 3.1: Rule matching in Snort. The algorithm returiigsue only if all predicates
succeed.

offset of the match. The rule matching stops when the lastipage succeeds, or when all possible
matches of the predicates have been explored. Figure 3usstie stack at each stage of the
algorithm. Each stack record contains three elements: rdigate identifier, the offset passed to
getNewInstance at record creation, and the offset of the match foungéyNextMatch (£ if no

match is found). In this example, the algorithm concludes the rule matches.

3.2 NIDS Evasion via Backtracking

The use of backtracking to cover all possible string or ragekpression matches exposes a
matching algorithm to severe denial of service attacks. &gefully crafting packets sent to a host
on a network that the NIDS is monitoring, an attacker carggrgvorst-case backtracking behav-
ior that forces a NIDS to spend seconds trying to match tlgetad rule against the packet before
eventually concluding that the packet does not match. Feorute in Figure 3.1P2 will be eval-
uated for every occurrence of the strifigt= in the packet payload. Furthermore, whenever this
string is followed bymp3, P2 will succeed and the matcher will evalu@g, and ifP3 succeeds it
will evaluateP4. If fmt=mp3 appears:; times,P3 is evaluated:; times. If there are., occurrences
of player=, P4 will be evaluated, times for each evaluation &8, which gives us a total of; - n,

evaluations foP4. Similarly, if these occurrences are followed hyrepetitions of. exe or . com,
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Payload| fmt=mp3fmt=mp3fmt=mp3player=player=player=.exe.exe.exe
Offset | 0123456789012345678901234567890123456789012345678901234
1 2 3 4 5

Figure 3.3: A packet payload that causes rule matching tktkeak excessively.

P5 is evaluated - n, - ng times. Figure 3.3 shows a packet that has= n, = n3 = 3 repetitions.
Figure 3.4 shows the evaluation tree representing the gatsli evaluated by the algorithm as it
explores all possible matches when matching Figure 3.Inagtie payloads in Figure 3.2 and in
Figure 3.3. Our experiments show that with packets contduim this manner, it is possible to
force the algorithm to evaluate some predicates hundredsilbbns of times while matching a
single rule against a single packet.

The amount of processing a backtracking attack can causndsystrongly on the rule. Let
n be the size of a packet in bytes. If the rule asnconstrained multiple-match predicates that
performO(n) work in the worst case, an attacker can force a rule-matchigarithm to perform
O(n*) work. Thus the following three factors determine the powfex backtracking attack against

arule.

1. The number of backtracking-causing multiple-matehtent andpcre predicates:. The rule
from Figure 3.1 hag = 4 because it has 4 backtracking-causing multiple-matchigagss (in-
cludingP5 which does not match the attack packet, but still needs Weitsa the packet before
failing). Note that not alkontents andpcres can be used to trigger excessive backtracking.
Often, predicates that have constraints on the positioeyg thatch cannot be used by an at-
tacker to cause backtracking. An example of such a predisaite firstpcre from Figure 3.1,

predicateP2, which has to match immediately after the ficshtent.

2. The size of the attack packeisWe can use Snort’s reassembly module to amplify the effect o
backtracking attacks beyond that of a single maximum sizexkgt. The rule from Figure 3.1
is open to attacks of complexity(n?). When Snort combines two attack packets into a virtual
packet and feeds it to the rule-matching engimeloubles, and the rule-matcher does 16 times

more work than for either packet alone.
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Figure 3.4: Predicate evaluation trees in Snort. The le# tepresents the 6 predicate evaluations
performed on the payload in Figure 3.2, and the right treevsttbe 43 evaluations performed for
the payload in Figure 3.3. Numbers on edges indicate payfiadts where a predicate matched.

3. The total length of the strings needed to match/thredicates If these strings are short, the
attacker can repeat them many times in a single packet. Tflihces the constants hidden
by theO-notation. Lets,... s, be the lengths of the strings that can cause matches for the
predicates. If we make their contribution to the procestimg explicit we can compute for each
string the exact number of repetitions. If we divide the pdkto k£ equal-sized portions, each
filled with repetitions of one of these strings, we obtajn= | |n/k]/s;|. The cost of the attack
isO(]_, n:) = O(n*/(K*]E_, s:)). Other factors such as the amount of overlap between these
strings, the length of the strings needed to match predigchte do not cause backtracking, and
the details of the processing costs of the predicates afkeite the processing cost. These

factors remain hidden by the constants inside(fheotation.

Approximately 8% of the 3800+ rules in our ruleset were sptibée to backtracking attacks to
some degree. Our focus is on the most egregious attacksh wipically yielded slowdowns rang-
ing from three to five orders of magnitude. We quantify thersgth of these attacks experimentally

in Section 3.4.
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MemoizedMatchRule(Preds):

1 Stack — (Preds|0].getNewInstance(0));

2 MemoizationTable — (;

3 while Stack.size > 0 do

4 | if Stack.top.getNextMatch() then

5 || if Stack.size == Preds.size then return True;

6 || ofst < Stack.top.getMatchOffset();

7 | | if (Stack.top, ofst) ¢ MemoizationTable then

8 MemoizationTable — MemoizationTable U {(Stack.top, ofst)};
\;Push(Stack, Preds[Stack.size].getNewInstance(ofst));

10 | elsePop(Stack);

11 return False;

Algorithm 3.2: The memoization-enhanced rule-matching algorithm. £ie7, and 8 have
been added.

3.3 Memoization, a remedy for backtracking

As illustrated above, rule-matching engines are open tdtbaaking attacks if they retain
no memory of intermediate results, which for Snort are pratt evaluations that have already
been determined to fail. Thus, matching engines can beddmannecessarily evaluate the same
doomed-for-failure predicates over and over again, asreEiguw indicates.

Algorithm 3.2 shows our revised algorithm for rule matchthgt uses memoization [27, 89].
It is based on the observation that the outcome of evaluaisgquence of predicates depends
only on the payload and the offset at which processing stafise memoization table holds
(predicate, offset) pairs indicating for all predicates, except the first, thisets at which they
have been evaluated thus far. Before evaluating a prediteealgorithm checks whether it has
already been evaluated at the given offset (line 7). If thedjmate has been evaluated before,
it must have ultimately led to failure, so it is not evaluateghin unnecessarily. Otherwise, the
(predicate, offset) pair is added to the memoization table (line 8) and the peadiis evaluated

(line 9). Note that memoization ensures that no predicateatiated more thamtimes. Thus, if a
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Figure 3.5: The memoization algorithm performs only 13 praté evaluations instead of 43 as it

avoids the grayed-out nodes. The CPS optimization redineesumber of predicate evaluations
to 9, and the monotonicity optimization further reducesedhaluations to 5.
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rule hast’ predicates performing work at most linear in the packetsizaemoization ensures that
the amount of work performed by the rule matching algoritisratimosO (k' - n - n) = O(k'n?).
Figure 3.5 updates Figure 3.4 to reflect the effects of meatioz. The greyed out nodes in the
large tree from Figure 3.5 correspond to the predicatesvbatd not be re-evaluated when using
memoization. For the most damaging backtracking attac&sagrules in Snort’s default rule set,
memoization can reduce the time spent matching a rule aghiepacket by more than four orders
of magnitudgwith the optimizations from Section 3.3.1, more than fivdeys of magnitude).

To implement memoization, we used pre-allocated bitmapthi® memoization table, with a
separate bitmap for each predicate except the first. Theosittee bitmaps (in bits) is the same
as the size (in bytes) of the largest virtual packet. Thus if the largasinber of predicates in a
rule ism, the memory cost of memoizationiém — 1)/8 bytes. In our experiments, memoization
increases the amount of memory used in Snort by less than 0.1%

A naive implementation of memoization would need to inii@lthese bitmaps for every rule
evaluated. We avoid this cost by creating a small array thlatshup to 5 offsets and an index into
the array. When a rule is to be evaluated, only the index in¢oatrray needs to be initialized to
0. If the number of offsets a predicate is evaluated at exx&edve switch to a bitmap (and pay
the cost of initializing it). It is extremely rare that pa¢&enot specifically constructed to trigger

backtracking incur the cost of initializing the bitmap.
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3.3.1 Further optimizations

We present three optimizations to the basic memoizaticorighgn: detecting constrained pred-
icate sequences, monotonicity-aware memoization, anidliagounnecessary memoization after
single-match predicates. The first two of these signifigeneitiuce worst case processing time, and
all optimizations we use reduce the memory required to perfmemoization. Most importantly,
all three optimizations are sound when appropriately @gplihone of them changes the semantics
of rule matching.

Constrained predicate sequencesWe use the namearker for predicates that ignore the
value of the offset parameter. The outcome of a marker andl predicates subsequent to the
marker are independent of where predicates preceding thkeem@atched. As a result, markers
break a rule into sequences of predicates that are indepenfleach other. We use the name
constrained predicate sequen@@PS) for a sequence of predicates beginning at one markier an
ending just before the next marker. For exampig,in Figure 3.1 looks for the stringlayer=
in the entire payload, not just after the offset where theviptes predicate matches becawse
does not have theelative modifier. Thus the rule can be broken into two CPSesP2 and
P3-P4-P5.

Instead of invoking the rule-matching algorithm on the entule, we invoke it separately for
individual CPSes and fail whenever we find a CPS that cannohdtehed against the packet.
The algorithm does not need to backtrack across CPS boesdaess backtracking is performed
because the first predicate in each CPS is invoked at most ¢farethe example in Figure 3.5,
detecting CPSes causes the algorithm not to reRis#éndP2 onceP2 has matched, thus reducing
the number of predicate invocations from 13 to 9.

Monotone predicates: Some expensive multiple-match predicates used by Snod trees
monotonicity property that we informally define as followi§the set of matches returned from
predicatep at any offseb is always a subset of the set of matches returned from evatuat an
earlier offset, then predicatas monotone. For these predicates we use the more aggressast-
offset memoizatiorin this optimization, we skip calls to a monotone predichihas previously

been evaluated at an offset smaller than the offset for thewguinstance. For example, say we
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first evaluate a monotonsntent predicate starting at offset 100 that does not lead to a nadtch
the entire rule. Later we evaluate the same predicatersfeati offset 200. The second instance is
guaranteed to find only matches that have already been exphyrthe first instance. With basic
memoization, after each of these matches of the seconthoestae check the memoization table
and do not evaluate the next predicate because we know iteadl to failure. But, theontent
predicate itself is evaluated unnecessarily. With monicttyraware memoization, we do not even
evaluate theontent predicate at offset 200.

The monotonicity property generalizes to some regular@&sgons too, and it can be defined
formally as follows: letS; be the set of matches obtained when predipateevaluated at offset
o1, and.S, the matches for starting offset. If for all packets and/o; < o, we haveS, C 5,
thenp is monotone. In our example from Figure 3.1, @htents andpcres are monotone with
the exception of the firgicre, P2, because it matches at most omwenediately aftethe position
where the previous predicate matched.

Lowest-offset memoization helps reduce worst case protgsecause for some predicates
the number of worst-case invocations is reduced frofm) to 1. For the example in Figure 3.5,
this optimization would have eliminated the second anditeualuations for predicat®4, andp5
(and forP3 also if CPSes are not detected). This further reduces thdeuaf predicate instances
evaluated from 9 to 5.

Unnecessary memoizationBasic memoization guarantees that no predicate is evaluabee
thann times. For some rules with single-match predicates we cavige the same guarantee even
if we omit memoizing some predicates. If we employ memoaratiefore evaluating a single-
match predicate, but not before evaluating its successgam still guarantee that the successor
will not be evaluated more tham times (at most once for every evaluation of our single-match
predicate). Also, if we have chains of single-match pre@gd is enough to memoize only before
the first one to ensure that none is evaluated more thames. Thus, our third optimization is
not to perform memoization after single-match predicagegh asbyte_test andbyte_jump
(see Table 3.1), except when they are followed by a monotoediqate. For our rule set, this

optimization reduces by a factor of two the amount of memagfor memoization.
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Rule Processing time (seconds/gigabyte) Slowdown Slowdown
Protocol ID Trace Backtracking attack w.r.t. avg traffic w.r.t. same protocol
traffic Original | Basic Memo.| Memo+Opt. Original Memo+Opt | Original Memo+Opt

IMAP 1755 200.6 89,181 1,802 91.9 4,329 4.46x 444% 0.46x
IRC 1382 146 | 1,956,858 1,170 87.6 94,993« 4.25x | 134,031 6.00x
MS-SQL | 2003 119.3 18,206 715 140.4 884x 6.82x 152x 1.17x
NetBIOS | 2403 729.7 357,777 57,173 122.0 17,368x 5.92x 490x 0.17x
Oracle 2611 110.5| 6,220,768 3,666 174.0 301,97% 8.45x 56,296« 1.57x
SMTP 3682 132.8 | 30,933,874 2,192 126.4 | 1,501,644 6.14x | 232,936¢ 0.95x

SMTP 3682, w/o reassembly 1,986,624 903 103.1 96,438« 5.00x 14,960< 0.78x
SMTP ‘ 2087 ‘ 132.8 175,657 5,123 164.5 8,527x 7.99x 1,323x 1.24x

Table 3.2: Strength of the backtracking attack and feasilaif the memoization defense. Columns
7-8 show the overall slowdown under attack when memoizasiot and is used. Columns 9-10
show similar slowdowns with respect to the same protocol.

3.4 Experimental Results

We performed empirical evaluations with traces and in a feéting. In Section 3.4.1, we

present measurements comparing backtracking attack {saeké traces of typical network traf-

fic. Our results show that three to six orders of magnitudevdtavns achieved with the back-

tracking attack are reduced to less than one order of madmglowdown under memoization. In

Section 3.4.2, we show actual evasion using a non-memoimptementation, and the resulting

recovery with the memoized version.

For our experiments we used the Snort NIDS, version 2.41#jgared to use the Aho-Corasick [1]

string matching algorithm. Snort is run on a 2.0 GHz Pentiupr@cessor and is loaded with a

total of 3812 rules. We instrumented Snort using cycle-eateuPentium performance counters.

When enabled, instrumentation introduced less than 2%hewaek to the observed quantities of

interest. We found that our measured observations werastenswith the instrumentation results

collected by Cabrerat al.[18].
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3.4.1 Trace-based Results

For benign traffic, we obtained two groups of three traceh e&aptured on different days at
distinct times. The first group of traces were captured onitikebetween a university campus and
a departmental network with 1,200 desktop and laptop coenpud number of high-traffic servers
(web, ftp, ntp), and scientific computing clusters genagatiigh volumes of traffic. These traces
are 7 minutes long and range in size from 3.1 GB to just over 8 B second group of traces
were captured in front of a few instructional laboratorietating 150 desktop clients. They are
also 7 minutes long and range in size from 816 MB to 2.6 GB.

We created attack traffic by generating flows correspondrggveral protocols and supplying
payloads that are constructed in a similar manner to theopaytonstruction outlined in Sec-
tion 3.2.

In the trace-based experiments, we fed the benign trafficadtadk traffic traces into Snort
and observed the performance. We performed these expdamath and without memoization
enabled. Figure 3.6 shows the slowdowns experienced dsekiracking attacks targeting several
rules and the corresponding defense rates. It summarieefitormation in Table 3.2. In each
group, the leftmost bar represents the cost of packet psoug$or the specified protocol relative
to 20.6 s/GB, the combined average packet processing rateaaor traces. For Rule 1382 (IRC),
the rate is less than 1, reflecting the fact that the averadfectprocessing time for IRC traffic is
less than the baseline.

The central bar in each group shows the slowdown observedhbieps crafted to target the
specific rules indicated at the base of each group. The att&skilt in processing times that are
typically several orders of magnitude slower than the baselwith the most egregious attack
coming in at a factor of 1.5 million times slower. Finally, tine rightmost bar of each group we
see the result of each attack repeated with the memoizati@msle deployed. In most cases, Snort
performance when under attack is comparable to if not b#ttar when not under attack.

Table 3.2 details the attacks and the defenses quantitatoreseveral different protocols. For
each attack, Columns 1 and 2 give the protocol and the tatdgeie ID to which the attack be-

longs, respectively. Column 3 shows the average processirggfor each protocol. Columns 4
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Figure 3.6: Relative processing times for benign and atteadkic, and attack traffic with memo-
ization. Memoization confines the slowdown to less than aderamf magnitude.

through 6 show the raw processing times for attack packetsnsn unmodified Snort, Snort with
basic memoization, and Snort with fully optimized memaimat Columns 7-8 give overall slow-
downs and Columns 9-10 supply the slowdowns on a per-prbbasis. The backtracking attack
achieves slowdowns between 3 and 5 orders of magnitude les from many protocols. When
memoization is employed, the overall slowdown is confineditbin one order of magnitude. Per-
protocol, memoization confines most attacks to within adiaof two of their normal processing
time.

Rows 7 and 8 highlight the impact that reassembly has on theepsing time. In this experi-
ment, when reassembly is performed the size of the virtueketefed to the rule-matching engine
is only twice the size of a non-reassembled packet, but thegssing time is almost ¥6longer.

The effects of the three memoization optimizations can ba by comparing Columns 5 and 6
in Table 3.2. The strength of the optimizations varies bytgrol, ranging from just under a factor
of 10 to just over a factor of 30, excluding the NetBIOS outlign the Snort rule set, NetBIOS
rules contain many predicates that can be decomposed instramed predicate sequences. These

rules benefit considerably from the optimizations.
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Figure 3.7: Live Snort evasion environment. Snort moni@irset-
work composed of web and mail servers.

Recall that the attacks applied are all low-bandwidth &gadven though the overall slow-
down rate using memoization is up to an order of magnitudeesiothese rates appbnly to the
attack packets (which are few in number) and not to the oMeealormance of Snort. Under mem-
oization, processing times for attack packets fall wittiiea hormal variation exhibited by benign
packets.

In the rightmost column, slowdowns less than 1.0 indica&t with all the optimizations in-
cluded, Snort was able to process backtracking attack paokere quickly than it could process
legitimate traffic. In other words, our optimizations alledvSnort to reject these attack packets

more quickly than it otherwise was able since fewer ovenatrate evaluations are performed.

3.4.2 Evading a Live Snort

In this section we demonstrate the efficacy of the backtreckitack by applying it to a live
Snort installation. We first show successful evasion by ypglthe attack under a variety of
conditions. We then show that with memaoization, all the feripundetected attacks are observed.

Figure 3.7 shows the topology used for testing evasion ferakperiment. To induce denial of
service in Snort, we use an SMTP backtracking attack thatects to a Sendmail SMTP server in
the protected network. We are using this attack to mask a Hi@l] exploit normally recognized

by Snort. Both the Nimda exploit and its SMTP cover are semhfthe same attacking computer.
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Test | Description of backtrack attack Exploits | Required
detected| rate (kbps)
1 | Control; no attack 300/300 N/A
2 | twopackets every 60 sec. 220/300 0.4
3 | twopackets every 15 sec. 6/300 1.6
4 | onepacket every 5 sec. 4/300 2.4
5 | onepacket every 3 sec. 0/300 4.0
6 | twentypackets initially 0/300 0.8
7 | onepacket every 3 sec. 300/300 N/A
(memoization enabled)
8 | twentypackets initially 300/300 N/A
(memoization enabled)

Table 3.3: Summary of live Snort experiments. Without mezaei
tion, 300 intrusions pass into the network undetected.

Each Nimda exploit is sent one byte at a time in packets spasetond apart. To simulate real
world conditions, we used the Harpoon traffic generator [1®8ontinuously generate background
traffic at 10 Mbps during the experiments.

We measure the effectiveness of the backtracking attackdytamber of malicious exploits
that can slip by Snort undetected over various time frames. iMiiated a new Nimda exploit
attempt every second for 5 minutes, yielding 300 overlagprusion attempts. Table 3.3 shows
the results. Test 1 is the control: when the backtrackindagtxis not performed, Snort recognizes
and reports all 300 exploits despite our fragmenting themTdst 2, we sent two backtracking
attack packets every 60 seconds for the duration of the erpat. Snort missed only one-third
of the attacks, detecting 222 out of 300 intrusion attemiptslest 3, we increased the frequency
of the backtracking attacks to 2 packets every 15 secondppirg the detection rate to just 2%
of the transmitted exploits. Test 4 decreased the detecditeneven further, and in Tests 5 and
6 the attacker successfully transmitted all 300 exploithauat detection. Aside from high CPU
utilization during the attacks and an occasional, sporpdit scan warning directed at the SMTP
attack, Snort gave no indication of any abnormal activityntnusion attempt.

These experiments show that the transmission rate neededd¢essfully penetrate a network

undetected is quite low, with both tests 5 and 6 requiring rmwenthan 4.0 kbps of bandwidth.
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Test 5, in particular, suggests that perpetual evasion eaachieved through regular, repeated
transmissions of backtracking attack packets.

Tests 7 and 8 demonstrate the effectiveness of memoizalibase tests repeat Tests 5 and
6 with memoization enabled (including all optimizationg}ith memoization, Snort successfully
detected all intrusions in both tests.

In summary, these experiments validate the results of aoetbased experiments and illustrate
the real-world applicability of the backtracking attacksiblg carefully crafted and timed packets,
we can perpetually disable a NIDS without triggering anyrraks, using at most 4 kilobits per
second of traffic. Correspondingly, the memoization defecen effectively be used to counter

such attacks.

3.5 Discussion

Often, algorithmic complexity attacks and their soluti@@®m obvious once they have been
properly described. Nevertheless, software is still writthat is vulnerable to such attacks, which
begs the question—how can a NIDS or IPS designer defendstgaamplexity attacks that he
has not yet seen? A possible first step is to explicitly carsidorst-case performance in critical
algorithms and to look at whether it is significantly slowlean average case and can be exploited.
For example, Crosby and Wallach [29] have shown that in tleeNBDS, failure to consider worst-
case time complexity of hash functions leads to denial ofiser With this mindset, we briefly

consider mechanisms employed by existing NIDS with an eyatds triggering the worst case.

e Deterministic finite automata (DFA) systems can experieng®nential memory requirements
when DFA's corresponding to individual rules are combinkdsome cases, automata are built
incrementally [102] to reduce the footprint of a DFA that nahotherwise fit in memory. Be-
cause each byte of traffic is examined exactly once in a DF&ktbacking does not occur.
However, it may be possible for an adversary to construckgtadahat trigger incremental state
creation on each byte of payload, resulting in consistentlyeased computation costs and po-

tentially leading to memory exhaustion.
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e Nondeterministic finite automata (NFA) systems reduce teenory requirement costs of DFA
systems by allowing the matcher to be in multiple states goratly. In practice, this is
achieved either through backtracking or by explicitly ntaining and updating multiple states.
In the first case, algorithmic complexity attacks are aokiky triggering excessive backtrack-
ing. In the second, the attacker tries to force the NIDS toatpdeveral states for each byte

processed.

e Predicate-based systems such as Snort can be slowed ddwrattacker can cause more pred-
icates to be evaluated than in the average case. We havenfg@san attack that forces the
repeated evaluation of a few predicates many times. In astitattacks can be devised that
seek to evaluate many predicates a few times. For exampbet &nploys a multi-pattern string
matcher [1] as a pre-filter to pare down the rules to be matébedach packet. Constructing

payloads that trigger large numbers of rules can lead tosswee predicate evaluations.

We have performed preliminary work that combines the se@lthird observations above
to yield packet processing times in Snort that are up to 10@6g slower than average. These
results, combined with those of this paper, suggest thatfeiddressed, algorithmic complexity

attacks can pose significant security risks to NIDS.

3.6 Conclusion

Algorithmic complexity attacks are effective when theygger worst-case behavior that far
exceeds average-case behavior. We have described a newhatgo complexity attack, the back-
tracking attack, that exploits rule matching algorithm$\NoDS to achieve slowdowns of up to six
orders of magnitude. When faced with these attacks, a ireal{NIDS becomes unable to keep
up with incoming traffic, and evasion ensues. We tested ttaslaon a live Snort installation and
showed that the protected network is vulnerable under ttaslg along with the tens of thousands

of other networks protected by Snort.
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To counter this attack, we have developed a semanticspnegelefense based on the princi-
ple of memoization that brings Snort performance on attaatkpts to within an order of magni-
tude of benign packets. In some cases, the techniques eaddipw Snort to evaluate the packets
even faster than average.

In general, it is not clear how to find and root out all sourcieslgorithmic complexity attacks.
To do so requires knowledge of average- and worst-case gsingecosts. Without a formal model
of computation, such knowledge is difficult to obtain andfigo acquired in an ad-hoc manner.
Mechanisms for formally characterizing and identifying@ithms and data structures that are
subject to complexity attacks can serve as useful analysis for developers of critical systems,

such as NIDS.
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Chapter 4

DFA Matching Semantics

In our second main contribution, we present an alternatieglehto DFAs for performing
signature matching. As a prelude to that work, in this shioajater we formally define the language
specification and matching semantics for regular exprassamd deterministic finite automata in
the context of intrusion detection. We start by reviewingnstard definitions for DFAs. We then
extend DFAs as necessary to enable multi-pattern matcHisggeaming data, and we show that
with these extensions, matching can be modeled precisedyfaste state transducer. Finally,
we present an algorithm for combining multiple DFAs into agle DFA that matches all the

component DFAs simultaneously.

