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Speculative Parallel Pattern Matching
Daniel Luchaup, Randy Smith, Cristian Estan, and Somesh Jha

Abstract—Intrusion prevention systems (IPSs) determine
whether incoming traffic matches a database of signatures, where
each signature is a regular expression and represents an attack
or a vulnerability. IPSs need to keep up with ever-increasing line
speeds, which has lead to the use of custom hardware. A major
bottleneck that IPSs face is that they scan incoming packets one
byte at a time, which limits their throughput and latency. In this
paper, we present a method to search for arbitrary regular ex-
pressions by scanning multiple bytes in parallel using speculation.
We break the packet in several chunks, opportunistically scan
them in parallel, and if the speculation is wrong, correct it later.
We present algorithms that apply speculation in single-threaded
software running on commodity processors as well as algorithms
for parallel hardware. Experimental results show that speculation
leads to improvements in latency and throughput in both cases.

Index Terms—Low latency, multibyte, multibyte matching, par-
allel pattern matching, parallel regular expression matching, reg-
ular expressions, speculative pattern matching.

I. INTRODUCTION

M OST intrusion prevention systems (IPSs) match in-
coming traffic against a database of signatures, which

are regular expressions (REs) that capture attacks or vulnera-
bilities. IPSs are a very important component of the security
suite. For instance, most enterprises and organizations deploy
an IPS. A significant challenge faced by IPS designers is the
need to keep up with ever-increasing line speeds, which has
forced IPSs to move to custom hardware. Most IPSs match
incoming packets against signatures one byte at a time, causing
a major bottleneck. In this paper, we address this bottleneck by
using speculation to solve the problem of multibyte matching,
or the problem of IPS concurrently scanning multiple bytes of
a packet.
Deterministic finite automata (DFAs) are popular for signa-

ture matching because multiple signatures can be merged into
one large regular expression and a single DFA can be used
to match them simultaneously with a guaranteed robust per-
formance of time per byte. However, matching network
traffic against a DFA is inherently a serial activity. We break
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this inherent serialization imposed by the pointer chasing na-
ture of DFA matching using speculation.
This paper is the extended journal version of the work in

[18]. It makes the following contributions: we present Specu-
lative Parallel Pattern Matching (SPPM), a novel method for
DFAmultibytematching which can lead to significant speedups.
Our method works by dividing the input into multiple chunks
and scanning each of them in parallel using traditional DFA
matching. The main idea behind our algorithm is to guess the
initial state for all but the first chunk, and then to make sure
that this guess does not lead to incorrect results. The insight
that makes this work is that although the DFA for IPS signa-
tures can have numerous states, only a small fraction of these
states are visited often while parsing benign network traffic. We
use a new kind of speculation where gains are obtained not only
in the case of correct guesses, but also in the most common case
of incorrect ones yet whose consequences quickly turn out to
still be valid. This idea opens the door for an entire new class of
parallel multibyte matching algorithms.
Section III presents an overview of SPPM, with details given

in Sections IV and V. We present a single-threaded SPPM algo-
rithm for commodity processors which improves performance
by issuing multiple independent memory accesses in parallel,
thus hiding part of the memory latency. Measurements show
that by breaking the input into two chunks, this algorithm can
achieve an average of 40% improvement over the traditional
matching procedure. We also present SPPM algorithms suitable
for platforms where parallel processing units share a copy of
the DFA to be matched. Our models show that when using up to
100 processing units our algorithm achieves significant reduc-
tions in latency. Increases in throughput due to using multiple
processing units are close to the maximum increase afforded by
the hardware.

II. BACKGROUND

A. Regular Expression Matching—A Performance Problem

Signature matching is a performance-critical operation in
which attack or vulnerability signatures are expressed as regular
expressions and matched with DFAs. For faster processing,
DFAs for distinct signatures such as and

are combined into a single DFA that
simultaneously represents all the signatures. Given a DFA
corresponding to a set of signatures, and an input string repre-
senting the network traffic, an IPS needs to decide if the DFA
accepts the input string. Algorithm 1 gives the procedure for
the traditional matching algorithm.
Modern memories have large throughput and large latencies:

one memory access takes many cycles to return a result, but one
or more requests can be issued every cycle. Suppose that reading

1556-6013/$26.00 © 2011 IEEE
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Algorithm 1: Traditional DFA matching.

results in a memory access1 that takes
cycles.2 Ideally the processor would schedule other opera-

tions while waiting for the result of the read from memory, but
in Algorithm I each iteration is data-dependent on the previous
one: the algorithm cannot proceed with the next iteration before
completing the memory access of the current step because it
needs the new value for the variable (in compiler terms,
is the RecurrenceMinimum Initiation Interval). Thus the perfor-
mance of the system is limited due to the pointer chasing nature
of the algorithm.
If is the number of bytes in the input and if the entire

input is scanned, then the duration of the algorithm is at least
cycles, regardless of how fast the CPU is. This algorithm

is purely sequential and cannot be parallelized.
Multibyte matching methods attempt to consume more

than one byte at a time, possibly issuing multiple overlapping
memory reads in each iteration. An ideal multibyte matching
algorithm based on the traditional DFA method and consuming
bytes could approach a running time of cycles, a

factor of improvement over the traditional algorithm.

B. Signature Types

Suffix-closed regular expressions over an alphabet are reg-
ular expressions with the property that if they match a string,
then they match that string followed by any suffix. Formally,
their language has the property that

. All signatures used by IPSs are suffix-closed. Algo-
rithm 1 uses this fact by checking for accepting states after each
input character instead of checking only after the last one. This
is not a change we introduced, but a widely accepted practice
for IPSs.
Prefix-closed regular expressions (PREs) over an alphabet

are regular expressions whose language has the property that
. For instance,

is a PRE, but is not,
because the part can only match at the beginning and is
not prefix-closed. In the literature, non-PRE signatures such as

are also called anchored signatures. A large fraction of
signatures found in IPSs are prefix-closed.
When we need to make an explicit distinction against PRE,

as a notational convenience we use the term general regular ex-
pressions (GREs) for unrestricted, arbitrary regular expressions.

