Arithmetic Operations

- Addition
- Subtraction
- Multiplication
- Division

Each of these operations on the integer representations:
- Unsigned
- Two's complement
Addition

One bit of binary addition

carry out

+ b

sum bit

a

carry in
<table>
<thead>
<tr>
<th>Carry In</th>
<th>a</th>
<th>b</th>
<th>Carry Out</th>
<th>Sum Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Addition

- Unsigned and 2's complement use the same addition algorithm
- Due to the fixed precision, throw away the carry out from the msb

```
  00010111
+  10010010
___________
  10101101
```
Two's Complement Addition

\[
\begin{array}{cccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
+ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline
& & & & & & & & & 1 \\
\end{array}
\]

\[
\begin{array}{cccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
+ & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
\hline
& & & & & & & & & 1 \\
\end{array}
\]
Overflow

The condition in which the result of an arithmetic operation cannot fit into the fixed number of bits available.

For example:

+8 cannot fit into a 3-bit, unsigned representation. It needs 4 bits: 1000
Overflow Detection

- Most architectures have hardware that detects when overflow has occurred (for arithmetic operations).
- The detection algorithms are simple.
Unsigned Overflow Detection

6-bit examples:

0 0 1 1 1 1
+ 0 0 1 1 1 1

1 0 0 0 0 0

1 1 1 1 1 1
+ 0 0 0 0 0 1

1 0 0 0 0 0

Carry out from msbs is overflow in unsigned
Unsigned Overflow Detection

6-bit examples:

\[
\begin{align*}
0 & \quad 0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 1 \\
+ \quad 0 & \quad 0 \quad 1 \quad 1 \quad 1 \quad 1 \\
\hline
0 & \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 0
\end{align*}
\]

0 No Overflow

\[
\begin{align*}
1 & \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \\
+ \quad 0 & \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1 \\
\hline
0 & \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0
\end{align*}
\]

1 Overflow!

\[
\begin{align*}
1 & \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \\
+ \quad 1 & \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \\
\hline
1 & \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0
\end{align*}
\]

1 Overflow!

Carry out from msbs is overflow in unsigned
Two’s Complement Overflow Detection

When adding 2 numbers of like sign

+ to +
- to -

and the sign of the result is different!

+ +
- -

Overflow! Overflow!
Addition

Overflow detection: 2's complement
6-bit examples

111111 ()
+ 111111 ()

()

100000 ()
+ 011111 ()

()

011111 ()
+ 011111 ()

()
Subtraction

basic algorithm is like decimal...

\[
\begin{align*}
0 - 0 &= 0 \\
1 - 0 &= 1 \\
1 - 1 &= 0 \\
0 - 1 &= _ \text{ BORROW!}
\end{align*}
\]

\[
\begin{align*}
111000 \\
- \ 010110 \\
\hline
101100
\end{align*}
\]
Subtraction

For two’s complement representation

- The implementation redefines the operation:
 \[a - b \text{ becomes } a + (-b) \]

- This is a 2-step algorithm:
 1. “take the two’s complement of \(b \)”
 (common phrasing for: find the additive inverse of \(b \))
 2. do addition
Subtraction

6-bit, 2’s complement examples

\[\begin{align*}
001111 & \quad () \\
- \quad 111100 & \quad () \\
\hline
\end{align*} \]

\[\begin{align*}
000010 & \quad () \\
- \quad 011100 & \quad () \\
\hline
\end{align*} \]
Subtraction

Overflow detection: 2’s complement

If the addition causes overflow, so does the subtraction!

\[
\begin{array}{c}
100000 () \\
- 000010 () \\
\end{array}
\]
Multiplication

0 \times 0 = 0
0 \times 1 = 0
1 \times 0 = 0
1 \times 1 = 1

- Same algorithm as decimal...
- There is a precision problem

\begin{array}{c c c c}
\text{n bits} & \times & \text{n bits} \\
\hline \\
\text{n + n bits may be needed}
\end{array}
In HW, space is always designated for a larger precision product.