4.1 Deterministic Finite Automata

A deterministic finite automaton (DFA) is a 5-tugl@, X, 6, o, F') where

Q is a finite set of states,

Y] is a finite alphabet,

0 is a function from@ x X to Q),

qo is a designated start state, and

F C @ is a set of accepting (or final) states.
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S{a} 3-a,b}

Figure 4.1: A DFA recognizing the regular ex-
pressior/.*ab.*cd/. Starting in state O, the in-
put is accepted if the DFA is in state 4 after the
last symbol is read.

The function) is a total function over the states and alphabet that mapesssi@a() crossed
with alphabet symbols ik back to states. For each state () and each symbat € ¥, there is a
transitionfrom ¢ to some state’ € Q) (note:¢’ = ¢ is possible).

When supplied an input sequences ¥*, a DFA begins at starting statg and moves from
state to state as each symbokirs read. If the DFA is in an accepting, or final, state when &se |
symbol ofz is read, then we say that the DR&ceptsts input. We use the terrourrent stateto
refer to the state the DFA is in at any given point in the inpguence.

Pictorially, we can represent a DFA as a directed graph irclvbtates are nodes in the graph,
edges between nodes are transitions, and each edge isllabiia@ symbol from the input alphabet
.. Sincey is total, there ar¢>| labeled edges out of each state to other states in the DFArd~ig1l
shows a DFA witht) = {0, 1,2, 3,4} statesy = {a,b,c,d}, qo = 0, F = {4}, ando as depicted.
Note the back-arc from state O to itself labeled- {c} is a graphical shorthand representing all
edges whose labeled transition is notWe may alternatively express this bx].

DFAs are inherently tied to regular expressions. A regukaression is a mechanism for con-
cisely specifying classes of languages, some of which magflmte. A DFA, on the other hand,
is a language acceptor and is used for recognizing whethieing & a member of a language or
not. Moreover, the class of languages accepted by finitevaateois exactly the class of languages
specifiable using regular expressions. In other words, rigiragular expressioR, there is a DFA
D such thatD accepts all strings i.(R), the language described B The DFA in Figure 4.1,

for example, accepts all strings in the language specifieth®yegular expression. xab . xcd/,
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read as “an arbitrary number of symbols, followed by the segeab, followed by an arbitrary
number of symbols, followed by the sequera&. Note that throughout this work, as a notational
convenience we delimit regular expressions with a forw#adrs(“/”) at the beginning and the end

of the expression.

4.2 Streaming Data and Transducers

Streaming applications can be characterized by their legl streams, which can be viewed
as a single sequence of input of indeterminate length. Fesetlapplications, which include intru-
sion detection, one is typically interested in finding matgtpatterns up to the currently-scanned
byte in the input, rather than accepting (or rejecting) there stream as a whole. This change in
semantics affects both the regular expressions used tisgiee underlying languages as well as
the structure of the automaton used for matching.

Recall that regular expressions are language specifieracdommodate streaming data, reg-
ular expressions need to be adjusted so that their desdebhgdages include thentire stream up
to the current byte, even the previous portion not direclgvant to the signature. In practice, this
is achieved by prefixing the regular expression with a Kleensure over the full alphabekf),
typically denoted as.*”. This construct has the effect of prepending into the laggi(specified
by the regular expression) all alphabet symbol sequencds tipe occurrence of the language
strings themselves. For example, the regular expressieab.*cd/ in Figure 4.1 contains this
prefix already. On the other hantigb . xcd/ specifies a language whose strings must begin with
the sequenceb and is therefore not suitable for stream matching.

Automata semantics must be similarly adapted. Two progertiust be amended. First, per
the definition, a DFA accepts its input only if it is in an actteg state after all the input has been
scanned. The adjustment is to change the matching procéalaeknowledge acceptance each
time the DFA moves into an accepting state. This has theteffedlowing the automaton to accept
the input up to the current byte without regard to the remaiiraf the input. Second, DFAs emit
a binary “accept” or “reject” to indicate acceptance, buéaming applications typically match

many regular expressions simultaneously, each of whichahdistinct ID that must be emitted
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whenever accepted. Ignoring how we combine DFAs for the nmbyvee address this change by
associating one or more IDs with each accepting state anictleenn as appropriate.

From a strict definitional perspective, we can model DFAwitese two changes as deter-
ministic finite state transducers [53]. A finite state transef is a DFA augmented with an output
alphabet and a function that maps states or edges to symbpoidlie output alphabet. Transduc-
ers that emit output symbols on states, as is the case hererared Moore machines; those that
emit on edges are termed Mealy machines. During matchiagsdiucers emit the output symbols
associated with each state (or edge) each time it is visited.

In our formulation, Moore machines are the relevant modekntally, a Moore machine is a
6-tuple(@, X, A, 4§, \, qo) where

e () (states)). (alphabet)§ (transition function), ang, (start state) are as in DFAS,
e A is the output alphabet, and

e ) is a mapping fron) to A specifying the output associated with each state

(which may be empty for some states).

Note that there is no set of final states in a Moore machine Mdme machine model captures
streaming data matching semantics precisely. To wit,istaith a DFA, we setA (the output
alphabet) to be the set of all regular expression IDs, andamstocuct) to map accepting states
in the DFA to the output symbol id\ corresponding to the proper ID. Thus, matching can be
interpreted as the process of converting the input to a seguef matching regular expression
IDs.

Throughout this dissertation, we assume Moore machinedrsrer semantics for simultaneous
matching of multiple regular expression patterns by makimegsimple changes to DFA matching
described above. Nevertheless, the changes from standeakdniatching are minor. Thus, to
remain consistent with accepted practice, we continuefey te the process generically as DFA

matching.
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4.3 Combining Automata

Automata combination refers to the process of combiningdwmore distinct automata into
a single, composite automaton which, when executed, ivaigmit to executing all the individual
automata simultaneously. This process is central to mgdi@ performance demands of signa-
ture matching. We give a formal description of DFA combioatand present an algorithm for

efficiently combining automata.

Definition 4.1 Let D, = (Q1, %, 01, 81, F1) and Dy = (Q2, X, b2, s2, F5) be two DFAs with com-
mon alphabek. Thestandard product constructioof D; andD; is the DFAD = (Q, %, 4, s, F),

where

for eachq; € Q; andg; € Q», there is a distinct element= (¢, ¢2) € Q,

o 5= (s1,89),

for eachqia, qip € @1 andqaa, g2 € Q2 ando € %, if 6;(qrq,0) — ¢ @and

02(G2a, ) — q2p, theNd((qia; q1), &) — (24, G2b),

for each{(q,, ¢2) € Q, if g1 € F} or qo € F (or both), then(q,, ¢2) € F.

We denote the product constructidn of automataD, and D, asD = D, + D,. Further,
L(D) = L(Dy) U L(D,). The standard product construction for Moore automatafisiele simi-
larly.

Definition 4.2 Let M, = (Ql, 3, A1, 01, A, 81) and M, = (QQ, 3, Ag, 00, Ao, Sg) be two DFAs
with common alphabet. Then, the standard product construction of\éf and M, is the Moore
automatonV/ = (Q, X, A, 4§, A, s) where

e (), 9, ands are as defined for DFA combination above,

e foreachp; € {AjUe} andp, € {AsUe}, there is a distinct symbdpy, po) € A

(e is a symbol not occurring id\; or A,),

e for eachq, € Q; andg, € (4, there are three cases to consider:
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Combine(MooreMachinefirst, MooreMachine secondl

worklist WL
MooreMachine ¢

c.addState(first.start, second.stajt
(first.start,second.starbutputsym.append (first.start.outpgaym)
(first.start,second.starbutputsym.append (second.start.outyin)
c.setStart (first.start, second.stajt

WL = { (first.start, second.star}

while (|WL|> 0)do

(s,h =WL.pop ()

foreach (8 € ) do

s’ = first.getNextState( )

t' = second.getNextState(3)

if (s',t') ¢ c.stateghen
c.addState(t’,t'))
(s',t').outputsym.appends.outputsym)
(s',t').outputsym.appendi(.outputsym)
WL.push ({(s',t'))

B c.addTrans(s, t),(s’,t'),0)

© 0 o 0~ W N

A e R
~N o o0k W N PP O

=
[ee]

return c
Algorithm 4.1: Standard product construction for Moore machines.

iy
o

i. if Ai(q1) — p1 andXy(qe) is undefined, then({q1, g2)) = (p1,€);
ii. if A2(g2) — p2 @ndAi(q1) is undefined, ther((q1, ¢2)) = (€, p2);

iii. if )\1(611) — M and)\Q((&) — P2, then)\(@h’%)) = <01,P2>-

The construction above produces combined automata|Wwith- | M| states, where- | denotes
the number of states. Nevertheless, some combined staiebananreachablg;e., there is no
sequence of transitions from the start state leading to thheachable state. Algorithm 4.1 gives
a worklist-based algorithm for computing the product cangion of Moore automata that avoids
constructing unreachable states. In line 7, the combiread stiate initializes a worklist which is
added to by each newly created state (line 17). In eachiierdahe algorithm pops a state from the
worklist, follows transitions out of it, and places new s&bn the worklist as necessary. Iteration
continues until the worklist is empty, when all combinedetshave been created and processed.

Since the number of states in the two input machines is fitiieealgorithm must terminate.
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Figure 4.2: Standard product construction (right) for DFe&sresponding tg . *wisc/ (upper
left) and/ . *win/ (lower left).

Output symbols attached to states are represented asdisthith output symbols are ap-
pended. For each staje= (s, t) in the combined automaton, we simply copy the output symbols
from s andt into ¢ (Lines 15 and 16). The correctness of this follows from thet that en-
tering composite state when matching is equivalent to entering statesnd¢ simultaneously,
implying that the symbols in botk and¢ need to be emitted. Alternatively, for DFA matching
we replace Lines 15 and 16 with a statement that marks accepting if eitheg or ¢ is accept-
ing. Figure 4.2 illustrates the combination algorithm faotDFAs corresponding to the regular

expressiong . xwisc/ (upper left in the figure, with ID 1) and. xwin/ (lower left, with ID 2).
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Chapter 5

State-Space Explosion and Ambiguity

This chapter and the next are devoted to mechanisms foriagdige time-space tradeoff asso-
ciated with automata-based matching. We begin in this enayth a first-principles characteriza-
tion of state-space explosion that lays the groundworkifettéchniques we develop to circumvent
the tradeoff. We describe, formally, why it occurs and giedl conditions that eliminate it when
satisfied. When these conditions are met, automata can ég rembined without any state ex-
plosion. In preparation for the next chapter, we then itatst how auxiliary state variables can be

used to “factor out” the components of automata that vidlagése conditions.

5.1 Combining DFAs Considered Harmful

DFAs corresponding to NIDS signatures explode when conabifibat is, the size of the state
space, and hence the number of states, increases draigaticah DFAs are combined. The mag-
nitude of DFA state space explosion depends strongly onyihestof signatures being matched.
For simple string-based regular expressions of the fgrms/, wheres € £* is a sequence of
alphabet symbols, the number of states required to recegngignatures is bounded above by
the total size of the strings, @b(n) if we bound the size of the largest string. Other types of
patterns can cause the number of states to increase qeatlyasind exponentially in the number
of signatures.

Consider “counting” regular expressions of the foyim«\ns; [*\nl{k}/, read as “newline
followed by the sequence followed by k£ non-newline characters”. Signatures of this form are

commonly used to identify and stop exploits aimed at triggebuffer overflow vulnerabilities.
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Figure 5.1: The combined DFA for corresponding to the exgicess/ . *\na[~\n] {200}/ and
/. *bc/ replicates the second expression 200 times, once for eacttiog state (for clarity, some
edges have been omitted).

The left-hand automaton in Figure 5.1 shows the DFA for aatigre of this form. Note that the
counting range specifi§r00} is a form of syntactic sugar that replaces 200 repetitions gf] .

In this case, there are 200 states used solely for countmgumber of successive non-newline
symbols observed.

By itself, this DFA is relatively innocuous, since the numbéstates is linear in the number
of symbols in the expression. However, when combined witleoDFAs, even those for simple
string-based regular expressions, the total number oéstatultiplies. The right-hand side of
Figure 5.1 shows the DFA resulting from the cross producthef dounting DFA with a simple
string-based automaton. For clarity, some edges have le@eoved. In general, the combined
DFA needs to concurrently track the independent matchiognesss of both source DFAs. For this
example this means that the DFA corresponding tebc/ is replicated at each of the counting
states in the first DFA. This requiré¥nk) states for tracking a single such counting automata and
n strings and)(n?k) states for tracking: such signatures andstrings.

Other signature patterns can lead to an exponential growttei state space when their DFAs
are combined. This occurs, for example, with signaturehefform/.xs;.*s,/, read as “sub-
patterns; followed by an arbitrary number of characters followed byp-gatterns,”. Figure 5.2
shows the result of combining the DFAs for the signatufesab.*cd/ and/.x*ef.*gh/. For
each signature of this type, the combined DFA needs to reraemlbbether it has already seen the
first sub-pattern so that it knows whether or not to accepsdo®nd sub-pattern. For example, in
Figure 5.2 the DFA is in stateV when neitherab nor ef has been observed. Similarly, it is in

stateRV whenab but notef is seen, statBX whenef but notab is seen, and stafX when both
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accept(sig1)

Figure 5.2: The combined DFA for expressiofiscab. *cd/ and/ . *ef . *gh/ must use states to
“remember” which subpatterns have occurred (for clarityne edges have been omitted).

ab andef have been seen. In general, to remembardependent bits of information, the DFA
needs at least” distinct states. For this case, an analysis of the genethéxample shows that if
the strings are of length then the actual number of states used by the combined DBAvI&"™).

Both of these examples illustrate the growth in the stateephat occurs when DFAs are
combined. Intuitively, we can generalize this phenomer®folows. When a set of DFAs are
combined, the combined automaton tracks the matching @ssgof the individual automata si-
multaneously. As alluded to by the state names in Figuresabdl5.2, states in the combined
automaton are equivalent to tuples of individual statemftbe source automata. Thus, in the
combined DFA, there is a distinct state for each reachabihebawation of states in the source
DFAs. As shown above, signatures often overlap or (paydialbsume each other, leading to
interleaved matching progress with many distinct comliimest of reachable states.

Beyond this, DFA states typically require 1,024 bytes eaohthat large numbers of states can
quickly exhaust memory. In a later section, we informallggent a mechanism for restructuring
the state-space so that even though state-space expltBioocirs, it does not affect the number

of automaton states.

5.2 Understanding State-Space Explosion

In this section we formally characterize state space exqtoand give sufficient conditions

for guaranteeing that such explosion will not occur. We sl incorporating auxiliary state
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variables can be used to transform automata so that theyystese conditions and eliminate such
explosion in automata states directly. This charactedngirovides the underlying foundation that

motivates our work on extended finite automata.

5.2.1 State and Path Ambiguity

State-space explosion centers around the notion of antiigehich we define as follows. Let
D =(Q,%,0,q, F') be a DFA with state§), input symbols, transition functiory, start statey,
and accepting statds C (). For state; € Q we definepaths(q) to be the set of paths from to
q. In the presence of cyclepathgq) may be infinite. Sinceé is deterministic, we can uniquely
represent each pathe paths(q) by the corresponding sequence of input symbgls).

We say that state is unambiguousf and only if the following conditions hold:

1. there exists a finite sequencg € ¥* such that for each path € paths(q),

o(m)=y-z,fory e x5

2. for somer € paths(q),o(m) =z, (i.e, y = €).

In other wordsg is unambiguous if and only if all paths tohave the same suffix, and at least
one path tq; is specified solely by,.
A DFA D is unambiguousf and only if all states inD are unambiguous and the following

conditions also hold:

3. foreachy € ¥*,3f € F'suchthat - x; € paths(f);

4. letm(f) be the path corresponding ig for statef € F'. Then, for eacly € @,
q € m(f) forsomef € F.

For an unambiguous automatah the first three conditions ensure that all strings in the lan
guage accepted by are of the form * x; where f € F. The fourth condition ensures that there
are no superfluous states that do not advance matching psogneard acceptance and is unnec-
essary if the DFA has been minimized. Note that ambiguityffer@nt from nondeterminism;e.,

an ambiguous state may be reached by many distinct sequéntdse succession of states is still
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deterministic in the input. Finally, we say that a pathe paths(q) is ambiguous if there is an

ambiguous state in.

5.2.2 Combination and State Explosion

State-space explosion results from the interaction betwstses in ambiguous and unambigu-
ous paths when automata are combined. During combinati@mbiguous states in the prefix of a
path from one automaton get replicated when combined withigumous states in a path in another
automaton. This phenomenon occurs because the combinemaon must now track progress
in matching both the unambiguous path and, independeh#yambiguous path. Of course, the
amount of replication observed depends on how extreme andgiee the ambiguity is in the two
source automata and how much interaction occurs betwean thetomata with limited levels of
ambiguity introduce comparatively small amounts of regdiicn, whereas a path of infinite length
can cause an entire automaton to be copied and leads direetkponential replication.

To illustrate, consider the examples in Figure 5.3. In thgsiie and in most others, we show
all states but for clarity eliminate many transitions. Igyie 5.3a, automata for the expressions
/.*atom/ and/.*a[mv]id/ are combined. Only the first automaton is unambiguous, kit th
ambiguity in the second automaton is limited to allowingyoerhm or av in the transition between
the two states. When combined, the unambiguous and amlsquatts do not interact, and no
state replication occurs in this case. In general, thodghreplication is limited to a few states.

Figure 5.3b describes the case in which the regular expregsika[~a] [~alb/ (read as: “an
a followed by two nona characters, followed by”) is combined with the expression. *cdef/.

In the first automaton, paths to StaRsS, andT are all ambiguous (the path Tois ambiguous
because no path = yxr wherex = b andy = ¢ exists). In the combined automaton shown
in the figure, a full copy of both original automata is reqdirgo that both expressions can be
matched. However, states in the prefix of the single unanabigyath in/cdef/ must also be
partially replicated so that the combined automaton capgmntg track the progress in matching
both /cdef/ and the “don’t care” transitions in the first automaton. listbase, the number of

paths to ambiguous states is finite, but additional unanduigypaths in the first regular expression
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‘ [a] [a) ‘ [Aa] ["c]
-+ E=0—=0 QO OO o RraO O ONG
+ + +
[*a] [rc] ["e] ["a]
»6;2» WO+  ——OHW~0-0+0 — VW=

(@)/.*atom/ and/.*a[mv]id/ (b) /.*a[~al ["alb/ and/.xcdef/  (C)/.*ab.*cd/ and/.xef.*gh/
Figure 5.3: Depending on the structure of the underlyingmuaita, the combined automaton sizes
may be linear (left), polynomial (middle) or exponentiabf(it) in the limit (some edges removed
for clarity).
would be partially replicated along these as well, so thadractice a large number of additional
states may need to be created.

Figure 5.3c depicts the case in which both regular exprassiontain a Kleene closure«) in
the middle of the expression. This introduces ambiguousspatt infinite length since the closure
can consume an infinite number of symbols. When combined antither automatoni, the
closure effectively replicated in many cases. When the two automata in the figure are combined
the result is similar to a cross-product of states, sincéwioeautomata are heavily interleaved and
states must be created that track each possible positidreifirst automaton with each possible
position in the second. Whem expressions of this form are combined, the number of reduire

states in the combined automata is exponential in

5.2.3 Eliminating Ambiguity Using Auxiliary Variables

From a systematic perspective, we can eliminate stateespgulosion by first identifying the

conditions in which it cannot occur, and second, specifyiagsformations that translate offending
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automata into automata that satisfy the conditions witlahatnging semantics. In this context,
ambiguity in automata as defined above provides a sufficegrdfonditions, and we relate them

to state space explosion by the following theorems.

Theorem 5.1 Let D, and D, be DFAs withD; + D, their standard product combination. IIf,

andD, are unambiguous, the®, + D,| < |D;| + | D,|, where|D| is the number of states in D.
Theorem 5.2 If D, and D, are unambiguous, thef; + D, is unambiguous.

We provide a brief sketch of a proof. As described in Secti@l5 an unambiguous DFA =
(@, %, 9, qo, F) recognizes languages of the fofmxz¢| f € F'}. Consequently, the languageD)
can be expressed élé‘(zfeF x)X*. But, this has the same structure as languages recognized by
Aho-Corasick-constructed DFAs (see [1, section 8]). Thusmmbiguous DFAs are equivalent
to Aho-Corasick automata. Now, combining Aho-Corasickoaudta is equivalent to taking the
strings from one automaton and inserting them into the otlkareover, the number of states in
an Aho-Corasick automaton is bounded aboveSBY , |u:|, where|y;| denotes the length of the
stringy;. From this, Theorem 1 is established and Theorem 2 imméyifaiéows.

Theorem 5.1 simply places a bound on the number of autom&ttesshat are produced by the
combination process. Theorem 5.2 states that unambigudipsed under standard combination.

We define state-space explosion formally as a pairwise phenon that occurs whenever
|Dy + Dy| > |Dy| 4 | Do for two automataD, and D,. Theorem 1 is overly restrictive since in
reality a larger class of expressions than strings of theafor s can be combined without any ap-
preciable blowup (Figure 5.3a, for example). Further, aloim®d automaton that exhibits a modest
increase in the number of states beyond the additive suns abihponent DFAs is perfectly ac-
ceptable in many cases. Despite these restrictions, Timebreis sufficient for the purposes of
characterization and provides an ideal: if, as in stringamiaig, we can ensure that the additive
sum of states always dominates the combined sum for any atéQnmen state-space explosion
can never occur.

Given these conditions, the next task is to identify a meigmaifor transforming automata. As

stated earlier, by augmenting DFAs with auxiliary varialee can represent the state space more
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e __,_[_’\ac]
if (b1) to State P
accept(sigl)

Figure 5.4: Adding a bit t¢/. *xab.*cd/ transforms the automaton so that it is not ambiguous.
Dotted lines show less-important edges.

compactly than explicit states alone can do. Intuitivelgarporating auxiliary variables changes
the “shape” of an automaton since part of the computatiote $éanow stored in the variables.
By carefully controlling how these variables are incorgedhand manipulated, we can in turn
transform an ambiguous DFA into an equivalent automatoh legs ambiguity or none at all.

As an example, consider agaln*ab . *cd/, whose DFA is ambiguous (staeis ambiguous).

In addition, assume that we can associate a single bit wighettpression that can be freely manipulated
(set, reset, and tested). Ignoring the method of constmudtr the time being, we can use this bit to
“remember” whether the first substring has been observeabrin so doing, the shape of the automaton
itself is transformed as illustrated in Figure 5.4. Whenstaicted appropriately, the new automaton along
with the bit preserves the semantics of the regular exgasdilost importantly, in the new automaton all
states are unambiguous and the automaton satisfies theiooridi avoiding state-space explosion.

Next, consider/\na[~\n] {200}/ whose DFA was shown in Figure 5.1. The DFA for this expression
contains 200 ambiguous states whose sole purpose is to trudistance in the input from the sequence
\na in which a newline is not observed. As shown, when combinegtl ather DFAs, unambiguous paths
are partially or fully replicated at each of these “countstgtes.”

To eliminate the ambiguity in this automaton, we introducgraple counter whose value can be set
(initialized to a value), reset (indicating the counterueabkhould be ignored), decremented, and compared
to zero. The transformation incorporating the counter iegiin Figure 5.5. The state variable replaces

the 200 counting states, leading to a sharp reduction inideeaf the automaton. Most importantly, the
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-
if (c==0)
accept(sigl)

200 states ¢ = invalid ‘ c =200 ‘

Z-\n An [ \

>-{\n,a}

accept(sigl)

Figure 5.5: Adding a counter t0.*\na[~\n]{200}/. The resulting automaton is unambiguous.

careful inclusion of the counter has yielded an automatoasststates are unambiguous and satisfies the
unambiguity condition. Note that the counter is decremepiethe start state. For this counter we assume
a semantics in which the variableiigactive until initialized. We discuss this property in more detail i
Section 6.5.

In both of these examples, we have in essence “factored batambiguity of the DFAs and placed
it into auxiliary state variables that manipulate some arpef the matching state more compactly than
explicit DFA states can. Figures 5.6 and 5.7 show the saméic@tion operation as Figures 5.1 and
Figures 5.2, respectively, except that the ambiguous DRAlé figures are replaced by their semantically
equivalent unambiguous XFA counterparts. In both figurke, input XFAs are unambiguous, and the
resulting combined XFAs are also unambiguous, as per Thebr2. Theorem 5.1 is also easily checked.