1Assuming that the two indexes are combined in a single offset in a linear
array.
2On average. Caching may reduce the average, but our analysis still holds.

Fig. 1. DFA for ; dotted lines show transitions taken when no other
transitions apply.

III. OVERVIEW

The core idea behind the SPPM method is to divide the input
into two or more chunks of the same size and process them
in parallel. We assume that the common case is not finding a
match, although speedup gains are possible even in the presence
of matches. As is customary in IPSs, all our regular expressions
are suffix closed. Additionally, at this point we only match REs
that are prefix closed (PRE), a restriction that will be lifted in
Section V. In the rest of this section, we informally present the
method by example, we give statistical evidence explaining why
speculation is often successful, and we discuss ways of mea-
suring and modeling the effects of speculation on latency and
throughput.

A. Example of Using Speculation

As an example, consider matching the input
against the DFA recognizing the reg-

ular expression shown in Fig. 1. We break the input
into two chunks, and IRULENCE,
and perform two traditional DFA scans in parallel. A Primary
process scans and a Secondary process scans . Both use
the same DFA, shown in Fig. 1. To simplify the discussion, we
assume for now that the Primary and the Secondary are separate
processors operating in lockstep. At each step they consume
one character from each chunk, for a total of two characters in
parallel.
To ensure correctness, the start state of the Secondary should

be the final state of the Primary, but that state is initially un-
known. We speculate by using the DFA’s start state, State 0 in
this case, as a start state for the Secondary and rely on a sub-
sequent validation stage to ensure that this speculation does not
lead to incorrect results. In preparation for this validation stage,
the Secondary also records its state after each input character in
a history buffer.
Fig. 2 shows a trace of the two stages of the speculative

matching algorithm. During the parallel processing stage,
each step i entry shows for both the Primary and the Secondary
the new state after parsing the th input character in the cor-
responding chunk, as well as the history buffer being written
by the Secondary. At the end of step 8, the parallel processing
stage ends and the Secondary finishes parsing without finding
a match. At this point, the history buffer contains eight saved
states. During the validation stage, steps 9–12, the Primary
keeps processing the input and compares its current state with
the state corresponding to the same input character that was
saved by the Secondary in the history buffer. At step 9, the
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Fig. 2. Trace for the speculative parallel matching of in . During the parallel stage, steps 1–8, the Primary scans the first
chunk. The Secondary scans the second chunk and updates the history buffer. The Primary uses the history during validation stage, steps 9–12, while rescanning
part of the input scanned by the Secondary until agreement happens at step 12.

Primary transitions on input “ ” from state 1 to state 2 which is
different from 0, the state recorded for that position. Since the
Primary and the Secondary disagree on the state after the ninth,
tenth, and eleventh characters, the Primary continues until step
12 when they agree by reaching state 0. Once this coupling
between the Primary and Secondary happens, it is not necessary
for the Primary to continue processing because it would go
through the same transitions and make the same acceptance
decisions as the Secondary. We use the term validation region
to refer to the portion of the input processed by both the Primary
and the Secondary (the string IRUL in this example). Coupling
is the event when the validation succeeds in finding a common
state.
In our case, the input is 16 bytes long but the speculative al-

gorithm ends after only 12 iterations. Note that for different in-
puts, such as , the speculative method would
stop after only nine steps, since both halves will see only state 0.
The performance gain from speculative matching occurs only if
the Primary does not need to process the whole input. Although
we guess the starting state for the Secondary, performance im-
provements do not depend on this guess being right, but rather
on validation succeeding quickly, i.e., having a validation re-
gion much smaller than the second chunk.

B. Statistical Support for Speculative Matching

In this section, we provide an intuitive explanation behind our
approach. We define a default transition to be a transition on an
input character that does not advance towards an accepting state,
such as the transitions shown with dotted lines in Fig. 1. If we
look at Fig. 1, we see that the automaton for will
likely spend most of its time in state 0 because of the default
transitions leading to state 0. Fig. 2 shows that indeed 0 is the
most frequent state. In general, it is very likely that there are just
a few hot states in the DFA, which are the target states for most
of the transitions. This is particularly true for PREs because they
start with and this usually corresponds to an initial state with
default transitions to itself.
For instance, we constructed the DFA composed from 768

PREs from Snort and measured the state frequencies when scan-
ning a sample of real world HTTP traffic. Fig. 3 displays the
resulting cumulative distribution function (cdf) graph when the

Fig. 3. State frequency cdf graph for a PRE composed of 768 Snort signatures.
The most frequent state accounts for 33.8% of the time and the first six most
frequent states account for half the time.

states are ordered in decreasing order of frequency. Most time is
spent in a relatively small number of states. The most frequent
state occurs in 33.8% of all transitions, and the first six states
account for 50% of the transitions.
The key point is that there is a state that occurs with a rela-

tively high frequency, 33.8% in our case. A back-of-the-enve-
lope calculation shows that it is quite likely that both halves will
soon reach that state. Indeed, assume a pure probabilistic model
where a state occurs with a 33.8% probability at any position.
The chances for coupling due to state at a given position are

. Equivalently, the chances that such coupling
does not happen are . However, the chances
that disagreement happens on each of consecutive positions
are , which decreases quickly with . The probability for
coupling in one of 20 different positions is .
Even if the frequency of a state was 5% instead of 33.8%, it
would take 45 steps to have a probability greater than 90% for
two halves to reach state . While 45 steps may seem high, it
is only a tiny fraction, 3%, compared to the typical maximum
TCP packet length of 1500 bytes. In other words, we contend
that the length of the validation region will be small.
Note that the high probability of coupling in a small number

of steps is based on a heavily biased distribution of frequencies
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among the states of the DFA. If all states were equally prob-
able, then the expected number of steps to coupling would be

. This would make coupling extremely unlikely for au-
tomata with large numbers of states.

