
CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING
COMPUTER SCIENCES DEPARTMENT

UNIVERSITY OF WISCONSIN-MADISON

Prof. David A. Wood
TAs Spyros Blanas, Priyananda Shenoy, Shengnan Wang

Midterm Examination 3
In Class (50 minutes)

Monday, April 21, 2008
Weight: 15%

CLOSED BOOK, NOTE, CALCULATOR, PHONE, & COMPUTER.

The exam is two-sided and has 10 pages, including two blank pages and a copy of the LC-3
Instruction Set handout on the final page (please feel free to detach this final page, but insert it
into your exam when you turn it in).

You are required to present a valid UW-Madison student ID card or other government-issued
photo ID to one of the teaching assistants who are proctoring this exam before leaving the room.
If you fail to do so, we cannot grade your exam.

Plan your time carefully, since some problems are longer than others.

NAME: __

ID# __

1

Problem
Number

Maximum
Points

Points
Awarded

1 12

2 9

3 15

4 24

5 20

6 10

7 10

Total 100

Problem 1 (12 points)

The following LC-3 program has been loaded into memory:

Address Instruction

x5000 1001 0010 0011 1111

x5001 0001 0010 0110 0001

x5002 0001 0010 0100 0010

x5003 0000 0110 0000 0110

a) The contents of the registers are shown below:

R0 is 4 R1 is 3 R2 is 0 R3 is 5

Which condition codes are set and what is the value of the PC after instruction at x5003 is
executed?

b) The contents of the registers are shown below:

R0 is 3 R1 is 0 R2 is 5 R3 is 4

Which condition codes are set and what is the value of the PC after instruction at x5003 is
executed?

3

Problem 2 (9 points)

The contents of the memory and the registers are shown below:

Register Value Memory address Value

R0 x3012 x3010 x3012

R1 x002A x3011 x3010

R2 x300B x3012 xBEEF

We start executing from address x3000. What 's the value in R1 after each instruction is
executed?

a) If x3000 is 0010 0010 0001 0000 LD R1, PTR

b) If x3000 is 0110 0010 1000 0111 LDR R1, 7(R2)

c) If x3000 is 1010 0010 0001 0000 LDI R1, PTR

Problem 3 (15 points)

The program below sums a sequence of numbers. The address to the start of the sequence is
stored in R2 and the number of elements in that sequence is stored in R3. Insert the missing LC-3
machine language instructions. Adding comments to each machine language instruction will
assist in awarding partial credit.

Address Instruction

x5000 0101 1111 1110 0000 ; AND R7,R7,#0

x5001 0110 0010 1000 0000 ; LDR R1,R2,#0

x5002 0001 1111 1100 0001 ; ADD
R7,R7,R1

x5003

x5004 0001 0110 1111 1111 ; ADD R3,R3,#-
1

x5005

x5006 1111 0000 0010 0101 ; HALT

5

Problem 4 (24 points)

There is something wrong with the following code. This code is supposed to count the number
of positive numbers in a sequence, save this number in R7 and then exit. The sequence always
has 10 elements and the address of the start of the sequence has been stored in register R2.

Address Instruction

x3005 0101 0000 0010 0000 ; AND R0, R0, #0

x3006 0001 0000 0010 1010 ; ADD R0, R0, #10

x3007 0101 1111 1110 0000 ; AND R7, R7, #0

x3008 0110 0010 1000 0000 ; LDR R1, R2, #0

x3009 0000 0010 0000 0001 ; BRp #1

x300A 0001 1111 1110 0001 ; ADD R7, R7, #1

x300B 0001 0100 1010 0001 ; ADD R2, R2, #1

x300C 0001 0000 0011 1111 ; ADD R0, R0, #-1

x300D 0000 0011 1111 1010 ; BRp #-6

x300E 1111 0000 0010 0101 ; HALT

Explain what happens when we try to execute this code. Comments are provided to save you the
effort of decoding the machine language.

If you had a debugger, briefly describe how you would use it to debug this program.

Problem 5 (20 points)

The current state of the memory is given below:

Memory Address Memory Contents

x3006 xABCD

xABCD x1220

x2FFF x4567

x1220 x9876

xABDB x0001

x30F3 x0020

x200E x3258

x3258 x0000

x300E x92FE

x3005 x200E

We load and execute the following program:

Address Instruction

x3000 1010 0000 0000 0101

x3001 0110 0110 0000 0000
; LDR R3, R0, x0

x3002 1110 0010 1111 0000

x3003 0010 0101 1111
1110 ; LD R2, x1FE

x3004 1111 0000 0010 0101

What will be the final contents of registers R0-R3 when we reach the HALT instruction? Write
your answers in hexadecimal format.