In general, the amount of auxiliary state we introduce aséffiect on the underlying automaton is very
fluid. At one extreme, DFAs corresponding to strings havemisiguous forms that require no auxiliary
state. At the other end, we can reduce an automaton to a siragée(with transitions to itself) by incorporat-
ing an appropriate combination of possibly many differgmiets of state variables. Of course, the number
of state variables may then be very large, and updating thesnbme time consuming. Transforming an
ambiguous automata to an equivalent unambiguous form ntiapdince auxiliary state that lies somewhere

between these extremes.
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-
if (c==
accept(sigl)

.
if (c==0)
accept(sigl)

o
if (c==0)
accept(sigl)

.
if (c==0)

accept(sigl)
accept(sig2)

Figure 5.6: The combined automaton corresponding to theesgns/ . *\na[~\n] {200}/ and
/ .*bc/. The inputs on the left are unambiguous as is their comhainain the right.

if (b1)
accept(sigl)

d

if (b2)
accept(sig2)

if (b2)
accept(sig2)

O
if (b1)
accept(sigl) :
O

Figure 5.7: The combined automata for expressionsb.*cd/ and/.*xef . *gh/. All automata
are unambiguous.

5.2.4 Generalizing Ambiguity

The conditions we have given to support these conclusioaseny strict. Here, we take first steps
toward generalizing the notion of ambiguity to better cleéggize polynomial state replication as illustrated
in Figure 5.3b. A languagé C X* is finite if and only if the number of sequencés| in L is finite.
Let D = (Q,%,9,q0, F) be a DFA. We say that a statec @ is finitely unambiguousf and only if
Lp(q) = ¥*R,, whereR, is afinite set of strings. In this case, all suffixes of pathefiaitely unambiguous
stateg belong to the sek,. Thus, finite unambiguity generalizes our earlier defimtids before, DFAD

is finitely unambiguous if all of its states are finitely undgunus.
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Consider two finitely unambiguous DFAS, = (Q1, %, 61, ¢4, F1) andDs = (Q2, %, 62, ¢3, F2). The
languaged.; and L, accepted byD, and D, respectively, have the following form:

Li=Y SR, ILy=)» ¥R,

qEF qeF»

Hence, the language acceptedy+ D, is given aso*- (quFlqu R,) and the size of the DFA); + D5

is bounded above by .., 5, 2 _oer, () |o]- Thus, we can bound the amount of replication that occurs.

To summarize, we have presented a formal framework for ceniaing state space explosion and
have shown that in this framework, auxiliary variables canused to eliminate explosion. In the next
section, we formalize the ideas presented here into ancdiixplodel that specifies how auxiliary variables

are incorporated into automata.



67

Chapter 6

Extended Finite Automata

In the previous chapter we gave a formal characterizatiostaik-space explosion and showed by ex-
ample how auxiliary variables can be employed to remove theiguity from automata. In this chapter,
we present a formal model for incorporating variables inttoenata and explore its consequences for sig-
nature matching applications. This model, terniedended Finite Automafd 00, 101], or XFAs for short,
extends the standard DFA model with auxiliary state vaéaland instructions for manipulating them, yet
at the same time retains many of the advantageous traits &§ DIFor example, the model is fully deter-
ministic in the states and input, and enables combinatidmaaiching algorithms that are straightforward
extensions to those for DFAs.

This chapter proceeds by first giving the formal model for XFH&ection 6.1), and then discussing
algorithms for constructing XFAs (Section 6.2), combinXigAs (Section 6.3), and matching XFAs (Sec-
tion 6.4). Following that in Section 6.5 we present a set ¢ifvizations inspired from compiler construction
principles that further reduce memory usage and increagerpgnce. In Section 6.6, we present a series

of experimental results showing the behavior of XFAs, anccaeclude with a discussion in Section 6.7.

6.1 Formal Models

XFAs generalize DFAs to include variables along with instions for manipulating those variables.
Practically, variables are stored in an auxiliary memorgoagated with an automaton. Subject to certain
constraints, instructions for manipulating variables barattached to either edges or states.

We formally represent the space of auxiliary variable valueed by Extended Finite Automata as a
finite set termed thelata domain denoted agD. Each distinct setting of the variables is represented as
a distinct data valud in the data domain. We associate a data valuwith the current state;, whose

values change as the automaton processes its input. Togatise extend the notion of a current state to a
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currentconfiguration(c;, d;). We similarly extend starting states and accepting (or Yisi@tes in DFAs to
starting and accepting configurations in XFAs. With eachgition or state we associate apdate function
U : D — D (or for non-deterministic XFAs aapdate relation/ C D x D) which specifies how is to be
updated. For the common case in which the data domain is g bedated on a transition, we associate
the identity function with the transition.

Below, we present two equivalent models for XFAs: one witstlinctions attached to edges, and one

with instructions attached to states. Each serves a digtimpose.

Definition 6.1 An edge-based nondeterministic extended finite automaifrA) is described by th&-
tuple (@, 3,0, D, U, @Dy, F'), where

Q is the set of states,

3} is a finite set of symbols (the alphabet),

J CQ x (XU{e}) x Q is the transition relation,

D is the finite set of values in the data domain,

U:Qx (ZU{e}) x Q — 2P*P is the per transitiompdate relationwhich defines how

the data value is updated on every transition,

QDo C @ x D is the set of initial configurations consisting of initiahtts paired with

initial data domain values,

e 'C (@ x Disthe set of accepting configurations.

XFAs add two additional components (a data domain and antepe@dation) to the classical non-
deterministic finite automaton (NFA). Further, as desailbéove, XFAs change the initial state and the
acceptance criteria to include elements of the data domain.

As stated above, a configuration is a tupjed) whereq € @ andd € D. Configurations extend the
notion of state in DFAs to include a data domain value. Siryil@perations manipulating states in DFAs
are extended to manipulate configurations in XFAs. ThusXfeAs, there is a transition from configuration
(¢,d) to (¢, d") on an input symbok € X (denoted by(q,d) % (¢, d")) if and only if (¢,a,¢’) € § and
(d,d") € U(q,a,q). Further, a string, a5 - - - a;, is accepted by an XFA’ if and only if there is a sequence

a a

of transitions(qo, do) = (q1,d1) - - - (qk—1,dx—1) — (q&, dx) such that(qy, d;) € F. The set of strings
accepted byt is the languagé.(X').
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An XFA X is state deterministid the transition relatiord is a function from@ x X to Q). X is data
deterministidf for all (¢,a,q’) € Q@ x X x Q, U(q, a,¢) is a function fromD to D. X is deterministiaf it
is both state and data deterministic. For deterministic XP#e provide a tighter definition forandU as

follows:

Definition 6.2 An edge-based deterministic extended finite automaton jX&Aescribed by th&-tuple

(Q,D,%,6,Us, (qo, do), F'), where

e () isthe set of states,

3} is a finite set of symbols,

0:Q x X — (@ is the transition function,

D is the finite set of values in the data domain,

U:Q x ¥ x D — Disthe per transitiompdate function

(qo, dp) is the initial configuration,

F C @ x D is the set of accepting configurations.

In the deterministic definition, both andU are functions instead of relations. The transition functio
0 has the same type as for DFAs. For the update fundtipa configuration (state and data value) and an
input symbol uniquely determine the updated data value.

The above definitions attach instructions to transitions jistructions can alternatively be attached to
states. From a language perspective, edge-based andbasme-XFAs are equivalent: for any edge-based
XFA X, there is a state-based XFE&; such that(X,) = L(X) and vice versa. We define a state-based

XFA as follows.

Definition 6.3 A state-based deterministic extended finite automaton {(XBAlescribed by th&-tuple
(Q,%,6,D,U, (q0,v0), F'), where

e () isthe set of states,

e Y is afinite set of symbols,

e §:(Q x X — (isthe transition function,
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D is a finite set of values,

U :Q x D — D isthe perstateupdate function

(qo, dp) is the initial configuration,

F C @ x D is the set of accepting configurations.

Formally, the only difference between edge-based and-bted XFAs is the type of the update
function U. In the latter casel/ is a function from only states and domain values to domainesl
(U : @ x D — D). Even so, each model has its advantages, and the algontlemmesent for ma-
nipulating XFAs employ both models. XFAs are constructearfiregular expressions using the edge-based
model (Section 6.2). At the same time, combination, matghémd optimization algorithms are more effi-
cient for state-based XFAs (Sections 6.3—-6.5). Algoritfiongransforming a constructed edge-based XFA
to a state-based XFA are straightforward and given later.

According to the definitions, all auxiliary state is maimid in principle using a single (possibly com-
posite) variable, although in practice we can have manyndisvariables without any loss of generality.
Further, although XFAs are formally defined in terms of adstidata domains, in most cases we can map
data domains and update functions to fairly common higlketldata types such as bits, counters, and bit-
maps. Combination routines then automatically combinenttierther. Note also that according to the
definition, a standard DFA is simply an XFA with a data domaintaining only one element.

We argue that the XFA model, whether edge-based or staedbhas fundamental advantages for in-
corporating variables and in some sense is the most natxteaigon for adding variables. As with DFAs,
transitions are a function of states and input symbols ontyae not influenced by variable values. Sim-
ilarly, variable update functions are a function of stated sariable values only (for state-based XFASs).
This distinct separation — decoupling transition behafriom variable values — is one of the key enabling
features of the model. On the one hand, retaining DFA-lik@gitions allows us to adapt and use com-
mon DFA operations with only slight modification in most caisén particular, XFAs can be constructed
individually and later combined using standard technigéatching is also more efficient, since variable
values do not need to be queried prior to following transsioOn the other hand, the use of explicit instruc-
tions provides fertile ground for systematically applyiotimizations and analysis techniques common to

compiler construction.
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Finally, and also with reference to the suitability of theAXRodel, distinctions between edge-based
and state-based XFAs are analogous to the distinctionseleetMealy and Moore automata, respectively,
under certain assumptions. Recall that Mealy and Moore mastextend DFAs with an output alphabet
and a mapping function from edges (for Mealy automata) aestéor Moore automata) to the output
symbols. If from an automaton’s perspective we view updatetions as opaque objects, then distinct
instructions can be interpreted as distinct output symtis an XFA emits during traversalThus, XFA
models share the same characteristics as Mealy and Moorelsndgor example, to recognize the same

language, state-based XFAs require more states than ponéisig edge-based XFAs.

6.1.1 Cost Models for XFAs

DFAs are fast and efficient, requiring only a single tabl&kigmper byte along with a test for acceptance
at each state. The complexity is thQ$1) per byte and)({) for a stream of bytes. Letp be the execution
time cost of an individual table lookup. Then, DFA cosbiper byte, or - [ for a stream of bytes.

For XFAs, the cost model is slightly more complex, sinceringion execution must also be accounted
for. Let|U(q,a)| denote the number of high-level instructions for manigotawariables that are attached
to a transition for edge-based XFAs, afid(¢)| the number attached to stajdor state-based XFAs. Let
|F'(q)| denote the number of acceptance conditions to check atgtasestly, letrm; =max{|U(q, a)||q €
Q,a € X}, andn; =maxX{|U(q)| + F(q)lq € Q}.

With these definitions, we can model the execution time cbstige-based XFAs ag+ ¢ - (m; + F))
per byte, and the execution time cost of state-based XFAs-as) - n; per byte, where) is the cost of
executing a single instruction. Note that acceptance tiomdi are implemented at the high level using
simple instructions and are modeled identically as updatetfons from a cost perspective.

These models assume that state(s) with the maximum numlrestoictions are exclusively traversed
for each byte of the input and thus reflect worst-case behaWofact, the average number of executed
instructions per byte may be much smaller. Neverthelessytirst-case cost model given above provides a

lower bound.

LEquivalency conditions regarding the output symbol on thet state of Moore machines are relevant for XFAs
as well [53], but also treated analogously.
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6.2 Constructing XFAs

The steps for compiling a regular expression to an XFA ardlaino those for constructing a DFA
from a regular expression using the standard Thompson rmtisin [108]: parsing the regular expression
and constructing a non-deterministic automaton withansitions, removing-transitions, determinizing
the states, and minimizing the automaton. For XFAs, we neeggravide algorithms corresponding to
these four steps. The key difference is the inclusion of th&tract data domain. Parsing is modified to
initially populate the data domain and introduce updatati@hs that manipulate values in the domain.
Each of the remaining steps is extended to transform theseegits appropriately as the transitions and
states are determinized and minimized, yielding an edgetbXFA with abstract variable values and update
functions. Finally, the last step maps these values andifurscto concrete data types such as bits, counters,
or their combinations, with edge-based instructions fonipalating them. We illustrate the techniques in
this section with a running example that constructs an Xefvfthe regular expressioh *ab. xcd/.

The construction techniques described here add data dolaies to transitions between states. Thus,
they employ the edge-based XFA model. After constructiaroimplete and an XFA is produced, we may
optionally transform the edge-based XFA to a state-basedl XF

It is important to note that all variables are fully specifatdconstruction. Unlike some models, there
is no dynamic creation or destruction of variables. For egl@msignatures of the form. *x. {n}y/ need
n + 1 bits to track then positions (which may themselves includesgrbetweenx andy. Thus, an XFA for

this expression would include an+ 1-bit bitmap; no dynamic variable creation is employed.

6.2.1 Extending Regular Expressions

Transforming a regular expression into an XFA requirekstg a balance between using states and
transitions on one hand and executing instructions thatpoéate variables on the other. At one extreme
we can produce a (possibly large) DFA which uses no varisdelsat the other extreme a (possibly slow)
program that does not rely on state information at all. Thaeeregular expressions for which the best
XFA lies at one of these extremes. For expressions such. &s/, wheres is a string, a simple DFA
with no variables is ideal. At the other extreme, the exanifgen Figure 6.2 which recognizes. {n}/

gives an XFA that is effectively just a program: there is agi@rstate which does not influence at all how
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If (counter==n) { accept(); } ‘

OO OQy T

Figure 6.1: The DFA for/.{n}/ (n arbitrary  Figure 6.2: An XFA recognizing . {n}/.
symbols).

the auxiliary memory is updated or when acceptance hapgems: to construction, we augment regular
expressions with new or re-interpreted operators to continere the resulting XFA lies along this spectrum.
We expand the grammar of regular expressions with an additimperator that introduces data domain
values and changes the shape of the resulting XFA. We algtempret an operator to introduce data
domain values. We call regular expressions with these sidaadomain-augmented regular expressions
The set of domain-augmented regular expressions (deritisg over an alphabet is recursively defined

as follows:

0 € REs.

€ € REy.

e Ya € ¥, a€ RFEy,.

e if £y € REy andE; € REx, thenE,|E; € REy,.

e if £1 € REy, andEs € REx;, thenE, - E5 € REx..

e if £ ¢ REy,, thenE* € RFx..

e if £y € Y andF, € ¥, thenE1#F> € REy,. (parallel concatenation)

e if E € REy, integern > 0, integerm > 0, andn < m, thenE{n, m} € REy,. (integer

ranges)

o if E € REs, then(E) € REs.

Next, we define the language corresponding to this augmegreedmar. Given an expressidn €

REy, let L(F) € ¥* denote the language correspondingtoWe defineL (E) recursively as follows:

o L(0)=0.
o L(e)={e}.
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| ID | Signature |
2667 | .x[/\\]lping)\.asp

3194 | .xbat"#.*&

2411 | .*\nDESCRIBE\s#[~\n]{300}

3466 | .*\nAuthorization:\s*Basic\s#[~\n]{200}

1735 | (.*new XMLHttpRequest#.*file://)|(.*file://#.*new XMLHttpRequest)

Table 6.1: Snort signatures for HTTP traffic annotated withparallel concatenation operater.*

e Va X, La) = {a}.

e if E = Ei|Ey, thenL(F) = L(E;) U L(Es).

o if E=F;-FEy thenL(E) = {z1z2|z1 € L(E;) andzy € L(Es)}.
o if £E=FE* thenL(F) = {zxy-- 2,0 <i<k,x; € E'}.

o if E = E1#E,, thenL(E) = {z1x2|x; € L(E1) andzs € L(E3)}.

o if E=F'{n,m},thenL(E) = {x1x2-- - 2,0 <n <k <mforl <i<k,x €FE}

In the definitions above, we introduce two operators: paralbncatenationK;# FE>), and integer
range constraintsH{n,m}). Parallel concatenation is semantically equivalent éam@ard concatenation,
and integer ranges produce a subset of the strings producéddt b All other operators have behavior
identical to their standard regular expression countésparhus, neither operator changes the underlying
language.

During NXFA construction, these two operators introducleiga from the data domain into the nonde-
terministic XFA. Integer ranges, a form of syntactic sugaie already present in the signatures (although
we do re-interpret them to introduce a counter). Thus we oelgd to decide where to use the parallel
concatenation operatot”. Currently, this is a partly manual step.

The previous chapter showed that string-based automatamarabiguous and therefore not vulnerable
to state-space explosion. The purpose of the parallel ¢enatdon operator is to break up a regular ex-
pression, or parts of one, into string-like subexpresstbas are individually suitable for string matching.
For example, we annotate * s1. * so/, wheres; andss are strings, ag. * s1#. * so/. Put another way,
we add the#’ operator right before subexpressions such.asand [~\n]{k} that repeat characters from
either the whole input alphabet or a large subset theredfle 1 shows examples of regular expressions

representing actual NIDS signatures from our test set atediwith #'. Note that for signature 2667 we
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have not used any parallel concatenation as the expresssuifficiently string-like already. This signature
will be compiled to an XFA without any added variables. Fgnsiture 3466, we do not insert# in front

of \s* because the character clagscontains few characters (the white spaces). For signatwes as
1735 which is a union of sub-expressions we apply the rulemgerting %' to the sub-expressions of the

union separately.

6.2.2 Parse Trees and NXFAs

The first step in XFA construction is to parse the domain-aeiged regular expression. This step
is straightforward and only minimally changed from that &dandard regular expressions. Parallel con-
catenation is left-associative and has precedence immegdizelow standard concatenation. Integer range
constraints have the same precedence as Kleene CldstireAll other operators are unchanged.

After parsing, the next step is to construct a non-detesti;KFA with epsilon transitions via a bottom-
up traversal of the parse tree. Parallel concatenationraeder range operators introduce formal versions
of a bit and a counter to the constructed NXFA, respectiv€liher operators produce NXFA constructs
structurally identical to those used for standard regut@ressions, modified to incorporate identity update
functions along their edges.

We give recursive construction definitions for each operagtow. Figure 6.3 shows two generic nonde-
terministic XFAs, NXFA 1 and NXFA 2, upon which the recursidefinitions are built. In the descriptions,
NXFA 1 and NXFA 2 corresponding to arbitrary regular expiess F;, and E», respectively. Without loss
of generality, we assume that there is a single start stateaasingle accepting state in each automaton,
although there may be multiple initial and accepting domailues. NXFA 1 has initial configuration do-
main valuesd;; and accepting domain valuég;. Initial and accepting domain values for NXFA 2 are
defined analogously. We further assume that domain valuggeba the two NXFAs are distinct, since if
not domains can simply be remapped to new values if necesgafgss otherwise noted, when NXFA 1
and NXFA 2 are combined using one of the operators below,gbelting domairD is simply the union of

the respective domain3; andDs.

1. basis(R = a € X). The basis case applies to occurrences of individual syshiiothe alphabet

parsed from the regular expression. In this case, a twe-statomaton is created with a single

2character classes such gseiou] or [~\n] also fall into this category.
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Figure 6.3: Source NXFAs used for recursive constructiofingt@®ns for concatenation, union,
and so forth. The NXFAs have starting configurations and @gtreg configurations as shown.

aey

d @ Oqf E
(d,d)

Figure 6.4: The basis case for NXFA construction. A singasition with an attached symbol has
one domain valué€. Its starting configuration s, d) and its accepting configuration (g;, d).

transition between them labeled with the observed symisahawn in Figure 6.4. This automaton
has a domairD = {d} consisting of a single element, which serves as the inibahan value and
the accepting domain value. The identity functi@hd) attached to the edge links the initial and

accepting configuration values.

2. concatenation(E; - E»). Figure 6.5 depicts the construction process correspgrtidi concatenation.
From the state perspective, as with standard concatenatiefiransition links the accepting state
of the left-hand automaton to the starting state of the rigbst automaton. For domain values,
the initial domain values are the same as the left-hand aatmmand the accepting domain values
are the same as for the right-hand automaton. The updat®re&ttached to the-transition maps

accepting domain values from the left-hand side to init@h@in values in the right-hand side.

3. alternation (E1|FE>). The construction corresponding to alternation is givefrigure 6.6 and also
mirrors the DFA construction definition. Here, we arbithagpick the initial domain values of the
first alternative (NXFA 1) to be initial domain values for thew NXFA. In thee-transitions from the

start statey, we supply update relations that map them as appropriatestodirect alternative. We



77

9r £ oz @

{di1} @ {(d,dy) | d e dy and
dredy} &

Figure 6.5: NXFA construction for concatenation. The epsiransition links accepting domain
values on the left hand side to initial domain values on tgbktrhand side.

{(dydy) | d; e dy }
€

{(dd)|dedy}

{d|ded,or
d-d

{(dyd;) | d; e dyy

andd, e dy} {(dd)|ded,}

Figure 6.6: NXFA construction for the alternation operatid he accepting domain values are the
union of the accepting values in either source NXFA.

attach identity relations to thetransitions connecting the accepting states in the sautmmata to
the new accepting statg. Finally, the accepting domain values fgrare the union of the accepting

domain values in stateg; andgy».

4. Kleene closure(E7). Kleene closure is depicted in Figure 6.7. In this constoug the new start
state has initial domain valudgl;; } corresponding to the initial domain values for staie. The
accepting domain values are also the §&t }, which follows since the evaluation of NXFA 1 is
optional. Update relations attachedettransitions serve the purpose of mapping accepting domain

values (fromgy;) to initial domain values.

5. parallel concatenation(E;#E>). Parallel concatenation has the same semantics as sarmlar

catenation but is structurally distinct. Whereas standamtatenation as described above connects
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{(dd)|ded}

€ €

) dr
{di}
{(dd)|dedy} {(dydy) | d; e dy
and d, e d; }
{(dy,d;) | d; € dgy
andd, e d; }

Figure 6.7: Kleene Closure construction for NXFAs.

two NXFAs together in sequence by linking the acceptingestaf one to the starting states of an-
other, parallel concatenation usesansitions to link all states in the first NXFA to the stawte of

the second NXFA. Thus, parallel concatenation is strutifusasuperset of standard concatenation.
We use appropriately constructed update relations to ertbat semantics remain the same as for

standard concatenation despite the structural change.

Figure 6.8 shows the construction. As the figure shawsansitions are added from every state in
NXFA 1 to the start state of NXFA 2. The initial conditions dh@se of NXFA 1, and the accepting

conditions are the same as for NXFA 2. Update relations ade@ads follows:

(a) For each of the addedtransitions, we attach update relations that map domdiresan D

(recall, D is the union of domain®; and D) to the starting domain values &f; .

(b) To each transition in NXFA 2 we add tuples in the updatatieh mapping NXFA 1's starting

domain values to themselves.

(c) For eache-transition out of an accepting state in NXFA 1 into a staytstate of NXFA 2, we
add tuples to the update relation that map accepting donadiles in NXFA 1 to starting values
in NXFA 2.

Together, these update relations ensure that an overaptng configuration can be reached if and
only if an accepting configuration for NXFA 1 is first observietlowed by an accepting configura-

tion for NXFA 2. Specifically, the proper initial domain vador NXFA 2 is only set by following
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{di1}

{(dyd;) | d; € D, d, e {di;} }

)

{(dyd;) | d; € {du}, d; € {dp} }

{(dyd) | d; <D, d; < {dy} ¥

{(dydy) | d, & D, d, € {di} }

vq,q" € Q, Vs € 3, set U(q,5,9) =
U(g,sq) v {(dy,dy) [ d; e {diy} }

Figure 6.8: Parallel Concatenation of two NXFAs. The updalation in thee-transition fromg;
to ¢o2 contains tuples that link the domain values in the accemargiguration of NXFA 1 to the
initial configuration of NXFA 2.

the e-transition from an accepting configuration for NXFA 1 (Itésn). All othere-transitions from
NXFA 1 to NXFA 2 move the domain to a “poison” value with regacdNXFA 2 (Items 5a and 5b:
an initial domain value for NXFA 1) that can only be reset bgtfaiccepting NXFA 1.

The effect of this construction is that both NXFAs can be ratt“in parallel” by introducing the
formal version of a bit that uses the data domain to enforeeséfiyuencing requirements of concate-
nation. WhenR, has a leading* as is the case for strings, this construction eliminategthieiguity

associated with thex at the beginning ofz, that is present with standard concatenation.