\[
\begin{array}{c}
32 \text{ bits} \\
\times
\end{array}
\begin{array}{c}
32 \text{ bits} \\
\hline
64 \text{ bits}
\end{array}
\]
Unsigned Multiplication

01111

* 01101

01101
Unsigned Multiplication

\[\begin{array}{c}
11111 \\
* \\
\hline
11111 \\
\end{array} \]
Two’s Complement

Slightly trickier: must sign extend the partial products (sometimes!)
OR

Sign extend multiplier and multiplicand to full width of product

And, *use only exact number of lsbs of product*
Multiplication

+ -
\[\times \ + \quad \times \ + \]
\[\text{OK} \]

- +
\[\times \ - \quad \times \ - \]
\[\text{find additive inverses} \]
\[\text{reverse or} \]
\[\text{sign ext. partial product} \]
\[\text{OK} \]

\[\times \ + \quad \times \ + \]
\[\text{OK} \]
Unsigned Division

\[
\begin{array}{c|c}
11 & 11001 \\
\hline
25/3
\end{array}
\]
Sign Extension

The operation that allows the same 2's complement value to be represented, but using more bits.

\[
\begin{align*}
0 & 0 1 0 1 1 \text{ (5 bits)} \\
_ _ _ & 0 0 1 0 1 1 \text{ (8 bits)} \\
_ _ _ _ & 1 1 1 0 \text{ (4 bits)} \\
_ _ _ _ _ & 1 1 1 1 0 \text{ (8 bits)}
\end{align*}
\]
Zero Extension

The same type of thing as sign extension, but used to represent the same unsigned value, but using more bits

0 0 1 0 1 (5 bits)
_ _ _ 0 0 1 0 1 (8 bits)

1 1 1 1 (4 bits)
_ _ _ _ 1 1 1 1 (8 bits)
Truth Table for a Few Logical Operations

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>X and Y</th>
<th>X nand Y</th>
<th>X or Y</th>
<th>X xor Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Logical Operations

Logical operations are done **bitwise** on every computer.

Invented example:
Assume that $X, Y,$ and Z are 8-bit variables.

and Z, X, Y

If

X is 0 0 0 0 1 1 1 1
Y is 0 1 0 1 0 1 0 1

then

Z is _ _ _ _ _ _ _ _
To selectively **clear** bit(s)

» **clear** a bit means make it a 0

» First, make a **mask**:

 (the generic description of a set of bits that do whatever you want them to)

» **Within** the mask,

 » 1’s for unchanged bits

 » 0’s for **cleared** bits

To clear bits numbered 0,1, and 6 of variable X

mask 1 . . 1 0 1 1 1 1 0 0

and use the instruction

and result, X, mask
To selectively \textbf{set} bit(s)

- \textbf{set} a bit means make it a 1

- First, make a \textbf{mask}:
 - 0's for unchanged bits
 - 1's for \textbf{set} bits

To set bits numbered 2, 3, and 4 of variable X

\begin{verbatim}
mask 0 . . 0 0 0 0 1 1 1 0 0
\end{verbatim}

and use the instruction

or result, X, mask
Shift

Moving bits around

1) arithmetic shift
2) logical shift
3) rotate

Bits can move right or left
Arithmetic Shift

Right

sign extension!

Left

0
Logical Shift

Right

Left

Logical left is the same as arithmetic left.
Rotate

Right

No bits lost, just moved

Left
➢ Assume a set of 4 chars. are in an integer-sized variable (X).
➢ Assume an instruction exists to print out the character all the way to the right...

\[
\begin{array}{cccc}
X & 'A' & 'B' & 'C' & 'D'
\end{array}
\]

\[
\text{putc } X \quad \text{(prints D)}
\]

➢ Invent instructions, and write code to print ABCD, without changing X.
Karen's solution

\texttt{rotl X, 8 bits}
\texttt{putc X} \# A
\texttt{rotl X, 8 bits}
\texttt{putc X} \# B
\texttt{rotl X, 8 bits}
\texttt{putc X} \# C
\texttt{rotl X, 8 bits}
\texttt{putc X} \# D