C. Performance Metrics

One fundamental reason why speculation improves the per-
formance of signature matching is that completing two memory
accesses in parallel takes less time than completing them seri-
ally. While the latencies of memories remain large, the achiev-
able throughput is high because many memory accesses can be
completed in parallel.
When we apply SPPM in single-threaded software settings,

the processing time for packets determines both the throughput
and the latency of the system as packets are processed one at a
time. Ourmeasurements show that SPPM improves both latency
and throughput. When compared to other approaches using a
parallel architecture, SPPM improves latency significantly and
achieves a throughput close to the limits imposed by hardware
constraints.

IV. SPECULATIVE MATCHING

SPPM is a general method. Depending on the hardware
platform, the desired output, the signature types, or other
parameters, one can have a wide variety of algorithms based
on SPPM. This section starts by formalizing the example from
Section III-A and by introducing a simplified performance
model for evaluating the benefits of speculation. Then we
present basic SPPM algorithms for single-threaded software
and for simple parallel hardware. Section V shows variants that
are not constrained by the simplifying assumptions.

A. Basic SPPM Algorithm

Algorithm 2 shows the pseudocode for the informal example
from Section III-A. The algorithm processes the input in three
stages.
During the initialization stage (lines 1–5), the input is di-

vided into two chunks and the state variables for the Primary
and Secondary are initialized. During the parallel processing
stage (lines 6–13), both processors scan their chunks in lock-
step. If either the Primary or the Secondary reach an accepting
state (line 10), we declare a match and finish the algorithm (line
11). The Secondary records (line 12) the states it visits in the
history buffer (for simplicity, the history buffer is as large as the
input, but only its second half is actually used). During the val-
idation stage (lines 14–21), the Primary continues processing
the Secondary’s chunk. It still must check for accepting states
as it may see a different sequence of states than the Secondary.
There are three possible outcomes: a match is found and the
algorithm returns success (line 18), coupling occurs before the
end of the second chunk (line 20), or the entire second chunk
is traversed again. If the input has an odd number of bytes, the
first chunk is one byte longer, and a sentinel is setup at line 5
such that the validation step will ignore it.
1) Correctness of Algorithm 2: If during the parallel pro-

cessing stage the Secondary reaches the return at line 11, then
the Secondary found a match on its chunk. Since our assump-
tion is that we search for a prefix-closed regular expression, a

Algorithm 2: Parallel SPPM with two chunks. Accepts PREs.

match in the second chunk guarantees a match on the entire
input. Therefore, it is safe to return with a match.
If the algorithm executes the break at line 20, then the Pri-

mary reaches a state also reached by the Secondary. Since the
behavior of a DFA depends only on the current state and the
rest of the input, we know that if the Primary would continue
searching, from that point on it would redundantly follow the
steps of the Secondary which did not find a match, so it is safe
to break the loop and return without a match.
In all the other cases, the algorithm acts like an instance of

Algorithm 1 performed by the Primary where the existence of
the Secondary can be ignored.
To conclude, Algorithm 2 reports a match if and only if the

input contains one.
2) Simplified Performance Models: Our evaluation of SPPM

includes actual measurements of performance improvements on
single-threaded software platforms. But to understand the per-
formance gains possible through speculation and to estimate the
performance for parallel platforms with different bottlenecks
we use a simplified model of performance. Because the input
and the history buffer are small (1.5 KB for a maximum-sized
packet) and are accessed sequentially they should fit in fast
memory (cache) and we do not account for accesses to them.
We focus our discussion and our performance model on the ac-
cesses to the DFA table. Fig. 4 summarizes the relevant metrics.
We use the number of steps (iterations) in the parallel pro-

cessing and in the validation stage to approximate the
processing latency: .
Each of these iterations contains one access to the DFA

table. The latency of processing an input with the tra-
ditional matching algorithm (Algorithm 1) would be
steps, hence we define the speedup (latency reduction) as

.
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Fig. 4. Simplified performance model metrics ( is number of processors).

The useful work performed by the parallel algorithm is
scanning the entire input, therefore equivalent to serial
steps. This is achieved by using processing units
(PUs), the Primary and Secondary, for a duration of par-
allel steps. Thus, the amount of processing resources used
(assuming synchronization between PUs), the processing
cost is and we define the processing efficiency
as

.
Another potential limiting factor for system performance is

memory throughput: the number of memory accesses that can
be performed during unit time. We define memory cost as
the number of accesses to the DFA data structure by all PUs

. Note that as during the validation
stage the Secondary does not perform memory accesses. We de-
fine memory efficiency as

and it reflects the ratio between the throughput
achievable by running the reference algorithm in parallel on
many packets and the throughput we achieve using speculation.
Both and can be used to characterize system throughput:
is appropriate when tight synchronization between the PUs is

enforced (e.g., SIMD architectures) and the processing capacity
is the limiting factor; is relevant when memory throughput
is the limiting factor.
3) Performance of Algorithm 2: In the worst case, no match

is found, and coupling between Primary and Secondary does not
happen . In this case, the Primary follows a tradi-
tional search of the input and all the actions of the Secondary are
overhead. We get , , , , and

. In practice, because the work during the iterations
is slightly more complex than for the reference algorithm (the
secondary updates the history), we can even get a small slow-
down, but the latency cannot be much lower than that of the
reference algorithm.
In the common case, no match occurs and . We

have , ,
, and , where . Thus the

latency is typically close to half the latency of the reference
implementation and the throughput achieved is very close to
that achievable by just running the reference implementation in
parallel on separate packets.
In the uncommon case where matches are found, the latency

is the same as for the reference implementation if the match is
found by the Primary. If the match is found by the Secondary,
the speedup can be much larger than 2.