6. Integer Ranges(E;{n, m}). Integer ranges of the for; {n, m} are used to indicate th&t; must
occur at least times and no more tham times in immediate succession, whére< n,n < m,
andm < 0.3 Integer ranges already exist as a form of syntactic sugaefyular expressions. For
XFAs, we re-interpret them to perform the repetition congtin the domain values rather than in
explicit states. When ambiguous counting states are feltyaced by counting domain values, the

associated ambiguity can be reduced or even eliminatedHigtdires 5.1 and 5.6).

3Noten < oo or else the resulting automaton is not finite.
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Figure 6.9 illustrates the construction process for integeges. Since counting is performed in
the domain, the construction is structurally identicalte Kleene closure constructibriTo properly
count repetitions in the domain, we must construct a dorkinat is the cross product of the domain
D; for NXFA 1 with the counting rang®..m (we consider the case whene = oo below). This
follows from the fact that NXFA 1 needs to manipulate its ovanthin values in each iteration of
the counting. By crossing the domain values we can ensute\fKkBA 1 manipulates its domain
independently while at the same time the counting statesis piteserved. Converting to the new

domain is a two step process:

(a) First, we introduce a simple mapping, termef]-, -) to translate from the ordered pair pro-
duced by the cross product to a single domain value in the menadth D. Since bothD; and

the counting range are finitd/ (-, -) is also finite and can be pre-computed.

(b) Second, we translate all update relations in NXFA 1 tori domain as shown in the figure.
Since the update relations in NXFA 1 must exist for each dogntalue, we compute the cross

product (and translate using (-, -)) for each possible counting value.

Conceptually, NXFA 1 manipulates the first component of trdeced pair produced by the cross
product, whereas the counting domain manipulates the dezmmponent. The mapping functidn
simply translates the ordered pair to a new single value &istiseas a notational and implementation
convenience. In the figure, thetransitionsgy = ¢o1 andgy — qr map the initial domain values for
NXFA 1 associated with a counter value of 0 to their translateunterparts irD. In the transitions
qr1 S g0 andgy; N qr, the counting domain values are incremented and the aogegtimain
values for NXFA 1 are mapped back to the initial domain val{@swith Kleene closure). Finally,
the accepting conditions for the entire automaton are thesoof the acceptable counting rangen

with the initial domain values for NXFA 1.

Figure 6.9 shows that counters are incremented up to a wakiewhich is computed as follows: if
m = oo, thenmax = m, otherwisemax = m + 1. Further, whenn = oo, the accepting counting
values are fixed at rather than running over the rangem in the accepting conditions attached to
stateg,. Finally, we also add update relations to t)e S qy transition that map accepting domain

values in NXFA 1 to the starting domain values in NXFA 1 (andglthe accepting conditions of the

4In fact, Kleene closure is a special case of integer rangadichn = 0 andm = oc.
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{d]|

M M e d for c=n,...,m,
{(M(d,0), M(d,0)) | d € d;; } st
d=M(d, o}

9o/
H //\\

{(M(d,0), M(,0)) 1d < d } |

Vqlq, € QI Vs e ZI replace (dlr) € U(qlslq’) with { (dlle) I
{(dy,d,) | for c=0,1,...,max,
for c=0,1,...,max, for d; € {d;;} and d; € {d;},
d; = M(d, c)and d, = M(r, c) } d, = M(d;, ¢) and d; = M(d;, c+1) }

Figure 6.9: Integer range construction for NXFAs, giving ttonstruction fo#, {n, m}. The value
max iS set depending on the valuesoindm, and M (-, -) maps to a new domain incorporating
counter values.

newly constructed NXFA), crossed with the valuex. Formally, these update relations are expressed
as follows:

{(M(dl,maac),M(dg,max))]dl S dfl,dg S dil}

These changes ensure that when= co, the automaton will accept whenever at leasepetitions

of NXFA 1 have occurred.

For the expressiort . xab.*xcd/ in the running example, we insert a parallel concatenatjoerator
after theab sub-expression to yield. xab#. *cd/. Figure 6.10 depicts the corresponding parse tree, and
Figure 6.11 shows the NXFA with-transitions constructed from a traversal of the parse tk@mking at
the NXFA, one can observe that the only way to reach the aicgeponfiguration(s,d) = (15,5) is by
first reaching state 7 with a domain value of 2, and then fdlgwthe e-transition out to state 10, which

nondeterministically moves the current domain value to 3.

6.2.3 Determinization and Minimization

Once a non-deterministic XFA has been constructed, thestegs involves-elimination, state deter-

minization and data-domain determinization, and minitidzaof states and data domains. These steps are
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Figure 6.10: Parse tree produced from the augmented regxpaessiory . xab#. *cd/.
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Figure 6.11: Basic NXFA foy . xab#. *cd/ constructed from the parse tree in Figure 6.10.
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similar to those used for determinizing standard NFAs, heytintroduce the additional complication of
needing to appropriately manipulate the relations (andtfans) that update the data domain.

Epsilon Elimination. The first step in the determinization process is to elingngpsilon edges;
i.e., edges with no associated symbol, also knowr-gansitions. We first introduce definitions fer
reachability, relational composition, aaatlosure, and we extend update relations to paths and st
With these definitions, we then describe how to eliminatensitions. For each of the definitions below,

assume we have constructed a nondeterministic XFA withnsitionst = (Q, D, >, 0, U, QDy, F).

Definition 6.4 A stateq’ € Q is e-reachablefrom another statg € Q if there is a path fromy to ¢

consisting exclusively of-transitions.

Definition 6.5 Given two relationd/y C D x D andU, C D x D, therelational compositiori/s o Uy
is given as follows: fowl;,dy € D, (di,ds) € Uz o Uy if and only if 3d € D such thatd;,d) € U; and
(d, dg) € UQ.

Note that Definition 6.5 is the standard definition for redatll composition. Next, we extend update
relations to paths and sets of paths. Consider a path ¢; — ¢2 — - - - — qpe1 from ¢ t0 gui1
consisting only ok-transitions. Then, the update relatibii7) corresponding to path is U (gx, €, qx+1) ©
U(qr—1,€,q5) o---0oU(q2,€q3) oU(q1, €, q2). Generalizing, the update relation corresponding setaf
paths{my, - - -m4} is given byl !, U(m;).

Finally, we defines-closure for nondeterministic XFAs.

Definition 6.6 Thee-closureof stateq is the set of tuples constructed as follows', U’) € e-closurdq) if

and only if there exists astreachable path from to ¢/, whereU’ = U(r), andpaths(q,q’)

wEpaths(q,q’)
is the set ok-paths fromg to ¢'.

Once thee-closurdq) has been computed for all statgse @, we can construct a non-deterministic

XFA X' = (Q,D, X%, U',QDj, F') with e-transitions removed as follows:

e Fora € X, atransition(q, a, ¢’) € ¢ if and only if

- (g,a,q") € d,or

— Jdg1 € Q such that/ is e-reachable frong; and(q, a,q1) € 4.
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EliminateEpsilon(Q, D, X, 6, Us, Q Dy, F):

8 — 0;

U} — 0;

foreach (¢;,s,q5) € 6NQ x X x Q do

foreach (d;,dy) € Us(g;, s,qy) do
foreach (¢ eachabie, dreachable) € ComputeEpsilonReachable (¢y, ds) do
Lé/ —dU {(qla S, qreachable)};

~N o o~ WN R

Ué — Ué U {((q“ S, QTeachable)a (dia dreachable))};

8 QD) «— 0;
9 foreach (qo, dy) € QD, do
10 LQD{J — QD{U ComputeEpsilonReachable (go, do);

11 return (Q, D, X,d,Us, QD F);

ComputeEpsilonReachable, d)
12 Result — {(¢,d)};
13 foreach (g, d;) € Result do
14 | foreachq; € {q|(g:,€,q) € 6} do
15 LLResult — Result U{qs} x {d;|(d;,ds) € Us(qi,€,q7)};

16 return Result;

Algorithm 6.1: e-elimination for NXFAs.

e U'(q,a,q') is equal to the following relation:

Ulg,a,q') U U UroU(g,a,q").
(q1,Ur)€e—closure(q’)

e LetG C QD be the set of configurations such thigte G, 3(q,d) € F in which (g, d)
is e-reachable frony. Then,F’ = F UG.

e For(¢,d) € Q@ x D, (¢,d') € QDj if and only if (¢’,d') is e-reachable from some
initial configuration(q, d) € QD.

The last item above states that the start configuratiphg in X’ are precisely those configurations
that arec-reachable from the start configurationsih Algorithm 6.1 gives the procedure for removiag
transitions. Informally, the algorithm extends standaslimination by composing update functions along
chains of “collapsed¢-transitions from the original NXFA and places these newtiehs into the appro-
priate transition in the-free NXFA. These composed functions keep track of the ptessihanges to the
data domain value along the collapsed edges. In the runmeng@e, Figure 6.12 shows the NXFA from

Figure 6.11 after epsilon elimination has completed. Aftaming Algorithm 6.1, we then remove states
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from the NXFA that are not accepting and have no paths leddilagcepting states.¢., dead states). Fig-
ure 6.13 shows the result of this process. Note that in Fi§ut8, there are four starting configurations:
states 0, 8, and 12, each paired with domain value 0, and4tateed with domain value 1.
Determinization. Epsilon elimination produces anfree automaton that is nondeterministic in both
its states and its domain. We perform determinization in stages, determinizing transitions first and
update relations (yielding update functions) second. Bttps extend the classic subset construction [53]
for computing deterministic automata. L&t = (Q, D, X, d, U, QDy, F') be a nondeterministic XFA with
e-transitions removed, and lé&t’ = (Q', D', X, U’, QDy, F') be the eventual state-determinized XFA,
whereg is a starting state i) D{,. As with the subset construction, statestihcorrespond to sets of states

in X. Consider first a state determinization scheme constmiétinas follows:
e ¢, ={q,q,...,q1}, where for each statg € {q1,qo, ..., qx}, ¢; iS a starting state i¥’.
e D'=D.
e dj =J{d;}, where{d;} are the sets of starting domain valuesiin

o Letd = {q,....qm} andp’ = {p;,....,pn}. ¢,p' € Q' if and only if 3o € 3 such thatvg; €
¢, q. = p (or ¢ has no transition om)®, wherep;, € p’ andp’ contains only states that are the

targets of transitions oa from states iny’.

o {pi,....pn} € {4, ...,am}, ) ifand only if 3gi, € {qi,...,qm}, 1 € {pj, ..., pn} Such thatp; €
d(qk, @).

L4 U/({q27 ceey Qm}a «, {pla 7pn}) - UZl:Z U;L:J U(qka Oé,pl)-

({¢, -, qm},d) € F'ifand only if 3¢ € {q;, ..., gm } Such tha{q,d) € F.

This formulation computes the subset construction inddeetly of the domain values and constructs
update relations using a simple set union operation. Umfately, this construction is flawed, aAtd may
not accept the same language s To see why, suppose that i’ we have a stat€q:, g2} and there
are transitionsyy — ¢; andgy — ¢2 in X. In this construction, the update relatidh associated with
({qo}, @, {q1, q2}) is the union of the update relatiobs andU, associated witliqo, o, 1) and(qo, @, g2),
respectively. Assume thatly, d;) € U; and(dy,dz) € Us but (do,d2) ¢ Uy and(dp,dy) ¢ Us. Since

>for at least ongy, € {q, ..., gm }, We must havey, = p;
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2 |(0,0).
(3,3)

(=7 e ——

d
14 {15)
(0,0
(5,5

s 00
(3,4)

Figure 6.12: The NXFA from Figure 6.11 corresponding'teab#.*cd/, aftere-transitions have
been removed.

d
{15)
(0,0
(5,5)

(0,0)-
G4

Figure 6.13: Thes-free NXFA corresponding t@ . xab#.x*cd/ after dead states have been re-
moved.
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(state,domain»D  (state,domain}D (state,domain)y:D

(0,0—0 (14,2—14 (4,00—28
(0,1—1 (14,3 —15 (4,00—29
(0,2—2 (14,4 —16 (8,00—30
(0,3—3 (14,5—17 (8,00—31
(0,4—4 (12,0—18 (8,00—32
(0,5—5 (12,0—19 (8,00—33
(15,0 —6 (12,0—20 (8,00—34
(15, —7 (12,0—21 (8,00—35
(15,2—8 (12,0 —22 (6,00—36
(15,3—9 (12,0—23 (6,00—37
(15,4—10 (4,00—24 (6,00—38
(15,5—11 (4,00—25 (6,00—39
(14,0 —12 (4,00—26 (6,00—40
(14,—13 (4,00—27 (6,00—41

Table 6.2: The mapping froifstate, domainpairs in@ x D to the new domain used in Figure 6.14.

(do,dy) € U" and(dy, d2) € U’, the configuration${qi, ¢2},d1) and({q1, g2}, d2) are both reachable in
X" from the configuratioq {qo}, do }. However, configuration&y; , d2) and(q2, d1) are not reachable from
(qo, do) in X. This can lead to extra accepting pathstih

One way to remedy this is for each state @ to have its own copy of the relevant update relations to

manipulate. Thus, we sé’ = ) x D and update the construction above as follows:

o Letg) = {qi,¢,...,qx} as above. TherQ Dy = {(qy, (¢i»di))|ai € {a1, 92, ..., a1} and(g;, d;) €
QDo}.

e Forqd = {qi,....qm} andp’ = {pj,....pn} in Q', ((¢,dr),(p',d2) € I'(q,,p’) if and only if
(d1,d2) € U(gr, o, ps) for somegq, € {q1, g2, ..., g} andps € {pj, ..., pn}-

e (¢,{(qr,d)) € F'ifand only if (¢,,d) € F for someg, € {q1,q2, -, qi }-

By transforming to domaird) x D, we preserve the dependencies in the update relations xisate in
XFA X. We give the algorithm for performing state determinizatia Algorithm 6.2. In the running
example, the nondeterministic XFA in Figure 6.13 has stées {0, 4, 6,8,12,14, 15} and domainD =
{0,1,2,3,4,5}. Thus, the size of domai x D is 42. Figure 6.14 shows the state-deterministic XFA that
results from applying Algorithm 6.2 to the NXFA in Figure 8.1For clarity, we map each domain element

in Q x D to a distinct integer using the mapping shown in Table 6.2.
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0,0) (0,30) (33,22)
(0,18) (30,18) (33,33)
(0,25) (30,30)

(0,0) (30,18) (38,18) (0,0) (0,30) (33,22)
{0,18) (30,30) (38,22) b cy/(0/18) (30,18) (33,33)
(0,25) (33.22) (38.30) 2-{a,b,C}|(g.25) (30.30)

(0,30) (33,33) (38,33)

(0,0) (25,18) (30,30)
(0,18) (25,30) (33,22)
(0,25) (25,38) (33,33)
(0,30) (30,18)

C
0,18,25,30 (0,0) (25,18) (30,30)
(0,18) (25,30) (33,22)
(0,25) (25,38) (33,33)
(0,30) (30,18)

(0,0), (18,12) (33,22)
(0,18) (22,17) (33,33)
(0,25) (30,18)
(0,30) (30,30)

\

0,0) (0,30) (33,22)
(0,18) (30,18) (33,33)
(0,25) (30,30)

(0,0) (18,12) (33,22)
(0,18) (22,17) (33,33)
(0,25) (30,18)
(0,30) (30,30)

(0,0) (25,18) (30,30)
(0,18) (25,30) (33,22)
(0,25) (25,38) (33,33)
(0,30) (30,18)

(0,0) (25,18) (30,30)
(0,18) (25,30) (33,22)
(0,25) (25,38) (33,33)
(0,30) (30,18)

(0,0) (18,12) (33,22)
(0,18) (22,17) (33,33)
(0,25) (30,18)

(0,30)(30;30).. .

Z'{a,C/d}

\ Y-{ac}
(0,0) (18,12) (33,22); (0,0) (12,6) (33,22) N to State
(0,18) (22,17) (33,33) (0,18) (17,11) (33,33) |((0,0) (0,30) (33,22) 04812
(0,25) (30,18) (0,25) (30,18) (0,18) (30,18) (33,33) P
(0,30) (30,30) (0,30) (30,30) (0,25) (30,30)

Figure 6.14: The state-deterministic XFA forxab#.*cd/ constructed with Algorithm 6.2. Up-
date relations over the domain x D arise from the mapping in Table 6.2.
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DeterminizeTransitions(@Q, D, X, 9, Us, Q Dy, F):
D' — Q x D;
/[ Data value in new NXFA = configuration in old
D6 — QDy;
/I New states are sets of old states
9o < {q0|3do € D.(q0,do) € QDo} ;
Q" —A{a}:
§ —0;
U — 0;
foreachq¢, € Q' do
foreach s € ¥ do
qy — {ar13a € ¢;-(ai,8,q¢) € 0};
Q —Q U{ds}; /I Accum. reachable sets of old state
/I New states have 1 trans. per symbol
6" — 0" U{(ais s, qp)}
U — {((gi,di), (a5, df))lai € @i Nag € qpN
(di,dy) € Us(ai, s,q1)}
I/l Update relations preserve semantics
Us < Us U{(g;,5,47)} x U ;
F'—{(d',(q,d)|d € Q' Ng€ g N(g,d) € F};
return (Q', D', %,d",Us, {q,} x D§, F');

Algorithm 6.2: Algorithm for determinizing transitions.

N

© 00 N O U~ W

11

12
13

DeterminizeData@, D, %, 6, Us, {qo} x Do, F):
dy — Dy ; /I New data values = sets of old data valueg
D" —{dy};

/I QD accumulates all reachable configurations
QD — {(q0,dp)} ;

Uj — 0;

foreach (¢;,d;) € QD do

foreachs € ¥ do

qar < 6(qi, s);

dy « {dys|3d; € d}.(di,dy) € Us(qi, s, 45)};

D' — D'u{d}}; Il Accum. reachable sets of old valug

QD — QD U{(qs,d})};

/I Build deterministic update functions
| Us = Us U{((q, ), (d}, d}))}

F'—{(q,d)|(¢q,d") € QD AN3d € d'.(¢q,d) € F},
return ((Q,D’,X%,4,Us, (qo,dp), F'),QD);

Algorithm 6.3: Algorithm for determinizing NXFA data domains.

LS

(7]
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New Domain Domain Value Sets New State State Sets from
Value from Domain Determ. ID State Determin.
0 {0,18,25,30 P {0,4,8,12
1 {0,18,25,30,38 Q {0,4,6,8,12
2 {0,12,18,25,3p S {0,4,8,12,14
3 {0,6,18,25,30 T {0,4,8,12,1%
4 {0,18,22,25,30,38
5 {0,18,22,25,30,33,38
6 {0,12,17,18,22,25,30,33
7 {0,6,11,18,22,25,30,33

(a) Sets of domain valuesnew domain value (b) Sets of statesnew state ID
Table 6.3: The simplifying mapping from sets of domains agtd sf states in Figure 6.15 to single
domain values and single state IDs used to produce Figuée 6.1

Data domain determinization is the second half of the deteérattion process. Algorithm 6.3 accepts
as input a state-deterministic XFA and produces an XFA gsutthat is both state- and data-deterministic.
Data-determinization applies the same notion of subsettoaction for determinizing states to update re-
lations in the data domain. Let = (Q, D, >, 0,U,QD,, F') be the state-deterministic input XFA and
X'=(Q,D',x,8,U, QD{, F') be the corresponding deterministic XFA. In principle, foethew domain
D' = 2P However, the algorithm uses a worklist that adds new domvalines toD’ as necessary so that
only the domain values that are reachable from the startimfiguration are included. Algorithm 6.3 also
outputs the sef) D (Line 13) that contains all configurations that are reach#oim the starting configura-
tion. This set is used at a later stage.

Figure 6.15 shows the deterministic XFA resulting from gjomy Algorithm 6.3 to the state-deterministic
XFA in Figure 6.14. Analogous to state determinization, atedelations are now upddienctionsdefined
over domain values i’ that correspond to sets of domain valueslin Note that although the update
functions associated with transitiob8 are not defined on the entire data domaif) they are defined on
all data valuesgl!’ € D’ that can occur in any state Admittedly, the use of sets of domain values and sets
of states makes the figure hard to read and obscures theustraéthe update functions. In Figure 6.16 we
show the same XFA as Figure 6.15 with the sets of domains @sds&states replaced by the correspon-
dence given in Table 6.3. The Domain value §&t18, 25,30} (the initial domain value) in Figure 6.15

corresponds to valugin Figure 6.16, and so forth.
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({0,18,25,303, {0,18,25,30}) ({0,18,25,30,,38}; . {0, 18,22,'2'5,30,33}) ({0,18,25,30,38}, {0,18,25,30})
({0,18,22,25,30,33},{0,18,22,25,30,33}) ({0,18,22,25,30,33,38},{0,18,22,25,30,33}) ({0,18,22,25,30,33,38},{0,18,22,25,30,33})

(40,18,25,30,38}, {0,18,25,30,38})
(£0,18,22,25,30,33,38} {0,18,22,25,30,33,38})

({0,6,18,25,30}, {0,18,25,30,38})
({0,6,11,18,22,25,30,33},{0,18,22,25,30,33,38})

(£0,18,25,30}, {0,12,18,25,30) 4| |({0,18,25,30}, {0,18:25,30,38})
({0,18,22,25,30,33},{0,12,17,18,22,25,30,33}). | |({0,18,22,25,30,33}, {0,18,22,25,30,33,38})

/({0,18,25;30,38}, {0,12,18,25,30})
({0,18,22,25,30,33,38},{0,12,17,18,22,25,30,33})
|
({0,6,18,25,30}, {0,12,18,25,30})
({0,6,11,18,22,25,30,33}, {0,12,17,18,22,25,30,33})

({0,12,18,25,303, {0,18,25,30,38}) !
({0,12,17,18,22,25,30,33},{0,18,22,25,30,33,38})
5

({0,12,18,25,303}, . {0,18,25,30})
({0,12,17,18,22,25,30,33},{0,18,22,25,30,33})

{0,6,11,18,22,25,30,33}

Z-{alcld}
C Z-{alc}
({0,12,18,25,30}, {06 18 25 30}) to State
({0,12,17,18,22,25,30,33}, {0,6,11,18,22,25,30,33}) 0,4,8,12
({0,12,18,25,30}, {0,12,18,25,30}) ({0,6,18,25,30}, {0,18,25,30})
({0,12,17,18,22,25,30,33}, {0,12,17,18,22,25,30,33}) ({0,6,11,18,22,25,30,33}, {0,18,22,25,30,33})

Figure 6.15: The state- and domain-deterministic XFA forab#.x*cd/ after domain deter-
minization has completed. Each domain value in the reguKiRA corresponds to a set of domain
values in the input state-deterministic XFA.
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Z-{alcld}

>-{ack

to State
P

Figure 6.16: The state- and domain-deterministic XFA forab#.*xcd/ with state and domain
values replaced according to the map in Table 6.3.
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Minimization . Once the XFA has been determinized, the next step is to ppenficinimization. The
minimization process for XFAs is also split into two partsta domain minimization and state minimiza-
tion. Each component of minimization employs the kernehef standard Hopcroft-Ullman minimization
algorithm [53] for finding equivalent data domain elementd atates, respectively.

Consider a DFAM = (Q, 3,9, g0, F'). Minimization of M finds the coarsest equivalence relation
R C @ x @ that satisfies the following conditions:

e (q1,q2) € Rimpliesthaty; € F < ¢, € F.
e (¢1,92) € Rimpliesthatva € ¥, (6(q1,a),0(q2,a)) € R.

Let R be the set of all relations satisfying the conditions abofe. say that?; € R is coarser than
Ry € Rifand only if R, C R;. Algorithms for computing the coarsest equivalence refaire given
in [53]. Once the coarsest equivalence relatidrs computed, all the states @ in the same equivalence
class can be merged.

Consider a deterministic XFA' = (Q, D, %, 4, U, (g0, do), F'). Analogous to the above, assume we

find the coarsest equivalence relatiBrnC (Q x D) x (@ x D) that satisfies the following conditions:

e ((¢,d),(q,d")) € Rimplies thaty = Q" (configurations with different states are never

equivalent).
e ((¢,d),(q,d")) € Rimpliesthat(¢,d) € F < (¢,d') € F).

e ((¢,d),(q,d")) € Rimpliesthata € X ((¢,U(q,a,¢')(d) ), (¢',U(g,a,¢')(d)) ) €
R (note:q’ = 6(q,a)).

In this case, if for a statgand two data value$; andd, we have((q, d1), (¢,d2)) € R, then configura-
tions (¢, d;) and(q, d2) can be merged. Recall that during determinization, the dataain was expanded
from D to Q x D. The equivalence relatioR above allows us to merge data values for each gtate).
Algorithm 6.4 gives the procedure for minimizing the datardon.