Register Initial contents Final contents

R0 x200E

R1 x200E

R2 x3001

R3 x3001

7

Problem 6 (10 points)

If the value stored in R0 is 1 at the end of the execution of the following instructions, what can
be inferred about R3?

Address Instruction

x4000 1110 0011 1111 1111

x4001 0101 0000 0010 0000
AND R0, R0, x0

x4002 0001 0100 0100 0001

x4003 0101 0110 1000 0011

x4004 0000 0100 0000 0001

x4005 0001 0000 0010 0001
ADD R0, R0, x1

a. R3 is negative

b. R3 is positive

c. R3 is equal to 0

d. R3 is zero or positive

Problem 7 (10 points)

What does the following instruction sequence do?

Address Instruction

x4000 1110 0000 0001 0000

x4001 1100 0000 0000 0000

Can you do the same using a single instruction only? If yes, which one? If no, why?

Scratch Sheet 1 (in case you need additional space for some of your answers)

9

Scratch Sheet 2 (in case you need additional space for some of your answers)

LC-3 Instruction Set (Entered by Mark D. Hill on 03/14/2007; last update 03/15/2007)

PC’: incremented PC. setcc(): set condition codes N, Z, and P. mem[A]:memory contents at address A.
SEXT(immediate): sign-extend immediate to 16 bits. ZEXT(immediate): zero-extend immediate to 16 bits.
Page 2 has an ASCII character table.

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ADD DR, SR1, SR2 ; Addition
| 0 0 0 1 | DR | SR1 | 0 | 0 0 | SR2 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ß SR1 + SR2 also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ADD DR, SR1, imm5 ; Addition with Immediate
| 0 0 0 1 | DR | SR1 | 1 | imm5 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ß SR1 + SEXT(imm5) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ AND DR, SR1, SR2 ; Bit-wise AND
| 0 1 0 1 | DR | SR1 | 0 | 0 0 | SR2 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ß SR1 AND SR2 also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ AND DR, SR1, imm5 ; Bit-wise AND with Immediate
| 0 1 0 1 | DR | SR1 | 1 | imm5 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ß SR1 AND SEXT(imm5) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ BRx, label (where x = {n,z,p,zp,np,nz,nzp}) ; Branch
| 0 0 0 0 | n | z | p | PCoffset9 | GO ß ((n and N) OR (z AND Z) OR (p AND P))
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ if (GO is true) then PC ß PC’ + SEXT(PCoffset9)

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JMP BaseR ; Jump
| 1 1 0 0 | 0 0 0 | BaseR | 0 0 0 0 0 0 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ PC ß BaseR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JSR label ; Jump to Subroutine
| 0 1 0 0 | 1 | PCoffset11 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ R7 ß PC’, PC ß PC’ + SEXT(PCoffset11)

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JSRR BaseR ; Jump to Subroutine in Register
| 0 1 0 0 | 0 | 0 0 | BaseR | 0 0 0 0 0 0 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ temp ß PC’, PC ß BaseR, R7 ß temp

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LD DR, label ; Load PC-Relative
| 0 0 1 0 | DR | PCoffset9 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ß mem[PC’ + SEXT(PCoffset9)] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LDI DR, label ; Load Indirect
| 1 0 1 0 | DR | PCoffset9 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ß mem[mem[PC’ + SEXT(PCoffset9)]] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LDR DR, BaseR, offset6 ; Load Base+Offset
| 0 1 1 0 | DR | BaseR | offset6 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ß mem[BaseR + SEXT(offset6)] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LEA, DR, label ; Load Effective Address
| 1 1 1 0 | DR | PCoffset9 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ß PC’ + SEXT(PCoffset9) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ NOT DR, SR ; Bit-wise Complement
| 1 0 0 1 | DR | SR | 1 | 1 1 1 1 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ß NOT(SR) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ RET ; Return from Subroutine
| 1 1 0 0 | 0 0 0 | 1 1 1 | 0 0 0 0 0 0 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ PC ß R7

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ RTI ; Return from Interrupt
| 1 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ See textbook (2nd Ed. page 537).

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ST SR, label ; Store PC-Relative
| 0 0 1 1 | SR | PCoffset9 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[PC’ + SEXT(PCoffset9)] ß SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ STI, SR, label ; Store Indirect
| 1 0 1 1 | SR | PCoffset9 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[mem[PC’ + SEXT(PCoffset9)]] ß SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ STR SR, BaseR, offset6 ; Store Base+Offset
| 0 1 1 1 | SR | BaseR | offset6 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[BaseR + SEXT(offset6)] ß SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ TRAP ; System Call
| 1 1 1 1 | 0 0 0 0 | trapvect8 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ R7 ß PC’, PC ß mem[ZEXT(trapvect8)]

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ; Unused Opcode
| 1 1 0 1 | |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ Initiate illegal opcode exception
 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11