Algorithm 3: Single-threaded SPPM with two chunks. Accepts PREs.

B. SPPM for Single-Threaded Software

Algorithm 3 shows how to apply SPPM for single-threaded
software. We simply rewrite the parallel part of Algorithm 2 in
a serial fashion with the two table accesses placed one after the
other. Except for this serialization, everything else is as in Algo-
rithm 2 and we omit showing the common parts. The duration
of one step (lines 6–14) increases and the number of steps de-
creases as compared to Algorithm 1. The two memory accesses
at lines 9–10 can overlap in time, so the duration of a step in-
creases but does not double. If the validation region is small, the
number of steps is little over half the original number of steps.
The reduction in the number of steps depends only on the input
and on the DFA whereas the increase in the duration of a step
also depends on the specific hardware (processor and memory).
Our measurements show that speculation leads to an overall re-
duction in processing time and the magnitude of the reduction
depends on the platform. The more instructions the processor
can execute during a memory access, the larger the benefit of
speculation.
This algorithm can be generalized to work with

chunks, but the number of variables increases (e.g., a separate
state variable needs to be kept for each chunk). If the number
of variables increases beyond what can fit in the processor’s
registers, the overall result is a slowdown. We implemented a
single-threaded SPPM algorithm with three chunks, but, on the
platforms we evaluated, its performance was not satisfactory, so
we only report results for the two-chunk version.

C. SPPM for Parallel Hardware

Algorithm 4 generalizes Algorithm 2 for the case where
PUs work in parallel on chunks of the input. We present this
unoptimized version due to its simplicity.
Lines 2–5 initialize the PUs. They all start parsing from the

initial state of the DFA. They are assigned starting positions
evenly distributed in the input buffer: PU starts scanning at po-
sition . During the parallel processing stage
(lines 6–13) all PUs perform the traditional DFA processing for
their chunks and record the states traversed in history (this is re-
dundant for PU ). The first PUs participate in the valida-
tion stage (lines 14–25). A PU stops (becomes inactive) when
coupling with the right neighbor happens, or when it reaches
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Algorithm 4: SPPM procedure for matching PREs with processing units.

the end of the input. Active PUs perform all actions performed
during normal processing (including updating the history).
The algorithm ends when all PUs become inactive.
1) Linear History is Relatively Optimal: Algorithm 4 uses a

linear history: for each position in the input, exactly one state
is remembered—the state saved by the most recent PU that
scanned that position. Thus PU sees the states saved by PU ,
which overwrite the states saved by PU PU PU .
Since we want a PU to stop as soon as possible, a natural

question arises: would PU have a better chance of coupling
if it checked the states for all of PU PU PU
instead of just PU ? Would a two-dimensional history that
saves the set of all the states obtained by preceding PUs at a
position offer better information than a linear history that saves
only the most recent state? In what follows we show that the
answer is no: the most recent state is also the most accurate
one. If for a certain input position, PU agrees with any of
PU PU PU , then PU must also agree with
PU at that position. We obtain this by substituting in the
following theorem chunk for , the concatenation of chunks

to for , and any prefix of chunk for
. We use the notation to represent the concatenation

of strings and ; and to denote the state reached
by the DFA starting from state and transitioning for each
character in string .
Theorem 1 (Monotony of Preparsing): Assume that DFA is

the minimized deterministic finite automaton accepting a prefix-
closed regular expression, with the start state of the DFA.

Fig. 5. Performance metrics for one packet with payload bytes.

For any , , input strings we have:
.

Proof: Let and
. Assume, by contradiction, that . Since

DFA is minimal, there must be a string such that only one of
and is an accepting state and the other one is

not.
Assume the language accepted by the DFA.
We have two cases:
1) accepting and is not. Since

, we have ac-
cepting accepting. Hence, .
Since is prefix closed,

accepting. But
. Therefore, is

accepting, which is a contradiction.
2) is accepting and is not. Then

is accepting. Hence . Since is prefix
closed, . We have

is accepting. But,
.

Therefore, is accepting, which is also a contra-
diction.

Both cases lead to contradiction, so our assumption was wrong
and .
2) Performance of Algorithm 4: For validation region , we

define as the portion of the packet processed by PU during
validation, so it can go beyond the end of chunk . Let
be the length of the validation region , ,
and .
We get the following performance metrics (see Fig. 5):

(1)
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In the worst case (no coupling for any of the chunks)
(ignoring rounding effects),

and which results in a latency of
(no speedup, but no slowdown either), a processing efficiency
of , and a memory efficiency of . Note
that the processing efficiency and the memory efficiency do not
need to be tightly coupled. For example, if there is no coupling
for the first chunk, but coupling happens fast for the others, the
latency is still and thus , but as
most of the input is processed twice. But our experiments show
that for below 100, the validation regions are typically much
smaller than the chunks and the speedups we get are on the order
of and efficiencies are high.
We note here that SPPM always achieves efficiencies of

less than 100% on systems using parallel hardware: within our
model, the ideal throughput one can obtain by having the PUs
work on multiple packets in parallel is always slightly higher
than with SPPM. The benefit of SPPM is that the latency of
processing a single packet decreases significantly. This can
help reduce the size of buffers needed for packets (or the
fraction of the cache used to hold them) and may reduce the
overall latency of the IPSs which may be important for traffic
with tight service quality requirements. Furthermore systems
using SPPM can break the workload into fixed-size chunks as
opposed to variable-sized packets which simplifies scheduling
in tightly coupled SIMD architectures where the processing
cost is determined by the size of the largest packet (or chunk)
in the batch. This can ultimately improve throughput as there
is no need to batch together packets of different sizes. Due to
the complexity of parallel hardware in IPSs, the performance
depends on the specifics of the system beyond those captured
by our model whether SPPM, simple parallelization, or a mix
of the two is the best way to achieve good performance.