Minimizing states follows a similar formulation. For a stgte (), we define the sett C D such that
Vd € D, if (¢q,d) € F, thend € A. Next, recall that/(q, «) is the set of tuples comprising the update
function attached to transitiom leading out of state. We definelUs; = {(a,U(q, «))|a € £}. Uy is the
set of all update functions out qf grouped by alphabet symbol. We then defi€ects(q) = (A, Uy).
Intuitively, effects(q) captures the update functions and accepting data valuesiatesl with state.

We find the coarsest equivalence relat®rc Q x @ that satisfies the following conditions:
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ReduceDataDomain(Q, D, X, 6, Us, (qo, do), F'), @D):

/* Pg Holds for each state the finest partition of possible data values known

be necessary.
Py — 0 Workset — 0;
foreachq € @ do
partition «— {{d|(q,d) € F},{d|(¢,d) € QD — F}} — {0};
Pg — Py U{(q, partition)};
if |partition| > 1then Workset — Workset U {q};

while Workset # () do
q; «— Workset[0];
Workset «— Workset — {qs};
foreach (qia S) € {(Q7 Z)l((QJ Z)7 Qf) € 5} do
if 3d; € Po(q:)-Bd; € Polqy)Vd; € dj.Us(qi, s)(d;) € dy then
newpartition — 0;
foreachd; € Pg(q;) do

foreachd’ € Pg(qgy) do

L if ' # () then newpartition «— newpartition U {d'};

Po — Po — {(as, Pa(as))} U {(ais newpartition)};
Workset «— Workset U {q;};

QD" —{(q,d")|g € QNd' € Pqy(q)};

D' —{d'|3¢ € Q.(¢,d") € QD'};

dfy — {d'|(q0,d") € QD' Ndy € d'}[0];

F'—{(q,d")|(q,d") € QD" A (¢,d'[0]) € F};

Us — {((gi, 8), (&5, d)) (i, &) € QD' A (6(gi, 5), d) € QD" A Us(qi,5)(d;[0]) € ds };
return (Q,X%,0, F, D', qo,d;, Us, A’, QD’);

to
*/

Algorithm 6.4: Reducing the size of the data domain by combining the etgnvaonfigu-
rations.
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ReduceStates), D, X, 4, Us, (qo, do), F):

/* P Holds the finest partition of states known to be necessary.

P 0

foreachq € @ do

if 3EC € P such thatGetStateEffect (¢) =GetStateEffect (EC|0]) then
| P—P—{EC}U{ECU{q}}

| else P— PU{{q}};

while 3EC € P suchthat3q, € EC, ¢ € EC,s € Y. AEC) € P{(qy,5),6(q2,5)} € EC; do
NewECs — 0;
foreachq € EC do
if 3EC" € NewEC's such thatVs € £.3EC; € P.{d(q,s),d(EC'[0],s)} € EC[ then
| NewECs — NewECs —{EC'} U{EC" U{q}};

else NewECs «— NewECs U {{q}};
| P+« P—{EC}UNewECs;
Q' — P;
o' —{((q:5): dp)la; € Q" N gy € Q" NO(gi[0], ) € ¢} };
& — {dld € Q' Mo € ¢} O]
Us — {((qi; 5), Us(q;[0], 8))|q; € Q" A s € B}

F'—{(¢',d)|q" € Q"N (¢'[0],d) € F};
return (Q', D, %, ¢, Us, (g6, do), F');

GetStateEffectg € Q)

A —{d|(q,d) € F};

Us; — {(s,Us(g, 8))|s € B},
return (4, Us);

*/

Algorithm 6.5: Reducing the size state space by combining the equivaksiess

e (q1,92) € Rimplies thateffects(q;) = effects(q2);

e (¢1,42) € Rimplies thatva € ¥, (0(q1, @), 0(g2, @) € R.

Then, with the equivalence relatidghcomputed, two states in the same equivalence class can bedner

into one. The procedure for minimizing states is given in&lthm 6.5. Minimization has no effect on the

XFA in the running example.

6.2.4 Finding Efficient Implementations

For performance reasons, an XFA does not explicitly Usand F' to manipulate and test data values.

Instead elements df and I’ are appropriately mapped to high-level data types that ane refficiently

computed and more easily managed. Thus, the last step irthgilation process is to map abstract data

domain operations to efficient, concrete instructions f@nipulating data values. Intuitively, this step
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replaces domain values and update functions with highed-Mariables and instructions that manipulate
them.

To perform the mapping, the compiler makes use of generia-tygte templates that formally relate
domain values and update functions to high-level types. W#hsuitable mapping is found, as described
below, the compiler substitutes the appropriate companehthe template into the XFA. We call these

templates Efficiently Implementable Data Domains (EIDD®) define them as follows:
Definition 6.7 An efficiently implementable data domain (EIDBR6-tuple (D, dy, E, Ug, C, Ac), where

e D is the finite set of values in the data domain,

do is the initial data domain value,

E'is a set of symbolic names for efficient-to-compute updatetions,

e U : E — DP is a mapping from these names to fully defined (deterministiciate

functions onD that can be associated with XFA transitions,

C'is a set of symbolic names for efficient-to-check acceptaooelitions,

andAc : C — 2P is a mapping from these names to acceptance conditionsahdie

associated with XFA states.

To illustrate, Figure 6.17 shows an EIDD for a simple bit fatted according to the grammar we have
defined in our implementation. In the figure, the domain has élements and an initial value 6f E
holds the high level names of the operations applied to tte hbop, set, andreset. Ue maps these
names to the corresponding update functions. Note thattegdactions are total over the domain. For
example, the update function feet—{(0,1), (1,1) }—implements the total functioh — 1,1 — 1 over
the domainD = {0,1}. Continuing,C and Ac specify acceptance condition names and relate them to
specific domain values. Thaconditional acceptance condition will accept on any valuginwhereas
conditional hi accepts only if the data value is 1 during matching. Finalyyough not part of the EIDD
itself, itemsCGe andCGa® map the high-level operations to the low-level instrucsidhat are executed. In
this case, the instructions are in the format used by ouopype interpreter.

Although Definition 6.7 specifies that the update function&'imust be “efficient to compute” and the

acceptance conditions frofi “efficient to check”, we cannot give a single definition for atht means to

6CGe andCGa stand for “Code Generation—edges” and “Code Generatiaegdance”, respectively.



eidd_t bit_full = {
D = {0..1}
d =0,
E = {noop, set, resel,
Ue ={
(noop, {(0,0), (1,1)}),
(set {(0,1), (1,1)}),
(reset, {0,0), (1,0)})
¥
C = { nonaccepting, conditional, unconditiona},
Ac = {
( nonaccepting, {} ),
( conditionallo , {0} ),
( conditionalLhi , {1} ),
( unconditional , {0,1})
I
CGe ={
(noop, ),
(set, “[%i, bit,set()]"’),
(reset, “‘[%i,bit,reset()]’")
I
CGa ={
(nonaccepting , )

(conditionallo,  “‘[%i,bit,test,0,([%i,accept])]’’),

(conditionalhi ,

(unconditional ,

“[%i, bit , test ,1,([%i,accept])]’’),
“[%i,accept]’’)

Figure 6.17: an El

DD specifying the mapping for a simple bit.
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be efficient as this depends strongly on the platform XFAsamnFor example, on some platforms we may
define efficiency as the use of five or fewer machine code iotitms to perform the update or to check the
condition, on others we may use different definitions.

Algorithm 6.6 presents the basic procedure for mapping . Note the use of two unconventional
notations. First, for some setswe useA[0] to denote an arbitrary element of the set; the correctnetfgeof
algorithm does not depend on which element gets chosen aadewvér we use this notation we know that
A # (). Second, the conditions of some while loops and if-statésnarme of the fornda € A, and in these
cases we assume that inside the body of the loop or the @rstatta is bound to one of the elements 4f
As above, it is not important for the correctness of the atgor which element is chosen.

Given an XFA(Q, D, X, 0, Us, (qo, do), F) and an EIDD(D’, dy), E,Ug, C, Ac), this algorithm com-

putes a mapping that consists of three components:

1. DbD : Q@ x D — D’ maps all configurations from)D (the set of all reachable configurations,
produced by the Algorithm 6.3—Data Determinization) tasea in the new data domai specified
by the EIDD,

2. E5: Q x ¥ — E maps all transitions to efficient update functions, and
3. Cg : @ — C maps all states to efficient acceptance conditions.

The mappingD’QD for data domain values is frold D to D’ rather than fromD to D’, thus mapping only
those configurations that are reachable to the EIDD’s doniiree that the EIDD domai®’ can be much
smaller thanD (and typically is) because different values@fcan map to the same value bf without
affecting semantics, as long as there is no state wherepteultilues fromD can occur simultaneously. In
the running example, for instance, the data domain sizedisced from 8 to 2. Below are the conditions

that a valid mappingD’QD, Es, Cq) satisfies to ensure that it preserves the semantics of the XFA
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Vge Q,3ce C st (gq,c) € Cy
¥(g,d) € QD,3d € D' st. ((q.d),d) € Dy,
V(gi,s) € Q xX,Je € E  s.t. (( s),e) € E5
op (90, do) =

V(g.d) € F onla,d) € AC(CQ(Q))

V(g,d) € QD — F Dbp(% d) & Ac(Cq(q))
V((gi, di), s) € QD x & Dgp(0(gi, s), Us(qi, s)(di)) =
Ur(Es(qi, 5))(Dgp(gi; di))

Algorithm 6.6 finds a mapping if one exists or declares falby returning an empty mapping. The
loop at line 11 expand@’QD when it finds situations in which a transitian= 6(g;, s) has already been
mapped inEs and a configuratiofg;, d;) of the source state faralso has been mapped%D, but the
configuration resulting from applying the update function#, (qr,ds) = (6(q, s), Us(ai, s)(d;)), has not
been mapped inDbD yet. In this casdqy,dy) can be mapped to the value fraB which is the output
of Es(q;, s) for input DQD(QZ; d;). E5is expanded by choosing an unmapped transition on line 1®Hwnd
trying all possible mappings for it in the loop on line 16. Soamappings for edges can lead to conflicting
mappings for certain configurations; tAéndInconsistency function detects such mappings.

The recursive calls ifindvalidMapping continue until all transitions are labeled with a symbolic
update function. When this happens (or even earlier) the &dine 11 will assignh a mapping iﬁ’QD to all
configurations that are reachable frgm, dy). Thus if the function ever returns on line 14, all transigon
from 6 have a mapping ir’s, and all the configurations fro@ D have a mapping ime- Since the
loop on line 16 tries all possible update functions, we knbat if there is a mapping from transitions to
update functions that leads to a valid mapping of configanatito values fronD’, the algorithm will find
it. Otherwise, it will signal failure by returningp), 0).

In the running example, Algorithm 6.3 returns a state deiteistic XFA with the following set of

reachable configurations (using the mapping in Table 6.3):

QD - {(Pa 0)7 (P74)7 (Q7 1)7 (Q75)7 (Sv 2)7 (57 6)7 (T73)7 (T7 7)}
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MapXFAEIDD( (Q, D, %, 3, Us, (qo, do), F), QD, EIDD):

(D', d), E,Ug,C, Ac) «— EIDD;

Es «0;

Dip < {((q0,do), dg)};

(Dgp» Es) «FindValidMapping (Dg,p, Es);

if (Dgp, Es) = (0,0) then return (0,0,0) ;

Co — 0;

foreachq € @ do

Lccowect —{ce CN((g,d),d") € Dyp.d € Ac(c) < (q,d) € F}[0];
CQ — CQ U {(Q7 Ccorrect)};

return (Dgp, Es, Cq);

FindValidMapping( D¢, p, Es) :

11 while 3(s, ((gi,d;), d})) € 3 x DbD.ﬂd} € D'.((6(qi, 5), Us(qi, 8)(di)), d;) € Dp AEs(gi, s) € E do

12 LD/QD — Dgp U{((6(qi, ), Us(qi, s)(di)), Ur(Es(qi, 5))(d;)) };

13 if FindInconsistency (Dgp, Es) then return (0, 0);

14 if |E5| = |Q] - [¥| then return (Dg,p, Es) ;

15 trans — {(q;,s)|(¢;,s) € Q x LA fle € E.((¢s,5),¢) € Es}[0];

16 foreache € E do

17 | Result «FindValidMapping (D p, Es U {(trans,e)});

18 | if Result # (0, () then return Result;

19 return (0,0) ;

© 00 N o g b~ WDN PP
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FindInconsistencyDyg, , Es)
20 foreach (g, s,d;) € Q x ¥ x D do
21 if. Ad; e D', d; € D’,((qi,di),dgl) e/DbD A ((6(qi, 5), Us(ai, s)(di)), d}) € Dgp then
22 || if Je € E.((4:,5), ¢) € Es A (dj, d}) € Ug(e) then
23 return true ;

24 foreachq € @ do
25 Lif Ve € C.3((q,d),d') € Dgp.—d' € Ac(c) <= (q,d) € F'then return true ;

26 return false ;

Algorithm 6.6: Basic algorithm for finding a mapping of an XFA to a given EIDD
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With the XFA in Figure 6.16 as input along with QD given aboveldhe EIDD in Figure 6.17, Algo-

rithm 6.6 produces the following mappings:
Dyp(Q x D — D'):

(P,0)—0 (@1 —0 (S5,2)—0 (7,3)—0
(P4)—1 (@,5)—1 (S,6)—1 (T,7)—1

(P,a) — set

all other@ x 3 — noop
Co(@Q— O):

P — nonaccepting
@) — nonaccepting
S — nonaccepting

T — conditionalhi

Figure 6.18 shows the constructed XFA with domain valuetacsa by theDbD mapping above. Fig-
ure 6.19 shows fully constructed XFA with high-level vatedafter all mapping substitutions have been
performed (“C"-like instructions are used rather than thased by the prototype interpreter).

In principle, the use of EIDD templates is just an optimiaati We could alternatively provide a fully
generic template and let a matching algorithm constructhilgl-level types without any guidance (or
restriction) from the template. But in practice, the matghalgorithm as presented hag| £|%l) worst-case
complexity and thus would not scale well. One improvemeriticlv cuts down unnecessary exploration,
is to greedily pick the transitions for which the number oEgible symbolic functions that can be mapped
to without leading to inconsistencies is minimal. We alsd'g@en pre-computation to rule out symbolic
functions that cannot map to given transitions because sifvaiches in the number of input values mapped
to an output value. These optimizations are sound; neithémesn can cause the algorithm to miss an

existing solution.
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Z-{alcld}

to State
P

Figure 6.18: The XFA in Figure 6.16 with domain values repthby a successful mapping i
in the EIDD (D, , contains the mapping).
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a

Z-{alcld}

if (b1)
accept(sigl)
>-{ac}

to State
p

Figure 6.19: The fully constructed XFA with high-level mapgs.
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if (b1)
accept(sigl)

(a) edge-based XFA (b) state-based XFA

Figure 6.20: Edge-based and State-based XFAs correspptadine augmented regular expression
/ . xab#.*cd/.

6.2.5 Edge-based to State-based XFA Transformations

The construction process as described produces edge-K&dadrom regular expressions. Although
edge-based XFAs have fewer automaton states than stad-K&#\s, they are operationally inefficient.
For example, instructions on edges is cumbersome both fmahuanalysis and for maintaining in code.
Algorithms for combining, matching, and optimizing XFAseaalso more involved. Fortunately, unlike
construction, these algorithms operate on high-levelleuyivariables rather than low-level data domains.
Further, conversion to state-based XFAs is straightfodwse sketch the procedure briefly: for every state
S, we create a copy of (along with its outgoing transitions) for each incomingiséion to S that has a
distinct set of instructions on that transitforWe then move these instructions to the corresponding sopie
of S and retarget the incoming transitions appropriately. Fégé.20 shows edge-based and state-based
XFAs corresponding to the regular expressibrkab.*cd/, which after being annotated, has the form
/ .*ab#.*cd/. In Figure 6.20a, stat@ has an incoming transition from stafeon symbolb with a bit set
instruction. Statd® is copied, renamed to stale and the bit set instruction is attached to it. We employ

the state-based XFA model for all the remaining operatioaglescribe in this chapter.

"If all incoming transitions ta5 have the same instructions attached to them, no replicatioecessary.
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6.3 Combining XFAs

Although state space blowup occurs when DFAs are combired]Irthat the fault lies in the “shape”
of the source automata and in their violation of the condgigiven in Chapter 5, not in the combination
process itself. XFA combination is a straightforward exstien to DFA combination. This is a consequence
of the XFA model: transitions are fully deterministic in &a and input only, and variables are separable
[52] up to renaming.

Algorithm 6.7 gives the procedure for combining two XFAs.tBldhat this algorithm is virtually iden-
tical to Algorithm 4.1 given in Chapter 4 for combining DFAS he chief difference is that instead of
appending output symbols, we now append instructions tcaued states.

Here, lines 15 and 16 add instructions to combined statestieir original counterparts. For combined
statesy = (s, t), we copy the instructions fromandt into ¢q. As before, correctness follows from the fact
that entering state is equivalent to entering statesind¢ simultaneously, so that instructions in bathnd
t need to be executed. Figure 6.22 shows the results of congpiiné XFAs in Figures 6.21a and 6.21b. For
illustration purposes, names of states in the figure cortlesirsource states from which they are composed.
Note that this automaton has only 15 states, whereas theicechDFA (not shown, for brevity) requires
2,194 states.

Recall from Section 6.1.1 that the worst-case executioe wost model for XFAs i + v - n; per
byte, whereg is the cost of a table lookup is the cost of executing a single instruction, ands the
maximum number of instructions at any state. For a combingdnaaton,¢ and remain unchanged,
but n; may increase since states in the combined XFA accumulateiatiosns from both source XFAs.
Thus, combination does not affect the state lookup timeitlmay affect the instruction execution time. In
Section 6.5, we propose optimizations aimed at redugijnthe maximum number of instructions per state.

Combining many XFAs is an incremental process: new sigeataan be combined with an existing
automaton as necessary without needing to reconstrucemitiom scratch. One implicit precondition is
that the variable value in the starting configuration be ®es in each automaton. In practice, the last

phase of the construction process ensures this when majapinigh-level types and instructions.
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Combine(XFA first, XFA secondl

worklist WL
XFA c

c.addState(irst.start, second.stajt
(first.start,second.starinstrs.append (first.start.instrs)
(first.start,second.starinstrs.append (second.start.instrs)
c.setStart (first.start, second.stajt

WL = { (first.start, second.star}

while (|WL|> 0)do

(s.h =WL.pop ()

foreach (8 € X) do

s’ = first.getNextState( )

t' = second.getNextState(3)

if (s',t') ¢ c.stateghen
c.addState(’,t'))
(s, t').instrs.appends(.instrs)
(s, t').instrs.append:{.instrs)
WL.push ((s',t"))

| c.addTrans(s, t),(s,t'),5)

© 00 N o O~ W N -
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19 return c

Algorithm 6.7: XFA combination. Instructions are copied from sourceedab “paired”
states.

MATCH(XFA M, uchar* buf, int len)

1 state curState = M.start
2 execlnstrs ( curState.instrs)
3 fori« Otolendo

4 curState = curState.nextState(buf [i])
5 execlnstrs ( curState.instrs)

Algorithm 6.8: Algorithm to match an XFA against an input buffer.
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if (b1)
accept(id2)

cl- -
if (c1==0)
accept(id2)

(a) XFA for / .*retr. *passwd/ (b) XFA for /. *\ncmd [*\n] {200}/
Figure 6.21: When combined, instructions get replicatedaty states.

6.4 Matching to Input

XFA matching employs the same Moore-machine semantics Asniidching, described in Chapter 3.
That is, accepting states output a unique symbol from anube@tphabet when reached, regardless of the
position of the input. This straightforward extension toDRatching is also a consequence of the XFA
model.

XFA matching, given in Algorithm 6.8, simply extends this d&b by executing programs attached to
states when they are reached. In our framework, and as tedity the figures, acceptance conditions are
implemented as instructions. Thus, no special acceptaste are needed. An indication of an accepted

expression is emitted and processed identically to anyr atls&ruction.

6.5 Optimization

The conditions and model in Sections 5.2 and 6.1 allow XFAbdandependently constructed and
easily combined without blowup, but this flexibility comesaacost. As XFAs are combined, variables and
their instructions from the source XFAs accumulate in thelbmed XFA. For a combined XFA composed
from several individual automata, many auxiliary variabieust be maintained (increasing per-flow state
size), and states may contain many instructions to exeowge@sing execution time).

In this section, we present a set of optimization technighas systematically reduce both program
sizes and per-flow state requirements of combined XFAs. ntpkispiration from techniques developed

for compiler construction [74], we present three distinptimizations: exploiting runtime information
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3 m d - cl--

if (c1==0)

[*\npr] accept(id3)
\n bl =

cl- -
if (c1==0)
ol . accept(id3)
if (c1==0) R if (b1)

* accept(id2)

Figure 6.22: XFA produced by combining the XFAs in Figurezlé and 6.21b.

and support, combining independent variables, and mowvithnaerging instructions. The first and last

techniques reduce instruction counts, whereas the seednges both per-flow state and instruction counts.

6.5.1 Exposing Runtime Information

Some regular expressions, suclyas\ncmd [~\n] {200}/, induce counters that are decremented after
every byte once initialized. For example, when the XFA inUfe&y6.21b is combined with other automata,
the decrement and test instructions get replicated to nidsestates, as shown in Figure 6.22, even though
no state explosion occurs. When many such automata are gethhiistinct decrement instructions get
propagated among all states. Executing these instrucdioesery state can significantly impact processing
times during matching.

Once initialized, the counter in this example will be deceeied on all states except those that follow a
reset instruction. Thus, when the counter is initialized given payload offset, the offset at which it would
reach 0 is also known. By maintaining this offset directlyy wan eliminate the decrement instruction
altogether. This highlights our first optimization, whichto provide runtime support for replacing (and
eliminating) common or expensive operations.

Continuing, we extend the runtime environment with a solitgcholding the payload offsets at which
the counter would reach 0 along with a pointer to the instomstto be executed when it does. After each
symbol is read, the offset value at the head of tffset listis compared to the current payload offset, and

the consequent instructions are executed on equality. dmtttomata, initialization and reset instructions
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are replaced with those that insert into and remove from ffseblist, respectively. This does increase the
processing overhead slightly, but the optimization regdaexplicit updates of (potentially) many counter

variables with a singlé® (1) check after each byte read.

6.5.2 Combining Independent Variables

Some logically distinct state variables can be reduced foglesactual variable. For example, if one
counter is active in some set of states and another courgetive in a disjoint set, then the two counters can
share the same memory location without interference, hepthh reduced memory and smaller programs.
This scenario is similar to the register assignment prolfeaed by a typical compiler: multiple variables
can share the same register as long as they cannot be sieuutdy “live.”

Thus, the goal of this optimization is to automatically itisnpairs of variables that are compatible at
each state in an XFA. We achieve this goal through a two-stegegs: a dataflow analysis first determines
the states at which a variable is active, and a compatil@liglysis uses this information to iteratively find
and combine independent variables. These techniques &pphany kinds of state variables, although
for presentation purposes we focus on a fairly simple deerging counter. To aid the discussion, we
depict instructions in the format used by our interpretather than the C-like language used thus far, which
we describe briefly. Instructions have the fofimstr id,args]. Initialization instructions set an initial
value and also point to the instructions to be executed winendunter reaches 0. Consequertigcrement
andtestinstructions are combined into a single instruction thardments a counter and compares it to 0,
executing the previously supplied instructions if so. Faaraple, the instructiorictrSET 1,200, [ALT
317 initializes counter 1 to 200. When the counter reaches Onsteuction[ALT 3] signals that signature
3 has matched. Finallyesetinstructions make a counter invalid, or inactive (see bglawe that it will not
be manipulated until anotheetinstruction occurs.

We illustrate with the running example in Figure 6.23. Thignt®st XFAs correspond to expressions
/\na[~\nl{200}/ and/\nb[~\n] {150}/ that are combined to give the XFA in the middle of Figure 6.23
(the “clouds” have meaning at a later stage and can be igmmedl In the end, optimization finds that the

two counters in the combined automaton are independentaghates them to one counter.



110

’[ctrRST 1] ’[ctrSET 1,200, [ALT 3]] [ctrSET 1,200, [ALT 3]]
[ctxrDEC 2]

[ctrSET 1,200, [ALT 3]]

[ctrRST 1]
[ctxRST 2]

[ctrDEC 1]
[ctxrDEC 2]

Figure 6.23: The counter minimization process applied tdomata for signatures
/.*¥\na[~\n]{200}/ and/.*\nb[~\nl{150}/. The optimization results in the elimination of
one of the original counters.

[ctrDEC 1]

[CtrSET 2,150, [ALT 7]] [ctrSET 1,150, [ALT 7]]

6.5.2.1 Dataflow Analysis

As informally described in Section 5.2.3, counters ardaliit inactive with status changes occurring
whenever initialization or reset instructions are exedufehe goal of this step is to determine the activity
of each counter at each state in the combined automaton,fevémse states without instructions. This

requires a precise definition of active and inactive coumtgiven as follows:

Definition 6.8 Let () be the set of states containingsat operation for counte€'. Then,C' is active at
stateS if there is a path from a state @ to S in which no state in the path containg@set operation for

C'. OtherwiseC is inactive.

In other words(' is active atS if and only if there exists at least one input sequence eralisgcontaining
aset but no subsequenteset for C'. The termactivity refers to the active or inactive status of a counter.
Operations applied to an inactive counter are effectiveip-ap.

To calculate activity, we define a dataflow analysis that fite the classic monotone dataflow frame-
work [74,80]. Static dataflow analyses comprise techniqugesd at compile time to produce correct but
approximate facts about behavior that arises dynamicahyrdgime. During execution, different input may
yield different behavior depending on that input; staticht@ques must therefore produce correct (if ap-
proximate) results for all possible inputs. Dataflow anafyand their applicability to program optimization
are well-studied and at the foundation of many common canpiptimizations including register alloca-
tion, constant propagation, and partial subexpressionimdition [74]. To the best of our knowledge, ours

is the first work that extends the technique to finite automata
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Inactive

Active

Figure 6.24: The value lattice that orders abstract couatgs. Inactiveis the initial value.

The first step in an analysis is to identify the abstract valoefacts that the counter can assume and
order them in a lattice structure. Here, the valaetive andinactiveare arranged in the lattice given in
Figure 6.24. Second, a directed graph with a designatetirgide is supplied by the XFA itself. Third,
flow functions define the effects that instructions have arhgmssible value in the lattice. For a courier

with set, reset, anddecr-and-test instructions, the flow functions are defined as follows:

fse‘c (C) - Active fdecr—and—test (C) - C
freset(C) — Inactive fpreserve(C) — C

For set andreset, C becomes active and inactive, respectivedgcr-and-test does not changé’s
value, antbreserve is the identity function used when there is no instruction atate.

These components define a standard forward-flow “may havalysis. The analysis algorithm prop-
agates facts for each counter among the states, applyinddtostions whenever they are encountered. It
terminates when the facts have converged to a single valustqte. Upon completion, a counter is marked
as inactive at a stat€ if and only if C is definitely inactive on all paths leading 0 Conversely, if there is
any path taS in whichC may be active, the€ is active atS. Hence, the results are correct but approximate.

In Figure 6.23, the clouds in the middle XFA show the activifyeach counter at each state prior to
instruction execution as computed by the analysis. Theteosiiare inactive at statdX because all paths
to MX pass throughy, which resets both counters. Similarly, the counters atieeamn KX because there

is a path fromMX that sets counter 1 (making it active) and a path fikfhthat sets counter 2.

6.5.2.2 Compatibility Analysis

Two counters can be reduced to one if they emepatibleat all states in the automaton. At a single
state, two counters are compatible if their operations atigligy status can be combined without changing
the semantics of either counter. We determine compatitiljtcomputing the cross product of operations

and activity status and pairwise comparing each elemerg.cdmpatibility matrix in Figure 6.25a contains



112

Inactive Active Inactive Active
rdp set| reset set decr pres rtp set| reset set test pres
‘g rd,p | nd,p set| reset set decr pres ‘g rt,p | nt,p set| reset set test pres
£ set | set — | set - - - £ set| set set| set - test -
reset | reset set| reset set - - reset | reset set| reset set — -
2| set| set —| set - - - Q| set| set setl set set -  —
S| decr| decr -| - - decr - S test| test -| - - - -
pres | pres — - - - pres pres | pres — - - - pres

(a) Counter Compatibility

(b) Bit Compatibility

Figure 6.25: Compatibility matrices for counters and b#gecifying which operations are com-
patible at a state along with the surviving operation.

this information for the simple counters in this example. vth the dataflow analysis, activity at stage
refers to the activity of the counter upon entrancétgrior to instruction execution.

In the matrix, thepreservecolumn handles the cases in which a counter has no instnuatithe state in
guestion.r,d,p coalesces the entries for theset decrementandpreserveoperations, which have identical
behavior for inactive counters. If two operations are cotithey, the corresponding entry holds the operation
that survives if the counters are combined. A dash indichi@soperations are not compatible. Operations
to active counters are incompatible with most other openati but inactive operations are mostly compati-
ble. The exception is an inactiwet, which transitions a counter to the active state and is fberenostly
incompatible. The lower half of the rightmost column spedfihe cases in which a state has instructions
for only one counter, but the dataflow analysis determinasdrsecond counter is also active. Combining
the two counters and using the operation of the counter ptedehe state could change semantics of the
second active counter, so the counters are in fact not cainhgpat

Algorithm 6.9 shows the process for identifying and redgoaguivalent counters. For each pair, the
algorithm cycles through all states and compares the paigube areCompat function, which extracts
activity status and operations fer andc, at states and invokes the counter compatibility matrix. Lines
8-10 perform the actual reduction for a pair of counters #ratcompatible at all states. When a reduction
results in the elimination of one or more instructions atedestthe operation that remains is returned from
the compatibility matrix via a call to thgetReduced function. Note that compatibility is not transitive;
when a pair of counters has been reduced, the resulting ddilipabetween thisnewcounter and other
counters must be re-established. This is satisfied by Linevhich causes the algorithm to fall out to the

outermost loop after a reduction has been performed. Inuhaing example, the rightmost automaton
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FIND _.EQUIVALENT(XFA M)

1 do

foreach pair of countersd; ,¢2) do
compatible =true

foreach states € M.statesdo

if areCompat{, c1, co) == FALSEthen
| compatible = false ; break

o 0 b~ wWwDN

if compatiblethen

foreach states € M.statesdo

9 op = getReduced ¢;, c;)

10 Lcombine counters; andc;, keeping operationp

o

11 _break;

12 while compatible = true

Algorithm 6.9: Counter compatibility. Two counters are equivalent and loa reduced to
one if they are compatible at each state.

shows the results after compatibility analysis has deteeochithat counters 1 and 2 are compatible. All
references to counter 2 are replaced by a reference to golirded irrelevanteset anddecr operations
are removed.

In our experiments, this optimization completes quicklgspite theO(n3) worst-case runtime of the
dataflow and compatibility analysis. With one exception itkhcontained 172 bits) the procedure com-

pleted in less than one minute per test set.

6.5.2.3 Compatibility for Optimized Counters and Bits

The techniques described here apply directly to optimizaechters (produced from the first optimiza-
tion) as well as to simple bits. Recall that counters optediwith the first optimization do not have explicit
decrement operations. To compensate, we first insert a fak@hent instruction in each state and for each
of these optimized counter. We then perform the analysiscaatesce counters if possible, after which the
fake instructions are removed.

For bits, the compatibility matrix varies slightly from tiseunter compatibility matrix supplied, reflect-
ing the fact that the consequent for a bit test is supplietiétést instruction itself rather than in theet
instruction as is the case for counters. We present an uppdatepatibility matrix for bits in Figure 6.25b.

In the matrix,r,t,p combines the entries faeset test andpreserve Here, allset options are compatible.
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bitTST 1, [alert ...]

bitTST 2, [alert ...]

Figure 6.26: Combined automata for*x.*y/ and/.*x.xz/. A different dataflow analysis can
eliminate a bit.

We conclude the discussion of this optimization with theawbation that other dataflow analyses can
be designed that identify further reduction opportunithest this analysis misses. For example, Figure 6.26
shows a combined XFA for expressions+x.*y/ and/ . *x.*z/ that share a common prefix and use one
bit each. A dataflow analysis that uses more than just agtiaitild determine that a single bit is sufficient

for both of these expressions.

6.5.3 Code Motion and Instruction Merging

Many expressions yield automata that set or reset a singléWithen they are combined, individual
states may contain many subt assignmeninstructions. However, the cost of updating a single bihes t
same as that for an entire word; by coalescing bit operatidrsse bits fall within the same word we can
shorten the number of instructions in programs and simattasly reduce the number of writes to memory.

This optimization operates on each state independentlg BEsic mechanism is to move bit assign-
ment instructions so that those belonging to the same werd@jacent. Such sequences are then replaced
by a composite one-word mask and an instruction that appiiesnask when executed. There are sub-
tleties, though. First, there are data hazards [50]: bigagssent instructions cannot be moved across other
instructions that use or manipulate the bit values withdanging semantics. As an example, in the se-
guence[bitSET 2],[bitTST 4, ([alert,42])],[bitRST 4], instruction 3 cannot move left because
bit 4’s value is used by instruction 2. Second, merged isas should combine bits belonging to the
same word only. Thus, the task is to move and merge as mamyctiens as possible while satisfying both
conditions.

In practice, we use a simple greedy heuristic that identifiasy opportunities for merging. The heuris-

tic first identifies all bit assignment instructions thatdred to the same word. Next, it looks for data hazards
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between neighboring pairs of assignments. When a pair witazard-free movement direction is found,
the instruction is moved along this direction to its neighbthe process repeats until no more moves are
performed. For each word, the optimizer merges adjacest binstructs the mask, and replaces the in-
structions with a single bit mask instruction. This optiatipn is performed last of all, after the dataflow

analysis.

6.6 Experimental Evaluation

6.6.1 Toolset

We have developed a fully-functional evaluation prototsime implements the algorithms described in
this chapter and performs matching of XFAs and other autartmahetwork traffic. Our prototype suite is
divided into four separate applicationg2xfa xfamanipg combing andtrace_apply. We describe each of

these tools as follows:

1. re2xfa- implements all of the XFA construction algorithms desedtn this chapter,

producing XFAs from annotated regular expressions sugglginput.

2. xfamanip- manipulates existing XFAs, including performing optimions and edge-

based to state-based transformations.
3. combine- performs cross-product combination of two or more XFAs.

4. trace apply - performs XFA matching. When given an XFA and a tcpdump-faited

trace, this tool extracts and feeds payloads into the XFArapdrts matching signatures.

In addition, for comparison purposes we have also impleeteatDFA compiler that builds minimized
DFAs from regular expressions. These tools produce DFAR thié same general format as XFAs and
can be freely used in tools in the XFA toolsetd, combineandtrace.apply) for like comparisons. Both
XFA and DFA implementations assume a 256-symbol alphalpet lfgte symbols) and can parse all regular
facets of pcre-style [87] regular expressitin¥hus, our implementation can faithfully represent thedkin
of signatures seen in commercial NIDS systems.

For XFAs, instructions are executed using an interpretélt lto trace.apply. Some experiments

also use compiled instructions, which we describe belowallyi, since our primary goal is to study the

8Some pcre extensions to regular expressions include nmatcioinstructs that are not regular. We do not imple-
ment those.
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feasibility of XFAs, standard NIDS operations such as dgfrantation and normalization are beyond the

scope of our experiments and not performed here.

6.6.2 Initial Feasibility Experiments

We first report early experiments testing the feasibility>dfAs. These experiments use only bits
(no counters) as auxiliary memory with instructions atestiho edges. For our test set we used a Snort
signature set obtained in March 2007. We gathered trac@gedféaffic gathered at the edge of the University
of Wisconsin’s Computer Sciences Department network atiéated at different times, with each trace
containing between 17,000 and 86,000 HTTP packets. We meegsuformance as the number of CPU
cycles expended per byte of payload. All experiments weréopaed on a standard Pentium 4 Linux

workstation running at 3 GHz with 3 GB of memory.

6.6.2.1 Constructing XFAs

In this section we describe the steps used to construct susét. First, we used the Snort2Bro tool
(included in the Bro [85] software distribution) to do antial parsing and conversion of Snort's HTTP
signatures into Bro format, which we then passed througiptscthat created the individual regular ex-
pressions. These scripts also inserted the parallel cematbn operator into approximately 97% of the
applicable signatures. We indiscriminately gathered lmhignt-side and server-side signatures, yielding
1556 signatures in total. We eliminated 106 signaturesdasons discussed below, giving us a signature
set size of 1450.

In Step 2, we manually selected the appropriate instrucgamplate (EIDD) and added the remaining
parallel concatenation operators where necessary. In wasgs, this process required just a few seconds
per signature and was aided by the fact that many signataxesdimilar formats. Some signatures required
the construction of a new EIDD when observed, which typjciatiuced a one-time cost of up to an hour or
two. In total, we spent approximately two days on this phasejncluding EIDD creation time. Table 6.4
breaks down the signatures according to their general tydegaves the number of variables (bits) needed
per signature.

Next, we fed each signature and its matching EIDD toré#&xfaapplication, which produced an XFA.
XFA construction time varied by EIDD: some completed witkeétonds whereas others require an hour or

more, as summarized by Table 6.5. In our test set, 85% of gmagires completed within 10 seconds each.
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| Examples (some simplified) | #Sigs| EIDD name | Variables]
.xcalendar (| [-_]admin)\.pl 814 | null nothing
Skemd"#. x& 5 | set-only bit 1 bit
.*<0BJECT#[">]*classid=11cf-9377 341 | bit 1 bit
x<\00\0B\0# ([~>]\0)*c\01\0s=\01\0c\0-\09\03\0 | 213 bit plus parity 2 bits
(.x[\\/1cgi60#.*auth) | (.*auth#.*[\\/]cgi60) 56 | two set-only bits | 2 bits
C#/st\.cgit. *\.\./D) 1 C*\.\./#.%/st\.cgi) 21 | 2 bits plus overlap 3 bits

Table 6.4: Signature types and their mappings to XFAs.

Run time # of
(seconds) | signatures.
<1 37.1%
1..10 48.1%
10..100 0.1%
100..1, 000 1.2%
1,000..10, 000 13.5%

Table 6.5:; Distribution of XFA construction times.

Finally, in step 4 we combined each of the XFAs produced inpifewious step using the incremental
combination algorithm outlined in Section 6.3. Combinatad all individual XFAs into a single equivalent
XFA required just over 10 minutes. Table 6.6 characteriresiumber of instructions on edges and states in
the combined XFA. 95% of the transitions have exactly ong&icion, and 98% of the states have at most
one instruction. The final XFA had 41,994 states (requiriBgVB), used 193 bits (25 bytes) of auxiliary
memory, and required 3.5 MB of instruction memory.

In general, the most manual-labor-intensive aspect ofgifusess occurs when EIDDs are selected for
regular expressions. For existing signature sets this iseatione process, and our experience indicates
that when new signatures are produced, a security exipertgomeone who writes the initial signatures)
familiar with our approach could easily annotate a regulgression, produce an XFA, and add it to an
existing combined XFA within a matter of minutes, dependimgthe XFA construction time in Step 3.
Even if a novel signature requires a new EIDD to be defintds is also a one-time cost.

Signatures were removed from this test set for two reasanst, Bome complex signatures compose bits
and counters in ways that are prohibitively time-consuntimmap to EIDDs using our prototype. Second,

there are some signatures whose individual DFAs consumanexpial amounts of memory and for which

9EIDDs are declarative and parsed by our prototype. They easupplied at runtime and do not require a recom-
pile.
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[#insts [ 0] 1] 2] 3] 4[5]6[7] 8] 9[10[1i][12]
% Edges| 1.0|94.8|27|047|080|—-|—-|—-10.13 - -1 -1 0
% States| 78.9| 20.0| 0.9 | 0.03 - =-|1=-1-1005]005| —-| —-| -

Table 6.6: Distribution of instructions on edges and stata#tries marked '’
contribute less than .01%.

our construction algorithms also run out of memory, everugfipa compact XFA does exist. Signatures
of the form/.*a.{n}b/ among others fall into this category, for example. In bothesa the difficulties
arise from using signatures that are not necessarily dedifpr deterministic automata. Thus, although
many signatures with counters are straightforward to ctergaid map to EIDDs, for this experiment we
eliminated all counter-based signatures from our test set.

In summary, these results demonstrate that XFAs can belyeanfistructed for large numbers of real-
world signatures. We produced XFAs for 93% of Snort's HT Tghsitures. Construction of this set required
a day of manual effort, but admittedly, this process drewvtga@n our own experience. When being
performed by people with less experience, construction tag longer. Nevertheless, our experience

suggests that new XFAs can be quickly constructed and incatgd in many cases.

6.6.2.2 Performance and Memory Usage

We compared XFAs to traditional DFAs and to multiple DFA-®dsolutions [118], using the same
1450 signatures for each of these techniques that were osed-A construction. Our attempt to build a
single, combined DFA for all signatures failed after only@& of 1450 signatures had been processed, at
which time over 15 GB of memory was needed for the partial maton.

Recall that in the Set-Splitting approach to multiple DFAtaéng, an upper memory bound is given
and DFAs are heuristically grouped and combined into as famaosite DFAS as possible such that the total
memory usage is less than the supplied bound. We implem#meSet-Splitting heuristics and produced
multiple DFAs (mDFASs) for several memory limits ranging 1fno66 MB (the smallest memory size that
could hold all signatures) to 512 MB.

Table 6.7 summarizes the performance and memory usagdduodily for each of the techniques.
DFAs, if realizable, would have the best performance butdlgest memory consumption; the reported ex-

ecution time was obtained using the largest partially cora®iDFA that could be fit into our test machine’s
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Automata Total Memory Num Exec Time
Type Automata| (cycles/byte)
XFA 43MB + 3.5MB 1 226.8
DFA > 15GB n/a ~34.8
432 MB 67 4,374

397 MB 107 8,071

mDFA 277 MB 147 11,341
191 MB 346 25,735

98 MB 587 44,671

66 MB 786 62,601

Table 6.7: Machine size and execution times for XFAs, DFAs] Multiple DFAs for several
memory settings. XFAs approach DFA performance yet retaiallsmemory sizes.

memory. The six mDFA points shown exhibit the tradeoffs ewincreased memory vs. increased time,
with their execution time being largely a function of the rhen of created automata. The combined XFA
compares favorably as these results show: compared to ¥tdvast data point (the penultimate mDFA en-
try), the XFA requires 1@ less memonandis 20x faster. On average, the XFA executed 1.12 instructions
per byte, roughly consistent with the data in Table 6.6.

Figure 6.27 compares the mDFAs to XFAs graphically. In that,phe y-axis reflects total memory
usage and for XFAs includes both instruction memory andlauyimemory (46.5 MB). Both axes are on
a logarithmic scale. Entries toward the bottom left requé&éuced resources (either space or time). The
plus marks ('+’) in the plot show the points for several mpikti DFA instances and in a sense represent the
true cost of realizable DFA-based approaches. The pointsalithe tradeoffs obtained through pure DFA
approaches and suggest lower bounds given specific time momeaequirements. The DFA point, if we
could plot it, would reside close to the left edge, severdeos of magnitude beyond the extent of the graph.

The XFA result, represented by a star, is below and to theolethe curve suggested by the DFA-
based approaches, indicating that XFAs require fewer resswverall. The XFA yields superior results as

compared to mDFAs both in memory usage and performance.

6.6.3 Optimizations and State-based Experiments

In the second set of experiments we move beyond simple fégsiily examining the effects of opti-
mization, state-based matching performance, and otheacteaistics applied to several sets of signatures.

We use the same test environment as before for these expesime
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Figure 6.27: Memory vs. run-time for mDFAs and XFAs. XFAs aamth smaller and faster than

mDFAs for many memory ceilings.

We evaluated XFAs on FTP, SMTP, and HTTP signatures fromtgaat and Cisco Systems [20].
We used the same procedure as before to produce edge-basedi&f regular expressions. We then
converted to state-based XFAs and combined the XFAs togpérgrotocol. We also built standard DFAs
for each of the regular expressions and combined these ptrgot as well.

Table 6.8 summarizes properties of the combined XFAs, sipwie number of states, the types and
guantities of variables, along with the memory requireraenh each test set, the top row describes the
automaton before any optimizations are performed. Coludrarsd 4 give the number of states in the com-
bined DFA and XFA, respectively, and illustrate the magiétof the savings when state-space explosion is
eliminated. In some cases, the combined DFA size may be a graterestimate: Cisco FTP, for example,
exhausted memory after only 23 DFAs were combined. Columasdb6 show the number of variables
used by each test set, Columns 7 and 8 give the maximum aray@eumber of instructions per state, and
Columns 9 and 10 give the amount of auxiliary memory needestéoing mutable variables and immutable
programs. We used two-byte counters when computing thalarmemory requirements.

We applied the three optimizations in Section 6.5 in coneewrder and show relevant results in
Tables 6.9a, 6.9b, and 6.9c. In Table 6.9a and all subsedgigles, we use a forward slash to separate
generic and implicit counters. As the table shows, a largetion of generic counters were converted to an
implicit form. Since these new counters require no expligicrement instruction, the average number of

instructions per state is considerably reduced as showminn@hs 3 and 5. Table 6.9b shows the effect of
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Figure 6.28: Instructions per state for Snort HTTP, befte#)(and after (right) optimization.

the analyses for coalescing independent variables. In datasets, the analysis discovers that a significant
percentage of generic and implicit counters can be coadeddete that variables must have the saype
to be considered. For example, generic counters can besoealevith other generic counters but not with
implicit counters. For bits, the reduction opportunitiee enore modest. We believe that improved results
can be obtained with a more refined analysis. Finally, Tat®e 6eports the results of code motion and
instruction merging applied to bit instructions. Not susprgly, the largest reductions come from the sets
with the most bits.

Table 6.8 summarizes the cumulative effect of the optinopatin the bottom row of each set. Fig-
ure 6.28 shows histograms of the number of instructionstagée $or Snort HTTP before and after optimiza-
tion. Note the log scale on the y-axis. After optimizatiamstjover half of all states have no instructions,

and all remaining states have 11 or fewer instructions.ddistms for other sets are similar.

6.6.3.1 Memory Usage and Performance

Next, we analyze the memory and runtime performance of XFAesmapplied to traces of live traffic.
We wrote a translator that converts instructions on staieS source code (with a distinct function for
each state) and compiled the code to a shared library whostidus are linked to the appropriate state
during initialization. During inspection, programs areeented after the input symbol is read and the state
transition is complete. Support for runtime informatios,ig used in Optimization 1, is compiled into the
library as well.

For comparison purposes, we again evaluate multiple DFéxggalith the FAs [64] edge-compression
scheme, which we briefly described in Chapter 2. Note tHa#A3 employ multiple DFASs to reduce the

total number of states. For multiple DFAs, we supplied mene®ilings ranging from 4K total states to
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Num # States Variables Instrs per statg Aux memory (bytes)
Rule set Sigs DFA XFA | #Dbits # ctrs| max avg| variables program
TeTTL| m|om e 3 g 0 wul
Coptmized | |3 2418 o ol o1 ol o1 na
Coptmized | 03| 3aM 18268 70 0ol 5 ol 3 goomk
o w|ew s B g2 owma oo
Coptmied | 102 23aM 3819 o op) 0 ool o e
“opmizea | 59|31 meez 5 oo 70 %5 R

Table 6.8: Combined automata for several protocols, befodeafter optimization.

No-Opt Opt1l Optl Opt 2 Opt 2 Opt 3

Inst/ ctrs Inst/ Inst/State | Inst/State
Rule set ctrs  state| gen/imp statg | bits ctrs| bits ctrs max avg| max avg
Snort FTP 46 38.67 8/38 4.18 8 8/38 8 22 7 081 5 0.66
Snort SMTP| 31 21.48 10/21 1.59 11 10/21 6 4/6 21 0.73| 21 0.69
Snort HTTP | 15 1591 0/15 1.24 172 0/15| 171 0/6 16 1.09| 11 1.03
Cisco FTP 12 12.35 0/12 2.65 11 0/12| 10 0/3 7 0.46 4 0.33
Cisco SMTP 3 5.20 0/3 0.34 8 0/3 8 0/2 9 0.33 7 0.28
CiscoHTTP| 10 10.48 0/10 0.69 13 0/10| 12 0/2 8 0.55 7 042

(a) Opt 1: Exploit runtime information ~ (b) Opt 2: Coalesce independc) Opt 3: Instruction merging
vars

Table 6.9: Consecutively applying optimizations 1, 2, and 3
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512K total states. During runtime we matched multiple DFAs1odifying our matching code to main-
tain multiple state pointers. For the?’BA evaluation, we applied the?PA edge compression algorithm
to each combined DFA in each mDFA group. ThéAB proposal requires custom hardware to hash an
input symbol to the correct compressed transition entry.adapt to a software-based environment, we
used a simple bitmap-based structure to identify the narssition. This makes the hash function as fast as
possible (simulating the hardware assist) with only a mowst in memory usage.

As before, execution time tests were performed on 10 GB sraeptured on the link at the edge of
the University of Wisconsin Computer Sciences departniergdvork at varying times. Runtime mea-
surements were collected using cycle-accurate perforenapanters and are reported as average cycles
per payload byte. During execution, each automaton is eg@inly to packets belonging to its respective
protocol.