V. RELAXING THE ASSUMPTIONS

A. Anchored Regular Expressions

Algorithm 4 requires signatures that are PRE in order to
avoid false matches. This raises the issue of what to do with
the remaining signatures which are anchored. There are three
options: 1) treat them separately; 2) devise a new algorithm
(Section V-B); or 3) mix them with the prefix closed signatures
and use Algorithm 4 with the cost of false positives. In this
section, we give an argument for the first option. If we partition
the signature set into two sets, one containing only PRE and the
other containing only anchored expressions, then for the PRE
subset we can use Algorithm 4, and for the anchored subset a
very fast matching algorithm based on rejecting states.
Algorithm 1 only checks for accepting states, so it needs to

scan the entire input to declare that there is no match. However,
if the expression is anchored, usually only part of the input needs
to be scanned. Consider the anchored regular expression ,
which matches the string only at the beginning of the
input, in contrast with . For VIRUS we only need to
scan the first five characters in the input to tell if a match occurs
or not. This relies on rejecting states which are states that are
not accepting and have all transitions back to themselves. Once
a DFA enters a rejecting state, it cannot exit it and, therefore, it
cannot reach an accepting state. A minimized DFA has at most

Algorithm 5: DFA matching anchored-only expressions which have a

rejecting state.

one rejecting state, which makes checking for it easy. Not every
DFA has such states but the DFA corresponding to a set con-
taining only anchored expressions is likely to have one.
Lemma 1 (Existence of REJECTING States): If a DFA (not

necessarily minimized) has rejecting states, then the language
accepted by the DFA contains no subset that is prefix closed.
Note that the reciprocal is not true (consider a DFA that ac-

cepts even length strings).
Proof: Let be the starting state and a rejecting state.

Then there must be a string such that .
Assume, by contradiction, that the DFA accepts , a
prefix closed string set. Let . is prefix closed

is an accepting state. But
, because

is a rejecting state without any outgoing transitions. Hence
should be both a rejecting state and accepting, which is a

contradiction.
Expressions such as match at the beginning of

the input or after a new line. can be separated into
which is anchored and which is prefix closed
( stands for newline). This distinction can be performed
for all signatures. Thus, the language described by the entire
signature set is the union of the languages for two disjoint sets of
signatures: one containing only anchored expressions, and one
containing only PRE. For the later SPPM can be used. For the
former, we can use Algorithm 5 which is Algorithm 1 modified
to check for both accepting and rejecting states.
For the set of anchored signatures extracted from Snort, Al-

gorithm 5 outperforms the traditional DFA algorithm by orders
of magnitude. Such speedups require the existence of rejecting
states and according to Lemma 1 this requires a separation be-
tween anchored and prefix closed expressions.

B. General Case: Matching GREs

Themost general case is when the IPS uses unrestricted GREs
and it requires an ordered list of all matches. In this case, we
must change the way Algorithm 4 handles matches.
The basic SPPM algorithms require prefix-closed expressions

only because Secondaries are allowed to safely report a match if
they reach an accepting state. For non-PRE such as ,
the matches found by Secondaries (which start processing from
the start state of the DFA) may be false matches such as in the
case when the string occurs at the beginning of the second
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Algorithm 6: SPPM with processing Units (PUs). Matches GREs. The ini-

tial state for nonprimary PUs can be any state.

chunk, not at the beginning of the input. The SPPM version
described in Algorithm 6 avoids this problem.
The separation of parallel stage and validation stage into sep-

arate loops in Algorithm 4 was meant for ease of understanding,
but the two loops can be combined. This is the format used in Al-
gorithm 6 which generalizes Algorithm 4 to handle GRE. The
main difference is that matches are not reported immediately.
Instead, a global flag records that a potential
match was found and scanning is continued.
1) Claim 1 (Invariant: Same Trace as a Traditional DFA):

When line 18 is reached, each input byte is processed and the
corresponding position in the history buffer holds the same state
as that obtained by the traditional DFA algorithm after pro-
cessing that position. Hence, the history buffer contains exactly
the same sequence (trace) of states that the traditional DFA
matching would have produced (using the same input and tran-
sition table).

Proof: The initial division of the input in at most chunks
covers the entire input. Therefore, for each input byte there is a
chunk covering it. Consider the th input byte and let chunk
be the chunk containing it. PU becomes inactive only when
one of two conditions are satisfied: PU reaches the end of the
input, or PU couples with some PU (remember that history
is initialized to hold an invalid state as a sentinel in all positions).
But the end of the input is at or after position and coupling with
PU can only happen after the starting position of chunk .