Figure 6.29 gives space-time comparisons for each te%t gatall plots, the x-axis (processing time)
and y-axis (memory usage) increase on a log scale. The dashexhl line gives the runtime for the largest
subset of DFAs that we could combine and fit into memory. NdétiDFAs (mDFAS) trace out a curve
showing the trade-offs between memory usage and processieg Each plus mark ('+') in the figures
corresponds to a distinct memory ceiling from which mDFAwgys were created.

D2FAs build on mDFAs and follow a similar curve with a reducedmuey footprint. We performed
D?FA edge compression for each multiple DFA point in the figumed show the results as diamonds in the
graph. FA edge compression decreases the memory footprint bigases the access time and generally
follows the Multiple DFA curve. For XFAs, we plot the combth@automata along with the cumulative
effects of each optimization, leading toward the lower &ftner. In the figures, Optimization 1 exhibits
the largest visible improvement. By eliminating instrocts on many states, both memory and runtime
are reduced by up to an order of magnitude. In general, thensegptimization also achieves significant
reductions, although here they are largely subsumed bynggtion 1. Optimization 3 reduces memory

but has a negligible effect on performance.

10An early version of this work that appeared in SIGCOMM 20081Jlcontained a calculation error that improperly
plotted XFA results in Figure 6.29. That error is correcteden
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Figure 6.29: Memory versus run-time trade-offs for Mule@FAs, D2FAs, and XFAs.
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XFA mDFA/D?FA

Rule set 8K States | 64K States| 512K States
Snort FTP 117 & 8] @ 4] @ 6

Snort SMTP| 23| (11) 22| (11) 22| (4) 12

Snort HTTP | 36 | (77) 154| (41) 82| (27) 81

Cisco FTP 10| (4) 8| (2 41 (2) 6

Cisco SMTP 71 6) 12| 3 6| (3 9

Cisco HTTP 8|(23) 46| (14) 28| (8) 24

Table 6.10: Per-flow state in bytes for XFAs and mDFAs at wasimemory ceilings. Parentheses
hold the number of mDFAs at each setting.

6.6.3.2 Per-flow State

A network link typically carries many streams of traffic siltameously. Each stream is calledlew,
and packets from many flows are multiplexed one after therathe link. When a packet is received off
the link, it must first be associated with its proper flow. Tisighe flow reassembly process described in
Chapter 2.

Payload inspection for a flow occurs in a disjointed manngraakets are received. A NIDS maintains
per-flow statéhat preserves the necessary matching context betweereke{s that are logically adjacent
in a stream, but in fact may be physically separated by padkeim many flows. When matching for
a packetp; from flow F has completed, the per-flow state t6ris updated to reflect the full matching
context. Later, when packgt.; has been received, the per-flow state is first retrieved darth&ching can
resume at the proper point.

For large links with many flows, the per-flow state requiretsazan be significant. Table 6.10 depicts
the per-flow state for mDFAs/FAs at various memory ceilings and for XFAs. mDFAs requiresdinict
current state pointer for each automaton in a group, atféAd have these same requirements. We assume
2-byte state pointers for 8K and 64K ceilings and 3-byte fgogfor 512K ceilings. XFA per-flow state
contains a state pointer along with all the variables thastrbe maintained. We quantify this by adding a
2-byte state pointer to each of the optimized variable mgmeatries (column 9) in Table 6.8. Reductions
in per-flow state for XFAs are a direct result of optimizatidnAs Table 6.8 indicates, per-flow state can
be reduced by up to a factor of six. In Table 6.10, per-flowestat XFAs is comparable to mDFAs in all

cases. For large test sets, XFA state can be much smallemdieyyg on the mDFA memory ceiling.
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bmap[ctr¥%k]=F;
Ctr++;

bmap[ctr%k]=F;
ctr++,

bmaplctr%k]=F;
ctr++;

if (bmap[ctro%k])
accept();

["ab]

bmap[0..k-1]=F
ctr=0

bmap[ctr%k]=T;
Ctr++;

bmap[ctr%k]=T; bmap[ctr%k]=F;
ctr++; ctr++;

Figure 6.30: An XFA recognizing.*a.{n}b/. In the instructionsk = n + 2.

6.7 Limitations and Discussion

The XFA model provides a framework that extends DFAs for ipooating auxiliary variables yet
extends DFAs in a natural manner. Even so, there is still nwatk remaining. We briefly describe a

subset of the open issues below.

6.7.1 Mapping to EIDDs

The basic procedure for mapping an XFA with abstract dataaloesito an appropriate EIDD, given
in Algorithm 6.6, uses a backtracking algorithm that we hembanced to aggressively identify and prune
fruitless searches. Even so, some mappings require an lmouo@ of computation time to complete.
Further, each EIDD must specify all the high-level variaiylges (typically just bits and counters in various
forms) to be used by an XFA. Common expressions that simpdg reme or more bits or counters have
standard patterns and can be mapped quickly. However, exmmegular expressions in which bits and
counters are composed into complex data types require lgquahplex EIDDs. These are difficult to
specify. In principle, we could define a fully generic EIDDatlprovides many compositions of bits and
counters from which Algorithm 6.6 selects only those thatdeds. But in our prototype, the resulting
mapping times would be infeasible. More work needs to be doneake this mapping faster and to reduce

human involvement. Alternative construction procedurey mso be worth considering.
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6.7.2 Expressions with Exponential State

Some signatures require exponential amounts of spacegdhirconstruction process, even though they
have a compact XFA representation. For example any detestigiautomaton recognizing. *a.{n}b/
needs to remember which of the previous- 1 bytes in the input werea’ so that it knows to accept if
it sees ab’ in the nextn + 1 input characters. DFAs require at le@&t™! states for this case. Similarly,
during construction an XFA also needs at le2ist! distinct configurations, although ultimately these can
be contained partially in auxiliary memory rather than omlyexplicit automaton states. For example,
an XFA corresponding to this regular expression, given iguké 6.30, needs only two states, a counter,
and a bitmap withk = n + 2 bits of auxiliary memory. The number of configurations is exential,
but the number of distinct states is small. For small valules,ave can annotate the regular expression
(as/.*a#.{n}b/), construct an EIDD, and build the XFA in Figure 6.30. Howewnce the number
of configurations is exponential in, we quickly run out of memory during construction agyrows. We
found dozens of such regular expressions among Snort’swe$, isuch as rule 3519, which recognizes the
regular expressiop. *wqPassword=["\r\n&] {294}/ .

Fortunately, XFAs are not an exclusive solution and can s#yeeombined with other techniques to
achieve full generality. For instance, we may use substisgedilters [91, 94] that identify only subparts
of signatures and invoke full signature evaluation using\®MNFAs, or other techniques when the subparts
are matched. Alternatively, multiple DFAs [118] may alsoused.

In general, we observe that signatures are written with atergstanding of the underlying matching
engine’s capabilities. Signatures that are written for &fNased engine (such @sx*a.{n}b/) are not
necessarily appropriate for a deterministic engine and-viersa. As shown, signatures that can be repre-
sented compactly for nondeterministic automata may regeiponential state for deterministic automata.
In many cases, small changes to a regular expression tumtoisbmething we can build XFAs for effi-
ciently. For example, it is possible to recognizexal[~al{n}b/ as an XFA with two states and a data
domain of sizen + 2 used essentially as a counter. Of course, whether such ebamg possible without

changing the intent of the rule requires human judgment aihes$t performed by the signature writer.
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6.8 Summary and Conclusion

The Big Bang Theory [48] asserts that a compact, highly cesged mass exploded into a mostly
empty universe, leaving scattered pockets of organizedemarthis is not too dissimilar from combined
DFAs, which experience explosive growth yet are full of redancy. Our running hypothesis in this XFA
work is that the systematic use of auxiliary variables anihaigations provides a practical mechanism for
deflating explosive DFAs.

In this and the previous chapter we presented a formal cteization of state-space explosion and
showed how auxiliary variables can be used to eliminate & pvésented XFAs, a formal model that extends
standard DFAs with auxiliary variables and instructionsr@anipulating them. We defined optimizations
over this model that significantly improve performance aadrdase per-flow state.

Many research problems remain open. Our treatment of sfziee explosion is preliminary, and
stronger results may allow us to better predict and controfibetter understanding of the interplay be-
tween protocol parsing and signature matching may yielgpEmautomata and better performance. But,
even with our current prototype, measurements show largeawements over previous solutions. We are

optimistic that in the end, XFAs will yield a fast, scalablechanism for deep packet inspection.
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Chapter 7

Edge Compression with Alphabet Compression Tables

The memory footprint of a DFA can be reduced in two ways: byug#og the number of states, and
by reducing the size of each state. In the previous chapterstroduced Extended Finite Automata and
showed how they could be used as a framework for reducingroirelting state space explosion. This led
directly to smaller numbers of states in an automaton. kc¢hapter, we look at the second mechanism for
reducing memory—reducing the sizes of individual states.

We propose a lightweight compression technique for reduttie memory requirements of states in a
DFA. We start from the observation that for NIDS signatumstinct input symbols often have identical
behavior in their DFAs. In these cases, Aiphabet Compression Table (ACdan be used to map such
groups of symbols to a single symbol that is retrieved by det&okup. Alphabet compression tables
were first proposed for use in compiler-writing tools suchYA€C [2,55] and have been recently explored
in the signature matching context as well [13]. We refine teahnique by introducingnultiple alphabet
compression tables [60]. Specifically, we develop hewussidr partitioning the set of states in a DFA and
creating compression tables for each subset in a way thialsyfigrther reductions in memory usage.

As with XFAs, the use of compression tables or other edge cesspn techniques does increase the
execution time since the appropriate transition needs toldeompressed” before it can be followed. For-
tunately, for alphabet compression tables our experingraw that the inclusion of additional compression
tables beyond the first introduces no additional perforrean@rhead. In essenaeultiple alphabet com-
pression comes for free.

This chapter is organized as follows. In Section 7.1 we &tareviewing algorithms for single alpha-
bet compression tables. We then introduce multiple alpheds@pression tables and present algorithms
for constructing them. Many mechanisms for compressingsthte memory have been proposed in the

literature. We surveyed many of them in Chapter 2. In Secfi@) we describe how compression tables
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S{a} 3-a,b}

Figure 7.1: A DFA recognizing the regular ex-
pression(.*)ab(.*)cd. Starting in state 0O, input
is accepted whenever state 4 is reached.

interact with two other techniques,2BAs [64] and Set Splitting [118], which are used extensiialpur

evaluation. Our experimental results are contained ini@e¢t3. Finally, Section 7.4 concludes.

7.1 Alphabet Compression Tables

Recall that a DFA is a directed graph with labeled edges usedfficiently matching regular expres-
sions to input. Nodes are termstates edges between nodes are catieahsitions and each edge is labeled
with a symbol from the input alphabgt For each stat® in the DFA, there is an edge for each input sym-
bol in ¥ from S to some state&’ in the DFA. The set of transitions out 6fis referred to as theansition
tablefor S, and each state has its own table. A non-empty subset ofatessire marked @cepting and
there is a distinct starting statg. Figure 7.1, reproduced from Figure 4.1, shows a DFA thabgeizes
the regular expressiof. x) ab (. *) cd.

The DFA matching procedure keepsurrent statevariable that is initialized to statg. During match-
ing, the DFA reads input characters one at a time and updagesutrent state by following the appropriate
transition out of the current state to the destination sRR&aching aacceptingstate indicates that the input
thus far is a string in the language defined by the regularesgion: Figure 7.2 depicts this procedure at a
specific state.

Alphabet compression tables for DFAs arise from the obsienvahat for any given transition table,
there are often many input characters that lead to the samtestete. Such identical behavior forms a
binary relation between input symbols and partitions theta equivalence classes. Individual transition

tables can then store a single entry for an entire equivelefass, and a shared lookup table can be used

In the more traditional definition, a DFA signals a match oifiliy is in an accepting state after reading the last
input character. All the results we present apply to thamnitésin as well.
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State 0 State 1 State 2 State 3

25 12 12 25

25| ™ 120 12 25

25 12 12 25

41 4 4 G| m

41 2 4 41

41 8 4 5

5 2 8 41

5 8 8 5
input_char=1
crt_state=1 next_state=12

Figure 7.2: At its core, DFA matching involves
looking up the next state given the current state
and an input symbol in a DFA.

to map from the observed input character to the approprigtévalence class entry in the compressed
transition table (Figure 7.3a). Since this alphabet cosgion table (ACT) is shared by all states, it will
be accessed for every input character, and thus likely eesidhe cache of the processor. Therefore,
while alphabet compression adds one extra lookup to théyterprocessing, it does not have a significant
negative performance impact as there is no need for an eftchip memory access.

Before discussing the algorithm for building alphabet coespion tables, we clarify some of the nota-
tion used in the algorithms in this chapter. Our notatioreseheavily on the use of sets whose elements can
be characters, states, or other sets (with all elements eif laesng of the same type). We use the standard
definition for set equality{1,2} = {2, 1}, but{{1,2},{3,4}} # {1, 2,3, 4} (actually two such sets would
never even get compared by our algorithms since their elesaea of different types). As usual, the size of
a setS given by|S| only counts the number of elements in the top-level set, e diot give a recursive
count of all atomic elements. For sefisand B, the statemenflU = B is shorthand forA = A U B.
Finally, we represent hash tables as associative arraysisedtandard notations.§. hashtable[key])
for performing lookups, using sets both as keys and valussine cases. To simplify the algorithms, we
introduce the convention that for hash tables whose valieeseds, looking up a non-existent value returns
the empty set rather than explicitly signaling failure.

We say that a statgistinguishes betwedwo characters if the transitions corresponding to those-ch

acters go to different states. Thus in Figure 7.1, charagt@ndd are distinguished between by each of
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Alphabet compression table ACTO ACTH1
0 0 0
! ol State 0 State 1 State 2 State 3 [ ol -] o] State0 State 1 State 2 State 3
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input_char=1 index=0 input_char=1 index=0
crt_state=1 next_state=12 crt_act=1 next_act=0
crt_state=1 next_state=12
(a) DFA using a single ACT (b) DFA using multiple ACTs

Figure 7.3: Basic DFA lookup augmented with one or more ddghaompression tables.

states 1 and 3, but not by 0, 2 and 4. On the other hand, chemaciedf are not distinguished between
by any state. When using a single compression table therangjae partition of the symbols in the input
alphabet that minimizes the total memory usage. Algorithingives the procedure that computes this par-
tition in a single traversal of the states of the DFA. Staytivith a partition of size one whose single entry
is the full set of input characters, the algorithm progreslyirefines the partition to account for distinctions
between input characters that manifest themselves asttoaissto distinct states out of the same source
state. Upon completion, the algorithm finds the smallestlemof setsr of input symbols where all the
elements in each set induce the same sequence of traveageglistthe automata. Per-state transition tables
are correspondingly reduced frofi| to o entries. Conversely, for any two characters that are irecéffit
sets, there is at least one state that has transitions &yetiff states for these two characters. Given the out-
put of Algorithm 7.1, building the actual alphabet compiressable and the compressed transition tables is
straightforward. Note that the complexity of this algonitlis O(n|%|) wheren is the number of states and

|X| is the size of the input alphabet.

7.1.1 Multiple Alphabet Compression Tables

It is often the case that many characters behave identitailly large fraction of state§ but are
individually distinguished between by a small (perhapsriayping) set of states. When using a single
ACT for all states as in the previous section, individualralegers of such groups will need separate entries

in each of the compressed transition tables, limiting thenmy savings that can be achieved. If instead
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SingleAlphabetPartition(StateSet States):

CrtBestPartition = {2}

foreach states € States do

NextPartition = {}

foreach character group € CrtBestPartition do
NextToChars = EmptyHashTable
foreach character € g do
| NextToChars(s.next[c]] U= {c}

foreach staten € NextToChars.keys()do
L NeaxtPartition U= { NextToChars[n]}

© o ~N o b w NP

ey
o

| CrtBestPartition = NextPartition
11 return CrtBestPartition

Algorithm 7.1: Compression algorithm that finds the partition of the ingiphabet: with
the smallest number of equivalence classes.

we compute an ACT to apply only to the large subset of st&itdéle transition tables are smaller since the
groups of characters treated identically are larger an@&feWwhus, further reductions in memory usage can
be obtained by using multiple ACTs, each over a disjoint stib&states.

To build a DFA withm ACTSs, we first divide the states of an automaton intcsubsets (discussed
below) and then compute a separate ACT for each subset. @doméiching, the lookup function needs not
only the current state and current input symbol but alsodketity of the correct ACT to use (in the range
{1..m}). Thus, in the transition table we don’t just encode the séxte but also the corresponding ACT.
Figure 7.3b shows the matching process extended for mell@ITs. Since the number of ACTs is small
(up to 8 in our experiments), for all currently feasible cgnfiations a 32-bit word can encode both the
ACT number and the pointer to the next state so that sizesws$ition table entries are not increased. Since
entries of the transition tables are decoded efficientlyahthe ACTSs are typically cached, the matching
process is not significantly slower than in the case of a siAgIT.

In constructing multiple alphabet compression tables, wstrfirst divide the states into subsets that
will be covered by the same ACT. For any of these subsets, wahzn use Algorithm 7.1 to build the
corresponding ACT. If there are no restrictions on the nuntheACTs we can use, the partition that min-
imizes the total size of the transition tables is the one iictvill states that distinguish between the same
input symbols use the same ACT. Algorithm 7.2 finds this basiton of the set of states i (n|X]) time.

Unfortunately, for practical automata, the number of AC&guired to achieve the optimum is unfeasibly
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BestStatePartition(StateSetStates):

1 AlphaPartToStates = EmptyHashMap

2 foreachstates € States do

3 | Groups = SingleAlphabetPartition{s}) // Alg. 1
4 L AlphaPartToStates|Groups| U= {s}

5 Result = {}
6 foreach partitionap € AlphaPartToStates.keys()do
7 | Result U= AlphaPartToStates|ap

8 return Result

Algorithm 7.2: Algorithm to partition a set of states so that the sum of thessof transition
tables is minimized when the number of ACTs is unlimited.

PartitionStates(StateSetStates, Int m):

1 SPrt = BestStatePartitionStates)
2 foreachstate sets € SPrt do
3 | APrt[ss] = SingleAlphabetPartitionsf)

4 while |[SPrt| > m do

[* Combine the two subsets that give the least increase inanem */
5 | min_incr = oo
6| fori=0to|SPrt|—1do
7 forj=i+1to|SPrt| —1do
8 prtsz = |(SPrtli]| + |SPrt[j])]
[* Combinedefined in Algorithm 7.4 */
9 cmbsz = |Combine @APrt[S Prt[i]], APrt[SPrt[j]])|
10 firstsz = |SPrt[i]| - |APrt[SPrt[i]]|
11 secndsz = |SPrtlj]| - |APrt[SPrt[j]]|
12 incr = prisz - embsz - (firstsz + secndsz)
13 if incr < min_incr then
14 min_incr =incr
15 besti =i
16 bestj = j
17 | NewSet = SPrtlbesti] U SPrt[besty]
18 | APrtl = APrt[SPrtlbesti]]
19 | APrt2 = APrt[SPrtlbestj]]
20 | APrt[NewSet] = Combine @Prtl, APrt2)
21 | SPrtU={NewSet} - {SPrt[besti], SPrtbestj]}

22 return SPrt

Algorithm 7.3: Bottom-up heuristic algorithm for partitioning a set oht&s intom subsets
such that when ACTs are computed separately for each subsgttnemory usage is low.

large, so we need algorithms that can guarantee that theerumhistate subsets produced by the partition

of the states is bounded above by a given
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Combine(AlphaPart Setl, AlphaPart Set2):

* Structurally, AlphaPart is a set of sets having the foffa,b,c,{d,e},...} for input symbols a,b,c,d,e,... */
1 CombAlphaPart = {}
2 foreachsets; € Setl do
3 | foreachsetsy € Set2 do

4 if 51N sy # 0 then
5 L CombAlphaPart U = s1 N sy

6 return CombAlphaPart

Algorithm 7.4 Algorithm for constructing the coarsest alphabet pamitsuch that equiva-
lent symbols in the input partitions are respected whenipless

There areS(n, m) ways to partitionn elements intan disjoint subsets, wherg(n, m) is a Stirling

number of the second kind [16], given as:

st = 2 S0 () on

Note thatS(n, m) is bounded above by /m!. We found no criterion for easily determining the optimal
partition and instead focused on heuristic techniques. N&ad devised and evaluated two heuristics for
partitioning the states inta subsets.

First, a “bottom-up” approach starts with the partitiongwoed by Algorithm 7.2 and combines subsets
until the total number of subsets is reducedrtoThe combination routine iteratively combines subsets two
at a time, selecting at each iteration the two subsets te#t yhie smallest increase in total memory usage.
Algorithm 7.3 depicts this process.

The bottom-up algorithm computes a partition of size at mogif the set of states constructed from
the larger optimal partition computed by Algorithm 7.2. Asd as the partition is too larged., there are
more thanm subsets), the algorithm greedily picks the two subsetsahiatbe combined with the smal-
lest amount of increase in the total memory usage and comkirean. Central to the operation of the
bottom-up algorithm is th€ombine function, shown in Algorithm 7.4, which combines two alpbapar-
titions such that the combined partition is as coarse asigesshile simultaneously respecting the symbol
distinctions of the input partitions. For example, for twpleabet partitiong{a, b, c,d, e}, {f,g,h}} and
{{a,b,c},{d,e, f},{g,h}}, Algorithm 7.4 produces the partitiof{a, b, c},{d,e},{f}.,{g,h}}. Combine
operates irO(|%|?) time.

Since the alphabet partition produced tymbine is at least as large as the largest of the two initial

alphabet partitions, combining the two subsets can inerag never decrease) the sizes of the transition
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FastPartitionStates(StateSetStates, Int m):

1 CrtPartition = {}
2 RemainingStates = States
3fori=1tom—1do

4 | StatesCovered = RemainingStates
5 | TargetSize = |RemainingStates|/2
6 | Groups=SingleAlphabetPartition{tatesCovered)
7 | while |StatesCovered| > TargetSize do
/* Choose the pair of groups distinguished between by thedestates, discard the states, combine the
groups. */
8 StatesCut = StatesCovered
9 for j =0to |Groups| — 1 do
10 for k= j 4+ 1to |Groups| — 1 do
11 Candidates = {}
12 foreach states € StatesCovered do
13 if s.next[Groups[j]0]] # s.next|Groups[k][0]] then
14 L Candidates U= {s}
15 if |Candidates| < |StatesCut| then
16 StatesCut = Candidates
17 bestj =j
18 bestk =k
19 if |StatesCut| == |StatesCovered| then
20 L return CrtPartition U { RemainingStates}
21 NewGroup = Groupslbestj| U Groups[bestk]
22 Groups = Groups U {NewGroup} - {Groups|bestj], Groups|bestk]}
23 StatesCovered = StatesCovered - StatesCut
24 | CrtPartition U= {StatesCovered}
25 | RemainingStates = RemainingStates - StatesCovered

26 return CrtPartition U { RemainingStates}
Algorithm 7.5: Fast top-down heuristic algorithm for partitioning a sétstates intom

subsets such that when ACTs are computed separately foiselskt, total memory usage
is low.

tables for the states in the two subsets. Taken togetheovétrall complexity of Algorithms 7.3 and 7.4 is
O(n?|%|?). By storing the results of the computation on line 9, it isgibke to reduce the running time to
O(n?log(n)|%]?), at the cost of increasing the storage requirement(te’). While this algorithm is not
guaranteed to give us the best partition of sizeour experiments for feasible valuessafyield memory
costs that are close to the optimum achievable without caings on the number of ACTs.

Unfortunately, the bottom-up algorithm’s high running &ns costly. We found that for large rule sets

typical of those found in signature matching, this algaritivas unacceptably slow (each run required over
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a day to complete) with results no better than those fromdpetown approach described below. Thus, we
focus instead on the top-down approach presented below.

An alternative method to producing a partition withsubsets is to use a “top-down” approach that starts
with a single set and iteratively subdivides umtilsubsets are produced. In Algorithm 7.5, we present such
a top-down approach that completes in o6lgmn|%|?) time. At each step, the algorithm sets a target for
the size of the subset to remove (line 5: we found that settiisgtarget to half the remaining states works
well) and finds a subset that is large enough and has a small RCdo so it uses a greedy heuristic (lines
7-23) that starts with the set of all remaining states andres states from the set until the desired size is
reached.