Hence, position is processed at least once.We use induction on
to prove that the resulting value of is the same state
as that obtained by the traditional DFA algorithm. This is clearly
true for since it falls in the Primary chunk. Assume that the
property holds for andwewill prove that it also holds for
. Let PU be the last PU that processed position (there is at
least one such PU according to the first half of this claim). If
, then PU is the Primary which starts in the same initial state as
the traditional DFA and obviously traverses the same sequence
of states while active. If , then PU must
have stopped before position . Let be the largest position
processed by any PU , . Since PU cannot stop before
the beginning of chunk , it follows that position was also
processed by PU . Since the last PU to visit did not visit the
next position , it follows that the last visitor of coupled
with PU at position . By induction hypothesis is
the same as for a traditional DFA. Since was the
state produced by PU it follows that all states produced by
PU after position , position included, are the same as for a
traditional DFA. Hence the property holds for position which
concludes the induction proof.
After scanning the entire input, at line 18, we must decide

if any potential matches are indeed real matches. For this, we
simply look at the states saved in the history and report the ac-
cepting ones. This is sound according to Claim 1. The common
case in IPSs is that no matches are found so the overhead for
the extra bookkeeping is incurred only for a small fraction of
the packets.
Algorithm 6 addresses two additional issues: flexibility in the

choice of secondary starting states and matching semantics:
2) Flexibility in Secondary Starting States: The starting state

for a Secondary no longer has to be the same as the initial state
of the DFA. This allows for the choice of other convenient states
such as themost frequent one, which in the presence of anchored
expressions might not be the initial state.
3) Flexibility in Matching Semantics: The basic matching

algorithm is often extended to return more information than
just whether a match occurred or not: the offset within the
input where the accepting state has been reached and/or the
signature number for that matched (a single DFA typically
tracks multiple signatures). Furthermore, multiple matches
may exist as the reference algorithm may visit accepting states
more than once. For example, if one recognizes the two sig-
natures and with a single DFA and the input
is , we have a match for the
second signature at the end of the second word and one for the
first signature at the end of the fourth word. Since the history
buffer contains the same trace as that of a serial DFA, one can
get either the first match or all matches by changing the search
order at lines 20–24. Algorithm 6 can return any information
about the matches that the traditional algorithm can.

C. Bounding the Validation Region

In the worst case, speculation fails and the whole input is tra-
versed sequentially. There is nothing we can do to guarantee a
worst-case latency smaller than and equivalently a processing
efficiency ofmore than . But we can ensure that thememory
efficiency is larger than which corresponds to the case
where all PUs traverse the input to the end. We can limit the
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Algorithm 7: SPPM with PUs, using bounded validation region. Matches

PRE.

size of each validation region to positions, and stop the vali-
dation stage for all PUs other than the primary when they reach
that limit, as shown in Algorithm 7. If is large enough, con-
vergence may still happen (see Section VI-F), but we bound the
number of memory accesses performed during the validation
stage to for the nonprimary PUs doing valida-
tion and for the primary. Thus

and .

VI. EXPERIMENTAL EVALUATION

We compared results using SPPM against the traditional
DFA method. There are many more variations of SPPM than
we can cover here. But the cases that we do cover show that
SPPM has very good potential for massive parallelization of
pattern matching. The simple, single threaded version can
achieve speedups of 40%, and these are larger on faster CPUs.
Simulation of parallel SPPM show that the speedup can be
almost linear in the number of CPUs, even for values of
as large as 50. This is because typically validation happens

within a few bytes. The generalization of SPPM to handle
arbitrary GRE (not just PRE) comes at a performance cost
which depends on the number of matches in the input (almost
free, if there are no matches). Bounding the validation region is
a good option to guard memory efficiency.

Fig. 6. CDF for the sizes of 175-k packets.

Fig. 7. DFA sets used in experiments.

A. Experimental Setup

1) Payload: As input we extracted the TCP payloads of
175 668 HTTP packets from a two-hour trace captured at the
border router of our department. Fig. 6 shows the cdf for packet
lengths. The average length was 1052 bytes. The most frequent
packet sizes were 1448 bytes (50.88%), 1452 bytes (4.62%),
and 596 bytes (3.82%). Furthermore, 5.73% of the packets were
smaller than 250 bytes, 34.37%were between 251 and 1250, and
59.90% were larger than 1251.
2) Signatures: We used 1450 Snort HTTP signatures. Since

a single DFA containing all signatures would not fit in the
memory, an automated procedure inspired from [32] was used
to divide them into 107 DFAs. These DFAs are grouped in two
sets (see Fig. 7):
• Set1 contains 106 DFAs composed only of PREs.
• Set2 contains a single DFA from a mixture of PRE and
anchored signatures.

We treat Set2 separately because it contains anchored signa-
tures and it can be used with the basic PRE-only versions of
SPPM only at the cost of reporting false matches. Nevertheless,
we still report results for this combination because it could be a
valid design decision where false positives would later be dis-
carded.
3) Match Behavior: A common IPS behavior is to resume

scanning after a match is handled and deigned nonmalicious.
This behavior can be approximated by always fully scanning
the input. However, our default behavior is to return after the
first match, as in Algorithm 1. In the few cases when we chose
the alternative behavior of resumed scanning (for both the tradi-
tional algorithm and the speculative one), we explicitly state it.
This only makes a difference for packets that contain a match.

B. Evaluation of Algorithm 3 (Single Threaded, Software
Implementation)

We implemented four versions of Algorithm 3, the single
threaded implementation which uses speculation to overlap
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Fig. 8. Speedup for versions of Algorithm 3 classified by the expected input
(PRE versus GRE), and by whether or not scanning is resumed after each match.
Tests marked with “ ” have seven false positives.