The greedy heuristic implemented by the loop between linesdr23 tries to find a large set of states
with an ACT that results in small transition tables. Eachaitien of the loop reduces the size of the
transition table by one by removing all states that distisigbbetween two groups of characters. To remove
the fewest possible states, the nested inner loops (lined.8)tgo through all pairs of groups of characters
and pick the two groups that can be combined by removing tliedestates. Note that if at each step of the
outermost loop we chose the smallest subset larger thaaret tsize (as opposed to the largest below it),
the complexity of the algorithm would reduce@(n|%|?). In practice the difference between the sizes of
the two sets is not significant, and the actual running tineesat depend much om since asn increases
the loop in lines 7 to 23 works with exponentially smallersseft states and the processing requirements are

dominated by the cost of the first few iterations through thieeomost loop.

7.2 ACTs with Other Techniques

Our evaluation shows that using multiple ACTs can providmi$icant reductions in memory usage
with little runtime cost. One of the benefits of ACTs is thasinot restricted to stand-alone operation and
can be incorporated with other methods to achieve addit&eangs. In this section, we present methods
for combining multiple ACT compression with other recemilypposed techniques for DFA-based signature
matching. We first contrast ACTs with another approach;As [64], and follow this with a description of
a hybrid approach that combines both techniques. We thamide$iow to incorporate ACTs into DFA Set
Splitting [118] heuristics.
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(a) Symbols behave identically (b) Many common next-states

Figure 7.4: Different kinds of transition redundancy in DEAACTSs can eliminate redundancy in
7.4a; DFAs are best for eliminating that in 7.4b.

7.2.1 DFAs

Kumar et al. proposed Delayed Input DFAs tBAs) [64] as another solution for compressing the
transition tables used by DFAs. Whereas alphabet compressiploits the fact that for a given state the
transitions for many input characters point to the same s@te, [3FAs build on the fact that for a given
input character, many states transition to the same nebe. skégure 7.4 illustrates the two distinct kinds
of redundancy in transitions. In Figure 7.4a, many symbelsave identically and can be compressed with
Alphabet Compression Tables. Conversely, in Figure 7.4tirit symbols at many states lead to common
next-states. For example, in Staf&s andS6 symbols 'e’, 'f’, and 'h’ each have common next-states with
regard to the symbol. This second kind of redundancy canfeetafely addressed with #FAs.

If two states have the same transitions for many characteis Bigure 7.4b, one can reduce memory
by storing for one of the states only the transitions thdediDefault transitions that consume no input link
states with elided transitions to states that contain tbpeartransition table entry. As shown in Figure 7.5,
if the transition table entry for the input symbol is not €diin the current state, the default transition points
to the state whose transition table should be consultedtipleistates can have default transitions pointing
to the same state, and one may need to follow multiple defeuisitions when processing a single input
character. Following chains of default transitions comiea processing cost, so the maximum length of
default transition is given and fixed during construction.

Kumaret al. show that BFAs lead to large reductions in memory usage, but there avditmitations
to consider when using FAs alone. First, memory savings achieved R3FBs can vary widely among

different kinds of signatures. Figure 7.6 shows the sigmatu\na [~\n] {50} (read as an arbitrary number
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Figure 7.5: For each state,’BPAs employ a default transi-
tion that is followed whenever its transition table consamno
entry for the current symbol.

of characters followed by a newline and arfollowed by 50 non-newline characters) for whictfEAs
cannot achieve significant memory savings, but ACTs canh Signatures are commonly used to detect
buffer overflow attacks. States 2 to 52 have very similardition tables: for the newline character the next
state is 1, and for all others the next state is the state hitlnéxt number. Applying an ACT for these states
can reduce the size of their transition tables to 2, btFA» cannot produce significant memory reductions
since most of transitions are to distinct next states.

Second, software implementations offAs can be slow. The original IFA proposal is targeted to
custom hardware environments where content addressalirigs can be used. Software implementa-
tions must use a hash table-like data structure to compr@ssition tables, but without careful design this
can result in unacceptable run-time and memory overheaustireg from computing hash functions and
handling collisions.

To adapt to software-based environments, we designed acsothat combines a bitmap and an array
to achieve good performance and low memory overhead. Eatd isas a bitmap as large as the alphabet
(256 bits or 8 words) to indicate whether the transition esponding to a given input character is stored
or not, and an array to store the actual transitions. To deter the position of the transition in this array
during matching, we need to count the number of bits set to thenbitmap prior to the position of the
bit corresponding to the input character. For our signasets this solution uses between 0.1% and 148%

more memory compared to an idealized solution that has noaneaverhead. Compared to an idealized
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Figure 7.6: A DFA recognizing the signatur&\na["\n]{50} .

solution that performs array lookups instead of hashedupekthe runtime is between 2.6 and 6 times

larger.

7.2.2 Hybrid D?FAs and ACTs

Since ACTs and BFAs exploit different kinds of redundancy in DFA transitgrit is natural to ask
whether it is possible to combine them into a solution thaetiés from the strengths of both approaches.
We evaluated a straightforward hybrid of the two methods dpplies alphabet compression téfAs. We
perform O’FA compression to a DFA first, followed by multiple alphabetgpression applied to the results
of the D’FA transformation. To adapt ACT construction algorithmsat®?FA data structure, we extend
the transition tables to include a “not handled here” synthat can be compressed along with symbols,
and we extend the default transition entry to also inclu@eaibpropriate compression table reference. With
these extensions, we can directly apply our procedures dddibg the alphabet compression tables to
D2FA-compressed automata. Our experiments in Section 7\8 gfat for some signature sets this hybrid
solution results in the most compact automata.

Performing a state lookup involves traversing the auxilgructures inherent to both ACTs andfAs.
Figure 7.7 illustrates the state lookup process for theibydgproach. As in Figure 7.3b, the entries in the
transition table indicate the next state and the ACT to usgo,/As with 3FAs, the algorithm may need to
follow multiple default transitions when processing anuhpharacter. In the example, the lookup process
begins with an input symbol value of 1, current compressadtet 1, and current state 1. The first step is
to perform a table lookup to apply the appropriate compeaestible. The resulting index value (index = 0)
is then used to look up the next state in transition table fateS1. Here, the transition has been removed
due to FFA compression. Thus, the default transition for State Jissalted, which links to State 2 with

compression table 0. Continuing, we repeat the process: agethe original input symbol through ACT O



141

index=0
State 0 State 1|| State 2 State 3
o2H| [ [
ACTO| ACT1
o] | [0 0] 25] ] o[ 12}
[ of2] o 1]41 1 1 6
[of | [ o of s|| [o] 2| [o] 8
EiIRE of 5 ===
1] | [ 2] 2 4
] [ !
| 2] | 4| | index=0
2| Lo
input=1
ort_act=1 next_act=0
crt_state=1 next_state=12

Figure 7.7: Depiction of the state lookup process when bathiphe
ACTs and BFAs are employed.

and then look up the resulting index value in State 2. In ttatesthe transition table contains an entry for

the symbol, yielding a next-state of 12 and a next-ACT of 0.

7.2.3 ACT-aware DFA Set Splitting

DFA Set Splitting [118] is an early technique devised to @@the memory footprint of combined
DFAs. In this approach, an upper memory bound is specifiedi sagnatures are partitioned into multiple
groups of DFAs (instead of a single DFA) such that the totalhmey usage is below the supplied threshold.
Increasing the threshold reduces the execution time, $&veer combined DFAs need to be created to fit in
memory; decreasing the threshold has the opposite effect.

In principle it is easy for edge-compression techniques s1scACTs or BFAs to be applied in conjunc-
tion with Set Splitting. Applying edge compression to eatkthe constructed DFAs is one simple way to
accomplish this. However, such independent interactiggoeas sub-optimal memory and execution-time
behavior. The Set Splitting heuristics partition the seD&As so that the overalincompressechemory
usage is within the supplied bound. But, edge compressiturces the effective memory footprint, so that
in practice the set of combined DFAs may be an order of madaitwr more below the memory thresh-
old. This excess memory could have been used toward praglfiver combined DFAs and reducing the

overall execution time.
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We propose a straightforward ACT-aware extension to Settipl that incorporates ACT-based edge
compression into the heuristic used for partitioning stgres. The Set Splitting heuristic partitions signa-
tures by measuring thiateractivity between individual signatures and greedily choosing tlsigeatures
with the least interactivity. Signatures are then combinetil a “fair share” of memory is used, at which
time the combined DFA is frozen and another partition is lmegWe extend this process by measuring
the memory share with ACT compression applied; thus, the ongmstimate used for constructing com-
bined DFAs reflects that in actual use. This process is tinmswming, since ACT compression must be
re-applied at each intermediate stage. Nevertheless,@ensim Section 7.3, we are able to observe a

significant reduction in the number of combined DFAs prodlice

7.3 Experimental Results

We performed a comparative evaluation using multiple digmeesets to better understand the behavior
of ACTs in practice. We extracted regular expressions framRETP, HTTP, and SMTP signatures from
the Snort and Cisco IPS rule sets and grouped them by protoatcting 1550 regular expressions in
total. In addition to the algorithms and techniques degctiin this chapter, we also implemented the DFA
Set Splitting algorithm [118] (termechDFA here, for “Multiple DFA’) for combining a set of signatures
to a group of DFAs. Finally, our comparative evaluation dffBs was performed using the’PA source
code obtained from its authors. Modifications discussecerti®n 7.2.1 were built upon this as well. Test
results involving execution time were obtained using a 1a@Be collected on the edge of a university
departmental network. All experiments were performed onrauX workstation with a 3.0 GHz Pentium
IV processor and 3.4 GB of memory that was otherwise idle. ¥é=licycle-accurate performance counters

to measure the number of cycles required by the matchingatipes.

7.3.1 Multiple Alphabet Compression Tables

The first set of experiments looks at the behavior of ACTs asiimber of compression tables is in-
creased. For each of our rule sets, we combined a subset odghlar expressions and converted them to
a large, single DFA. We then repeatedly invoked Algorith with values ofm (the number of alphabet

compression tables) increasing from O to 8. Table 7.1 ptegbe memory requirements, execution time,
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Signature # of Memory | Exec Time| Trans.
Set ACTs (KB) cycles/byte| per state
0 630,669 46.3 256
Cisco SMTP| 1 231,573 50.6 94
8 165,234 48.8 67
0 106,771 43.0 256
Cisco HTTP 1 81,329 54.7 195
8 24,124 52.0 57
0 308,602 43.3 256
Cisco FTP 1 39,780 49.9 33
8 24,535 49.6 20
0 810,711 22.2 256
Snort SMTP 1 139,340 30.0 44
8 67,761 29.8 21
0 163,114 38.6 256
Snort HTTP 1 36,955 46.1 58
8 15,150 43.9 23
0 1,386,340 35.5 256
Snort FTP 1 167,877 43.6 31
8 93,815 42.9 17

Table 7.1: Measuring the cost of multiple compression @blée biggest
reductions come after the first table is employed, but aoidkti tables
yield further memory reductions.

and average transitions per state for 0, 1, and 8 compretatides. Figure 7.8 presents the results graphi-
cally for all tested values of.. For clarity of presentation, we show detailed results fuydour of the six
data sets. The omitted data sets have similar behavior.

The casen = 0 is the combined DFA without any alphabet compression agied serves as the
baseline for comparison. Consequently, the number ofitians per state is 256, the size of the alphabet.
As m is increased, the memory requirements (also counting theaneused by the compression tables
themselves) decreases. With 8 tables, the Cisco signattseeghibit approximately a>d reduction in
memory usage, whereas for the Snort signature setsxad25x reduction is observed. As Figures 7.8a
and 7.8b show, the memory usage experiences the largestadesrafter the first alphabet compression
table is applied, but using multiple ACTs reduces memoryiregents further.

ACTs do carry an increased execution cost, adding 5 to 1@syoér byte to the execution time on
average. Fortunately, in Figure 7.8c we see that this castisred only when the first alphabet compression

table is introduced; adding multiple ACTs does not incungigant additional run-time costs. Thus, even
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ACTs induces an initial runtime cost, but subsequent irsgean the number of tables is free.

though we observe diminishing returns in memory savinghasnumber of ACTs increases, the increased
savings come for free, essentially, after the initial cdsholuding compression tables has been paid. For

the remainder of the experiments, we use= 8 ACTSs.

7.3.2 ACTs, D'FAs and Uncompressed DFAs

Next, we compare ACTs to 1FAs, D’FAs + ACTs, and uncompressed DFAs. Combining all regular

expressions into a single DFA exceeds feasible memorydijrsid we used set splitting [118] to produce
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Memory [ Num. Uncompressed multiple ACT D?FA mult. ACT+D?FA

Signature | budget of Runtime Memory| Runtime Memory| Runtime Memory| Runtime  Memory

set (MB) DFAs || (cyc/byte) (KB) | increase decrease increase decrease increase decreas

Snort 16 15 266 9,667 1.84x 65.96x 12.70x 1.10x 4.24x 75.43x
SMTP 48 13 236 30,058 1.82x 70.66x 12.25x 1.04x 4.51x 73.66x
128 11 209 98,236 1.79x 17.26x 12.31x 2.20x 3.94x 28.52x
Snort 16 45 1,103 14,065| 2.92x 6.74x 10.58x 2.83x 5.90x 15.17x
HTTP 48 28 651 23,693 1.62x 6.71x 9.98x 4.00x 5.33x 14.44x
128 23 543 73,988 1.59x 9.11x 9.60x 6.81x 3.78x 16.88x
Snort 16 18 434 11,127 1.56x 50.50x 9.47x 1.32x 3.36x 62.10x
FTP 48 14 374 37,920 1.45x 33.28x 9.23x 1.67x 3.02x 40.99x
128 4 131 94,288 1.35x 19.13x 8.76x 7.92x 2.97x 23.71x
Cisco 16 4 72 15,316 1.78x 3.92x 13.98x 15.04x 3.85x 6.03x
SMTP 48 3 57 40,367 1.72x 3.79x 14.22x 16.38x 3.98x 6.05x
128 3 57 110,063 1.72x 3.78x 14.34x 17.34x 3.86x 5.92x
Cisco 16 19 432 15,015 1.64x 3.81x 8.66x 11.03x 3.16x 6.42x
HTTP 48 12 282 43,389 1.62x 4.06x 8.76x 13.37x 3.12x 7.12x
128 9 220  116,352| 1.64x 3.87x 8.98x 14.08x 3.11x 6.57x
Cisco 16 3 83 13,308 1.34x 16.41x 9.38x 15.43x 2.61x 31.56x
FTP 48 2 66 22,254 1.19x 16.97x 8.76x 16.92x 2.44x 33.95x
128 2 70 83,162 1.14x 16.09x 8.26x 19.29x 2.23x 42.86x

Table 7.2: Comparison of run times and memory usage for upcessed DFAs, DFAs using
multiple ACTs, FFAs, and BFAs using multiple ACTs.

sets of combined DFAs that cover all the rules. For the canstn, we supplied memory budgets ranging
from 4 MB to 128 MB? As shown in columns 2 and 3 of Table 7.2, smaller memory bisdggult in
large numbers of DFAs to match. We use the tgmatocol setto refer to the set of DFAs produced by the
algorithm for a given protocol and a given total memory settiWe then built a distinct set of eight alphabet
compression tables for each protocol set. Thus, for exaneplele set such as Snort SMTP combined
into six DFAs would contain eight ACTs that are shared amdrgggix DFAs. Finally, we repeated the
construction process to producéfAs for each of the DFAs in the protocol sets.

We performed signature matching using protocol sets witboompressed DFAs, DFAs with ACTS,
D2FAs, and 3FAs with ACTSs, recording execution time and memory usageléra.2 shows the results for
three memory settings: 16 MB, 48 MB, and 128 MB. Executioresrare higher in these results principally
because we must repeat the matching procedure for each DBAintocol set. Note also that in some
cases (Cisco SMTP), increasing the amount of available medwes not decrease execution time. This
behavior is an artifact of the greedy algorithm [118] forlding the protocol sets. In general, the table
shows that increasing total available memory reduces tiebeu of DFAs in the protocol set, decreasing

execution time.

2Although 128 MB may seem rather small in relation to modermmiy capacities, our tests are performed using
a single protocol. In reality, DFAs for many protocols musside in memory simultaneously.
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Figure 7.10: Comparing memory usage (left) and performdrigbt) of ACTs to mDFAs, BFAs,

and their combination, using Snort rule sets.
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Compared to uncompressed DFAs (column 4 in Table 7.2), e shows a sharp reduction in memory
costs when eight ACTs are employed (column 5). For 16 MB to&inory, ACTs are between &&maller
(Snort SMTP) and 4 smaller. At 128 MB, DFAs with ACTs are between 1%nd 4x smaller. As
expected, however, there is a slight increase in exectuitog: texecution times with ACTs are typically
between 35% to 85% slower, the largest slowdown approacfeeta of 3<. Figure 7.9 (Cisco rules) and
Figure 7.10 (Snort rules) show the memory usage (top grapth)execution time (bottom graph) for all
supplied values of available memory for three signaturs. set

D2FAs (column 6) exhibit wider variability in their performae and memory usage than ACTs. For
Cisco rule sets, our tests give anxl1o 17x reduction in memory usage. These results are generally
consistent with those reported in [64]. For the Snort sigresets, however, which were not included in
the original 'FA evaluation, the memory reduction is always less than tofaaf 8 and often less than
a factor of 2. This is consistent with our observation thaERs are designed to optimize DFAs in which
certain symbols in the alphabet (almost) always go to theesstate. This is not characteristic of the Snort
sets, and thus there is little opportunity for compression.

The hybrid algorithm that combines’BAs and ACTs (rightmost column in Table 7.2) always achieves
low memory (often the lowest of all solutions), and run-tgleat are close to, but larger than those of ACTs.
ACTs are faster because the matching algorithm does nottodeliiow default transitions. Interestingly, in
one of the signature set$PAs use less memory than the hybrid approach. The reasoatiafter applying
ACTs to D’FAs, for a given state there may be multiple entries in thaaldtansition table storing the “not
handled here” symbol, resulting in higher memory usage #fAs that do not store these entries.

Both execution time and memory usage are critical resouncgignature matching and induce a space-
time trade-off. Figure 7.11 depicts a space-time comparfeo all six of our test sets, directly showing
the trade-offs that occur between memory usage (the x-axid)execution time (the y-axis). We have
truncated the axes in some sets to more clearly highlighdtta in the lower left-hand quadrant; this
does not influence the interpretation. Each point on thergligrs to an observed total available memory
setting. Data points belonging to the same compressiomiged trace out a curve that shows the trade-offs
between execution time and memory for that technique. Ifithié, large memory yields fast execution,
and small memory requires large execution times. Entrieattd the origin (the bottom left corner) require

reduced resources in space and time and are thus preferred.
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Signature Mem # DFAs
Set Budget | Sequential| Act-Aware
16 4 3
Cisco SMTP 48 3 3
128 3 2
16 19 9
Cisco HTTP 48 12 7
128 9 6
16 3 2
Cisco FTP 48 2 2
128 2 2
16 15 7
Snort SMTP 48 13 7
128 11 5
16 45 38
Snort HTTP 48 28 31
128 23 17
16 18 3
Snort FTP 48 14 3
128 4 2

Table 7.3: ACT-Aware Set Splitting. When DFA Set Splittirggaxtended
to include alphabet compression, the number of resulting<i& reduced.

Most importantly, for all protocol sets ACTs provide the rmémsvorable trade-offs between run time
and memory usage. Admittedly, it may be surprising that ACas be faster than uncompressed DFAs
despite the overhead of the compression table mapping alityrdarge available memory sizes (resulting
in bigger but fewer DFAs) combined with excellent ACT memaggduction yields a memory footprint that
is smaller than for uncompressed DFAs, and the time savibgsred from executing fewer DFAs more
than compensates for the ACT overhead. Thus, a small nuniitegldy compressed DFAs can be both

smaller and faster than other alternatives.

7.3.3 ACT-aware DFA Set Splitting

We briefly quantify the effects of extending DFA Set Splittineuristics with alphabet compression ta-
bles. We extended DFA Set Splitting to measure the memoryausbmultiple ACT-compressed combined
DFAs rather than uncompressed DFAs. By doing so, more sigesiare grouped into fewer combined
DFAs. Table 7.3 shows the effects ACT-aware Set Splittimgditferent memory thresholds. Column 3
shows the number of DFAs required when Set Splitting and A@Esapplied sequentially and indepen-

dently. Here, the effective memory is significantly below themory budget (ref. column 7 of Table 7.2).
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Column 4 shows the number of DFAs required when Set Splitsrapugmented with ACT-based memory
usage). In some cases, the reduction is dramatic. For eramipthe 128MB threshold, the Snort SMTP
set requires just 5 DFAs, down from 11 using the unmodifiedrétigm.

The downside to this integrated approach is the construtime: alphabet compression must be per-
formed at each intermediate stage as well as at the end, andifexperiments this required several hours
of computation time per configuration. This cost may proveenable in dynamic settings with frequently
added or updated signatures. Lightweight techniques tomatng the memory savings may reduce con-

struction time to more reasonable levels.

7.4 Conclusion

In this chapter we introduced multiple alphabet comprassidles (ACTs) for reducing the memory
footprint of DFA-based signature matching. This technigses heuristics to partition the states of a DFA,
computing a distinct ACT for each partition. Using Multipd€Ts achieves increased memory reduction
over single ACTs with no additional runtime cost. We presagbrithms for constructing multiple ACTs
and demonstrate their effectiveness using signaturesifou@isco IPS and Snort. ACTs are applicable in
software-only environments, although they may be easiuisted in hardware-based solutions.

Compared to uncompressed DFAs, multiple ACTs achieve mgsarings of between a factor of 4
and a factor of 70 at the cost of an increase in run time thapisally between 35% and 85%. Compared
to D?FAs, multiple ACTs are between 2 and 3.5 times faster in saféwand for some signature sets they
use less than one tenth of the memory. Overall, for all signeasets and compression methods evaluated,

ACTs offer the best memory versus run-time trade-offs.
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Chapter 8
Conclusion

Network intrusion detection operates in a difficult enviment. Restrictive memory sizes and limited
processing capabilities coupled with increasing traffiads, increasing numbers of signatures, and in-
creasing signature complexity exert constant pressure taate work with comparatively fewer available
resources. Further, systems that fail to satisfy perfocearquirements are vulnerable to evasion.

Signature matching is at the heart of intrusion detectiath megular expressions the language of choice
for writing signatures. However, standard matching teghas such as NFAs and DFAs induce a time-
space tradeoff between the memory footprint and the exactitne and are unsuitable for NIDS use. One
alternative is to employ approximation techniques thatkjyiidentify benign traffic, retaining potentially
malicious traffic for more detailed analysis. But, this ioda a type of tradeoff between accuracy and
execution time, where higher accuracy comes at the coshgeloexecution.

The goal of this work has been to discover and properly cheriae the principles behind these trade-
offs, and to develop richer matching mechanisms that eligrinate the tradeoffs or make them more
manageable. This leads to signature matching mechanistharh more amenable to the NIDS environ-
ment, that require fewer resources to operate, and that are resilient to attack.

For DFA-based matching, we introduced the notion of amibygand showed that it is at the root of the
state-space explosion phenomenon and subsequent menhawysérn that often occurs when DFAs are
combined. We then proposed the use of auxiliary state Vasads a way to “factor out” the ambiguity in
DFAs. When auxiliary variables are properly employed, tta¢esspace explosion still occurs, but the state-
space is structured so that the number of explicit automstates is bounded, and memory exhaustion is
avoided. From a DFA perspective, a slight decrease in maggherformance yields a significant reduction

in memory usage.
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Similarly, as we demonstrated in Chapter 3 for the Snort NID® divide between worst-case and
average-case signature matching performance can be Oritjgesing memoization and other techniques
that track intermediate state and avoid unnecessary caigut At the expense of a slight increase in
memory usage, we reduced the worst-case slowdown by foer®oaf magnitude, bringing the worst case
to within one order of magnitude of the average case, basediomeasurements.

As these and other examples from our work illustrate, by piiicg slightly degraded behavior in one
initially acceptable aspect of a time-space tradeoff éitime or space), we can obtain significantly im-
proved behavior from the other, formerly unacceptableeasprhese results demonstrate that the tradeoffs
associated with intrusion detection are not immutableaatbss, but rather can be changed through appro-
priate research and engineering effort.

For this author, the results presented here have raisedsitde many questions as they have answered.
For example, with regard to DFAs, ambiguity provides a sigfit criterion for assessing the behavior of
DFAs under combination. But, it is very strict, and more reflrconditions may lead to a better character-
ization of state-space explosion, among other things. RlegaXFAs, auxiliary variables can be used to
eliminate ambiguity, but the practical limits on their useaanbiguity-removing mechanisms is not known.
Also, constructing XFAs from regular expressions requ#esie human intervention; techniques that min-
imize or eliminate human involvement altogether would befuls Finally, our work has focused almost
exclusively on regular expression-based signatures. Utldvbe interesting to consider the use of more
expressive languages, such as context free or contexttigensinguages, and the implications of their

matching models for network intrusion detection.
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