Fig. 9. Speedup of Algorithm 3 (single threaded SPPM) over the sequential
DFA Algorithm (on Set1).

memory accesses. Fig. 8 shows the resulting speedups when
compared to the traditional sequential algorithms.3 The two
“PRE” columns show the results for the basic version, intended
to use only PRE as input. The two “GRE” columns show the
results for the version modified to work with all GRE as de-
scribed in Section V-B. For both versions we tried the (default)
behavior which returns the first match and does not resume
scanning, as well as the behavior that resumes scanning after
each match (distinction done by the “resume?” and “YES/NO”
columns in Fig. 8). We measured the actual running times
using hardware performance counters and ran experiments on
three architectures, a Pentium M at 1.5 GHz, an Intel Core 2 at
2.4 GHz, and a Xeon E5520 at 2.27 GHz. We explain the higher
speedup on the greater performing processors in Fig. 8 by the
larger gap between the processor speed and the memory la-
tency. Fig. 9 shows how the packet size influences the speedup
for the PRE-only version of Algorithm 3 using Set1: for packets
smaller than 20 bytes, speculation may result in slowdowns.
For packets larger than 150 bytes, the speedup does not change
significantly with the packet size. Each PRE-only version of
the algorithm has a total of seven false positives when used
with on Set2 (which is not PRE).
The generalization of Algorithm 3 to work with GRE comes

at the cost of additional overhead. Fig. 10 compares the speedup

3By using the corresponding behavior in terms of returning the first match or
scanning the whole packet.

Fig. 10. Speedup of two variants of Algorithm 3 (on Xeon/Set1): (1) matching
only PRE, and (2) matching all GRE.

for the two versions by packet size and shows a clear decrease
of about 10% for the general version, on the Xeon architecture.
As discussed in Section VI-G, this supports a model where an-
chored expressions are handled separately and the basic PRE-
only algorithm is used for the rest.

C. Evaluation of Algorithm 4 (Basic SPPM for Prefix Closed
Regular Expressions) Using Simulation

We evaluated Algorithm 4 for up to processing
units. We used a simulation of parallel architecture and report
speedups and efficiency based on our performance model which
relies on the number of accesses to the DFA table (lines 9 and
18 of Algorithm 4). These metrics are described in Section IV-C
by (1). Fig. 11 shows that speedup is almost linear up to
and it slowly diverges afterwords. The processing efficiency

approaches 50% and the memory efficiency 90% by the time we
reach (see Figs. 12 and 13).
In [18], we show the influence of packet size on performance

metrics. For space reasons, we do not reproduce the graphs here,
but as expected the algorithm performs better on larger packets.
The greatest impact is observed for memory efficiency which
degrades fast for small packets as increases.

D. Validation Region

We found that the validation typically happens quickly.When
and all the DFAs in Set1 are matched against the en-

tire input, validation happens after a single byte for 99% of the
chunks.
The scanning time for a packet is determined by

the largest validation region in the packet (see Fig. 5). Fig. 14
shows for each signature set, and each the
values for average validation size over all chunks, and

average value of over all packets. It also shows
the percent of chunks for which validation happens within 1, 2,
or 3 bytes. Figs. 15 and 16 present the cumulative distributions
for the sizes of the validation regions when . Fig. 15
captures the sizes of all validation regions, which is relevant
to memory efficiency. Fig. 16 captures only the largest valida-
tion region for each packet, which is relevant to processing ef-
ficiency.
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Fig. 11. Speedup for Algorithm 4 (basic SPPM for PRE).

Fig. 12. CPU efficiency for Algorithm 4 (basic SPPM for PRE).

Fig. 13. Memory efficiency of Algorithm 4 (basic SPPM for PRE).

E. Evaluation of Algorithm 6 (SPPM for GREs) Using
Simulation

Fig. 17 shows the speedup of Algorithm 6. On Set1, it gets
results almost identical to those for Algorithm 4.We explain this
on the small number of matches. On Set2, although Algorithm
6 exhibits speedups, it is greatly outperformed by Algorithm
4. Figs. 18 and 19 show processor and memory efficiencies of
Algorithm 6. As expected, on Set2 these are lower than those
for Algorithm 4.

F. Evaluation of Algorithm 7 (SPPM for PRE, With Bounded
Validation Region) Using Simulation

Wemeasured the performance of Algorithm 7 by limiting the
validation region to various sizes. In theory, this cannot increase

Fig. 14. Validation region statistics. Number of PUs.
average size over all chunks. average value of maximum validation
size in each packet. shows the percent of chunks for which
validation occurs in bytes.

Fig. 15. CDF for validation region size, over all chunks.

the processing efficiency (or the speedup). It can only improve
the worst case for memory efficiency, and protect against certain
algorithmic attacks. On our test data we observed that if the
limit is sufficiently large (about 10 bytes), then the memory and
processor efficiency (and implicitly the speedup) are about the
same as for unbounded memory (see Figs. 20 and 21).

G. Anchored Expressions and Rejecting States

We gathered all anchored signatures into one DFA as ex-
plained in Section V-A. We verified that the minimized DFA
has indeed a rejecting state and then we scanned the input using
Algorithm 5. Compared to the traditional algorithm, this ver-
sion reduced the number of memory accesses by 99%. The ac-
tual matching time was reduced to 2%, that is a 50 speedup.
Note that the difference between the PRE and GRE versions of
SPPM can be much larger than 2% (see Figs. 10 and 8 and Set2
in Figs. 11 and 17). This supports the idea of partitioning the
signatures in anchored and PRE, and handling them separately.
This separation allows the selection of Algorithm 4 which out-
performs Algorithm 6. Alternatively, Algorithm 4 could be used
for all GRE with the risk of having false positives and having to
handle them elsewhere. Because it is hard to quantify the com-
putation done by an IPS when a possible match is reported, we
do not explore this option further. Also, note that such false pos-
itives could also be used for algorithmic attacks to slow the IPS.

VII. RELATED WORK

Signature matching is at the heart of intrusion prevention,
but traditional matching methods have large memory footprints,
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Fig. 16. CDF for largest in a packet, over all packets.

Fig. 17. Speedup of Algorithm 6 (SPPM for GRE).

Fig. 18. CPU efficiency of Algorithm 6 (SPPM for GRE).

slow matching times, or are vulnerable to evasion. Many tech-
niques have been and continue to be proposed to address these
weaknesses.
Early string-based signatures used multipattern matching al-

gorithms such as Aho–Corasick [1] to efficiently matchmultiple
strings against payloads. Many alternatives and enhancements
to this paradigm have since been proposed [8], [17], [27]–[29].
With the rise of attack techniques involving evasion [10], [20],
[21], [23] and mutation [13], though, string-based signatures
have more limited use, and modern systems have moved to
vulnerability-based signatures written as regular expressions
[6], [22], [26], [30]. In principle, DFA-based regular expression
matching yields high matching speeds, but combined DFAs
often produce a state-space explosion [24] with infeasible
memory requirements. Many techniques have been proposed to

Fig. 19. Memory efficiency of Algorithm 6 (SPPM for GRE).

Fig. 20. Effect of bounded validation size on performancemetrics for .

Fig. 21. Effect of bounded validation size on performance metrics for
.

reduce the DFA state space [24], [25], or to perform edge com-
pression [3], [9], [14], [16]. These techniques are orthogonal
to our own, which focuses specifically on latency and can be
readily applied to strings or regular expressions with or without
alternative encoding.
Other work uses multibyte matching to increase matching

throughput. Clark and Schimmel [7] and Brodie et al. [5] both
present designs for multibyte matching in hardware. Becchi and
Crowley [4] also consider multibyte matching for various num-
bers of bytes, or stride, as they term it. These techniques increase
throughput at the expense of changing DFA structure, and some
form of edge compression is typically required to keep transi-
tion table memory to a reasonable size. Our work on the other
hand reduces latency by subdividing a payload andmatching the
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chunks in parallel without changing the underlying automaton.
It would be interesting to apply speculative matching to multi-
byte structured automata.
Kruegel et al. [15] propose a distributed intrusion detection

scheme that divides the load across multiple sensors. Traffic
is sliced at frame boundaries, and each slice is analyzed by a
subset of the sensors. In contrast, our work subdivides indi-
vidual packets or flows, speculatively matches each fragment in
parallel, and relies on fast validation. Whereas Kruegel’s work
assumes individual, distinct network sensors, our work can ben-
efit from the increasing availability of multicore, SIMD, and
other -way processing environments.
Parallel algorithms for regular expression and string

matching have been developed and studied outside of the
intrusion detection context. Hillis and Steele [11] show that
an input of size can be matched in steps given

processors, where is the alphabet size. Their algo-
rithm handles arbitrary regular expressions but was intended
for Connection Machines-style architectures with massive
numbers of available processors. Similarly, Misra [19] de-
rives an -time string matching algorithm using

processors. Again, the resulting algo-
rithm requires a large number of processors.
Many techniques have been proposed that use ternary con-

tent addressable memories (TCAMs). Alicherry et al. [2] pro-
pose a TCAM-based multibyte string matching algorithm. Yu
et al. [33] propose a TCAM-based scheme for matching simple
regular expressions or strings. Weinsberg et al. [31] introduces
the rotating TCAM (RTCAM), which uses shifted patterns to
increase matching speeds further. In all TCAM approaches, pat-
tern lengths are limited to TCAM width and the complexity of
acceptable regular expressions is greatly limited. TCAMs do
provide fast lookup, but they are expensive, power-hungry, and
have restrictive limits on pattern complexity that must be ac-
commodated in software. Our approach is not constrained by
the limits of TCAM hardware and can handle regular expres-
sions of arbitrary complexity.
The work most closely related to ours is the parallel lexer

from [12]. This was concurrent work with ours, which we were
not aware at [18]. The core idea is similar to SPPM but their ap-
plication domain is different: They use speculation to parallelize
token detection. As opposed to SPPM, they start the speculative
matching a few bytes before the desired location, with the hope
to reach a stable state by that point. In their case, matches are fre-
quent, and the language (tokens for some higher syntax) is sim-
pler. We feel that speculation in [12] is justified by the fact that
lexing ismemory-less in the sense that the state at the beginning
of a token is always the same no matter where parsing started,
comments aside. Valid token beginnings are always coupling
positions. In our case matches are infrequent. We give more in-
sight on why the speculation works, prove that a linear history
is efficient, and give more implementation details and insight
about coupling. Such insight is essential for the requirements of
intrusion detection.

VIII. CONCLUSION

We presented a speculative pattern matching method which
is a powerful technique for low latency regular-expression

matching. The method is based on three important observa-
tions. The first key insight is that the serial nature of the memory
accesses is the main latency-bottleneck for a traditional DFA
matching. The second observation is that a speculation that does
not have to be right from the start can break this serialization.
The third insight, which makes such a speculation possible, is
that the DFA-based scanning for the intrusion detection domain
spends most of the time in a few hot states. Therefore, guessing
the state of the DFA at a certain position and matching from
that point on has a very good chance that in a few steps will
reach the “correct” state. Such guesses are later on validated
using a history of speculated states. The payoff comes from the
fact that in practice the validation succeeds in a few steps. A
linear history is also essential for an efficient implementation
of SPPM. It is also a key component for the ability to retrieve
information about the matching states for arbitrary regular
expressions, without sacrificing performance with excessive
bookkeeping in the frequent case when matches are not found.
Our results predict that speculation-based parallel solutions

can scale very well. Moreover, as opposed to other methods in
the literature, our technique does not impose restrictions on the
regular-expressions being matched. We believe that speculation
is a very powerful idea and other applications of this technique
may benefit in the context of intrusion detection.
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